simplify many proofs about subspace and span;
reorder premises in rule span_induct;
--- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Thu Aug 25 11:56:20 2011 -0700
+++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Thu Aug 25 11:57:42 2011 -0700
@@ -792,7 +792,7 @@
have "subspace ?P"
by (auto simp add: subspace_def)
ultimately show ?thesis
- using x span_induct[of ?B ?P x] iS by blast
+ using x span_induct[of x ?B ?P] iS by blast
qed
lemma independent_stdbasis: "independent {cart_basis i ::real^'n |i. i\<in> (UNIV :: 'n set)}"
--- a/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Thu Aug 25 11:56:20 2011 -0700
+++ b/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Thu Aug 25 11:57:42 2011 -0700
@@ -628,6 +628,9 @@
apply (rule_tac x="c *\<^sub>R x" in bexI, auto)
done
+lemma subspace_linear_vimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace (f -` S)"
+ by (auto simp add: subspace_def linear_def linear_0[of f])
+
lemma subspace_linear_preimage: "linear f ==> subspace S ==> subspace {x. f x \<in> S}"
by (auto simp add: subspace_def linear_def linear_0[of f])
@@ -637,6 +640,11 @@
lemma (in real_vector) subspace_inter: "subspace A \<Longrightarrow> subspace B ==> subspace (A \<inter> B)"
by (simp add: subspace_def)
+lemma subspace_Times: "\<lbrakk>subspace A; subspace B\<rbrakk> \<Longrightarrow> subspace (A \<times> B)"
+ unfolding subspace_def zero_prod_def by simp
+
+text {* Properties of span. *}
+
lemma (in real_vector) span_mono: "A \<subseteq> B ==> span A \<subseteq> span B"
by (metis span_def hull_mono)
@@ -655,8 +663,16 @@
by (metis span_def hull_subset subset_eq)
(metis subspace_span subspace_def)+
-lemma (in real_vector) span_induct: assumes SP: "\<And>x. x \<in> S ==> x \<in> P"
- and P: "subspace P" and x: "x \<in> span S" shows "x \<in> P"
+lemma span_unique:
+ "\<lbrakk>S \<subseteq> T; subspace T; \<And>T'. \<lbrakk>S \<subseteq> T'; subspace T'\<rbrakk> \<Longrightarrow> T \<subseteq> T'\<rbrakk> \<Longrightarrow> span S = T"
+ unfolding span_def by (rule hull_unique)
+
+lemma span_minimal: "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> span S \<subseteq> T"
+ unfolding span_def by (rule hull_minimal)
+
+lemma (in real_vector) span_induct:
+ assumes x: "x \<in> span S" and P: "subspace P" and SP: "\<And>x. x \<in> S ==> x \<in> P"
+ shows "x \<in> P"
proof-
from SP have SP': "S \<subseteq> P" by (simp add: subset_eq)
from x hull_minimal[where S=subspace, OF SP' P, unfolded span_def[symmetric]]
@@ -788,105 +804,76 @@
text {* Mapping under linear image. *}
-lemma span_linear_image: assumes lf: "linear f"
+lemma image_subset_iff_subset_vimage: "f ` A \<subseteq> B \<longleftrightarrow> A \<subseteq> f -` B"
+ by auto (* TODO: move *)
+
+lemma span_linear_image:
+ assumes lf: "linear f"
shows "span (f ` S) = f ` (span S)"
-proof-
- {fix x
- assume x: "x \<in> span (f ` S)"
- have "x \<in> f ` span S"
- apply (rule span_induct[where x=x and S = "f ` S"])
- apply (clarsimp simp add: image_iff)
- apply (frule span_superset)
- apply blast
- apply (rule subspace_linear_image[OF lf])
- apply (rule subspace_span)
- apply (rule x)
- done}
- moreover
- {fix x assume x: "x \<in> span S"
- have "x \<in> {x. f x \<in> span (f ` S)}"
- apply (rule span_induct[where S=S])
- apply simp
- apply (rule span_superset)
- apply simp
- apply (rule subspace_linear_preimage[OF lf subspace_span, of "f ` S"])
- apply (rule x)
- done
- hence "f x \<in> span (f ` S)" by simp
- }
- ultimately show ?thesis by blast
+proof (rule span_unique)
+ show "f ` S \<subseteq> f ` span S"
+ by (intro image_mono span_inc)
+ show "subspace (f ` span S)"
+ using lf subspace_span by (rule subspace_linear_image)
+next
+ fix T assume "f ` S \<subseteq> T" and "subspace T" thus "f ` span S \<subseteq> T"
+ unfolding image_subset_iff_subset_vimage
+ by (intro span_minimal subspace_linear_vimage lf)
+qed
+
+lemma span_union: "span (A \<union> B) = (\<lambda>(a, b). a + b) ` (span A \<times> span B)"
+proof (rule span_unique)
+ show "A \<union> B \<subseteq> (\<lambda>(a, b). a + b) ` (span A \<times> span B)"
+ by safe (force intro: span_clauses)+
+next
+ have "linear (\<lambda>(a, b). a + b)"
+ by (simp add: linear_def scaleR_add_right)
+ moreover have "subspace (span A \<times> span B)"
+ by (intro subspace_Times subspace_span)
+ ultimately show "subspace ((\<lambda>(a, b). a + b) ` (span A \<times> span B))"
+ by (rule subspace_linear_image)
+next
+ fix T assume "A \<union> B \<subseteq> T" and "subspace T"
+ thus "(\<lambda>(a, b). a + b) ` (span A \<times> span B) \<subseteq> T"
+ by (auto intro!: subspace_add elim: span_induct)
qed
text {* The key breakdown property. *}
+lemma span_singleton: "span {x} = range (\<lambda>k. k *\<^sub>R x)"
+proof (rule span_unique)
+ show "{x} \<subseteq> range (\<lambda>k. k *\<^sub>R x)"
+ by (fast intro: scaleR_one [symmetric])
+ show "subspace (range (\<lambda>k. k *\<^sub>R x))"
+ unfolding subspace_def
+ by (auto intro: scaleR_add_left [symmetric])
+ fix T assume "{x} \<subseteq> T" and "subspace T" thus "range (\<lambda>k. k *\<^sub>R x) \<subseteq> T"
+ unfolding subspace_def by auto
+qed
+
+lemma span_insert:
+ "span (insert a S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
+proof -
+ have "span ({a} \<union> S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
+ unfolding span_union span_singleton
+ apply safe
+ apply (rule_tac x=k in exI, simp)
+ apply (erule rev_image_eqI [OF SigmaI [OF rangeI]])
+ apply simp
+ apply (rule right_minus)
+ done
+ thus ?thesis by simp
+qed
+
lemma span_breakdown:
assumes bS: "b \<in> S" and aS: "a \<in> span S"
- shows "\<exists>k. a - k *\<^sub>R b \<in> span (S - {b})" (is "?P a")
-proof-
- {fix x assume xS: "x \<in> S"
- {assume ab: "x = b"
- then have "?P x"
- apply simp
- apply (rule exI[where x="1"], simp)
- by (rule span_0)}
- moreover
- {assume ab: "x \<noteq> b"
- then have "?P x" using xS
- apply -
- apply (rule exI[where x=0])
- apply (rule span_superset)
- by simp}
- ultimately have "x \<in> Collect ?P" by blast}
- moreover have "subspace (Collect ?P)"
- unfolding subspace_def
- apply auto
- apply (rule exI[where x=0])
- using span_0[of "S - {b}"]
- apply simp
- apply (rule_tac x="k + ka" in exI)
- apply (subgoal_tac "x + y - (k + ka) *\<^sub>R b = (x - k*\<^sub>R b) + (y - ka *\<^sub>R b)")
- apply (simp only: )
- apply (rule span_add)
- apply assumption+
- apply (simp add: algebra_simps)
- apply (rule_tac x= "c*k" in exI)
- apply (subgoal_tac "c *\<^sub>R x - (c * k) *\<^sub>R b = c*\<^sub>R (x - k*\<^sub>R b)")
- apply (simp only: )
- apply (rule span_mul)
- apply assumption
- by (simp add: algebra_simps)
- ultimately have "a \<in> Collect ?P" using aS by (rule span_induct)
- thus "?P a" by simp
-qed
+ shows "\<exists>k. a - k *\<^sub>R b \<in> span (S - {b})"
+ using assms span_insert [of b "S - {b}"]
+ by (simp add: insert_absorb)
lemma span_breakdown_eq:
- "x \<in> span (insert a S) \<longleftrightarrow> (\<exists>k. (x - k *\<^sub>R a) \<in> span S)" (is "?lhs \<longleftrightarrow> ?rhs")
-proof-
- {assume x: "x \<in> span (insert a S)"
- from x span_breakdown[of "a" "insert a S" "x"]
- have ?rhs apply clarsimp
- apply (rule_tac x= "k" in exI)
- apply (rule set_rev_mp[of _ "span (S - {a})" _])
- apply assumption
- apply (rule span_mono)
- apply blast
- done}
- moreover
- { fix k assume k: "x - k *\<^sub>R a \<in> span S"
- have eq: "x = (x - k *\<^sub>R a) + k *\<^sub>R a" by simp
- have "(x - k *\<^sub>R a) + k *\<^sub>R a \<in> span (insert a S)"
- apply (rule span_add)
- apply (rule set_rev_mp[of _ "span S" _])
- apply (rule k)
- apply (rule span_mono)
- apply blast
- apply (rule span_mul)
- apply (rule span_superset)
- apply blast
- done
- then have ?lhs using eq by metis}
- ultimately show ?thesis by blast
-qed
+ "x \<in> span (insert a S) \<longleftrightarrow> (\<exists>k. (x - k *\<^sub>R a) \<in> span S)"
+ by (simp add: span_insert)
text {* Hence some "reversal" results. *}
@@ -943,26 +930,16 @@
text {* Transitivity property. *}
+lemma span_redundant: "x \<in> span S \<Longrightarrow> span (insert x S) = span S"
+ unfolding span_def by (rule hull_redundant)
+
lemma span_trans:
assumes x: "x \<in> span S" and y: "y \<in> span (insert x S)"
shows "y \<in> span S"
-proof-
- from span_breakdown[of x "insert x S" y, OF insertI1 y]
- obtain k where k: "y -k*\<^sub>R x \<in> span (S - {x})" by auto
- have eq: "y = (y - k *\<^sub>R x) + k *\<^sub>R x" by simp
- show ?thesis
- apply (subst eq)
- apply (rule span_add)
- apply (rule set_rev_mp)
- apply (rule k)
- apply (rule span_mono)
- apply blast
- apply (rule span_mul)
- by (rule x)
-qed
+ using assms by (simp only: span_redundant)
lemma span_insert_0[simp]: "span (insert 0 S) = span S"
- using span_mono[of S "insert 0 S"] by (auto intro: span_trans span_0)
+ by (simp only: span_redundant span_0)
text {* An explicit expansion is sometimes needed. *}
@@ -1094,43 +1071,6 @@
ultimately show ?thesis by blast
qed
-lemma Int_Un_cancel: "(A \<union> B) \<inter> A = A" "(A \<union> B) \<inter> B = B" by auto
-
-lemma span_union: "span (A \<union> B) = (\<lambda>(a, b). a + b) ` (span A \<times> span B)"
-proof safe
- fix x assume "x \<in> span (A \<union> B)"
- then obtain S u where S: "finite S" "S \<subseteq> A \<union> B" and x: "x = (\<Sum>v\<in>S. u v *\<^sub>R v)"
- unfolding span_explicit by auto
-
- let ?Sa = "\<Sum>v\<in>S\<inter>A. u v *\<^sub>R v"
- let ?Sb = "(\<Sum>v\<in>S\<inter>(B - A). u v *\<^sub>R v)"
- show "x \<in> (\<lambda>(a, b). a + b) ` (span A \<times> span B)"
- proof
- show "x = (case (?Sa, ?Sb) of (a, b) \<Rightarrow> a + b)"
- unfolding x using S
- by (simp, subst setsum_Un_disjoint[symmetric]) (auto intro!: setsum_cong)
-
- from S have "?Sa \<in> span A" unfolding span_explicit
- by (auto intro!: exI[of _ "S \<inter> A"])
- moreover from S have "?Sb \<in> span B" unfolding span_explicit
- by (auto intro!: exI[of _ "S \<inter> (B - A)"])
- ultimately show "(?Sa, ?Sb) \<in> span A \<times> span B" by simp
- qed
-next
- fix a b assume "a \<in> span A" and "b \<in> span B"
- then obtain Sa ua Sb ub where span:
- "finite Sa" "Sa \<subseteq> A" "a = (\<Sum>v\<in>Sa. ua v *\<^sub>R v)"
- "finite Sb" "Sb \<subseteq> B" "b = (\<Sum>v\<in>Sb. ub v *\<^sub>R v)"
- unfolding span_explicit by auto
- let "?u v" = "(if v \<in> Sa then ua v else 0) + (if v \<in> Sb then ub v else 0)"
- from span have "finite (Sa \<union> Sb)" "Sa \<union> Sb \<subseteq> A \<union> B"
- and "a + b = (\<Sum>v\<in>(Sa\<union>Sb). ?u v *\<^sub>R v)"
- unfolding setsum_addf scaleR_left_distrib
- by (auto simp add: if_distrib cond_application_beta setsum_cases Int_Un_cancel)
- thus "a + b \<in> span (A \<union> B)"
- unfolding span_explicit by (auto intro!: exI[of _ ?u])
-qed
-
text {* This is useful for building a basis step-by-step. *}
lemma independent_insert: