moved reduced Induct/SList back from AFP.
--- a/src/HOL/Induct/ROOT.ML Sat Feb 20 07:52:06 2010 +0100
+++ b/src/HOL/Induct/ROOT.ML Sat Feb 20 08:53:51 2010 +0100
@@ -1,5 +1,5 @@
setmp_noncritical quick_and_dirty true
use_thys ["Common_Patterns"];
-use_thys ["QuoDataType", "QuoNestedDataType", "Term",
+use_thys ["QuoDataType", "QuoNestedDataType", "Term", "SList",
"ABexp", "Tree", "Ordinals", "Sigma_Algebra", "Comb", "PropLog", "Com"];
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Induct/SList.thy Sat Feb 20 08:53:51 2010 +0100
@@ -0,0 +1,434 @@
+(* Title: HOL/Induct/SList.thy
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+
+This theory is strictly of historical interest. It illustrates how
+recursive datatypes can be constructed in higher-order logic from
+first principles. Isabelle's datatype package automates a
+construction of this sort.
+
+Enriched theory of lists; mutual indirect recursive data-types.
+
+Definition of type 'a list (strict lists) by a least fixed point
+
+We use list(A) == lfp(%Z. {NUMB(0)} <+> A <*> Z)
+and not list == lfp(%Z. {NUMB(0)} <+> range(Leaf) <*> Z)
+
+so that list can serve as a "functor" for defining other recursive types.
+
+This enables the conservative construction of mutual recursive data-types
+such as
+
+datatype 'a m = Node 'a * ('a m) list
+*)
+
+header {* Extended List Theory (old) *}
+
+theory SList
+imports Sexp
+begin
+
+(*Hilbert_Choice is needed for the function "inv"*)
+
+(* *********************************************************************** *)
+(* *)
+(* Building up data type *)
+(* *)
+(* *********************************************************************** *)
+
+
+(* Defining the Concrete Constructors *)
+definition
+ NIL :: "'a item" where
+ "NIL = In0(Numb(0))"
+
+definition
+ CONS :: "['a item, 'a item] => 'a item" where
+ "CONS M N = In1(Scons M N)"
+
+inductive_set
+ list :: "'a item set => 'a item set"
+ for A :: "'a item set"
+ where
+ NIL_I: "NIL: list A"
+ | CONS_I: "[| a: A; M: list A |] ==> CONS a M : list A"
+
+
+typedef (List)
+ 'a list = "list(range Leaf) :: 'a item set"
+ by (blast intro: list.NIL_I)
+
+abbreviation "Case == Datatype.Case"
+abbreviation "Split == Datatype.Split"
+
+definition
+ List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b" where
+ "List_case c d = Case(%x. c)(Split(d))"
+
+definition
+ List_rec :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b" where
+ "List_rec M c d = wfrec (pred_sexp^+)
+ (%g. List_case c (%x y. d x y (g y))) M"
+
+
+(* *********************************************************************** *)
+(* *)
+(* Abstracting data type *)
+(* *)
+(* *********************************************************************** *)
+
+(*Declaring the abstract list constructors*)
+
+no_translations
+ "[x, xs]" == "x#[xs]"
+ "[x]" == "x#[]"
+no_notation
+ Nil ("[]") and
+ Cons (infixr "#" 65)
+
+definition
+ Nil :: "'a list" ("[]") where
+ "Nil = Abs_List(NIL)"
+
+definition
+ "Cons" :: "['a, 'a list] => 'a list" (infixr "#" 65) where
+ "x#xs = Abs_List(CONS (Leaf x)(Rep_List xs))"
+
+definition
+ (* list Recursion -- the trancl is Essential; see list.ML *)
+ list_rec :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" where
+ "list_rec l c d =
+ List_rec(Rep_List l) c (%x y r. d(inv Leaf x)(Abs_List y) r)"
+
+definition
+ list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b" where
+ "list_case a f xs = list_rec xs a (%x xs r. f x xs)"
+
+(* list Enumeration *)
+translations
+ "[x, xs]" == "x#[xs]"
+ "[x]" == "x#[]"
+
+ "case xs of [] => a | y#ys => b" == "CONST list_case(a, %y ys. b, xs)"
+
+
+(* *********************************************************************** *)
+(* *)
+(* Generalized Map Functionals *)
+(* *)
+(* *********************************************************************** *)
+
+
+(* Generalized Map Functionals *)
+
+definition
+ Rep_map :: "('b => 'a item) => ('b list => 'a item)" where
+ "Rep_map f xs = list_rec xs NIL(%x l r. CONS(f x) r)"
+
+definition
+ Abs_map :: "('a item => 'b) => 'a item => 'b list" where
+ "Abs_map g M = List_rec M Nil (%N L r. g(N)#r)"
+
+
+definition
+ map :: "('a=>'b) => ('a list => 'b list)" where
+ "map f xs = list_rec xs [] (%x l r. f(x)#r)"
+
+consts take :: "['a list,nat] => 'a list"
+primrec
+ take_0: "take xs 0 = []"
+ take_Suc: "take xs (Suc n) = list_case [] (%x l. x # take l n) xs"
+
+lemma ListI: "x : list (range Leaf) ==> x : List"
+by (simp add: List_def)
+
+lemma ListD: "x : List ==> x : list (range Leaf)"
+by (simp add: List_def)
+
+lemma list_unfold: "list(A) = usum {Numb(0)} (uprod A (list(A)))"
+ by (fast intro!: list.intros [unfolded NIL_def CONS_def]
+ elim: list.cases [unfolded NIL_def CONS_def])
+
+(*This justifies using list in other recursive type definitions*)
+lemma list_mono: "A<=B ==> list(A) <= list(B)"
+apply (rule subsetI)
+apply (erule list.induct)
+apply (auto intro!: list.intros)
+done
+
+(*Type checking -- list creates well-founded sets*)
+lemma list_sexp: "list(sexp) <= sexp"
+apply (rule subsetI)
+apply (erule list.induct)
+apply (unfold NIL_def CONS_def)
+apply (auto intro: sexp.intros sexp_In0I sexp_In1I)
+done
+
+(* A <= sexp ==> list(A) <= sexp *)
+lemmas list_subset_sexp = subset_trans [OF list_mono list_sexp]
+
+
+(*Induction for the type 'a list *)
+lemma list_induct:
+ "[| P(Nil);
+ !!x xs. P(xs) ==> P(x # xs) |] ==> P(l)"
+apply (unfold Nil_def Cons_def)
+apply (rule Rep_List_inverse [THEN subst])
+(*types force good instantiation*)
+apply (rule Rep_List [unfolded List_def, THEN list.induct], simp)
+apply (erule Abs_List_inverse [unfolded List_def, THEN subst], blast)
+done
+
+
+(*** Isomorphisms ***)
+
+lemma inj_on_Abs_list: "inj_on Abs_List (list(range Leaf))"
+apply (rule inj_on_inverseI)
+apply (erule Abs_List_inverse [unfolded List_def])
+done
+
+(** Distinctness of constructors **)
+
+lemma CONS_not_NIL [iff]: "CONS M N ~= NIL"
+by (simp add: NIL_def CONS_def)
+
+lemmas NIL_not_CONS [iff] = CONS_not_NIL [THEN not_sym]
+lemmas CONS_neq_NIL = CONS_not_NIL [THEN notE, standard]
+lemmas NIL_neq_CONS = sym [THEN CONS_neq_NIL]
+
+lemma Cons_not_Nil [iff]: "x # xs ~= Nil"
+apply (unfold Nil_def Cons_def)
+apply (rule CONS_not_NIL [THEN inj_on_Abs_list [THEN inj_on_contraD]])
+apply (simp_all add: list.intros rangeI Rep_List [unfolded List_def])
+done
+
+lemmas Nil_not_Cons [iff] = Cons_not_Nil [THEN not_sym, standard]
+lemmas Cons_neq_Nil = Cons_not_Nil [THEN notE, standard]
+lemmas Nil_neq_Cons = sym [THEN Cons_neq_Nil]
+
+(** Injectiveness of CONS and Cons **)
+
+lemma CONS_CONS_eq [iff]: "(CONS K M)=(CONS L N) = (K=L & M=N)"
+by (simp add: CONS_def)
+
+(*For reasoning about abstract list constructors*)
+declare Rep_List [THEN ListD, intro] ListI [intro]
+declare list.intros [intro,simp]
+declare Leaf_inject [dest!]
+
+lemma Cons_Cons_eq [iff]: "(x#xs=y#ys) = (x=y & xs=ys)"
+apply (simp add: Cons_def)
+apply (subst Abs_List_inject)
+apply (auto simp add: Rep_List_inject)
+done
+
+lemmas Cons_inject2 = Cons_Cons_eq [THEN iffD1, THEN conjE, standard]
+
+lemma CONS_D: "CONS M N: list(A) ==> M: A & N: list(A)"
+ by (induct L == "CONS M N" set: list) auto
+
+lemma sexp_CONS_D: "CONS M N: sexp ==> M: sexp & N: sexp"
+apply (simp add: CONS_def In1_def)
+apply (fast dest!: Scons_D)
+done
+
+
+(*Reasoning about constructors and their freeness*)
+
+
+lemma not_CONS_self: "N: list(A) ==> !M. N ~= CONS M N"
+apply (erule list.induct) apply simp_all done
+
+lemma not_Cons_self2: "\<forall>x. l ~= x#l"
+by (induct l rule: list_induct) simp_all
+
+
+lemma neq_Nil_conv2: "(xs ~= []) = (\<exists>y ys. xs = y#ys)"
+by (induct xs rule: list_induct) auto
+
+(** Conversion rules for List_case: case analysis operator **)
+
+lemma List_case_NIL [simp]: "List_case c h NIL = c"
+by (simp add: List_case_def NIL_def)
+
+lemma List_case_CONS [simp]: "List_case c h (CONS M N) = h M N"
+by (simp add: List_case_def CONS_def)
+
+
+(*** List_rec -- by wf recursion on pred_sexp ***)
+
+(* The trancl(pred_sexp) is essential because pred_sexp_CONS_I1,2 would not
+ hold if pred_sexp^+ were changed to pred_sexp. *)
+
+lemma List_rec_unfold_lemma:
+ "(%M. List_rec M c d) ==
+ wfrec (pred_sexp^+) (%g. List_case c (%x y. d x y (g y)))"
+by (simp add: List_rec_def)
+
+lemmas List_rec_unfold =
+ def_wfrec [OF List_rec_unfold_lemma wf_pred_sexp [THEN wf_trancl],
+ standard]
+
+
+(** pred_sexp lemmas **)
+
+lemma pred_sexp_CONS_I1:
+ "[| M: sexp; N: sexp |] ==> (M, CONS M N) : pred_sexp^+"
+by (simp add: CONS_def In1_def)
+
+lemma pred_sexp_CONS_I2:
+ "[| M: sexp; N: sexp |] ==> (N, CONS M N) : pred_sexp^+"
+by (simp add: CONS_def In1_def)
+
+lemma pred_sexp_CONS_D:
+ "(CONS M1 M2, N) : pred_sexp^+ ==>
+ (M1,N) : pred_sexp^+ & (M2,N) : pred_sexp^+"
+apply (frule pred_sexp_subset_Sigma [THEN trancl_subset_Sigma, THEN subsetD])
+apply (blast dest!: sexp_CONS_D intro: pred_sexp_CONS_I1 pred_sexp_CONS_I2
+ trans_trancl [THEN transD])
+done
+
+
+(** Conversion rules for List_rec **)
+
+lemma List_rec_NIL [simp]: "List_rec NIL c h = c"
+apply (rule List_rec_unfold [THEN trans])
+apply (simp add: List_case_NIL)
+done
+
+lemma List_rec_CONS [simp]:
+ "[| M: sexp; N: sexp |]
+ ==> List_rec (CONS M N) c h = h M N (List_rec N c h)"
+apply (rule List_rec_unfold [THEN trans])
+apply (simp add: pred_sexp_CONS_I2)
+done
+
+
+(*** list_rec -- by List_rec ***)
+
+lemmas Rep_List_in_sexp =
+ subsetD [OF range_Leaf_subset_sexp [THEN list_subset_sexp]
+ Rep_List [THEN ListD]]
+
+
+lemma list_rec_Nil [simp]: "list_rec Nil c h = c"
+by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Nil_def)
+
+
+lemma list_rec_Cons [simp]: "list_rec (a#l) c h = h a l (list_rec l c h)"
+by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Cons_def
+ Rep_List_inverse Rep_List [THEN ListD] inj_Leaf Rep_List_in_sexp)
+
+
+(*Type checking. Useful?*)
+lemma List_rec_type:
+ "[| M: list(A);
+ A<=sexp;
+ c: C(NIL);
+ !!x y r. [| x: A; y: list(A); r: C(y) |] ==> h x y r: C(CONS x y)
+ |] ==> List_rec M c h : C(M :: 'a item)"
+apply (erule list.induct, simp)
+apply (insert list_subset_sexp)
+apply (subst List_rec_CONS, blast+)
+done
+
+
+
+(** Generalized map functionals **)
+
+lemma Rep_map_Nil [simp]: "Rep_map f Nil = NIL"
+by (simp add: Rep_map_def)
+
+lemma Rep_map_Cons [simp]:
+ "Rep_map f(x#xs) = CONS(f x)(Rep_map f xs)"
+by (simp add: Rep_map_def)
+
+lemma Rep_map_type: "(!!x. f(x): A) ==> Rep_map f xs: list(A)"
+apply (simp add: Rep_map_def)
+apply (rule list_induct, auto)
+done
+
+lemma Abs_map_NIL [simp]: "Abs_map g NIL = Nil"
+by (simp add: Abs_map_def)
+
+lemma Abs_map_CONS [simp]:
+ "[| M: sexp; N: sexp |] ==> Abs_map g (CONS M N) = g(M) # Abs_map g N"
+by (simp add: Abs_map_def)
+
+(*Eases the use of primitive recursion.*)
+lemma def_list_rec_NilCons:
+ "[| !!xs. f(xs) = list_rec xs c h |]
+ ==> f [] = c & f(x#xs) = h x xs (f xs)"
+by simp
+
+lemma Abs_map_inverse:
+ "[| M: list(A); A<=sexp; !!z. z: A ==> f(g(z)) = z |]
+ ==> Rep_map f (Abs_map g M) = M"
+apply (erule list.induct, simp_all)
+apply (insert list_subset_sexp)
+apply (subst Abs_map_CONS, blast)
+apply blast
+apply simp
+done
+
+(*Rep_map_inverse is obtained via Abs_Rep_map and map_ident*)
+
+(** list_case **)
+
+(* setting up rewrite sets *)
+
+text{*Better to have a single theorem with a conjunctive conclusion.*}
+declare def_list_rec_NilCons [OF list_case_def, simp]
+
+(** list_case **)
+
+lemma expand_list_case:
+ "P(list_case a f xs) = ((xs=[] --> P a ) & (!y ys. xs=y#ys --> P(f y ys)))"
+by (induct xs rule: list_induct) simp_all
+
+
+(**** Function definitions ****)
+
+declare def_list_rec_NilCons [OF map_def, simp]
+
+(** The functional "map" and the generalized functionals **)
+
+lemma Abs_Rep_map:
+ "(!!x. f(x): sexp) ==>
+ Abs_map g (Rep_map f xs) = map (%t. g(f(t))) xs"
+apply (induct xs rule: list_induct)
+apply (simp_all add: Rep_map_type list_sexp [THEN subsetD])
+done
+
+
+(** Additional mapping lemmas **)
+
+lemma map_ident [simp]: "map(%x. x)(xs) = xs"
+by (induct xs rule: list_induct) simp_all
+
+lemma map_compose: "map(f o g)(xs) = map f (map g xs)"
+apply (simp add: o_def)
+apply (induct xs rule: list_induct)
+apply simp_all
+done
+
+
+(** take **)
+
+lemma take_Suc1 [simp]: "take [] (Suc x) = []"
+by simp
+
+lemma take_Suc2 [simp]: "take(a#xs)(Suc x) = a#take xs x"
+by simp
+
+lemma take_Nil [simp]: "take [] n = []"
+by (induct n) simp_all
+
+lemma take_take_eq [simp]: "\<forall>n. take (take xs n) n = take xs n"
+apply (induct xs rule: list_induct)
+apply simp_all
+apply (rule allI)
+apply (induct_tac n)
+apply auto
+done
+
+end