merged
authorAndreas Lochbihler
Thu, 31 Aug 2017 08:41:41 +0200
changeset 66564 090c4474f310
parent 66562 ad0cefe1e9a9 (current diff)
parent 66563 87b9eb69d5ba (diff)
child 66566 a14bbbaa628d
merged
--- a/CONTRIBUTORS	Wed Aug 30 22:51:44 2017 +0100
+++ b/CONTRIBUTORS	Thu Aug 31 08:41:41 2017 +0200
@@ -14,6 +14,9 @@
   Prover IDE improvements.
   Support for SQL databases in Isabelle/Scala: SQLite and PostgreSQL.
 
+* August 2017: Andreas Lochbihler, ETH Zurich
+  type of unordered pairs (HOL-Library.Uprod)
+
 * August 2017: Manuel Eberl, TUM
   HOL-Analysis: infinite products over natural numbers,
   infinite sums over arbitrary sets, connection between formal
--- a/NEWS	Wed Aug 30 22:51:44 2017 +0100
+++ b/NEWS	Thu Aug 31 08:41:41 2017 +0200
@@ -250,6 +250,8 @@
 * Theory "HOL-Library.Pattern_Aliases" provides input and output syntax
 for pattern aliases as known from Haskell, Scala and ML.
 
+* Theory "HOL-Library.Uprod" formalizes the type of unordered pairs.
+
 * Session HOL-Analysis: more material involving arcs, paths, covering
 spaces, innessential maps, retracts, material on infinite products.
 Major results include the Jordan Curve Theorem and the Great Picard
--- a/src/HOL/Library/Library.thy	Wed Aug 30 22:51:44 2017 +0100
+++ b/src/HOL/Library/Library.thy	Thu Aug 31 08:41:41 2017 +0200
@@ -82,6 +82,7 @@
   Tree_Multiset
   Tree_Real
   Type_Length
+  Uprod
   While_Combinator
 begin
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Uprod.thy	Thu Aug 31 08:41:41 2017 +0200
@@ -0,0 +1,219 @@
+(* Title: HOL/Library/Uprod.thy
+   Author: Andreas Lochbihler, ETH Zurich *)
+
+section \<open>Unordered pairs\<close>
+
+theory Uprod imports Main begin
+
+typedef ('a, 'b) commute = "{f :: 'a \<Rightarrow> 'a \<Rightarrow> 'b. \<forall>x y. f x y = f y x}"
+  morphisms apply_commute Abs_commute
+  by auto
+
+setup_lifting type_definition_commute
+
+lemma apply_commute_commute: "apply_commute f x y = apply_commute f y x"
+by(transfer) simp
+
+context includes lifting_syntax begin
+
+lift_definition rel_commute :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a, 'c) commute \<Rightarrow> ('b, 'd) commute \<Rightarrow> bool"
+is "\<lambda>A B. A ===> A ===> B" .
+
+end
+
+definition eq_upair :: "('a \<times> 'a) \<Rightarrow> ('a \<times> 'a) \<Rightarrow> bool"
+where "eq_upair = (\<lambda>(a, b) (c, d). a = c \<and> b = d \<or> a = d \<and> b = c)"
+
+lemma eq_upair_simps [simp]:
+  "eq_upair (a, b) (c, d) \<longleftrightarrow> a = c \<and> b = d \<or> a = d \<and> b = c"
+by(simp add: eq_upair_def)
+
+lemma equivp_eq_upair: "equivp eq_upair"
+by(auto simp add: equivp_def fun_eq_iff)
+
+quotient_type 'a uprod = "'a \<times> 'a" / eq_upair by(rule equivp_eq_upair)
+
+lift_definition Upair :: "'a \<Rightarrow> 'a \<Rightarrow> 'a uprod" is Pair parametric Pair_transfer[of "A" "A" for A] .
+
+lemma uprod_exhaust [case_names Upair, cases type: uprod]:
+  obtains a b where "x = Upair a b"
+by transfer fastforce
+
+lemma Upair_inject [simp]: "Upair a b = Upair c d \<longleftrightarrow> a = c \<and> b = d \<or> a = d \<and> b = c"
+by transfer auto
+
+code_datatype Upair
+
+lift_definition case_uprod :: "('a, 'b) commute \<Rightarrow> 'a uprod \<Rightarrow> 'b" is case_prod
+  parametric case_prod_transfer[of A A for A] by auto
+
+lemma case_uprod_simps [simp, code]: "case_uprod f (Upair x y) = apply_commute f x y"
+by transfer auto
+
+lemma uprod_split: "P (case_uprod f x) \<longleftrightarrow> (\<forall>a b. x = Upair a b \<longrightarrow> P (apply_commute f a b))"
+by transfer auto
+
+lemma uprod_split_asm: "P (case_uprod f x) \<longleftrightarrow> \<not> (\<exists>a b. x = Upair a b \<and> \<not> P (apply_commute f a b))"
+by transfer auto
+
+lift_definition not_equal :: "('a, bool) commute" is "op \<noteq>" by auto
+
+lemma apply_not_equal [simp]: "apply_commute not_equal x y \<longleftrightarrow> x \<noteq> y"
+by transfer simp
+
+definition proper_uprod :: "'a uprod \<Rightarrow> bool"
+where "proper_uprod = case_uprod not_equal"
+
+lemma proper_uprod_simps [simp, code]: "proper_uprod (Upair x y) \<longleftrightarrow> x \<noteq> y"
+by(simp add: proper_uprod_def)
+
+context includes lifting_syntax begin
+
+private lemma set_uprod_parametric':
+  "(rel_prod A A ===> rel_set A) (\<lambda>(a, b). {a, b}) (\<lambda>(a, b). {a, b})"
+by transfer_prover
+
+lift_definition set_uprod :: "'a uprod \<Rightarrow> 'a set" is "\<lambda>(a, b). {a, b}" 
+  parametric set_uprod_parametric' by auto
+
+lemma set_uprod_simps [simp, code]: "set_uprod (Upair x y) = {x, y}"
+by transfer simp
+
+lemma finite_set_uprod [simp]: "finite (set_uprod x)"
+by(cases x) simp
+
+private lemma map_uprod_parametric':
+  "((A ===> B) ===> rel_prod A A ===> rel_prod B B) (\<lambda>f. map_prod f f) (\<lambda>f. map_prod f f)"
+by transfer_prover
+
+lift_definition map_uprod :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a uprod \<Rightarrow> 'b uprod" is "\<lambda>f. map_prod f f"
+  parametric map_uprod_parametric' by auto
+
+lemma map_uprod_simps [simp, code]: "map_uprod f (Upair x y) = Upair (f x) (f y)"
+by transfer simp
+
+private lemma rel_uprod_transfer':
+  "((A ===> B ===> op =) ===> rel_prod A A ===> rel_prod B B ===> op =)
+   (\<lambda>R (a, b) (c, d). R a c \<and> R b d \<or> R a d \<and> R b c) (\<lambda>R (a, b) (c, d). R a c \<and> R b d \<or> R a d \<and> R b c)"
+by transfer_prover
+
+lift_definition rel_uprod :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a uprod \<Rightarrow> 'b uprod \<Rightarrow> bool"
+  is "\<lambda>R (a, b) (c, d). R a c \<and> R b d \<or> R a d \<and> R b c" parametric rel_uprod_transfer'
+by auto
+
+lemma rel_uprod_simps [simp, code]:
+  "rel_uprod R (Upair a b) (Upair c d) \<longleftrightarrow> R a c \<and> R b d \<or> R a d \<and> R b c"
+by transfer auto
+
+lemma Upair_parametric [transfer_rule]: "(A ===> A ===> rel_uprod A) Upair Upair"
+unfolding rel_fun_def by transfer auto
+
+lemma case_uprod_parametric [transfer_rule]:
+  "(rel_commute A B ===> rel_uprod A ===> B) case_uprod case_uprod"
+unfolding rel_fun_def by transfer(force dest: rel_funD)
+
+end
+
+bnf uprod: "'a uprod" 
+  map: map_uprod
+  sets: set_uprod
+  bd: natLeq
+  rel: rel_uprod
+proof -
+  show "map_uprod id = id" unfolding fun_eq_iff by transfer auto
+  show "map_uprod (g \<circ> f) = map_uprod g \<circ> map_uprod f" for f :: "'a \<Rightarrow> 'b" and g :: "'b \<Rightarrow> 'c"
+    unfolding fun_eq_iff by transfer auto
+  show "map_uprod f x = map_uprod g x" if "\<And>z. z \<in> set_uprod x \<Longrightarrow> f z = g z" 
+    for f :: "'a \<Rightarrow> 'b" and g x using that by transfer auto
+  show "set_uprod \<circ> map_uprod f = op ` f \<circ> set_uprod" for f :: "'a \<Rightarrow> 'b" by transfer auto
+  show "card_order natLeq" by(rule natLeq_card_order)
+  show "BNF_Cardinal_Arithmetic.cinfinite natLeq" by(rule natLeq_cinfinite)
+  show "ordLeq3 (card_of (set_uprod x)) natLeq" for x :: "'a uprod"
+    by (auto simp: finite_iff_ordLess_natLeq[symmetric] intro: ordLess_imp_ordLeq)
+  show "rel_uprod R OO rel_uprod S \<le> rel_uprod (R OO S)"
+    for R :: "'a \<Rightarrow> 'b \<Rightarrow> bool" and S :: "'b \<Rightarrow> 'c \<Rightarrow> bool" by(rule predicate2I)(transfer; auto)
+  show "rel_uprod R = (\<lambda>x y. \<exists>z. set_uprod z \<subseteq> {(x, y). R x y} \<and> map_uprod fst z = x \<and> map_uprod snd z = y)"
+    for R :: "'a \<Rightarrow> 'b \<Rightarrow> bool" by transfer(auto simp add: fun_eq_iff)
+qed
+
+lemma pred_uprod_code [simp, code]: "pred_uprod P (Upair x y) \<longleftrightarrow> P x \<and> P y"
+by(simp add: pred_uprod_def)
+
+instantiation uprod :: (equal) equal begin
+
+definition equal_uprod :: "'a uprod \<Rightarrow> 'a uprod \<Rightarrow> bool"
+where "equal_uprod = op ="
+
+lemma equal_uprod_code [code]:
+  "HOL.equal (Upair x y) (Upair z u) \<longleftrightarrow> x = z \<and> y = u \<or> x = u \<and> y = z"
+unfolding equal_uprod_def by simp
+
+instance by standard(simp add: equal_uprod_def)
+end
+
+quickcheck_generator uprod constructors: Upair
+
+lemma UNIV_uprod: "UNIV = (\<lambda>x. Upair x x) ` UNIV \<union> (\<lambda>(x, y). Upair x y) ` Sigma UNIV (\<lambda>x. UNIV - {x})"
+apply(rule set_eqI)
+subgoal for x by(cases x) auto
+done
+
+context begin
+private lift_definition upair_inv :: "'a uprod \<Rightarrow> 'a"
+is "\<lambda>(x, y). if x = y then x else undefined" by auto
+
+lemma finite_UNIV_prod [simp]:
+  "finite (UNIV :: 'a uprod set) \<longleftrightarrow> finite (UNIV :: 'a set)" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  hence "finite (range (\<lambda>x :: 'a. Upair x x))" by(rule finite_subset[rotated]) simp
+  hence "finite (upair_inv ` range (\<lambda>x :: 'a. Upair x x))" by(rule finite_imageI)
+  also have "upair_inv (Upair x x) = x" for x :: 'a by transfer simp
+  then have "upair_inv ` range (\<lambda>x :: 'a. Upair x x) = UNIV" by(auto simp add: image_image)
+  finally show ?rhs .
+qed(simp add: UNIV_uprod)
+
+end
+
+lemma card_UNIV_uprod:
+  "card (UNIV :: 'a uprod set) = card (UNIV :: 'a set) * (card (UNIV :: 'a set) + 1) div 2"
+  (is "?UPROD = ?A * _ div _")
+proof(cases "finite (UNIV :: 'a set)")
+  case True
+  from True obtain f :: "nat \<Rightarrow> 'a" where bij: "bij_betw f {0..<?A} UNIV"
+    by (blast dest: ex_bij_betw_nat_finite)
+  hence [simp]: "f ` {0..<?A} = UNIV" by(rule bij_betw_imp_surj_on)
+  have "UNIV = (\<lambda>(x, y). Upair (f x) (f y)) ` (SIGMA x:{0..<?A}. {..x})"
+    apply(rule set_eqI)
+    subgoal for x
+      apply(cases x)
+      apply(clarsimp)
+      subgoal for a b
+        apply(cases "inv_into {0..<?A} f a \<le> inv_into {0..<?A} f b")
+        subgoal by(rule rev_image_eqI[where x="(inv_into {0..<?A} f _, inv_into {0..<?A} f _)"])
+                  (auto simp add: inv_into_into[where A="{0..<?A}" and f=f, simplified] intro: f_inv_into_f[where f=f, symmetric])
+        subgoal
+          apply(simp only: not_le)
+          apply(drule less_imp_le)
+          apply(rule rev_image_eqI[where x="(inv_into {0..<?A} f _, inv_into {0..<?A} f _)"])
+          apply(auto simp add: inv_into_into[where A="{0..<?A}" and f=f, simplified] intro: f_inv_into_f[where f=f, symmetric])
+          done
+        done
+      done
+    done
+  hence "?UPROD = card \<dots>" by simp
+  also have "\<dots> = card (SIGMA x:{0..<?A}. {..x})"
+    apply(rule card_image)
+    using bij[THEN bij_betw_imp_inj_on]
+    by(simp add: inj_on_def Ball_def)(metis leD le_eq_less_or_eq le_less_trans)
+  also have "\<dots> = sum (\<lambda>n. n + 1) {0..<?A}"
+    by(subst card_SigmaI) simp_all
+  also have "\<dots> = 2 * sum of_nat {1..?A} div 2"
+    using sum.reindex[where g="of_nat :: nat \<Rightarrow> nat" and h="\<lambda>x. x + 1" and A="{0..<?A}", symmetric] True
+    by(simp del: sum_op_ivl_Suc add: atLeastLessThanSuc_atLeastAtMost)
+  also have "\<dots> = ?A * (?A + 1) div 2"
+    by(subst gauss_sum) simp
+  finally show ?thesis .
+qed simp
+
+end