Simplified, tidied and generalised proofs esp of Binomial Theorem.
--- a/src/HOL/Library/Binomial.thy Fri Nov 22 21:13:44 2013 +0100
+++ b/src/HOL/Library/Binomial.thy Sat Nov 23 16:39:48 2013 +0000
@@ -26,6 +26,11 @@
lemma binomial_Suc_Suc [simp]: "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)"
by simp
+lemma choose_reduce_nat:
+ "0 < (n::nat) \<Longrightarrow> 0 < k \<Longrightarrow>
+ (n choose k) = ((n - 1) choose k) + ((n - 1) choose (k - 1))"
+ by (metis Suc_diff_1 binomial.simps(2) nat_add_commute neq0_conv)
+
lemma binomial_eq_0: "n < k \<Longrightarrow> n choose k = 0"
by (induct n arbitrary: k) auto
@@ -44,10 +49,7 @@
by (induct n k rule: diff_induct) simp_all
lemma binomial_eq_0_iff: "n choose k = 0 \<longleftrightarrow> n < k"
- apply (safe intro!: binomial_eq_0)
- apply (erule contrapos_pp)
- apply (simp add: zero_less_binomial)
- done
+ by (metis binomial_eq_0 less_numeral_extra(3) not_less zero_less_binomial)
lemma zero_less_binomial_iff: "n choose k > 0 \<longleftrightarrow> k \<le> n"
by (simp add: linorder_not_less binomial_eq_0_iff neq0_conv[symmetric] del: neq0_conv)
@@ -90,19 +92,7 @@
apply safe
apply (auto intro: finite_subset [THEN card_insert_disjoint])
apply (drule_tac x = "xa - {x}" in spec)
- apply (subgoal_tac "x \<notin> xa")
- apply auto
- apply (erule rev_mp, subst card_Diff_singleton)
- apply (auto intro: finite_subset)
- done
-(*
-lemma "finite(UN y. {x. P x y})"
-apply simp
-lemma Collect_ex_eq
-
-lemma "{x. \<exists>y. P x y} = (UN y. {x. P x y})"
-apply blast
-*)
+ by (metis card_Diff_singleton_if card_infinite diff_Suc_1 in_mono insert_Diff_single insert_absorb lessI less_nat_zero_code subset_insert_iff)
lemma finite_bex_subset [simp]:
assumes "finite B"
@@ -120,71 +110,75 @@
"finite A \<Longrightarrow> x \<notin> A \<Longrightarrow>
card {B. \<exists>C. C \<subseteq> A \<and> card C = k \<and> B = insert x C} =
card {B. B \<subseteq> A & card(B) = k}"
- apply (rule_tac f = "\<lambda>s. s - {x}" and g = "insert x" in card_bij_eq)
- apply (auto elim!: equalityE simp add: inj_on_def)
- apply (subst Diff_insert0)
- apply auto
+ apply (rule card_bij_eq [where f = "\<lambda>s. s - {x}" and g = "insert x"])
+ apply (auto elim!: equalityE simp add: inj_on_def)
+ apply (metis card_Diff_singleton_if finite_subset in_mono)
done
text {*
Main theorem: combinatorial statement about number of subsets of a set.
*}
-lemma n_sub_lemma:
- "finite A \<Longrightarrow> card {B. B \<subseteq> A \<and> card B = k} = (card A choose k)"
- apply (induct k arbitrary: A)
- apply (simp add: card_s_0_eq_empty)
- apply atomize
- apply (rotate_tac -1)
- apply (erule finite_induct)
- apply (simp_all (no_asm_simp) cong add: conj_cong
- add: card_s_0_eq_empty choose_deconstruct)
- apply (subst card_Un_disjoint)
- prefer 4 apply (force simp add: constr_bij)
- prefer 3 apply force
- prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2]
- finite_subset [of _ "Pow (insert x F)", standard])
- apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset])
- done
-
theorem n_subsets: "finite A \<Longrightarrow> card {B. B \<subseteq> A \<and> card B = k} = (card A choose k)"
- by (simp add: n_sub_lemma)
+proof (induct k arbitrary: A)
+ case 0 then show ?case by (simp add: card_s_0_eq_empty)
+next
+ case (Suc k)
+ show ?case using `finite A`
+ proof (induct A)
+ case empty show ?case by (simp add: card_s_0_eq_empty)
+ next
+ case (insert x A)
+ then show ?case using Suc.hyps
+ apply (simp add: card_s_0_eq_empty choose_deconstruct)
+ apply (subst card_Un_disjoint)
+ prefer 4 apply (force simp add: constr_bij)
+ prefer 3 apply force
+ prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2]
+ finite_subset [of _ "Pow (insert x F)", standard])
+ apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset])
+ done
+ qed
+qed
text{* The binomial theorem (courtesy of Tobias Nipkow): *}
-theorem binomial: "(a + b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n - k))"
+(* Avigad's version, generalized to any commutative semiring *)
+theorem binomial: "(a+b::'a::{comm_ring_1,power})^n =
+ (\<Sum>k=0..n. (of_nat (n choose k)) * a^k * b^(n-k))" (is "?P n")
proof (induct n)
- case 0
- then show ?case by simp
+ case 0 then show "?P 0" by simp
next
case (Suc n)
- have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}"
- by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
- have decomp2: "{0..n} = {0} \<union> {1..n}"
- by (auto simp add:atLeastAtMost_def atLeast_def atMost_def)
- have "(a + b)^(n + 1) = (a + b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n - k))"
- using Suc by simp
- also have "\<dots> = a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) +
- b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))"
- by (rule nat_distrib)
- also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) +
- (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))"
- by (simp add: setsum_right_distrib mult_ac)
- also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) +
- (\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))"
- by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le
- del:setsum_cl_ivl_Suc)
+ have decomp: "{0..n+1} = {0} Un {n+1} Un {1..n}"
+ by auto
+ have decomp2: "{0..n} = {0} Un {1..n}"
+ by auto
+ have "(a+b)^(n+1) =
+ (a+b) * (\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n-k))"
+ using Suc.hyps by simp
+ also have "\<dots> = a*(\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n-k)) +
+ b*(\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n-k))"
+ by (rule distrib)
+ also have "\<dots> = (\<Sum>k=0..n. of_nat (n choose k) * a^(k+1) * b^(n-k)) +
+ (\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n-k+1))"
+ by (auto simp add: setsum_right_distrib mult_ac)
+ also have "\<dots> = (\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n+1-k)) +
+ (\<Sum>k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n+1-k))"
+ by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le field_simps
+ del:setsum_cl_ivl_Suc)
also have "\<dots> = a^(n+1) + b^(n+1) +
- (\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) +
- (\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))"
+ (\<Sum>k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n+1-k)) +
+ (\<Sum>k=1..n. of_nat (n choose k) * a^k * b^(n+1-k))"
by (simp add: decomp2)
also have
- "\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))"
- by (simp add: nat_distrib setsum_addf binomial.simps)
- also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))"
- using decomp by simp
- finally show ?case by simp
+ "\<dots> = a^(n+1) + b^(n+1) +
+ (\<Sum>k=1..n. of_nat(n+1 choose k) * a^k * b^(n+1-k))"
+ by (auto simp add: field_simps setsum_addf [symmetric] choose_reduce_nat)
+ also have "\<dots> = (\<Sum>k=0..n+1. of_nat (n+1 choose k) * a^k * b^(n+1-k))"
+ using decomp by (simp add: field_simps)
+ finally show "?P (Suc n)" by simp
qed
subsection{* Pochhammer's symbol : generalized raising factorial*}