--- a/src/HOL/IsaMakefile Wed Sep 23 16:20:12 2009 +0200
+++ b/src/HOL/IsaMakefile Wed Sep 23 16:20:12 2009 +0200
@@ -6,7 +6,7 @@
default: HOL
generate: HOL-Generate-HOL HOL-Generate-HOLLight
-images: HOL HOL-Base HOL-Plain HOL-Main HOL-Algebra HOL-Nominal HOL-NSA HOL-Word TLA HOL4 HOL-MicroJava
+images: HOL HOL-Base HOL-Plain HOL-Main HOL-Algebra HOL-Nominal HOL-NSA HOL-Word TLA HOL4
#Note: keep targets sorted (except for HOL-Library and HOL-ex)
test: \
@@ -909,7 +909,7 @@
ex/Sudoku.thy ex/Tarski.thy \
ex/Termination.thy ex/Transfer_Ex.thy ex/Unification.thy ex/document/root.bib \
ex/document/root.tex ex/set.thy ex/svc_funcs.ML ex/svc_test.thy \
- ex/Predicate_Compile.thy ex/predicate_compile.ML ex/Predicate_Compile_ex.thy
+ ex/Predicate_Compile.thy Tools/Predicate_Compile/predicate_compile_core.ML ex/Predicate_Compile_ex.thy
@$(ISABELLE_TOOL) usedir $(OUT)/HOL ex
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_core.ML Wed Sep 23 16:20:12 2009 +0200
@@ -0,0 +1,2400 @@
+(* Author: Lukas Bulwahn, TU Muenchen
+
+(Prototype of) A compiler from predicates specified by intro/elim rules
+to equations.
+*)
+
+signature PREDICATE_COMPILE_CORE =
+sig
+ type smode = (int * int list option) list
+ type mode = smode option list * smode
+ datatype tmode = Mode of mode * smode * tmode option list;
+ (*val add_equations_of: bool -> string list -> theory -> theory *)
+ val register_predicate : (thm list * thm * int) -> theory -> theory
+ val is_registered : theory -> string -> bool
+ (* val fetch_pred_data : theory -> string -> (thm list * thm * int) *)
+ val predfun_intro_of: theory -> string -> mode -> thm
+ val predfun_elim_of: theory -> string -> mode -> thm
+ val strip_intro_concl: int -> term -> term * (term list * term list)
+ val predfun_name_of: theory -> string -> mode -> string
+ val all_preds_of : theory -> string list
+ val modes_of: theory -> string -> mode list
+ val string_of_mode : mode -> string
+ val intros_of: theory -> string -> thm list
+ val nparams_of: theory -> string -> int
+ val add_intro: thm -> theory -> theory
+ val set_elim: thm -> theory -> theory
+ val setup: theory -> theory
+ val code_pred: string -> Proof.context -> Proof.state
+ val code_pred_cmd: string -> Proof.context -> Proof.state
+ val print_stored_rules: theory -> unit
+ val print_all_modes: theory -> unit
+ val do_proofs: bool ref
+ val mk_casesrule : Proof.context -> int -> thm list -> term
+ val analyze_compr: theory -> term -> term
+ val eval_ref: (unit -> term Predicate.pred) option ref
+ val add_equations : string list -> theory -> theory
+ val code_pred_intros_attrib : attribute
+ (* used by Quickcheck_Generator *)
+ (*val funT_of : mode -> typ -> typ
+ val mk_if_pred : term -> term
+ val mk_Eval : term * term -> term*)
+ val mk_tupleT : typ list -> typ
+(* val mk_predT : typ -> typ *)
+ (* temporary for testing of the compilation *)
+ datatype indprem = Prem of term list * term | Negprem of term list * term | Sidecond of term |
+ GeneratorPrem of term list * term | Generator of (string * typ);
+ (* val prepare_intrs: theory -> string list ->
+ (string * typ) list * int * string list * string list * (string * mode list) list *
+ (string * (term list * indprem list) list) list * (string * (int option list * int)) list*)
+ datatype compilation_funs = CompilationFuns of {
+ mk_predT : typ -> typ,
+ dest_predT : typ -> typ,
+ mk_bot : typ -> term,
+ mk_single : term -> term,
+ mk_bind : term * term -> term,
+ mk_sup : term * term -> term,
+ mk_if : term -> term,
+ mk_not : term -> term,
+ mk_map : typ -> typ -> term -> term -> term,
+ lift_pred : term -> term
+ };
+ type moded_clause = term list * (indprem * tmode) list
+ type 'a pred_mode_table = (string * (mode * 'a) list) list
+ val infer_modes : theory -> (string * mode list) list
+ -> (string * mode list) list
+ -> string list
+ -> (string * (term list * indprem list) list) list
+ -> (moded_clause list) pred_mode_table
+ val infer_modes_with_generator : theory -> (string * mode list) list
+ -> (string * mode list) list
+ -> string list
+ -> (string * (term list * indprem list) list) list
+ -> (moded_clause list) pred_mode_table
+ (*val compile_preds : theory -> compilation_funs -> string list -> string list
+ -> (string * typ) list -> (moded_clause list) pred_mode_table -> term pred_mode_table
+ val rpred_create_definitions :(string * typ) list -> string * mode list
+ -> theory -> theory
+ val split_smode : int list -> term list -> (term list * term list) *)
+ val print_moded_clauses :
+ theory -> (moded_clause list) pred_mode_table -> unit
+ val print_compiled_terms : theory -> term pred_mode_table -> unit
+ (*val rpred_prove_preds : theory -> term pred_mode_table -> thm pred_mode_table*)
+ val rpred_compfuns : compilation_funs
+ val dest_funT : typ -> typ * typ
+ (* val depending_preds_of : theory -> thm list -> string list *)
+ val add_quickcheck_equations : string list -> theory -> theory
+ val add_sizelim_equations : string list -> theory -> theory
+ val is_inductive_predicate : theory -> string -> bool
+ val terms_vs : term list -> string list
+ val subsets : int -> int -> int list list
+ val check_mode_clause : bool -> theory -> string list ->
+ (string * mode list) list -> (string * mode list) list -> mode -> (term list * indprem list)
+ -> (term list * (indprem * tmode) list) option
+ val string_of_moded_prem : theory -> (indprem * tmode) -> string
+ val all_modes_of : theory -> (string * mode list) list
+ val all_generator_modes_of : theory -> (string * mode list) list
+ val compile_clause : compilation_funs -> term option -> (term list -> term) ->
+ theory -> string list -> string list -> mode -> term -> moded_clause -> term
+ val preprocess_intro : theory -> thm -> thm
+ val is_constrt : theory -> term -> bool
+ val is_predT : typ -> bool
+ val guess_nparams : typ -> int
+ val cprods_subset : 'a list list -> 'a list list
+end;
+
+structure Predicate_Compile_Core : PREDICATE_COMPILE_CORE =
+struct
+
+(** auxiliary **)
+
+(* debug stuff *)
+
+fun tracing s = (if ! Toplevel.debug then Output.tracing s else ());
+
+fun print_tac s = Seq.single; (*Tactical.print_tac s;*) (* (if ! Toplevel.debug then Tactical.print_tac s else Seq.single); *)
+fun debug_tac msg = Seq.single; (* (fn st => (Output.tracing msg; Seq.single st)); *)
+
+val do_proofs = ref true;
+
+fun mycheat_tac thy i st =
+ (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) i) st
+
+fun remove_last_goal thy st =
+ (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) (nprems_of st)) st
+
+(* reference to preprocessing of InductiveSet package *)
+
+val ind_set_codegen_preproc = Inductive_Set.codegen_preproc;
+
+(** fundamentals **)
+
+(* syntactic operations *)
+
+fun mk_eq (x, xs) =
+ let fun mk_eqs _ [] = []
+ | mk_eqs a (b::cs) =
+ HOLogic.mk_eq (Free (a, fastype_of b), b) :: mk_eqs a cs
+ in mk_eqs x xs end;
+
+fun mk_tupleT [] = HOLogic.unitT
+ | mk_tupleT Ts = foldr1 HOLogic.mk_prodT Ts;
+
+fun dest_tupleT (Type (@{type_name Product_Type.unit}, [])) = []
+ | dest_tupleT (Type (@{type_name "*"}, [T1, T2])) = T1 :: (dest_tupleT T2)
+ | dest_tupleT t = [t]
+
+fun mk_tuple [] = HOLogic.unit
+ | mk_tuple ts = foldr1 HOLogic.mk_prod ts;
+
+fun dest_tuple (Const (@{const_name Product_Type.Unity}, _)) = []
+ | dest_tuple (Const (@{const_name Pair}, _) $ t1 $ t2) = t1 :: (dest_tuple t2)
+ | dest_tuple t = [t]
+
+fun mk_scomp (t, u) =
+ let
+ val T = fastype_of t
+ val U = fastype_of u
+ val [A] = binder_types T
+ val D = body_type U
+ in
+ Const (@{const_name "scomp"}, T --> U --> A --> D) $ t $ u
+ end;
+
+fun dest_funT (Type ("fun",[S, T])) = (S, T)
+ | dest_funT T = raise TYPE ("dest_funT", [T], [])
+
+fun mk_fun_comp (t, u) =
+ let
+ val (_, B) = dest_funT (fastype_of t)
+ val (C, A) = dest_funT (fastype_of u)
+ in
+ Const(@{const_name "Fun.comp"}, (A --> B) --> (C --> A) --> C --> B) $ t $ u
+ end;
+
+fun dest_randomT (Type ("fun", [@{typ Random.seed},
+ Type ("*", [Type ("*", [T, @{typ "unit => Code_Eval.term"}]) ,@{typ Random.seed}])])) = T
+ | dest_randomT T = raise TYPE ("dest_randomT", [T], [])
+
+(* destruction of intro rules *)
+
+(* FIXME: look for other place where this functionality was used before *)
+fun strip_intro_concl nparams intro = let
+ val _ $ u = Logic.strip_imp_concl intro
+ val (pred, all_args) = strip_comb u
+ val (params, args) = chop nparams all_args
+in (pred, (params, args)) end
+
+(** data structures **)
+
+type smode = (int * int list option) list;
+type mode = smode option list * smode;
+datatype tmode = Mode of mode * smode * tmode option list;
+
+fun gen_split_smode (mk_tuple, strip_tuple) smode ts =
+ let
+ fun split_tuple' _ _ [] = ([], [])
+ | split_tuple' is i (t::ts) =
+ (if i mem is then apfst else apsnd) (cons t)
+ (split_tuple' is (i+1) ts)
+ fun split_tuple is t = split_tuple' is 1 (strip_tuple t)
+ fun split_smode' _ _ [] = ([], [])
+ | split_smode' smode i (t::ts) =
+ (if i mem (map fst smode) then
+ case (the (AList.lookup (op =) smode i)) of
+ NONE => apfst (cons t)
+ | SOME is =>
+ let
+ val (ts1, ts2) = split_tuple is t
+ fun cons_tuple ts = if null ts then I else cons (mk_tuple ts)
+ in (apfst (cons_tuple ts1)) o (apsnd (cons_tuple ts2)) end
+ else apsnd (cons t))
+ (split_smode' smode (i+1) ts)
+ in split_smode' smode 1 ts end
+
+val split_smode = gen_split_smode (HOLogic.mk_tuple, HOLogic.strip_tuple)
+val split_smodeT = gen_split_smode (HOLogic.mk_tupleT, HOLogic.strip_tupleT)
+
+fun gen_split_mode split_smode (iss, is) ts =
+ let
+ val (t1, t2) = chop (length iss) ts
+ in (t1, split_smode is t2) end
+
+val split_mode = gen_split_mode split_smode
+val split_modeT = gen_split_mode split_smodeT
+
+fun string_of_smode js =
+ commas (map
+ (fn (i, is) =>
+ string_of_int i ^ (case is of NONE => ""
+ | SOME is => "p" ^ enclose "[" "]" (commas (map string_of_int is)))) js)
+
+fun string_of_mode (iss, is) = space_implode " -> " (map
+ (fn NONE => "X"
+ | SOME js => enclose "[" "]" (string_of_smode js))
+ (iss @ [SOME is]));
+
+fun string_of_tmode (Mode (predmode, termmode, param_modes)) =
+ "predmode: " ^ (string_of_mode predmode) ^
+ (if null param_modes then "" else
+ "; " ^ "params: " ^ commas (map (the_default "NONE" o Option.map string_of_tmode) param_modes))
+
+datatype indprem = Prem of term list * term | Negprem of term list * term | Sidecond of term |
+ GeneratorPrem of term list * term | Generator of (string * typ);
+
+type moded_clause = term list * (indprem * tmode) list
+type 'a pred_mode_table = (string * (mode * 'a) list) list
+
+datatype predfun_data = PredfunData of {
+ name : string,
+ definition : thm,
+ intro : thm,
+ elim : thm
+};
+
+fun rep_predfun_data (PredfunData data) = data;
+fun mk_predfun_data (name, definition, intro, elim) =
+ PredfunData {name = name, definition = definition, intro = intro, elim = elim}
+
+datatype function_data = FunctionData of {
+ name : string,
+ equation : thm option (* is not used at all? *)
+};
+
+fun rep_function_data (FunctionData data) = data;
+fun mk_function_data (name, equation) =
+ FunctionData {name = name, equation = equation}
+
+datatype pred_data = PredData of {
+ intros : thm list,
+ elim : thm option,
+ nparams : int,
+ functions : (mode * predfun_data) list,
+ generators : (mode * function_data) list,
+ sizelim_functions : (mode * function_data) list
+};
+
+fun rep_pred_data (PredData data) = data;
+fun mk_pred_data ((intros, elim, nparams), (functions, generators, sizelim_functions)) =
+ PredData {intros = intros, elim = elim, nparams = nparams,
+ functions = functions, generators = generators, sizelim_functions = sizelim_functions}
+fun map_pred_data f (PredData {intros, elim, nparams, functions, generators, sizelim_functions}) =
+ mk_pred_data (f ((intros, elim, nparams), (functions, generators, sizelim_functions)))
+
+fun eq_option eq (NONE, NONE) = true
+ | eq_option eq (SOME x, SOME y) = eq (x, y)
+ | eq_option eq _ = false
+
+fun eq_pred_data (PredData d1, PredData d2) =
+ eq_list (Thm.eq_thm) (#intros d1, #intros d2) andalso
+ eq_option (Thm.eq_thm) (#elim d1, #elim d2) andalso
+ #nparams d1 = #nparams d2
+
+structure PredData = TheoryDataFun
+(
+ type T = pred_data Graph.T;
+ val empty = Graph.empty;
+ val copy = I;
+ val extend = I;
+ fun merge _ = Graph.merge eq_pred_data;
+);
+
+(* queries *)
+
+fun lookup_pred_data thy name =
+ Option.map rep_pred_data (try (Graph.get_node (PredData.get thy)) name)
+
+fun the_pred_data thy name = case lookup_pred_data thy name
+ of NONE => error ("No such predicate " ^ quote name)
+ | SOME data => data;
+
+val is_registered = is_some oo lookup_pred_data
+
+val all_preds_of = Graph.keys o PredData.get
+
+fun intros_of thy = map (Thm.transfer thy) o #intros o the_pred_data thy
+
+fun the_elim_of thy name = case #elim (the_pred_data thy name)
+ of NONE => error ("No elimination rule for predicate " ^ quote name)
+ | SOME thm => Thm.transfer thy thm
+
+val has_elim = is_some o #elim oo the_pred_data;
+
+val nparams_of = #nparams oo the_pred_data
+
+val modes_of = (map fst) o #functions oo the_pred_data
+
+fun all_modes_of thy = map (fn name => (name, modes_of thy name)) (all_preds_of thy)
+
+val is_compiled = not o null o #functions oo the_pred_data
+
+fun lookup_predfun_data thy name mode =
+ Option.map rep_predfun_data (AList.lookup (op =)
+ (#functions (the_pred_data thy name)) mode)
+
+fun the_predfun_data thy name mode = case lookup_predfun_data thy name mode
+ of NONE => error ("No function defined for mode " ^ string_of_mode mode ^ " of predicate " ^ name)
+ | SOME data => data;
+
+val predfun_name_of = #name ooo the_predfun_data
+
+val predfun_definition_of = #definition ooo the_predfun_data
+
+val predfun_intro_of = #intro ooo the_predfun_data
+
+val predfun_elim_of = #elim ooo the_predfun_data
+
+fun lookup_generator_data thy name mode =
+ Option.map rep_function_data (AList.lookup (op =)
+ (#generators (the_pred_data thy name)) mode)
+
+fun the_generator_data thy name mode = case lookup_generator_data thy name mode
+ of NONE => error ("No generator defined for mode " ^ string_of_mode mode ^ " of predicate " ^ name)
+ | SOME data => data
+
+val generator_name_of = #name ooo the_generator_data
+
+val generator_modes_of = (map fst) o #generators oo the_pred_data
+
+fun all_generator_modes_of thy =
+ map (fn name => (name, generator_modes_of thy name)) (all_preds_of thy)
+
+fun lookup_sizelim_function_data thy name mode =
+ Option.map rep_function_data (AList.lookup (op =)
+ (#sizelim_functions (the_pred_data thy name)) mode)
+
+fun the_sizelim_function_data thy name mode = case lookup_sizelim_function_data thy name mode
+ of NONE => error ("No size-limited function defined for mode " ^ string_of_mode mode
+ ^ " of predicate " ^ name)
+ | SOME data => data
+
+val sizelim_function_name_of = #name ooo the_sizelim_function_data
+
+(*val generator_modes_of = (map fst) o #generators oo the_pred_data*)
+
+(* diagnostic display functions *)
+
+fun print_modes modes = Output.tracing ("Inferred modes:\n" ^
+ cat_lines (map (fn (s, ms) => s ^ ": " ^ commas (map
+ string_of_mode ms)) modes));
+
+fun print_pred_mode_table string_of_entry thy pred_mode_table =
+ let
+ fun print_mode pred (mode, entry) = "mode : " ^ (string_of_mode mode)
+ ^ (string_of_entry pred mode entry)
+ fun print_pred (pred, modes) =
+ "predicate " ^ pred ^ ": " ^ cat_lines (map (print_mode pred) modes)
+ val _ = Output.tracing (cat_lines (map print_pred pred_mode_table))
+ in () end;
+
+fun string_of_moded_prem thy (Prem (ts, p), tmode) =
+ (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
+ "(" ^ (string_of_tmode tmode) ^ ")"
+ | string_of_moded_prem thy (GeneratorPrem (ts, p), Mode (predmode, is, _)) =
+ (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
+ "(generator_mode: " ^ (string_of_mode predmode) ^ ")"
+ | string_of_moded_prem thy (Generator (v, T), _) =
+ "Generator for " ^ v ^ " of Type " ^ (Syntax.string_of_typ_global thy T)
+ | string_of_moded_prem thy (Negprem (ts, p), Mode (_, is, _)) =
+ (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
+ "(negative mode: " ^ string_of_smode is ^ ")"
+ | string_of_moded_prem thy (Sidecond t, Mode (_, is, _)) =
+ (Syntax.string_of_term_global thy t) ^
+ "(sidecond mode: " ^ string_of_smode is ^ ")"
+ | string_of_moded_prem _ _ = error "string_of_moded_prem: unimplemented"
+
+fun print_moded_clauses thy =
+ let
+ fun string_of_clause pred mode clauses =
+ cat_lines (map (fn (ts, prems) => (space_implode " --> "
+ (map (string_of_moded_prem thy) prems)) ^ " --> " ^ pred ^ " "
+ ^ (space_implode " " (map (Syntax.string_of_term_global thy) ts))) clauses)
+ in print_pred_mode_table string_of_clause thy end;
+
+fun print_compiled_terms thy =
+ print_pred_mode_table (fn _ => fn _ => Syntax.string_of_term_global thy) thy
+
+fun print_stored_rules thy =
+ let
+ val preds = (Graph.keys o PredData.get) thy
+ fun print pred () = let
+ val _ = writeln ("predicate: " ^ pred)
+ val _ = writeln ("number of parameters: " ^ string_of_int (nparams_of thy pred))
+ val _ = writeln ("introrules: ")
+ val _ = fold (fn thm => fn u => writeln (Display.string_of_thm_global thy thm))
+ (rev (intros_of thy pred)) ()
+ in
+ if (has_elim thy pred) then
+ writeln ("elimrule: " ^ Display.string_of_thm_global thy (the_elim_of thy pred))
+ else
+ writeln ("no elimrule defined")
+ end
+ in
+ fold print preds ()
+ end;
+
+fun print_all_modes thy =
+ let
+ val _ = writeln ("Inferred modes:")
+ fun print (pred, modes) u =
+ let
+ val _ = writeln ("predicate: " ^ pred)
+ val _ = writeln ("modes: " ^ (commas (map string_of_mode modes)))
+ in u end
+ in
+ fold print (all_modes_of thy) ()
+ end
+
+(** preprocessing rules **)
+
+fun imp_prems_conv cv ct =
+ case Thm.term_of ct of
+ Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
+ | _ => Conv.all_conv ct
+
+fun Trueprop_conv cv ct =
+ case Thm.term_of ct of
+ Const ("Trueprop", _) $ _ => Conv.arg_conv cv ct
+ | _ => error "Trueprop_conv"
+
+fun preprocess_intro thy rule =
+ Conv.fconv_rule
+ (imp_prems_conv
+ (Trueprop_conv (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq})))))
+ (Thm.transfer thy rule)
+
+fun preprocess_elim thy nparams elimrule =
+ let
+ val _ = Output.tracing ("Preprocessing elimination rule "
+ ^ (Display.string_of_thm_global thy elimrule))
+ fun replace_eqs (Const ("Trueprop", _) $ (Const ("op =", T) $ lhs $ rhs)) =
+ HOLogic.mk_Trueprop (Const (@{const_name Predicate.eq}, T) $ lhs $ rhs)
+ | replace_eqs t = t
+ val prems = Thm.prems_of elimrule
+ val nargs = length (snd (strip_comb (HOLogic.dest_Trueprop (hd prems)))) - nparams
+ fun preprocess_case t =
+ let
+ val params = Logic.strip_params t
+ val (assums1, assums2) = chop nargs (Logic.strip_assums_hyp t)
+ val assums_hyp' = assums1 @ (map replace_eqs assums2)
+ in
+ list_all (params, Logic.list_implies (assums_hyp', Logic.strip_assums_concl t))
+ end
+ val cases' = map preprocess_case (tl prems)
+ val elimrule' = Logic.list_implies ((hd prems) :: cases', Thm.concl_of elimrule)
+ (*val _ = Output.tracing ("elimrule': "^ (Syntax.string_of_term_global thy elimrule'))*)
+ val bigeq = (Thm.symmetric (Conv.implies_concl_conv
+ (MetaSimplifier.rewrite true [@{thm Predicate.eq_is_eq}])
+ (cterm_of thy elimrule')))
+ (*
+ val _ = Output.tracing ("bigeq:" ^ (Display.string_of_thm_global thy bigeq))
+ val res =
+ Thm.equal_elim bigeq elimrule
+ *)
+ (*
+ val t = (fn {...} => mycheat_tac thy 1)
+ val eq = Goal.prove (ProofContext.init thy) [] [] (Logic.mk_equals ((Thm.prop_of elimrule), elimrule')) t
+ *)
+ val _ = Output.tracing "Preprocessed elimination rule"
+ in
+ Thm.equal_elim bigeq elimrule
+ end;
+
+(* special case: predicate with no introduction rule *)
+fun noclause thy predname elim = let
+ val T = (Logic.unvarifyT o Sign.the_const_type thy) predname
+ val Ts = binder_types T
+ val names = Name.variant_list []
+ (map (fn i => "x" ^ (string_of_int i)) (1 upto (length Ts)))
+ val vs = map2 (curry Free) names Ts
+ val clausehd = HOLogic.mk_Trueprop (list_comb (Const (predname, T), vs))
+ val intro_t = Logic.mk_implies (@{prop False}, clausehd)
+ val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT))
+ val elim_t = Logic.list_implies ([clausehd, Logic.mk_implies (@{prop False}, P)], P)
+ val intro = Goal.prove (ProofContext.init thy) names [] intro_t
+ (fn {...} => etac @{thm FalseE} 1)
+ val elim = Goal.prove (ProofContext.init thy) ("P" :: names) [] elim_t
+ (fn {...} => etac elim 1)
+in
+ ([intro], elim)
+end
+
+fun fetch_pred_data thy name =
+ case try (Inductive.the_inductive (ProofContext.init thy)) name of
+ SOME (info as (_, result)) =>
+ let
+ fun is_intro_of intro =
+ let
+ val (const, _) = strip_comb (HOLogic.dest_Trueprop (concl_of intro))
+ in (fst (dest_Const const) = name) end;
+ val intros = ind_set_codegen_preproc thy ((map (preprocess_intro thy))
+ (filter is_intro_of (#intrs result)))
+ val pre_elim = nth (#elims result) (find_index (fn s => s = name) (#names (fst info)))
+ val nparams = length (Inductive.params_of (#raw_induct result))
+ val elim = singleton (ind_set_codegen_preproc thy) (preprocess_elim thy nparams pre_elim)
+ val (intros, elim) = if null intros then noclause thy name elim else (intros, elim)
+ in
+ mk_pred_data ((intros, SOME elim, nparams), ([], [], []))
+ end
+ | NONE => error ("No such predicate: " ^ quote name)
+
+(* updaters *)
+
+fun apfst3 f (x, y, z) = (f x, y, z)
+fun apsnd3 f (x, y, z) = (x, f y, z)
+fun aptrd3 f (x, y, z) = (x, y, f z)
+
+fun add_predfun name mode data =
+ let
+ val add = (apsnd o apfst3 o cons) (mode, mk_predfun_data data)
+ in PredData.map (Graph.map_node name (map_pred_data add)) end
+
+fun is_inductive_predicate thy name =
+ is_some (try (Inductive.the_inductive (ProofContext.init thy)) name)
+
+fun depending_preds_of thy (key, value) =
+ let
+ val intros = (#intros o rep_pred_data) value
+ in
+ fold Term.add_const_names (map Thm.prop_of intros) []
+ |> filter (fn c => (not (c = key)) andalso (is_inductive_predicate thy c orelse is_registered thy c))
+ end;
+
+
+(* code dependency graph *)
+(*
+fun dependencies_of thy name =
+ let
+ val (intros, elim, nparams) = fetch_pred_data thy name
+ val data = mk_pred_data ((intros, SOME elim, nparams), ([], [], []))
+ val keys = depending_preds_of thy intros
+ in
+ (data, keys)
+ end;
+*)
+(* guessing number of parameters *)
+fun find_indexes pred xs =
+ let
+ fun find is n [] = is
+ | find is n (x :: xs) = find (if pred x then (n :: is) else is) (n + 1) xs;
+ in rev (find [] 0 xs) end;
+
+fun is_predT (T as Type("fun", [_, _])) = (snd (strip_type T) = HOLogic.boolT)
+ | is_predT _ = false
+
+fun guess_nparams T =
+ let
+ val argTs = binder_types T
+ val nparams = fold (curry Int.max)
+ (map (fn x => x + 1) (find_indexes is_predT argTs)) 0
+ in nparams end;
+
+fun add_intro thm thy = let
+ val (name, T) = dest_Const (fst (strip_intro_concl 0 (prop_of thm)))
+ fun cons_intro gr =
+ case try (Graph.get_node gr) name of
+ SOME pred_data => Graph.map_node name (map_pred_data
+ (apfst (fn (intro, elim, nparams) => (thm::intro, elim, nparams)))) gr
+ | NONE =>
+ let
+ val nparams = the_default (guess_nparams T) (try (#nparams o rep_pred_data o (fetch_pred_data thy)) name)
+ in Graph.new_node (name, mk_pred_data (([thm], NONE, nparams), ([], [], []))) gr end;
+ in PredData.map cons_intro thy end
+
+fun set_elim thm = let
+ val (name, _) = dest_Const (fst
+ (strip_comb (HOLogic.dest_Trueprop (hd (prems_of thm)))))
+ fun set (intros, _, nparams) = (intros, SOME thm, nparams)
+ in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end
+
+fun set_nparams name nparams = let
+ fun set (intros, elim, _ ) = (intros, elim, nparams)
+ in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end
+
+fun register_predicate (pre_intros, pre_elim, nparams) thy = let
+ val (name, _) = dest_Const (fst (strip_intro_concl nparams (prop_of (hd pre_intros))))
+ (* preprocessing *)
+ val intros = ind_set_codegen_preproc thy (map (preprocess_intro thy) pre_intros)
+ val elim = singleton (ind_set_codegen_preproc thy) (preprocess_elim thy nparams pre_elim)
+ in
+ PredData.map
+ (Graph.new_node (name, mk_pred_data ((intros, SOME elim, nparams), ([], [], [])))) thy
+ end
+
+fun set_generator_name pred mode name =
+ let
+ val set = (apsnd o apsnd3 o cons) (mode, mk_function_data (name, NONE))
+ in
+ PredData.map (Graph.map_node pred (map_pred_data set))
+ end
+
+fun set_sizelim_function_name pred mode name =
+ let
+ val set = (apsnd o aptrd3 o cons) (mode, mk_function_data (name, NONE))
+ in
+ PredData.map (Graph.map_node pred (map_pred_data set))
+ end
+
+(** data structures for generic compilation for different monads **)
+
+(* maybe rename functions more generic:
+ mk_predT -> mk_monadT; dest_predT -> dest_monadT
+ mk_single -> mk_return (?)
+*)
+datatype compilation_funs = CompilationFuns of {
+ mk_predT : typ -> typ,
+ dest_predT : typ -> typ,
+ mk_bot : typ -> term,
+ mk_single : term -> term,
+ mk_bind : term * term -> term,
+ mk_sup : term * term -> term,
+ mk_if : term -> term,
+ mk_not : term -> term,
+(* funT_of : mode -> typ -> typ, *)
+(* mk_fun_of : theory -> (string * typ) -> mode -> term, *)
+ mk_map : typ -> typ -> term -> term -> term,
+ lift_pred : term -> term
+};
+
+fun mk_predT (CompilationFuns funs) = #mk_predT funs
+fun dest_predT (CompilationFuns funs) = #dest_predT funs
+fun mk_bot (CompilationFuns funs) = #mk_bot funs
+fun mk_single (CompilationFuns funs) = #mk_single funs
+fun mk_bind (CompilationFuns funs) = #mk_bind funs
+fun mk_sup (CompilationFuns funs) = #mk_sup funs
+fun mk_if (CompilationFuns funs) = #mk_if funs
+fun mk_not (CompilationFuns funs) = #mk_not funs
+(*fun funT_of (CompilationFuns funs) = #funT_of funs*)
+(*fun mk_fun_of (CompilationFuns funs) = #mk_fun_of funs*)
+fun mk_map (CompilationFuns funs) = #mk_map funs
+fun lift_pred (CompilationFuns funs) = #lift_pred funs
+
+fun funT_of compfuns (iss, is) T =
+ let
+ val Ts = binder_types T
+ val (paramTs, (inargTs, outargTs)) = split_modeT (iss, is) Ts
+ val paramTs' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) iss paramTs
+ in
+ (paramTs' @ inargTs) ---> (mk_predT compfuns (mk_tupleT outargTs))
+ end;
+
+fun sizelim_funT_of compfuns (iss, is) T =
+ let
+ val Ts = binder_types T
+ val (paramTs, (inargTs, outargTs)) = split_modeT (iss, is) Ts
+ val paramTs' = map2 (fn SOME is => sizelim_funT_of compfuns ([], is) | NONE => I) iss paramTs
+ in
+ (paramTs' @ inargTs @ [@{typ "code_numeral"}]) ---> (mk_predT compfuns (mk_tupleT outargTs))
+ end;
+
+fun mk_fun_of compfuns thy (name, T) mode =
+ Const (predfun_name_of thy name mode, funT_of compfuns mode T)
+
+fun mk_sizelim_fun_of compfuns thy (name, T) mode =
+ Const (sizelim_function_name_of thy name mode, sizelim_funT_of compfuns mode T)
+
+fun mk_generator_of compfuns thy (name, T) mode =
+ Const (generator_name_of thy name mode, sizelim_funT_of compfuns mode T)
+
+
+structure PredicateCompFuns =
+struct
+
+fun mk_predT T = Type (@{type_name "Predicate.pred"}, [T])
+
+fun dest_predT (Type (@{type_name "Predicate.pred"}, [T])) = T
+ | dest_predT T = raise TYPE ("dest_predT", [T], []);
+
+fun mk_bot T = Const (@{const_name Orderings.bot}, mk_predT T);
+
+fun mk_single t =
+ let val T = fastype_of t
+ in Const(@{const_name Predicate.single}, T --> mk_predT T) $ t end;
+
+fun mk_bind (x, f) =
+ let val T as Type ("fun", [_, U]) = fastype_of f
+ in
+ Const (@{const_name Predicate.bind}, fastype_of x --> T --> U) $ x $ f
+ end;
+
+val mk_sup = HOLogic.mk_binop @{const_name sup};
+
+fun mk_if cond = Const (@{const_name Predicate.if_pred},
+ HOLogic.boolT --> mk_predT HOLogic.unitT) $ cond;
+
+fun mk_not t = let val T = mk_predT HOLogic.unitT
+ in Const (@{const_name Predicate.not_pred}, T --> T) $ t end
+
+fun mk_Enum f =
+ let val T as Type ("fun", [T', _]) = fastype_of f
+ in
+ Const (@{const_name Predicate.Pred}, T --> mk_predT T') $ f
+ end;
+
+fun mk_Eval (f, x) =
+ let
+ val T = fastype_of x
+ in
+ Const (@{const_name Predicate.eval}, mk_predT T --> T --> HOLogic.boolT) $ f $ x
+ end;
+
+fun mk_map T1 T2 tf tp = Const (@{const_name Predicate.map},
+ (T1 --> T2) --> mk_predT T1 --> mk_predT T2) $ tf $ tp;
+
+val lift_pred = I
+
+val compfuns = CompilationFuns {mk_predT = mk_predT, dest_predT = dest_predT, mk_bot = mk_bot,
+ mk_single = mk_single, mk_bind = mk_bind, mk_sup = mk_sup, mk_if = mk_if, mk_not = mk_not,
+ mk_map = mk_map, lift_pred = lift_pred};
+
+end;
+
+(* termify_code:
+val termT = Type ("Code_Eval.term", []);
+fun termifyT T = HOLogic.mk_prodT (T, HOLogic.unitT --> termT)
+*)
+(*
+fun lift_random random =
+ let
+ val T = dest_randomT (fastype_of random)
+ in
+ mk_scomp (random,
+ mk_fun_comp (HOLogic.pair_const (PredicateCompFuns.mk_predT T) @{typ Random.seed},
+ mk_fun_comp (Const (@{const_name Predicate.single}, T --> (PredicateCompFuns.mk_predT T)),
+ Const (@{const_name "fst"}, HOLogic.mk_prodT (T, @{typ "unit => term"}) --> T))))
+ end;
+*)
+
+structure RPredCompFuns =
+struct
+
+fun mk_rpredT T =
+ @{typ "Random.seed"} --> HOLogic.mk_prodT (PredicateCompFuns.mk_predT T, @{typ "Random.seed"})
+
+fun dest_rpredT (Type ("fun", [_,
+ Type (@{type_name "*"}, [Type (@{type_name "Predicate.pred"}, [T]), _])])) = T
+ | dest_rpredT T = raise TYPE ("dest_rpredT", [T], []);
+
+fun mk_bot T = Const(@{const_name RPred.bot}, mk_rpredT T)
+
+fun mk_single t =
+ let
+ val T = fastype_of t
+ in
+ Const (@{const_name RPred.return}, T --> mk_rpredT T) $ t
+ end;
+
+fun mk_bind (x, f) =
+ let
+ val T as (Type ("fun", [_, U])) = fastype_of f
+ in
+ Const (@{const_name RPred.bind}, fastype_of x --> T --> U) $ x $ f
+ end
+
+val mk_sup = HOLogic.mk_binop @{const_name RPred.supp}
+
+fun mk_if cond = Const (@{const_name RPred.if_rpred},
+ HOLogic.boolT --> mk_rpredT HOLogic.unitT) $ cond;
+
+fun mk_not t = error "Negation is not defined for RPred"
+
+fun mk_map t = error "FIXME" (*FIXME*)
+
+fun lift_pred t =
+ let
+ val T = PredicateCompFuns.dest_predT (fastype_of t)
+ val lift_predT = PredicateCompFuns.mk_predT T --> mk_rpredT T
+ in
+ Const (@{const_name "RPred.lift_pred"}, lift_predT) $ t
+ end;
+
+val compfuns = CompilationFuns {mk_predT = mk_rpredT, dest_predT = dest_rpredT, mk_bot = mk_bot,
+ mk_single = mk_single, mk_bind = mk_bind, mk_sup = mk_sup, mk_if = mk_if, mk_not = mk_not,
+ mk_map = mk_map, lift_pred = lift_pred};
+
+end;
+(* for external use with interactive mode *)
+val rpred_compfuns = RPredCompFuns.compfuns;
+
+fun lift_random random =
+ let
+ val T = dest_randomT (fastype_of random)
+ in
+ Const (@{const_name lift_random}, (@{typ Random.seed} -->
+ HOLogic.mk_prodT (HOLogic.mk_prodT (T, @{typ "unit => term"}), @{typ Random.seed})) -->
+ RPredCompFuns.mk_rpredT T) $ random
+ end;
+
+(* Mode analysis *)
+
+(*** check if a term contains only constructor functions ***)
+fun is_constrt thy =
+ let
+ val cnstrs = flat (maps
+ (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
+ (Symtab.dest (Datatype.get_all thy)));
+ fun check t = (case strip_comb t of
+ (Free _, []) => true
+ | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
+ (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
+ | _ => false)
+ | _ => false)
+ in check end;
+
+(*** check if a type is an equality type (i.e. doesn't contain fun)
+ FIXME this is only an approximation ***)
+fun is_eqT (Type (s, Ts)) = s <> "fun" andalso forall is_eqT Ts
+ | is_eqT _ = true;
+
+fun term_vs tm = fold_aterms (fn Free (x, T) => cons x | _ => I) tm [];
+val terms_vs = distinct (op =) o maps term_vs;
+
+(** collect all Frees in a term (with duplicates!) **)
+fun term_vTs tm =
+ fold_aterms (fn Free xT => cons xT | _ => I) tm [];
+
+(*FIXME this function should not be named merge... make it local instead*)
+fun merge xs [] = xs
+ | merge [] ys = ys
+ | merge (x::xs) (y::ys) = if length x >= length y then x::merge xs (y::ys)
+ else y::merge (x::xs) ys;
+
+fun subsets i j = if i <= j then
+ let val is = subsets (i+1) j
+ in merge (map (fn ks => i::ks) is) is end
+ else [[]];
+
+(* FIXME: should be in library - map_prod *)
+fun cprod ([], ys) = []
+ | cprod (x :: xs, ys) = map (pair x) ys @ cprod (xs, ys);
+
+fun cprods xss = foldr (map op :: o cprod) [[]] xss;
+
+fun cprods_subset [] = [[]]
+ | cprods_subset (xs :: xss) =
+ let
+ val yss = (cprods_subset xss)
+ in maps (fn ys => map (fn x => cons x ys) xs) yss @ yss end
+
+(*TODO: cleanup function and put together with modes_of_term *)
+(*
+fun modes_of_param default modes t = let
+ val (vs, t') = strip_abs t
+ val b = length vs
+ fun mk_modes name args = Option.map (maps (fn (m as (iss, is)) =>
+ let
+ val (args1, args2) =
+ if length args < length iss then
+ error ("Too few arguments for inductive predicate " ^ name)
+ else chop (length iss) args;
+ val k = length args2;
+ val perm = map (fn i => (find_index_eq (Bound (b - i)) args2) + 1)
+ (1 upto b)
+ val partial_mode = (1 upto k) \\ perm
+ in
+ if not (partial_mode subset is) then [] else
+ let
+ val is' =
+ (fold_index (fn (i, j) => if j mem is then cons (i + 1) else I) perm [])
+ |> fold (fn i => if i > k then cons (i - k + b) else I) is
+
+ val res = map (fn x => Mode (m, is', x)) (cprods (map
+ (fn (NONE, _) => [NONE]
+ | (SOME js, arg) => map SOME (filter
+ (fn Mode (_, js', _) => js=js') (modes_of_term modes arg)))
+ (iss ~~ args1)))
+ in res end
+ end)) (AList.lookup op = modes name)
+ in case strip_comb t' of
+ (Const (name, _), args) => the_default default (mk_modes name args)
+ | (Var ((name, _), _), args) => the (mk_modes name args)
+ | (Free (name, _), args) => the (mk_modes name args)
+ | _ => default end
+
+and
+*)
+fun modes_of_term modes t =
+ let
+ val ks = map_index (fn (i, T) => (i, NONE)) (binder_types (fastype_of t));
+ val default = [Mode (([], ks), ks, [])];
+ fun mk_modes name args = Option.map (maps (fn (m as (iss, is)) =>
+ let
+ val (args1, args2) =
+ if length args < length iss then
+ error ("Too few arguments for inductive predicate " ^ name)
+ else chop (length iss) args;
+ val k = length args2;
+ val prfx = map (rpair NONE) (1 upto k)
+ in
+ if not (is_prefix op = prfx is) then [] else
+ let val is' = List.drop (is, k)
+ in map (fn x => Mode (m, is', x)) (cprods (map
+ (fn (NONE, _) => [NONE]
+ | (SOME js, arg) => map SOME (filter
+ (fn Mode (_, js', _) => js=js') (modes_of_term modes arg)))
+ (iss ~~ args1)))
+ end
+ end)) (AList.lookup op = modes name)
+
+ in
+ case strip_comb (Envir.eta_contract t) of
+ (Const (name, _), args) => the_default default (mk_modes name args)
+ | (Var ((name, _), _), args) => the (mk_modes name args)
+ | (Free (name, _), args) => the (mk_modes name args)
+ | (Abs _, []) => error "Abs at param position" (* modes_of_param default modes t *)
+ | _ => default
+ end
+
+fun select_mode_prem thy modes vs ps =
+ find_first (is_some o snd) (ps ~~ map
+ (fn Prem (us, t) => find_first (fn Mode (_, is, _) =>
+ let
+ val (in_ts, out_ts) = split_smode is us;
+ val (out_ts', in_ts') = List.partition (is_constrt thy) out_ts;
+ val vTs = maps term_vTs out_ts';
+ val dupTs = map snd (duplicates (op =) vTs) @
+ List.mapPartial (AList.lookup (op =) vTs) vs;
+ in
+ terms_vs (in_ts @ in_ts') subset vs andalso
+ forall (is_eqT o fastype_of) in_ts' andalso
+ term_vs t subset vs andalso
+ forall is_eqT dupTs
+ end)
+ (modes_of_term modes t handle Option =>
+ error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
+ | Negprem (us, t) => find_first (fn Mode (_, is, _) =>
+ length us = length is andalso
+ terms_vs us subset vs andalso
+ term_vs t subset vs)
+ (modes_of_term modes t handle Option =>
+ error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
+ | Sidecond t => if term_vs t subset vs then SOME (Mode (([], []), [], []))
+ else NONE
+ ) ps);
+
+fun fold_prem f (Prem (args, _)) = fold f args
+ | fold_prem f (Negprem (args, _)) = fold f args
+ | fold_prem f (Sidecond t) = f t
+
+fun all_subsets [] = [[]]
+ | all_subsets (x::xs) = let val xss' = all_subsets xs in xss' @ (map (cons x) xss') end
+
+fun generator vTs v =
+ let
+ val T = the (AList.lookup (op =) vTs v)
+ in
+ (Generator (v, T), Mode (([], []), [], []))
+ end;
+
+fun gen_prem (Prem (us, t)) = GeneratorPrem (us, t)
+ | gen_prem _ = error "gen_prem : invalid input for gen_prem"
+
+fun param_gen_prem param_vs (p as Prem (us, t as Free (v, _))) =
+ if member (op =) param_vs v then
+ GeneratorPrem (us, t)
+ else p
+ | param_gen_prem param_vs p = p
+
+fun check_mode_clause with_generator thy param_vs modes gen_modes (iss, is) (ts, ps) =
+ let
+ val modes' = modes @ List.mapPartial
+ (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+ (param_vs ~~ iss);
+ val gen_modes' = gen_modes @ List.mapPartial
+ (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
+ (param_vs ~~ iss);
+ val vTs = distinct (op =) ((fold o fold_prem) Term.add_frees ps (fold Term.add_frees ts []))
+ val prem_vs = distinct (op =) ((fold o fold_prem) Term.add_free_names ps [])
+ fun check_mode_prems acc_ps vs [] = SOME (acc_ps, vs)
+ | check_mode_prems acc_ps vs ps = (case select_mode_prem thy modes' vs ps of
+ NONE =>
+ (if with_generator then
+ (case select_mode_prem thy gen_modes' vs ps of
+ SOME (p, SOME mode) => check_mode_prems ((gen_prem p, mode) :: acc_ps)
+ (case p of Prem (us, _) => vs union terms_vs us | _ => vs)
+ (filter_out (equal p) ps)
+ | NONE =>
+ let
+ val all_generator_vs = all_subsets (prem_vs \\ vs) |> sort (int_ord o (pairself length))
+ in
+ case (find_first (fn generator_vs => is_some
+ (select_mode_prem thy modes' (vs union generator_vs) ps)) all_generator_vs) of
+ SOME generator_vs => check_mode_prems ((map (generator vTs) generator_vs) @ acc_ps)
+ (vs union generator_vs) ps
+ | NONE => NONE
+ end)
+ else
+ NONE)
+ | SOME (p, SOME mode) => check_mode_prems ((if with_generator then param_gen_prem param_vs p else p, mode) :: acc_ps)
+ (case p of Prem (us, _) => vs union terms_vs us | _ => vs)
+ (filter_out (equal p) ps))
+ val (in_ts, in_ts') = List.partition (is_constrt thy) (fst (split_smode is ts));
+ val in_vs = terms_vs in_ts;
+ val concl_vs = terms_vs ts
+ in
+ if forall is_eqT (map snd (duplicates (op =) (maps term_vTs in_ts))) andalso
+ forall (is_eqT o fastype_of) in_ts' then
+ case check_mode_prems [] (param_vs union in_vs) ps of
+ NONE => NONE
+ | SOME (acc_ps, vs) =>
+ if with_generator then
+ SOME (ts, (rev acc_ps) @ (map (generator vTs) (concl_vs \\ vs)))
+ else
+ if concl_vs subset vs then SOME (ts, rev acc_ps) else NONE
+ else NONE
+ end;
+
+fun check_modes_pred with_generator thy param_vs clauses modes gen_modes (p, ms) =
+ let val SOME rs = AList.lookup (op =) clauses p
+ in (p, List.filter (fn m => case find_index
+ (is_none o check_mode_clause with_generator thy param_vs modes gen_modes m) rs of
+ ~1 => true
+ | i => (Output.tracing ("Clause " ^ string_of_int (i + 1) ^ " of " ^
+ p ^ " violates mode " ^ string_of_mode m);
+ Output.tracing (commas (map (Syntax.string_of_term_global thy) (fst (nth rs i)))); false)) ms)
+ end;
+
+fun get_modes_pred with_generator thy param_vs clauses modes gen_modes (p, ms) =
+ let
+ val SOME rs = AList.lookup (op =) clauses p
+ in
+ (p, map (fn m =>
+ (m, map (the o check_mode_clause with_generator thy param_vs modes gen_modes m) rs)) ms)
+ end;
+
+fun fixp f (x : (string * mode list) list) =
+ let val y = f x
+ in if x = y then x else fixp f y end;
+
+fun infer_modes thy extra_modes all_modes param_vs clauses =
+ let
+ val modes =
+ fixp (fn modes =>
+ map (check_modes_pred false thy param_vs clauses (modes @ extra_modes) []) modes)
+ all_modes
+ in
+ map (get_modes_pred false thy param_vs clauses (modes @ extra_modes) []) modes
+ end;
+
+fun remove_from rem [] = []
+ | remove_from rem ((k, vs) :: xs) =
+ (case AList.lookup (op =) rem k of
+ NONE => (k, vs)
+ | SOME vs' => (k, vs \\ vs'))
+ :: remove_from rem xs
+
+fun infer_modes_with_generator thy extra_modes all_modes param_vs clauses =
+ let
+ val prednames = map fst clauses
+ val extra_modes = all_modes_of thy
+ val gen_modes = all_generator_modes_of thy
+ |> filter_out (fn (name, _) => member (op =) prednames name)
+ val starting_modes = remove_from extra_modes all_modes
+ val modes =
+ fixp (fn modes =>
+ map (check_modes_pred true thy param_vs clauses extra_modes (gen_modes @ modes)) modes)
+ starting_modes
+ in
+ map (get_modes_pred true thy param_vs clauses extra_modes (gen_modes @ modes)) modes
+ end;
+
+(* term construction *)
+
+fun mk_v (names, vs) s T = (case AList.lookup (op =) vs s of
+ NONE => (Free (s, T), (names, (s, [])::vs))
+ | SOME xs =>
+ let
+ val s' = Name.variant names s;
+ val v = Free (s', T)
+ in
+ (v, (s'::names, AList.update (op =) (s, v::xs) vs))
+ end);
+
+fun distinct_v (Free (s, T)) nvs = mk_v nvs s T
+ | distinct_v (t $ u) nvs =
+ let
+ val (t', nvs') = distinct_v t nvs;
+ val (u', nvs'') = distinct_v u nvs';
+ in (t' $ u', nvs'') end
+ | distinct_v x nvs = (x, nvs);
+
+fun compile_match thy compfuns eqs eqs' out_ts success_t =
+ let
+ val eqs'' = maps mk_eq eqs @ eqs'
+ val names = fold Term.add_free_names (success_t :: eqs'' @ out_ts) [];
+ val name = Name.variant names "x";
+ val name' = Name.variant (name :: names) "y";
+ val T = mk_tupleT (map fastype_of out_ts);
+ val U = fastype_of success_t;
+ val U' = dest_predT compfuns U;
+ val v = Free (name, T);
+ val v' = Free (name', T);
+ in
+ lambda v (fst (Datatype.make_case
+ (ProofContext.init thy) false [] v
+ [(mk_tuple out_ts,
+ if null eqs'' then success_t
+ else Const (@{const_name HOL.If}, HOLogic.boolT --> U --> U --> U) $
+ foldr1 HOLogic.mk_conj eqs'' $ success_t $
+ mk_bot compfuns U'),
+ (v', mk_bot compfuns U')]))
+ end;
+
+(*FIXME function can be removed*)
+fun mk_funcomp f t =
+ let
+ val names = Term.add_free_names t [];
+ val Ts = binder_types (fastype_of t);
+ val vs = map Free
+ (Name.variant_list names (replicate (length Ts) "x") ~~ Ts)
+ in
+ fold_rev lambda vs (f (list_comb (t, vs)))
+ end;
+(*
+fun compile_param_ext thy compfuns modes (NONE, t) = t
+ | compile_param_ext thy compfuns modes (m as SOME (Mode ((iss, is'), is, ms)), t) =
+ let
+ val (vs, u) = strip_abs t
+ val (ivs, ovs) = split_mode is vs
+ val (f, args) = strip_comb u
+ val (params, args') = chop (length ms) args
+ val (inargs, outargs) = split_mode is' args'
+ val b = length vs
+ val perm = map (fn i => (find_index_eq (Bound (b - i)) args') + 1) (1 upto b)
+ val outp_perm =
+ snd (split_mode is perm)
+ |> map (fn i => i - length (filter (fn x => x < i) is'))
+ val names = [] -- TODO
+ val out_names = Name.variant_list names (replicate (length outargs) "x")
+ val f' = case f of
+ Const (name, T) =>
+ if AList.defined op = modes name then
+ mk_predfun_of thy compfuns (name, T) (iss, is')
+ else error "compile param: Not an inductive predicate with correct mode"
+ | Free (name, T) => Free (name, param_funT_of compfuns T (SOME is'))
+ val outTs = dest_tupleT (dest_predT compfuns (body_type (fastype_of f')))
+ val out_vs = map Free (out_names ~~ outTs)
+ val params' = map (compile_param thy modes) (ms ~~ params)
+ val f_app = list_comb (f', params' @ inargs)
+ val single_t = (mk_single compfuns (mk_tuple (map (fn i => nth out_vs (i - 1)) outp_perm)))
+ val match_t = compile_match thy compfuns [] [] out_vs single_t
+ in list_abs (ivs,
+ mk_bind compfuns (f_app, match_t))
+ end
+ | compile_param_ext _ _ _ _ = error "compile params"
+*)
+
+fun compile_param size thy compfuns (NONE, t) = t
+ | compile_param size thy compfuns (m as SOME (Mode ((iss, is'), is, ms)), t) =
+ let
+ val (f, args) = strip_comb (Envir.eta_contract t)
+ val (params, args') = chop (length ms) args
+ val params' = map (compile_param size thy compfuns) (ms ~~ params)
+ val mk_fun_of = case size of NONE => mk_fun_of | SOME _ => mk_sizelim_fun_of
+ val funT_of = case size of NONE => funT_of | SOME _ => sizelim_funT_of
+ val f' =
+ case f of
+ Const (name, T) =>
+ mk_fun_of compfuns thy (name, T) (iss, is')
+ | Free (name, T) => Free (name, funT_of compfuns (iss, is') T)
+ | _ => error ("PredicateCompiler: illegal parameter term")
+ in list_comb (f', params' @ args') end
+
+fun compile_expr size thy ((Mode (mode, is, ms)), t) =
+ case strip_comb t of
+ (Const (name, T), params) =>
+ let
+ val params' = map (compile_param size thy PredicateCompFuns.compfuns) (ms ~~ params)
+ val mk_fun_of = case size of NONE => mk_fun_of | SOME _ => mk_sizelim_fun_of
+ in
+ list_comb (mk_fun_of PredicateCompFuns.compfuns thy (name, T) mode, params')
+ end
+ | (Free (name, T), args) =>
+ let
+ val funT_of = case size of NONE => funT_of | SOME _ => sizelim_funT_of
+ in
+ list_comb (Free (name, funT_of PredicateCompFuns.compfuns ([], is) T), args)
+ end;
+
+fun compile_gen_expr size thy compfuns ((Mode (mode, is, ms)), t) =
+ case strip_comb t of
+ (Const (name, T), params) =>
+ let
+ val params' = map (compile_param size thy compfuns) (ms ~~ params)
+ in
+ list_comb (mk_generator_of compfuns thy (name, T) mode, params')
+ end
+ | (Free (name, T), args) =>
+ list_comb (Free (name, sizelim_funT_of RPredCompFuns.compfuns ([], is) T), args)
+
+(** specific rpred functions -- move them to the correct place in this file *)
+
+(* uncommented termify code; causes more trouble than expected at first *)
+(*
+fun mk_valtermify_term (t as Const (c, T)) = HOLogic.mk_prod (t, Abs ("u", HOLogic.unitT, HOLogic.reflect_term t))
+ | mk_valtermify_term (Free (x, T)) = Free (x, termifyT T)
+ | mk_valtermify_term (t1 $ t2) =
+ let
+ val T = fastype_of t1
+ val (T1, T2) = dest_funT T
+ val t1' = mk_valtermify_term t1
+ val t2' = mk_valtermify_term t2
+ in
+ Const ("Code_Eval.valapp", termifyT T --> termifyT T1 --> termifyT T2) $ t1' $ t2'
+ end
+ | mk_valtermify_term _ = error "Not a valid term for mk_valtermify_term"
+*)
+
+fun compile_clause compfuns size final_term thy all_vs param_vs (iss, is) inp (ts, moded_ps) =
+ let
+ fun check_constrt t (names, eqs) =
+ if is_constrt thy t then (t, (names, eqs)) else
+ let
+ val s = Name.variant names "x";
+ val v = Free (s, fastype_of t)
+ in (v, (s::names, HOLogic.mk_eq (v, t)::eqs)) end;
+
+ val (in_ts, out_ts) = split_smode is ts;
+ val (in_ts', (all_vs', eqs)) =
+ fold_map check_constrt in_ts (all_vs, []);
+
+ fun compile_prems out_ts' vs names [] =
+ let
+ val (out_ts'', (names', eqs')) =
+ fold_map check_constrt out_ts' (names, []);
+ val (out_ts''', (names'', constr_vs)) = fold_map distinct_v
+ out_ts'' (names', map (rpair []) vs);
+ in
+ (* termify code:
+ compile_match thy compfuns constr_vs (eqs @ eqs') out_ts'''
+ (mk_single compfuns (mk_tuple (map mk_valtermify_term out_ts)))
+ *)
+ compile_match thy compfuns constr_vs (eqs @ eqs') out_ts'''
+ (final_term out_ts)
+ end
+ | compile_prems out_ts vs names ((p, mode as Mode ((_, is), _, _)) :: ps) =
+ let
+ val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
+ val (out_ts', (names', eqs)) =
+ fold_map check_constrt out_ts (names, [])
+ val (out_ts'', (names'', constr_vs')) = fold_map distinct_v
+ out_ts' ((names', map (rpair []) vs))
+ val (compiled_clause, rest) = case p of
+ Prem (us, t) =>
+ let
+ val (in_ts, out_ts''') = split_smode is us;
+ val args = case size of
+ NONE => in_ts
+ | SOME size_t => in_ts @ [size_t]
+ val u = lift_pred compfuns
+ (list_comb (compile_expr size thy (mode, t), args))
+ val rest = compile_prems out_ts''' vs' names'' ps
+ in
+ (u, rest)
+ end
+ | Negprem (us, t) =>
+ let
+ val (in_ts, out_ts''') = split_smode is us
+ val u = lift_pred compfuns
+ (mk_not PredicateCompFuns.compfuns (list_comb (compile_expr NONE thy (mode, t), in_ts)))
+ val rest = compile_prems out_ts''' vs' names'' ps
+ in
+ (u, rest)
+ end
+ | Sidecond t =>
+ let
+ val rest = compile_prems [] vs' names'' ps;
+ in
+ (mk_if compfuns t, rest)
+ end
+ | GeneratorPrem (us, t) =>
+ let
+ val (in_ts, out_ts''') = split_smode is us;
+ val args = case size of
+ NONE => in_ts
+ | SOME size_t => in_ts @ [size_t]
+ val u = list_comb (compile_gen_expr size thy compfuns (mode, t), args)
+ val rest = compile_prems out_ts''' vs' names'' ps
+ in
+ (u, rest)
+ end
+ | Generator (v, T) =>
+ let
+ val u = lift_random (HOLogic.mk_random T @{term "1::code_numeral"})
+ val rest = compile_prems [Free (v, T)] vs' names'' ps;
+ in
+ (u, rest)
+ end
+ in
+ compile_match thy compfuns constr_vs' eqs out_ts''
+ (mk_bind compfuns (compiled_clause, rest))
+ end
+ val prem_t = compile_prems in_ts' param_vs all_vs' moded_ps;
+ in
+ mk_bind compfuns (mk_single compfuns inp, prem_t)
+ end
+
+fun compile_pred compfuns mk_fun_of use_size thy all_vs param_vs s T mode moded_cls =
+ let
+ val (Ts1, Ts2) = chop (length (fst mode)) (binder_types T)
+ val (Us1, Us2) = split_smodeT (snd mode) Ts2
+ val funT_of = if use_size then sizelim_funT_of else funT_of
+ val Ts1' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) (fst mode) Ts1
+ val size_name = Name.variant (all_vs @ param_vs) "size"
+ fun mk_input_term (i, NONE) =
+ [Free (Name.variant (all_vs @ param_vs) ("x" ^ string_of_int i), nth Ts2 (i - 1))]
+ | mk_input_term (i, SOME pis) = case HOLogic.strip_tupleT (nth Ts2 (i - 1)) of
+ [] => error "strange unit input"
+ | [T] => [Free (Name.variant (all_vs @ param_vs) ("x" ^ string_of_int i), nth Ts2 (i - 1))]
+ | Ts => let
+ val vnames = Name.variant_list (all_vs @ param_vs)
+ (map (fn j => "x" ^ string_of_int i ^ "p" ^ string_of_int j)
+ pis)
+ in if null pis then []
+ else [HOLogic.mk_tuple (map Free (vnames ~~ map (fn j => nth Ts (j - 1)) pis))] end
+ val in_ts = maps mk_input_term (snd mode)
+ val params = map2 (fn s => fn T => Free (s, T)) param_vs Ts1'
+ val size = Free (size_name, @{typ "code_numeral"})
+ val decr_size =
+ if use_size then
+ SOME (Const ("HOL.minus_class.minus", @{typ "code_numeral => code_numeral => code_numeral"})
+ $ size $ Const ("HOL.one_class.one", @{typ "Code_Numeral.code_numeral"}))
+ else
+ NONE
+ val cl_ts =
+ map (compile_clause compfuns decr_size (fn out_ts => mk_single compfuns (mk_tuple out_ts))
+ thy all_vs param_vs mode (mk_tuple in_ts)) moded_cls;
+ val t = foldr1 (mk_sup compfuns) cl_ts
+ val T' = mk_predT compfuns (mk_tupleT Us2)
+ val size_t = Const (@{const_name "If"}, @{typ bool} --> T' --> T' --> T')
+ $ HOLogic.mk_eq (size, @{term "0 :: code_numeral"})
+ $ mk_bot compfuns (dest_predT compfuns T') $ t
+ val fun_const = mk_fun_of compfuns thy (s, T) mode
+ val eq = if use_size then
+ (list_comb (fun_const, params @ in_ts @ [size]), size_t)
+ else
+ (list_comb (fun_const, params @ in_ts), t)
+ in
+ HOLogic.mk_Trueprop (HOLogic.mk_eq eq)
+ end;
+
+(* special setup for simpset *)
+val HOL_basic_ss' = HOL_basic_ss addsimps (@{thms "HOL.simp_thms"} @ [@{thm Pair_eq}])
+ setSolver (mk_solver "all_tac_solver" (fn _ => fn _ => all_tac))
+ setSolver (mk_solver "True_solver" (fn _ => rtac @{thm TrueI}))
+
+(* Definition of executable functions and their intro and elim rules *)
+
+fun print_arities arities = tracing ("Arities:\n" ^
+ cat_lines (map (fn (s, (ks, k)) => s ^ ": " ^
+ space_implode " -> " (map
+ (fn NONE => "X" | SOME k' => string_of_int k')
+ (ks @ [SOME k]))) arities));
+
+fun mk_Eval_of ((x, T), NONE) names = (x, names)
+ | mk_Eval_of ((x, T), SOME mode) names =
+ let
+ val Ts = binder_types T
+ (*val argnames = Name.variant_list names
+ (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+ val args = map Free (argnames ~~ Ts)
+ val (inargs, outargs) = split_smode mode args*)
+ fun mk_split_lambda [] t = lambda (Free (Name.variant names "x", HOLogic.unitT)) t
+ | mk_split_lambda [x] t = lambda x t
+ | mk_split_lambda xs t =
+ let
+ fun mk_split_lambda' (x::y::[]) t = HOLogic.mk_split (lambda x (lambda y t))
+ | mk_split_lambda' (x::xs) t = HOLogic.mk_split (lambda x (mk_split_lambda' xs t))
+ in
+ mk_split_lambda' xs t
+ end;
+ fun mk_arg (i, T) =
+ let
+ val vname = Name.variant names ("x" ^ string_of_int i)
+ val default = Free (vname, T)
+ in
+ case AList.lookup (op =) mode i of
+ NONE => (([], [default]), [default])
+ | SOME NONE => (([default], []), [default])
+ | SOME (SOME pis) =>
+ case HOLogic.strip_tupleT T of
+ [] => error "pair mode but unit tuple" (*(([default], []), [default])*)
+ | [_] => error "pair mode but not a tuple" (*(([default], []), [default])*)
+ | Ts =>
+ let
+ val vnames = Name.variant_list names
+ (map (fn j => "x" ^ string_of_int i ^ "p" ^ string_of_int j)
+ (1 upto length Ts))
+ val args = map Free (vnames ~~ Ts)
+ fun split_args (i, arg) (ins, outs) =
+ if member (op =) pis i then
+ (arg::ins, outs)
+ else
+ (ins, arg::outs)
+ val (inargs, outargs) = fold_rev split_args ((1 upto length Ts) ~~ args) ([], [])
+ fun tuple args = if null args then [] else [HOLogic.mk_tuple args]
+ in ((tuple inargs, tuple outargs), args) end
+ end
+ val (inoutargs, args) = split_list (map mk_arg (1 upto (length Ts) ~~ Ts))
+ val (inargs, outargs) = pairself flat (split_list inoutargs)
+ val r = PredicateCompFuns.mk_Eval (list_comb (x, inargs), mk_tuple outargs)
+ val t = fold_rev mk_split_lambda args r
+ in
+ (t, names)
+ end;
+
+fun create_intro_elim_rule (mode as (iss, is)) defthm mode_id funT pred thy =
+let
+ val Ts = binder_types (fastype_of pred)
+ val funtrm = Const (mode_id, funT)
+ val (Ts1, Ts2) = chop (length iss) Ts;
+ val Ts1' = map2 (fn NONE => I | SOME is => funT_of (PredicateCompFuns.compfuns) ([], is)) iss Ts1
+ val param_names = Name.variant_list []
+ (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts1)));
+ val params = map Free (param_names ~~ Ts1')
+ fun mk_args (i, T) argnames =
+ let
+ val vname = Name.variant (param_names @ argnames) ("x" ^ string_of_int (length Ts1' + i))
+ val default = (Free (vname, T), vname :: argnames)
+ in
+ case AList.lookup (op =) is i of
+ NONE => default
+ | SOME NONE => default
+ | SOME (SOME pis) =>
+ case HOLogic.strip_tupleT T of
+ [] => default
+ | [_] => default
+ | Ts =>
+ let
+ val vnames = Name.variant_list (param_names @ argnames)
+ (map (fn j => "x" ^ string_of_int (length Ts1' + i) ^ "p" ^ string_of_int j)
+ (1 upto (length Ts)))
+ in (HOLogic.mk_tuple (map Free (vnames ~~ Ts)), vnames @ argnames) end
+ end
+ val (args, argnames) = fold_map mk_args (1 upto (length Ts2) ~~ Ts2) []
+ val (inargs, outargs) = split_smode is args
+ val param_names' = Name.variant_list (param_names @ argnames)
+ (map (fn i => "p" ^ string_of_int i) (1 upto (length iss)))
+ val param_vs = map Free (param_names' ~~ Ts1)
+ val (params', names) = fold_map mk_Eval_of ((params ~~ Ts1) ~~ iss) []
+ val predpropI = HOLogic.mk_Trueprop (list_comb (pred, param_vs @ args))
+ val predpropE = HOLogic.mk_Trueprop (list_comb (pred, params' @ args))
+ val param_eqs = map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (param_vs ~~ params')
+ val funargs = params @ inargs
+ val funpropE = HOLogic.mk_Trueprop (PredicateCompFuns.mk_Eval (list_comb (funtrm, funargs),
+ if null outargs then Free("y", HOLogic.unitT) else mk_tuple outargs))
+ val funpropI = HOLogic.mk_Trueprop (PredicateCompFuns.mk_Eval (list_comb (funtrm, funargs),
+ mk_tuple outargs))
+ val introtrm = Logic.list_implies (predpropI :: param_eqs, funpropI)
+ val simprules = [defthm, @{thm eval_pred},
+ @{thm "split_beta"}, @{thm "fst_conv"}, @{thm "snd_conv"}, @{thm pair_collapse}]
+ val unfolddef_tac = Simplifier.asm_full_simp_tac (HOL_basic_ss addsimps simprules) 1
+ val introthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ param_names' @ ["y"]) [] introtrm (fn {...} => unfolddef_tac)
+ val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT));
+ val elimtrm = Logic.list_implies ([funpropE, Logic.mk_implies (predpropE, P)], P)
+ val elimthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ param_names' @ ["y", "P"]) [] elimtrm (fn {...} => unfolddef_tac)
+ val _ = Output.tracing (Display.string_of_thm_global thy elimthm)
+ val _ = Output.tracing (Display.string_of_thm_global thy introthm)
+
+in
+ (introthm, elimthm)
+end;
+
+fun create_constname_of_mode thy prefix name mode =
+ let
+ fun string_of_mode mode = if null mode then "0"
+ else space_implode "_" (map (fn (i, NONE) => string_of_int i | (i, SOME pis) => string_of_int i ^ "p"
+ ^ space_implode "p" (map string_of_int pis)) mode)
+ val HOmode = space_implode "_and_"
+ (fold (fn NONE => I | SOME mode => cons (string_of_mode mode)) (fst mode) [])
+ in
+ (Sign.full_bname thy (prefix ^ (Long_Name.base_name name))) ^
+ (if HOmode = "" then "_" else "_for_" ^ HOmode ^ "_yields_") ^ (string_of_mode (snd mode))
+ end;
+
+fun split_tupleT is T =
+ let
+ fun split_tuple' _ _ [] = ([], [])
+ | split_tuple' is i (T::Ts) =
+ (if i mem is then apfst else apsnd) (cons T)
+ (split_tuple' is (i+1) Ts)
+ in
+ split_tuple' is 1 (HOLogic.strip_tupleT T)
+ end
+
+fun mk_arg xin xout pis T =
+ let
+ val n = length (HOLogic.strip_tupleT T)
+ val ni = length pis
+ fun mk_proj i j t =
+ (if i = j then I else HOLogic.mk_fst)
+ (funpow (i - 1) HOLogic.mk_snd t)
+ fun mk_arg' i (si, so) = if i mem pis then
+ (mk_proj si ni xin, (si+1, so))
+ else
+ (mk_proj so (n - ni) xout, (si, so+1))
+ val (args, _) = fold_map mk_arg' (1 upto n) (1, 1)
+ in
+ HOLogic.mk_tuple args
+ end
+
+fun create_definitions preds (name, modes) thy =
+ let
+ val compfuns = PredicateCompFuns.compfuns
+ val T = AList.lookup (op =) preds name |> the
+ fun create_definition (mode as (iss, is)) thy = let
+ val mode_cname = create_constname_of_mode thy "" name mode
+ val mode_cbasename = Long_Name.base_name mode_cname
+ val Ts = binder_types T
+ val (Ts1, Ts2) = chop (length iss) Ts
+ val (Us1, Us2) = split_smodeT is Ts2
+ val Ts1' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) iss Ts1
+ val funT = (Ts1' @ Us1) ---> (mk_predT compfuns (mk_tupleT Us2))
+ val names = Name.variant_list []
+ (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
+ (* old *)
+ (*
+ val xs = map Free (names ~~ (Ts1' @ Ts2))
+ val (xparams, xargs) = chop (length iss) xs
+ val (xins, xouts) = split_smode is xargs
+ *)
+ (* new *)
+ val param_names = Name.variant_list []
+ (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts1')))
+ val xparams = map Free (param_names ~~ Ts1')
+ fun mk_vars (i, T) names =
+ let
+ val vname = Name.variant names ("x" ^ string_of_int (length Ts1' + i))
+ in
+ case AList.lookup (op =) is i of
+ NONE => ((([], [Free (vname, T)]), Free (vname, T)), vname :: names)
+ | SOME NONE => ((([Free (vname, T)], []), Free (vname, T)), vname :: names)
+ | SOME (SOME pis) =>
+ let
+ val (Tins, Touts) = split_tupleT pis T
+ val name_in = Name.variant names ("x" ^ string_of_int (length Ts1' + i) ^ "in")
+ val name_out = Name.variant names ("x" ^ string_of_int (length Ts1' + i) ^ "out")
+ val xin = Free (name_in, HOLogic.mk_tupleT Tins)
+ val xout = Free (name_out, HOLogic.mk_tupleT Touts)
+ val xarg = mk_arg xin xout pis T
+ in (((if null Tins then [] else [xin], if null Touts then [] else [xout]), xarg), name_in :: name_out :: names) end
+ (* HOLogic.strip_tupleT T of
+ [] =>
+ in (Free (vname, T), vname :: names) end
+ | [_] => let val vname = Name.variant names ("x" ^ string_of_int (length Ts1' + i))
+ in (Free (vname, T), vname :: names) end
+ | Ts =>
+ let
+ val vnames = Name.variant_list names
+ (map (fn j => "x" ^ string_of_int (length Ts1' + i) ^ "p" ^ string_of_int j)
+ (1 upto (length Ts)))
+ in (HOLogic.mk_tuple (map Free (vnames ~~ Ts)), vnames @ names) end *)
+ end
+ val (xinoutargs, names) = fold_map mk_vars ((1 upto (length Ts2)) ~~ Ts2) param_names
+ val (xinout, xargs) = split_list xinoutargs
+ val (xins, xouts) = pairself flat (split_list xinout)
+ (*val (xins, xouts) = split_smode is xargs*)
+ val (xparams', names') = fold_map mk_Eval_of ((xparams ~~ Ts1) ~~ iss) names
+ val _ = Output.tracing ("xargs:" ^ commas (map (Syntax.string_of_term_global thy) xargs))
+ fun mk_split_lambda [] t = lambda (Free (Name.variant names' "x", HOLogic.unitT)) t
+ | mk_split_lambda [x] t = lambda x t
+ | mk_split_lambda xs t =
+ let
+ fun mk_split_lambda' (x::y::[]) t = HOLogic.mk_split (lambda x (lambda y t))
+ | mk_split_lambda' (x::xs) t = HOLogic.mk_split (lambda x (mk_split_lambda' xs t))
+ in
+ mk_split_lambda' xs t
+ end;
+ val predterm = PredicateCompFuns.mk_Enum (mk_split_lambda xouts
+ (list_comb (Const (name, T), xparams' @ xargs)))
+ val lhs = list_comb (Const (mode_cname, funT), xparams @ xins)
+ val def = Logic.mk_equals (lhs, predterm)
+ val _ = Output.tracing ("def:" ^ (Syntax.string_of_term_global thy def))
+ val ([definition], thy') = thy |>
+ Sign.add_consts_i [(Binding.name mode_cbasename, funT, NoSyn)] |>
+ PureThy.add_defs false [((Binding.name (mode_cbasename ^ "_def"), def), [])]
+ val (intro, elim) =
+ create_intro_elim_rule mode definition mode_cname funT (Const (name, T)) thy'
+ val _ = Output.tracing (Display.string_of_thm_global thy' definition)
+ in thy'
+ |> add_predfun name mode (mode_cname, definition, intro, elim)
+ |> PureThy.store_thm (Binding.name (mode_cbasename ^ "I"), intro) |> snd
+ |> PureThy.store_thm (Binding.name (mode_cbasename ^ "E"), elim) |> snd
+ |> Theory.checkpoint
+ end;
+ in
+ fold create_definition modes thy
+ end;
+
+fun sizelim_create_definitions preds (name, modes) thy =
+ let
+ val T = AList.lookup (op =) preds name |> the
+ fun create_definition mode thy =
+ let
+ val mode_cname = create_constname_of_mode thy "sizelim_" name mode
+ val funT = sizelim_funT_of PredicateCompFuns.compfuns mode T
+ in
+ thy |> Sign.add_consts_i [(Binding.name (Long_Name.base_name mode_cname), funT, NoSyn)]
+ |> set_sizelim_function_name name mode mode_cname
+ end;
+ in
+ fold create_definition modes thy
+ end;
+
+fun rpred_create_definitions preds (name, modes) thy =
+ let
+ val T = AList.lookup (op =) preds name |> the
+ fun create_definition mode thy =
+ let
+ val mode_cname = create_constname_of_mode thy "gen_" name mode
+ val funT = sizelim_funT_of RPredCompFuns.compfuns mode T
+ in
+ thy |> Sign.add_consts_i [(Binding.name (Long_Name.base_name mode_cname), funT, NoSyn)]
+ |> set_generator_name name mode mode_cname
+ end;
+ in
+ fold create_definition modes thy
+ end;
+
+(* Proving equivalence of term *)
+
+fun is_Type (Type _) = true
+ | is_Type _ = false
+
+(* returns true if t is an application of an datatype constructor *)
+(* which then consequently would be splitted *)
+(* else false *)
+fun is_constructor thy t =
+ if (is_Type (fastype_of t)) then
+ (case Datatype.get_info thy ((fst o dest_Type o fastype_of) t) of
+ NONE => false
+ | SOME info => (let
+ val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
+ val (c, _) = strip_comb t
+ in (case c of
+ Const (name, _) => name mem_string constr_consts
+ | _ => false) end))
+ else false
+
+(* MAJOR FIXME: prove_params should be simple
+ - different form of introrule for parameters ? *)
+fun prove_param thy (NONE, t) = TRY (rtac @{thm refl} 1)
+ | prove_param thy (m as SOME (Mode (mode, is, ms)), t) =
+ let
+ val (f, args) = strip_comb (Envir.eta_contract t)
+ val (params, _) = chop (length ms) args
+ val f_tac = case f of
+ Const (name, T) => simp_tac (HOL_basic_ss addsimps
+ ([@{thm eval_pred}, (predfun_definition_of thy name mode),
+ @{thm "split_eta"}, @{thm "split_beta"}, @{thm "fst_conv"},
+ @{thm "snd_conv"}, @{thm pair_collapse}, @{thm "Product_Type.split_conv"}])) 1
+ | Free _ => TRY (rtac @{thm refl} 1)
+ | Abs _ => error "prove_param: No valid parameter term"
+ in
+ REPEAT_DETERM (etac @{thm thin_rl} 1)
+ THEN REPEAT_DETERM (rtac @{thm ext} 1)
+ THEN print_tac "prove_param"
+ THEN f_tac
+ THEN print_tac "after simplification in prove_args"
+ THEN (EVERY (map (prove_param thy) (ms ~~ params)))
+ THEN (REPEAT_DETERM (atac 1))
+ end
+
+fun prove_expr thy (Mode (mode, is, ms), t, us) (premposition : int) =
+ case strip_comb t of
+ (Const (name, T), args) =>
+ let
+ val introrule = predfun_intro_of thy name mode
+ val (args1, args2) = chop (length ms) args
+ in
+ rtac @{thm bindI} 1
+ THEN print_tac "before intro rule:"
+ (* for the right assumption in first position *)
+ THEN rotate_tac premposition 1
+ THEN debug_tac (Display.string_of_thm (ProofContext.init thy) introrule)
+ THEN rtac introrule 1
+ THEN print_tac "after intro rule"
+ (* work with parameter arguments *)
+ THEN (atac 1)
+ THEN (print_tac "parameter goal")
+ THEN (EVERY (map (prove_param thy) (ms ~~ args1)))
+ THEN (REPEAT_DETERM (atac 1))
+ end
+ | _ => rtac @{thm bindI} 1
+ THEN asm_full_simp_tac
+ (HOL_basic_ss' addsimps [@{thm "split_eta"}, @{thm "split_beta"}, @{thm "fst_conv"},
+ @{thm "snd_conv"}, @{thm pair_collapse}]) 1
+ THEN (atac 1)
+ THEN print_tac "after prove parameter call"
+
+
+fun SOLVED tac st = FILTER (fn st' => nprems_of st' = nprems_of st - 1) tac st;
+
+fun SOLVEDALL tac st = FILTER (fn st' => nprems_of st' = 0) tac st
+
+fun prove_match thy (out_ts : term list) = let
+ fun get_case_rewrite t =
+ if (is_constructor thy t) then let
+ val case_rewrites = (#case_rewrites (Datatype.the_info thy
+ ((fst o dest_Type o fastype_of) t)))
+ in case_rewrites @ (flat (map get_case_rewrite (snd (strip_comb t)))) end
+ else []
+ val simprules = @{thm "unit.cases"} :: @{thm "prod.cases"} :: (flat (map get_case_rewrite out_ts))
+(* replace TRY by determining if it necessary - are there equations when calling compile match? *)
+in
+ (* make this simpset better! *)
+ asm_full_simp_tac (HOL_basic_ss' addsimps simprules) 1
+ THEN print_tac "after prove_match:"
+ THEN (DETERM (TRY (EqSubst.eqsubst_tac (ProofContext.init thy) [0] [@{thm "HOL.if_P"}] 1
+ THEN (REPEAT_DETERM (rtac @{thm conjI} 1 THEN (SOLVED (asm_simp_tac HOL_basic_ss 1))))
+ THEN (SOLVED (asm_simp_tac HOL_basic_ss 1)))))
+ THEN print_tac "after if simplification"
+end;
+
+(* corresponds to compile_fun -- maybe call that also compile_sidecond? *)
+
+fun prove_sidecond thy modes t =
+ let
+ fun preds_of t nameTs = case strip_comb t of
+ (f as Const (name, T), args) =>
+ if AList.defined (op =) modes name then (name, T) :: nameTs
+ else fold preds_of args nameTs
+ | _ => nameTs
+ val preds = preds_of t []
+ val defs = map
+ (fn (pred, T) => predfun_definition_of thy pred
+ ([], map (rpair NONE) (1 upto (length (binder_types T)))))
+ preds
+ in
+ (* remove not_False_eq_True when simpset in prove_match is better *)
+ simp_tac (HOL_basic_ss addsimps
+ (@{thms "HOL.simp_thms"} @ (@{thm not_False_eq_True} :: @{thm eval_pred} :: defs))) 1
+ (* need better control here! *)
+ end
+
+fun prove_clause thy nargs modes (iss, is) (_, clauses) (ts, moded_ps) =
+ let
+ val (in_ts, clause_out_ts) = split_smode is ts;
+ fun prove_prems out_ts [] =
+ (prove_match thy out_ts)
+ THEN print_tac "before simplifying assumptions"
+ THEN asm_full_simp_tac HOL_basic_ss' 1
+ THEN print_tac "before single intro rule"
+ THEN (rtac (if null clause_out_ts then @{thm singleI_unit} else @{thm singleI}) 1)
+ | prove_prems out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
+ let
+ val premposition = (find_index (equal p) clauses) + nargs
+ val rest_tac = (case p of Prem (us, t) =>
+ let
+ val (_, out_ts''') = split_smode is us
+ val rec_tac = prove_prems out_ts''' ps
+ in
+ print_tac "before clause:"
+ THEN asm_simp_tac HOL_basic_ss 1
+ THEN print_tac "before prove_expr:"
+ THEN prove_expr thy (mode, t, us) premposition
+ THEN print_tac "after prove_expr:"
+ THEN rec_tac
+ end
+ | Negprem (us, t) =>
+ let
+ val (_, out_ts''') = split_smode is us
+ val rec_tac = prove_prems out_ts''' ps
+ val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
+ val (_, params) = strip_comb t
+ in
+ rtac @{thm bindI} 1
+ THEN (if (is_some name) then
+ simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1
+ THEN rtac @{thm not_predI} 1
+ THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
+ THEN (REPEAT_DETERM (atac 1))
+ (* FIXME: work with parameter arguments *)
+ THEN (EVERY (map (prove_param thy) (param_modes ~~ params)))
+ else
+ rtac @{thm not_predI'} 1)
+ THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
+ THEN rec_tac
+ end
+ | Sidecond t =>
+ rtac @{thm bindI} 1
+ THEN rtac @{thm if_predI} 1
+ THEN print_tac "before sidecond:"
+ THEN prove_sidecond thy modes t
+ THEN print_tac "after sidecond:"
+ THEN prove_prems [] ps)
+ in (prove_match thy out_ts)
+ THEN rest_tac
+ end;
+ val prems_tac = prove_prems in_ts moded_ps
+ in
+ rtac @{thm bindI} 1
+ THEN rtac @{thm singleI} 1
+ THEN prems_tac
+ end;
+
+fun select_sup 1 1 = []
+ | select_sup _ 1 = [rtac @{thm supI1}]
+ | select_sup n i = (rtac @{thm supI2})::(select_sup (n - 1) (i - 1));
+
+fun prove_one_direction thy clauses preds modes pred mode moded_clauses =
+ let
+ val T = the (AList.lookup (op =) preds pred)
+ val nargs = length (binder_types T) - nparams_of thy pred
+ val pred_case_rule = the_elim_of thy pred
+ in
+ REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"}))
+ THEN print_tac "before applying elim rule"
+ THEN etac (predfun_elim_of thy pred mode) 1
+ THEN etac pred_case_rule 1
+ THEN (EVERY (map
+ (fn i => EVERY' (select_sup (length moded_clauses) i) i)
+ (1 upto (length moded_clauses))))
+ THEN (EVERY (map2 (prove_clause thy nargs modes mode) clauses moded_clauses))
+ THEN print_tac "proved one direction"
+ end;
+
+(** Proof in the other direction **)
+
+fun prove_match2 thy out_ts = let
+ fun split_term_tac (Free _) = all_tac
+ | split_term_tac t =
+ if (is_constructor thy t) then let
+ val info = Datatype.the_info thy ((fst o dest_Type o fastype_of) t)
+ val num_of_constrs = length (#case_rewrites info)
+ (* special treatment of pairs -- because of fishing *)
+ val split_rules = case (fst o dest_Type o fastype_of) t of
+ "*" => [@{thm prod.split_asm}]
+ | _ => PureThy.get_thms thy (((fst o dest_Type o fastype_of) t) ^ ".split_asm")
+ val (_, ts) = strip_comb t
+ in
+ (Splitter.split_asm_tac split_rules 1)
+(* THEN (Simplifier.asm_full_simp_tac HOL_basic_ss 1)
+ THEN (DETERM (TRY (etac @{thm Pair_inject} 1))) *)
+ THEN (REPEAT_DETERM_N (num_of_constrs - 1) (etac @{thm botE} 1 ORELSE etac @{thm botE} 2))
+ THEN (EVERY (map split_term_tac ts))
+ end
+ else all_tac
+ in
+ split_term_tac (mk_tuple out_ts)
+ THEN (DETERM (TRY ((Splitter.split_asm_tac [@{thm "split_if_asm"}] 1) THEN (etac @{thm botE} 2))))
+ end
+
+(* VERY LARGE SIMILIRATIY to function prove_param
+-- join both functions
+*)
+(* TODO: remove function *)
+
+fun prove_param2 thy (NONE, t) = all_tac
+ | prove_param2 thy (m as SOME (Mode (mode, is, ms)), t) = let
+ val (f, args) = strip_comb (Envir.eta_contract t)
+ val (params, _) = chop (length ms) args
+ val f_tac = case f of
+ Const (name, T) => full_simp_tac (HOL_basic_ss addsimps
+ (@{thm eval_pred}::(predfun_definition_of thy name mode)
+ :: @{thm "Product_Type.split_conv"}::[])) 1
+ | Free _ => all_tac
+ | _ => error "prove_param2: illegal parameter term"
+ in
+ print_tac "before simplification in prove_args:"
+ THEN f_tac
+ THEN print_tac "after simplification in prove_args"
+ THEN (EVERY (map (prove_param2 thy) (ms ~~ params)))
+ end
+
+
+fun prove_expr2 thy (Mode (mode, is, ms), t) =
+ (case strip_comb t of
+ (Const (name, T), args) =>
+ etac @{thm bindE} 1
+ THEN (REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"})))
+ THEN print_tac "prove_expr2-before"
+ THEN (debug_tac (Syntax.string_of_term_global thy
+ (prop_of (predfun_elim_of thy name mode))))
+ THEN (etac (predfun_elim_of thy name mode) 1)
+ THEN print_tac "prove_expr2"
+ THEN (EVERY (map (prove_param2 thy) (ms ~~ args)))
+ THEN print_tac "finished prove_expr2"
+ | _ => etac @{thm bindE} 1)
+
+(* FIXME: what is this for? *)
+(* replace defined by has_mode thy pred *)
+(* TODO: rewrite function *)
+fun prove_sidecond2 thy modes t = let
+ fun preds_of t nameTs = case strip_comb t of
+ (f as Const (name, T), args) =>
+ if AList.defined (op =) modes name then (name, T) :: nameTs
+ else fold preds_of args nameTs
+ | _ => nameTs
+ val preds = preds_of t []
+ val defs = map
+ (fn (pred, T) => predfun_definition_of thy pred
+ ([], map (rpair NONE) (1 upto (length (binder_types T)))))
+ preds
+ in
+ (* only simplify the one assumption *)
+ full_simp_tac (HOL_basic_ss' addsimps @{thm eval_pred} :: defs) 1
+ (* need better control here! *)
+ THEN print_tac "after sidecond2 simplification"
+ end
+
+fun prove_clause2 thy modes pred (iss, is) (ts, ps) i =
+ let
+ val pred_intro_rule = nth (intros_of thy pred) (i - 1)
+ val (in_ts, clause_out_ts) = split_smode is ts;
+ fun prove_prems2 out_ts [] =
+ print_tac "before prove_match2 - last call:"
+ THEN prove_match2 thy out_ts
+ THEN print_tac "after prove_match2 - last call:"
+ THEN (etac @{thm singleE} 1)
+ THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+ THEN (asm_full_simp_tac HOL_basic_ss' 1)
+ THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
+ THEN (asm_full_simp_tac HOL_basic_ss' 1)
+ THEN SOLVED (print_tac "state before applying intro rule:"
+ THEN (rtac pred_intro_rule 1)
+ (* How to handle equality correctly? *)
+ THEN (print_tac "state before assumption matching")
+ THEN (REPEAT (atac 1 ORELSE
+ (CHANGED (asm_full_simp_tac (HOL_basic_ss' addsimps
+ [@{thm split_eta}, @{thm "split_beta"}, @{thm "fst_conv"}, @{thm "snd_conv"}, @{thm pair_collapse}]) 1)
+ THEN print_tac "state after simp_tac:"))))
+ | prove_prems2 out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
+ let
+ val rest_tac = (case p of
+ Prem (us, t) =>
+ let
+ val (_, out_ts''') = split_smode is us
+ val rec_tac = prove_prems2 out_ts''' ps
+ in
+ (prove_expr2 thy (mode, t)) THEN rec_tac
+ end
+ | Negprem (us, t) =>
+ let
+ val (_, out_ts''') = split_smode is us
+ val rec_tac = prove_prems2 out_ts''' ps
+ val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
+ val (_, params) = strip_comb t
+ in
+ print_tac "before neg prem 2"
+ THEN etac @{thm bindE} 1
+ THEN (if is_some name then
+ full_simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1
+ THEN etac @{thm not_predE} 1
+ THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
+ THEN (EVERY (map (prove_param2 thy) (param_modes ~~ params)))
+ else
+ etac @{thm not_predE'} 1)
+ THEN rec_tac
+ end
+ | Sidecond t =>
+ etac @{thm bindE} 1
+ THEN etac @{thm if_predE} 1
+ THEN prove_sidecond2 thy modes t
+ THEN prove_prems2 [] ps)
+ in print_tac "before prove_match2:"
+ THEN prove_match2 thy out_ts
+ THEN print_tac "after prove_match2:"
+ THEN rest_tac
+ end;
+ val prems_tac = prove_prems2 in_ts ps
+ in
+ print_tac "starting prove_clause2"
+ THEN etac @{thm bindE} 1
+ THEN (etac @{thm singleE'} 1)
+ THEN (TRY (etac @{thm Pair_inject} 1))
+ THEN print_tac "after singleE':"
+ THEN prems_tac
+ end;
+
+fun prove_other_direction thy modes pred mode moded_clauses =
+ let
+ fun prove_clause clause i =
+ (if i < length moded_clauses then etac @{thm supE} 1 else all_tac)
+ THEN (prove_clause2 thy modes pred mode clause i)
+ in
+ (DETERM (TRY (rtac @{thm unit.induct} 1)))
+ THEN (REPEAT_DETERM (CHANGED (rewtac @{thm split_paired_all})))
+ THEN (rtac (predfun_intro_of thy pred mode) 1)
+ THEN (REPEAT_DETERM (rtac @{thm refl} 2))
+ THEN (EVERY (map2 prove_clause moded_clauses (1 upto (length moded_clauses))))
+ end;
+
+(** proof procedure **)
+
+fun prove_pred thy clauses preds modes pred mode (moded_clauses, compiled_term) =
+ let
+ val ctxt = ProofContext.init thy
+ val clauses = the (AList.lookup (op =) clauses pred)
+ in
+ Goal.prove ctxt (Term.add_free_names compiled_term []) [] compiled_term
+ (if !do_proofs then
+ (fn _ =>
+ rtac @{thm pred_iffI} 1
+ THEN print_tac "after pred_iffI"
+ THEN prove_one_direction thy clauses preds modes pred mode moded_clauses
+ THEN print_tac "proved one direction"
+ THEN prove_other_direction thy modes pred mode moded_clauses
+ THEN print_tac "proved other direction")
+ else (fn _ => mycheat_tac thy 1))
+ end;
+
+(* composition of mode inference, definition, compilation and proof *)
+
+(** auxillary combinators for table of preds and modes **)
+
+fun map_preds_modes f preds_modes_table =
+ map (fn (pred, modes) =>
+ (pred, map (fn (mode, value) => (mode, f pred mode value)) modes)) preds_modes_table
+
+fun join_preds_modes table1 table2 =
+ map_preds_modes (fn pred => fn mode => fn value =>
+ (value, the (AList.lookup (op =) (the (AList.lookup (op =) table2 pred)) mode))) table1
+
+fun maps_modes preds_modes_table =
+ map (fn (pred, modes) =>
+ (pred, map (fn (mode, value) => value) modes)) preds_modes_table
+
+fun compile_preds compfuns mk_fun_of use_size thy all_vs param_vs preds moded_clauses =
+ map_preds_modes (fn pred => compile_pred compfuns mk_fun_of use_size thy all_vs param_vs pred
+ (the (AList.lookup (op =) preds pred))) moded_clauses
+
+fun prove thy clauses preds modes moded_clauses compiled_terms =
+ map_preds_modes (prove_pred thy clauses preds modes)
+ (join_preds_modes moded_clauses compiled_terms)
+
+fun prove_by_skip thy _ _ _ _ compiled_terms =
+ map_preds_modes (fn pred => fn mode => fn t => Drule.standard (SkipProof.make_thm thy t))
+ compiled_terms
+
+fun prepare_intrs thy prednames =
+ let
+ val intrs = maps (intros_of thy) prednames
+ |> map (Logic.unvarify o prop_of)
+ val nparams = nparams_of thy (hd prednames)
+ val extra_modes = all_modes_of thy |> filter_out (fn (name, _) => member (op =) prednames name)
+ val preds = distinct (op =) (map (dest_Const o fst o (strip_intro_concl nparams)) intrs)
+ val _ $ u = Logic.strip_imp_concl (hd intrs);
+ val params = List.take (snd (strip_comb u), nparams);
+ val param_vs = maps term_vs params
+ val all_vs = terms_vs intrs
+ fun dest_prem t =
+ (case strip_comb t of
+ (v as Free _, ts) => if v mem params then Prem (ts, v) else Sidecond t
+ | (c as Const (@{const_name Not}, _), [t]) => (case dest_prem t of
+ Prem (ts, t) => Negprem (ts, t)
+ | Negprem _ => error ("Double negation not allowed in premise: " ^ (Syntax.string_of_term_global thy (c $ t)))
+ | Sidecond t => Sidecond (c $ t))
+ | (c as Const (s, _), ts) =>
+ if is_registered thy s then
+ let val (ts1, ts2) = chop (nparams_of thy s) ts
+ in Prem (ts2, list_comb (c, ts1)) end
+ else Sidecond t
+ | _ => Sidecond t)
+ fun add_clause intr (clauses, arities) =
+ let
+ val _ $ t = Logic.strip_imp_concl intr;
+ val (Const (name, T), ts) = strip_comb t;
+ val (ts1, ts2) = chop nparams ts;
+ val prems = map (dest_prem o HOLogic.dest_Trueprop) (Logic.strip_imp_prems intr);
+ val (Ts, Us) = chop nparams (binder_types T)
+ in
+ (AList.update op = (name, these (AList.lookup op = clauses name) @
+ [(ts2, prems)]) clauses,
+ AList.update op = (name, (map (fn U => (case strip_type U of
+ (Rs as _ :: _, Type ("bool", [])) => SOME (length Rs)
+ | _ => NONE)) Ts,
+ length Us)) arities)
+ end;
+ val (clauses, arities) = fold add_clause intrs ([], []);
+ fun modes_of_arities arities =
+ (map (fn (s, (ks, k)) => (s, cprod (cprods (map
+ (fn NONE => [NONE]
+ | SOME k' => map SOME (map (map (rpair NONE)) (subsets 1 k'))) ks),
+ map (map (rpair NONE)) (subsets 1 k)))) arities)
+ fun modes_of_typ T =
+ let
+ val (Ts, Us) = chop nparams (binder_types T)
+ fun all_smodes_of_typs Ts = cprods_subset (
+ map_index (fn (i, U) =>
+ case HOLogic.strip_tupleT U of
+ [] => [(i + 1, NONE)]
+ | [U] => [(i + 1, NONE)]
+ | Us => map (pair (i + 1) o SOME) ((subsets 1 (length Us)) \\ [[], 1 upto (length Us)]))
+ Ts)
+ in
+ cprod (cprods (map (fn T => case strip_type T of
+ (Rs as _ :: _, Type ("bool", [])) => map SOME (all_smodes_of_typs Rs) | _ => [NONE]) Ts),
+ all_smodes_of_typs Us)
+ end
+ val all_modes = map (fn (s, T) => (s, modes_of_typ T)) preds
+ in (preds, nparams, all_vs, param_vs, extra_modes, clauses, all_modes) end;
+
+(** main function of predicate compiler **)
+
+fun add_equations_of steps prednames thy =
+ let
+ val _ = Output.tracing ("Starting predicate compiler for predicates " ^ commas prednames ^ "...")
+ val (preds, nparams, all_vs, param_vs, extra_modes, clauses, all_modes) =
+ prepare_intrs thy prednames
+ val _ = Output.tracing "Infering modes..."
+ val moded_clauses = #infer_modes steps thy extra_modes all_modes param_vs clauses
+ val modes = map (fn (p, mps) => (p, map fst mps)) moded_clauses
+ val _ = print_modes modes
+ val _ = print_moded_clauses thy moded_clauses
+ val _ = Output.tracing "Defining executable functions..."
+ val thy' = fold (#create_definitions steps preds) modes thy
+ |> Theory.checkpoint
+ val _ = Output.tracing "Compiling equations..."
+ val compiled_terms =
+ (#compile_preds steps) thy' all_vs param_vs preds moded_clauses
+ val _ = print_compiled_terms thy' compiled_terms
+ val _ = Output.tracing "Proving equations..."
+ val result_thms = #prove steps thy' clauses preds (extra_modes @ modes)
+ moded_clauses compiled_terms
+ val qname = #qname steps
+ (* val attrib = gn thy => Attrib.attribute_i thy Code.add_eqn_attrib *)
+ val attrib = fn thy => Attrib.attribute_i thy (Attrib.internal (K (Thm.declaration_attribute
+ (fn thm => Context.mapping (Code.add_eqn thm) I))))
+ val thy'' = fold (fn (name, result_thms) => fn thy => snd (PureThy.add_thmss
+ [((Binding.qualify true (Long_Name.base_name name) (Binding.name qname), result_thms),
+ [attrib thy ])] thy))
+ (maps_modes result_thms) thy'
+ |> Theory.checkpoint
+ in
+ thy''
+ end
+
+fun extend' value_of edges_of key (G, visited) =
+ let
+ val (G', v) = case try (Graph.get_node G) key of
+ SOME v => (G, v)
+ | NONE => (Graph.new_node (key, value_of key) G, value_of key)
+ val (G'', visited') = fold (extend' value_of edges_of) (edges_of (key, v) \\ visited)
+ (G', key :: visited)
+ in
+ (fold (Graph.add_edge o (pair key)) (edges_of (key, v)) G'', visited')
+ end;
+
+fun extend value_of edges_of key G = fst (extend' value_of edges_of key (G, []))
+
+fun gen_add_equations steps names thy =
+ let
+ val thy' = PredData.map (fold (extend (fetch_pred_data thy) (depending_preds_of thy)) names) thy
+ |> Theory.checkpoint;
+ fun strong_conn_of gr keys =
+ Graph.strong_conn (Graph.subgraph (member (op =) (Graph.all_succs gr keys)) gr)
+ val scc = strong_conn_of (PredData.get thy') names
+ val thy'' = fold_rev
+ (fn preds => fn thy =>
+ if #are_not_defined steps thy preds then add_equations_of steps preds thy else thy)
+ scc thy' |> Theory.checkpoint
+ in thy'' end
+
+(* different instantiantions of the predicate compiler *)
+
+val add_equations = gen_add_equations
+ {infer_modes = infer_modes,
+ create_definitions = create_definitions,
+ compile_preds = compile_preds PredicateCompFuns.compfuns mk_fun_of false,
+ prove = prove,
+ are_not_defined = (fn thy => forall (null o modes_of thy)),
+ qname = "equation"}
+
+val add_sizelim_equations = gen_add_equations
+ {infer_modes = infer_modes,
+ create_definitions = sizelim_create_definitions,
+ compile_preds = compile_preds PredicateCompFuns.compfuns mk_sizelim_fun_of true,
+ prove = prove_by_skip,
+ are_not_defined = (fn thy => fn preds => true), (* TODO *)
+ qname = "sizelim_equation"
+ }
+
+val add_quickcheck_equations = gen_add_equations
+ {infer_modes = infer_modes_with_generator,
+ create_definitions = rpred_create_definitions,
+ compile_preds = compile_preds RPredCompFuns.compfuns mk_generator_of true,
+ prove = prove_by_skip,
+ are_not_defined = (fn thy => fn preds => true), (* TODO *)
+ qname = "rpred_equation"}
+
+(** user interface **)
+
+(* generation of case rules from user-given introduction rules *)
+
+fun mk_casesrule ctxt nparams introrules =
+ let
+ val intros = map (Logic.unvarify o prop_of) introrules
+ val (pred, (params, args)) = strip_intro_concl nparams (hd intros)
+ val ([propname], ctxt1) = Variable.variant_fixes ["thesis"] ctxt
+ val prop = HOLogic.mk_Trueprop (Free (propname, HOLogic.boolT))
+ val (argnames, ctxt2) = Variable.variant_fixes
+ (map (fn i => "a" ^ string_of_int i) (1 upto (length args))) ctxt1
+ val argvs = map2 (curry Free) argnames (map fastype_of args)
+ fun mk_case intro =
+ let
+ val (_, (_, args)) = strip_intro_concl nparams intro
+ val prems = Logic.strip_imp_prems intro
+ val eqprems = map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (argvs ~~ args)
+ val frees = (fold o fold_aterms)
+ (fn t as Free _ =>
+ if member (op aconv) params t then I else insert (op aconv) t
+ | _ => I) (args @ prems) []
+ in fold Logic.all frees (Logic.list_implies (eqprems @ prems, prop)) end
+ val assm = HOLogic.mk_Trueprop (list_comb (pred, params @ argvs))
+ val cases = map mk_case intros
+ in Logic.list_implies (assm :: cases, prop) end;
+
+(* code_pred_intro attribute *)
+
+fun attrib f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
+
+val code_pred_intros_attrib = attrib add_intro;
+
+local
+
+(* TODO: make TheoryDataFun to GenericDataFun & remove duplication of local theory and theory *)
+fun generic_code_pred prep_const raw_const lthy =
+ let
+ val thy = ProofContext.theory_of lthy
+ val const = prep_const thy raw_const
+ val lthy' = LocalTheory.theory (PredData.map
+ (extend (fetch_pred_data thy) (depending_preds_of thy) const)) lthy
+ |> LocalTheory.checkpoint
+ val thy' = ProofContext.theory_of lthy'
+ val preds = Graph.all_preds (PredData.get thy') [const] |> filter_out (has_elim thy')
+ fun mk_cases const =
+ let
+ val nparams = nparams_of thy' const
+ val intros = intros_of thy' const
+ in mk_casesrule lthy' nparams intros end
+ val cases_rules = map mk_cases preds
+ val cases =
+ map (fn case_rule => RuleCases.Case {fixes = [],
+ assumes = [("", Logic.strip_imp_prems case_rule)],
+ binds = [], cases = []}) cases_rules
+ val case_env = map2 (fn p => fn c => (Long_Name.base_name p, SOME c)) preds cases
+ val lthy'' = lthy'
+ |> fold Variable.auto_fixes cases_rules
+ |> ProofContext.add_cases true case_env
+ fun after_qed thms goal_ctxt =
+ let
+ val global_thms = ProofContext.export goal_ctxt
+ (ProofContext.init (ProofContext.theory_of goal_ctxt)) (map the_single thms)
+ in
+ goal_ctxt |> LocalTheory.theory (fold set_elim global_thms #> add_equations [const])
+ end
+ in
+ Proof.theorem_i NONE after_qed (map (single o (rpair [])) cases_rules) lthy''
+ end;
+
+structure P = OuterParse
+
+in
+
+val code_pred = generic_code_pred (K I);
+val code_pred_cmd = generic_code_pred Code.read_const
+
+val setup = PredData.put (Graph.empty) #>
+ Attrib.setup @{binding code_pred_intros} (Scan.succeed (attrib add_intro))
+ "adding alternative introduction rules for code generation of inductive predicates"
+(* Attrib.setup @{binding code_ind_cases} (Scan.succeed add_elim_attrib)
+ "adding alternative elimination rules for code generation of inductive predicates";
+ *)
+ (*FIXME name discrepancy in attribs and ML code*)
+ (*FIXME intros should be better named intro*)
+ (*FIXME why distinguished attribute for cases?*)
+
+val _ = OuterSyntax.local_theory_to_proof "code_pred"
+ "prove equations for predicate specified by intro/elim rules"
+ OuterKeyword.thy_goal (P.term_group >> code_pred_cmd)
+
+end
+
+(*FIXME
+- Naming of auxiliary rules necessary?
+- add default code equations P x y z = P_i_i_i x y z
+*)
+
+(* transformation for code generation *)
+
+val eval_ref = ref (NONE : (unit -> term Predicate.pred) option);
+
+(*FIXME turn this into an LCF-guarded preprocessor for comprehensions*)
+fun analyze_compr thy t_compr =
+ let
+ val split = case t_compr of (Const (@{const_name Collect}, _) $ t) => t
+ | _ => error ("Not a set comprehension: " ^ Syntax.string_of_term_global thy t_compr);
+ val (body, Ts, fp) = HOLogic.strip_psplits split;
+ val (pred as Const (name, T), all_args) = strip_comb body;
+ val (params, args) = chop (nparams_of thy name) all_args;
+ val user_mode = map_filter I (map_index
+ (fn (i, t) => case t of Bound j => if j < length Ts then NONE
+ else SOME (i+1) | _ => SOME (i+1)) args); (*FIXME dangling bounds should not occur*)
+ val user_mode' = map (rpair NONE) user_mode
+ val modes = filter (fn Mode (_, is, _) => is = user_mode')
+ (modes_of_term (all_modes_of thy) (list_comb (pred, params)));
+ val m = case modes
+ of [] => error ("No mode possible for comprehension "
+ ^ Syntax.string_of_term_global thy t_compr)
+ | [m] => m
+ | m :: _ :: _ => (warning ("Multiple modes possible for comprehension "
+ ^ Syntax.string_of_term_global thy t_compr); m);
+ val (inargs, outargs) = split_smode user_mode' args;
+ val t_pred = list_comb (compile_expr NONE thy (m, list_comb (pred, params)), inargs);
+ val t_eval = if null outargs then t_pred else let
+ val outargs_bounds = map (fn Bound i => i) outargs;
+ val outargsTs = map (nth Ts) outargs_bounds;
+ val T_pred = HOLogic.mk_tupleT outargsTs;
+ val T_compr = HOLogic.mk_ptupleT fp Ts;
+ val arrange_bounds = map_index I outargs_bounds
+ |> sort (prod_ord (K EQUAL) int_ord)
+ |> map fst;
+ val arrange = funpow (length outargs_bounds - 1) HOLogic.mk_split
+ (Term.list_abs (map (pair "") outargsTs,
+ HOLogic.mk_ptuple fp T_compr (map Bound arrange_bounds)))
+ in mk_map PredicateCompFuns.compfuns T_pred T_compr arrange t_pred end
+ in t_eval end;
+
+fun eval thy t_compr =
+ let
+ val t = analyze_compr thy t_compr;
+ val T = dest_predT PredicateCompFuns.compfuns (fastype_of t);
+ val t' = mk_map PredicateCompFuns.compfuns T HOLogic.termT (HOLogic.term_of_const T) t;
+ in (T, Code_ML.eval NONE ("Predicate_Compile.eval_ref", eval_ref) Predicate.map thy t' []) end;
+
+fun values ctxt k t_compr =
+ let
+ val thy = ProofContext.theory_of ctxt;
+ val (T, t) = eval thy t_compr;
+ val setT = HOLogic.mk_setT T;
+ val (ts, _) = Predicate.yieldn k t;
+ val elemsT = HOLogic.mk_set T ts;
+ in if k = ~1 orelse length ts < k then elemsT
+ else Const (@{const_name Set.union}, setT --> setT --> setT) $ elemsT $ t_compr
+ end;
+
+fun values_cmd modes k raw_t state =
+ let
+ val ctxt = Toplevel.context_of state;
+ val t = Syntax.read_term ctxt raw_t;
+ val t' = values ctxt k t;
+ val ty' = Term.type_of t';
+ val ctxt' = Variable.auto_fixes t' ctxt;
+ val p = PrintMode.with_modes modes (fn () =>
+ Pretty.block [Pretty.quote (Syntax.pretty_term ctxt' t'), Pretty.fbrk,
+ Pretty.str "::", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt' ty')]) ();
+ in Pretty.writeln p end;
+
+local structure P = OuterParse in
+
+val opt_modes = Scan.optional (P.$$$ "(" |-- P.!!! (Scan.repeat1 P.xname --| P.$$$ ")")) [];
+
+val _ = OuterSyntax.improper_command "values" "enumerate and print comprehensions" OuterKeyword.diag
+ (opt_modes -- Scan.optional P.nat ~1 -- P.term
+ >> (fn ((modes, k), t) => Toplevel.no_timing o Toplevel.keep
+ (values_cmd modes k t)));
+
+end;
+
+end;
--- a/src/HOL/ex/Predicate_Compile.thy Wed Sep 23 16:20:12 2009 +0200
+++ b/src/HOL/ex/Predicate_Compile.thy Wed Sep 23 16:20:12 2009 +0200
@@ -1,6 +1,6 @@
theory Predicate_Compile
imports Complex_Main RPred
-uses "predicate_compile.ML"
+uses "../Tools/Predicate_Compile/predicate_compile_core.ML"
begin
setup {* Predicate_Compile.setup *}
--- a/src/HOL/ex/predicate_compile.ML Wed Sep 23 16:20:12 2009 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,2399 +0,0 @@
-(* Author: Lukas Bulwahn, TU Muenchen
-
-(Prototype of) A compiler from predicates specified by intro/elim rules
-to equations.
-*)
-
-signature PREDICATE_COMPILE =
-sig
- type smode = (int * int list option) list
- type mode = smode option list * smode
- datatype tmode = Mode of mode * smode * tmode option list;
- (*val add_equations_of: bool -> string list -> theory -> theory *)
- val register_predicate : (thm list * thm * int) -> theory -> theory
- val is_registered : theory -> string -> bool
- (* val fetch_pred_data : theory -> string -> (thm list * thm * int) *)
- val predfun_intro_of: theory -> string -> mode -> thm
- val predfun_elim_of: theory -> string -> mode -> thm
- val strip_intro_concl: int -> term -> term * (term list * term list)
- val predfun_name_of: theory -> string -> mode -> string
- val all_preds_of : theory -> string list
- val modes_of: theory -> string -> mode list
- val string_of_mode : mode -> string
- val intros_of: theory -> string -> thm list
- val nparams_of: theory -> string -> int
- val add_intro: thm -> theory -> theory
- val set_elim: thm -> theory -> theory
- val setup: theory -> theory
- val code_pred: string -> Proof.context -> Proof.state
- val code_pred_cmd: string -> Proof.context -> Proof.state
- val print_stored_rules: theory -> unit
- val print_all_modes: theory -> unit
- val do_proofs: bool ref
- val mk_casesrule : Proof.context -> int -> thm list -> term
- val analyze_compr: theory -> term -> term
- val eval_ref: (unit -> term Predicate.pred) option ref
- val add_equations : string list -> theory -> theory
- val code_pred_intros_attrib : attribute
- (* used by Quickcheck_Generator *)
- (*val funT_of : mode -> typ -> typ
- val mk_if_pred : term -> term
- val mk_Eval : term * term -> term*)
- val mk_tupleT : typ list -> typ
-(* val mk_predT : typ -> typ *)
- (* temporary for testing of the compilation *)
- datatype indprem = Prem of term list * term | Negprem of term list * term | Sidecond of term |
- GeneratorPrem of term list * term | Generator of (string * typ);
- (* val prepare_intrs: theory -> string list ->
- (string * typ) list * int * string list * string list * (string * mode list) list *
- (string * (term list * indprem list) list) list * (string * (int option list * int)) list*)
- datatype compilation_funs = CompilationFuns of {
- mk_predT : typ -> typ,
- dest_predT : typ -> typ,
- mk_bot : typ -> term,
- mk_single : term -> term,
- mk_bind : term * term -> term,
- mk_sup : term * term -> term,
- mk_if : term -> term,
- mk_not : term -> term,
- mk_map : typ -> typ -> term -> term -> term,
- lift_pred : term -> term
- };
- type moded_clause = term list * (indprem * tmode) list
- type 'a pred_mode_table = (string * (mode * 'a) list) list
- val infer_modes : theory -> (string * mode list) list
- -> (string * mode list) list
- -> string list
- -> (string * (term list * indprem list) list) list
- -> (moded_clause list) pred_mode_table
- val infer_modes_with_generator : theory -> (string * mode list) list
- -> (string * mode list) list
- -> string list
- -> (string * (term list * indprem list) list) list
- -> (moded_clause list) pred_mode_table
- (*val compile_preds : theory -> compilation_funs -> string list -> string list
- -> (string * typ) list -> (moded_clause list) pred_mode_table -> term pred_mode_table
- val rpred_create_definitions :(string * typ) list -> string * mode list
- -> theory -> theory
- val split_smode : int list -> term list -> (term list * term list) *)
- val print_moded_clauses :
- theory -> (moded_clause list) pred_mode_table -> unit
- val print_compiled_terms : theory -> term pred_mode_table -> unit
- (*val rpred_prove_preds : theory -> term pred_mode_table -> thm pred_mode_table*)
- val rpred_compfuns : compilation_funs
- val dest_funT : typ -> typ * typ
- (* val depending_preds_of : theory -> thm list -> string list *)
- val add_quickcheck_equations : string list -> theory -> theory
- val add_sizelim_equations : string list -> theory -> theory
- val is_inductive_predicate : theory -> string -> bool
- val terms_vs : term list -> string list
- val subsets : int -> int -> int list list
- val check_mode_clause : bool -> theory -> string list ->
- (string * mode list) list -> (string * mode list) list -> mode -> (term list * indprem list)
- -> (term list * (indprem * tmode) list) option
- val string_of_moded_prem : theory -> (indprem * tmode) -> string
- val all_modes_of : theory -> (string * mode list) list
- val all_generator_modes_of : theory -> (string * mode list) list
- val compile_clause : compilation_funs -> term option -> (term list -> term) ->
- theory -> string list -> string list -> mode -> term -> moded_clause -> term
- val preprocess_intro : theory -> thm -> thm
- val is_constrt : theory -> term -> bool
- val is_predT : typ -> bool
- val guess_nparams : typ -> int
- val cprods_subset : 'a list list -> 'a list list
-end;
-
-structure Predicate_Compile : PREDICATE_COMPILE =
-struct
-
-(** auxiliary **)
-
-(* debug stuff *)
-
-fun tracing s = (if ! Toplevel.debug then Output.tracing s else ());
-
-fun print_tac s = Seq.single; (*Tactical.print_tac s;*) (* (if ! Toplevel.debug then Tactical.print_tac s else Seq.single); *)
-fun debug_tac msg = Seq.single; (* (fn st => (Output.tracing msg; Seq.single st)); *)
-
-val do_proofs = ref true;
-
-fun mycheat_tac thy i st =
- (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) i) st
-
-fun remove_last_goal thy st =
- (Tactic.rtac (SkipProof.make_thm thy (Var (("A", 0), propT))) (nprems_of st)) st
-
-(* reference to preprocessing of InductiveSet package *)
-
-val ind_set_codegen_preproc = Inductive_Set.codegen_preproc;
-
-(** fundamentals **)
-
-(* syntactic operations *)
-
-fun mk_eq (x, xs) =
- let fun mk_eqs _ [] = []
- | mk_eqs a (b::cs) =
- HOLogic.mk_eq (Free (a, fastype_of b), b) :: mk_eqs a cs
- in mk_eqs x xs end;
-
-fun mk_tupleT [] = HOLogic.unitT
- | mk_tupleT Ts = foldr1 HOLogic.mk_prodT Ts;
-
-fun dest_tupleT (Type (@{type_name Product_Type.unit}, [])) = []
- | dest_tupleT (Type (@{type_name "*"}, [T1, T2])) = T1 :: (dest_tupleT T2)
- | dest_tupleT t = [t]
-
-fun mk_tuple [] = HOLogic.unit
- | mk_tuple ts = foldr1 HOLogic.mk_prod ts;
-
-fun dest_tuple (Const (@{const_name Product_Type.Unity}, _)) = []
- | dest_tuple (Const (@{const_name Pair}, _) $ t1 $ t2) = t1 :: (dest_tuple t2)
- | dest_tuple t = [t]
-
-fun mk_scomp (t, u) =
- let
- val T = fastype_of t
- val U = fastype_of u
- val [A] = binder_types T
- val D = body_type U
- in
- Const (@{const_name "scomp"}, T --> U --> A --> D) $ t $ u
- end;
-
-fun dest_funT (Type ("fun",[S, T])) = (S, T)
- | dest_funT T = raise TYPE ("dest_funT", [T], [])
-
-fun mk_fun_comp (t, u) =
- let
- val (_, B) = dest_funT (fastype_of t)
- val (C, A) = dest_funT (fastype_of u)
- in
- Const(@{const_name "Fun.comp"}, (A --> B) --> (C --> A) --> C --> B) $ t $ u
- end;
-
-fun dest_randomT (Type ("fun", [@{typ Random.seed},
- Type ("*", [Type ("*", [T, @{typ "unit => Code_Eval.term"}]) ,@{typ Random.seed}])])) = T
- | dest_randomT T = raise TYPE ("dest_randomT", [T], [])
-
-(* destruction of intro rules *)
-
-(* FIXME: look for other place where this functionality was used before *)
-fun strip_intro_concl nparams intro = let
- val _ $ u = Logic.strip_imp_concl intro
- val (pred, all_args) = strip_comb u
- val (params, args) = chop nparams all_args
-in (pred, (params, args)) end
-
-(** data structures **)
-
-type smode = (int * int list option) list;
-type mode = smode option list * smode;
-datatype tmode = Mode of mode * smode * tmode option list;
-
-fun gen_split_smode (mk_tuple, strip_tuple) smode ts =
- let
- fun split_tuple' _ _ [] = ([], [])
- | split_tuple' is i (t::ts) =
- (if i mem is then apfst else apsnd) (cons t)
- (split_tuple' is (i+1) ts)
- fun split_tuple is t = split_tuple' is 1 (strip_tuple t)
- fun split_smode' _ _ [] = ([], [])
- | split_smode' smode i (t::ts) =
- (if i mem (map fst smode) then
- case (the (AList.lookup (op =) smode i)) of
- NONE => apfst (cons t)
- | SOME is =>
- let
- val (ts1, ts2) = split_tuple is t
- fun cons_tuple ts = if null ts then I else cons (mk_tuple ts)
- in (apfst (cons_tuple ts1)) o (apsnd (cons_tuple ts2)) end
- else apsnd (cons t))
- (split_smode' smode (i+1) ts)
- in split_smode' smode 1 ts end
-
-val split_smode = gen_split_smode (HOLogic.mk_tuple, HOLogic.strip_tuple)
-val split_smodeT = gen_split_smode (HOLogic.mk_tupleT, HOLogic.strip_tupleT)
-
-fun gen_split_mode split_smode (iss, is) ts =
- let
- val (t1, t2) = chop (length iss) ts
- in (t1, split_smode is t2) end
-
-val split_mode = gen_split_mode split_smode
-val split_modeT = gen_split_mode split_smodeT
-
-fun string_of_smode js =
- commas (map
- (fn (i, is) =>
- string_of_int i ^ (case is of NONE => ""
- | SOME is => "p" ^ enclose "[" "]" (commas (map string_of_int is)))) js)
-
-fun string_of_mode (iss, is) = space_implode " -> " (map
- (fn NONE => "X"
- | SOME js => enclose "[" "]" (string_of_smode js))
- (iss @ [SOME is]));
-
-fun string_of_tmode (Mode (predmode, termmode, param_modes)) =
- "predmode: " ^ (string_of_mode predmode) ^
- (if null param_modes then "" else
- "; " ^ "params: " ^ commas (map (the_default "NONE" o Option.map string_of_tmode) param_modes))
-
-datatype indprem = Prem of term list * term | Negprem of term list * term | Sidecond of term |
- GeneratorPrem of term list * term | Generator of (string * typ);
-
-type moded_clause = term list * (indprem * tmode) list
-type 'a pred_mode_table = (string * (mode * 'a) list) list
-
-datatype predfun_data = PredfunData of {
- name : string,
- definition : thm,
- intro : thm,
- elim : thm
-};
-
-fun rep_predfun_data (PredfunData data) = data;
-fun mk_predfun_data (name, definition, intro, elim) =
- PredfunData {name = name, definition = definition, intro = intro, elim = elim}
-
-datatype function_data = FunctionData of {
- name : string,
- equation : thm option (* is not used at all? *)
-};
-
-fun rep_function_data (FunctionData data) = data;
-fun mk_function_data (name, equation) =
- FunctionData {name = name, equation = equation}
-
-datatype pred_data = PredData of {
- intros : thm list,
- elim : thm option,
- nparams : int,
- functions : (mode * predfun_data) list,
- generators : (mode * function_data) list,
- sizelim_functions : (mode * function_data) list
-};
-
-fun rep_pred_data (PredData data) = data;
-fun mk_pred_data ((intros, elim, nparams), (functions, generators, sizelim_functions)) =
- PredData {intros = intros, elim = elim, nparams = nparams,
- functions = functions, generators = generators, sizelim_functions = sizelim_functions}
-fun map_pred_data f (PredData {intros, elim, nparams, functions, generators, sizelim_functions}) =
- mk_pred_data (f ((intros, elim, nparams), (functions, generators, sizelim_functions)))
-
-fun eq_option eq (NONE, NONE) = true
- | eq_option eq (SOME x, SOME y) = eq (x, y)
- | eq_option eq _ = false
-
-fun eq_pred_data (PredData d1, PredData d2) =
- eq_list (Thm.eq_thm) (#intros d1, #intros d2) andalso
- eq_option (Thm.eq_thm) (#elim d1, #elim d2) andalso
- #nparams d1 = #nparams d2
-
-structure PredData = TheoryDataFun
-(
- type T = pred_data Graph.T;
- val empty = Graph.empty;
- val copy = I;
- val extend = I;
- fun merge _ = Graph.merge eq_pred_data;
-);
-
-(* queries *)
-
-fun lookup_pred_data thy name =
- Option.map rep_pred_data (try (Graph.get_node (PredData.get thy)) name)
-
-fun the_pred_data thy name = case lookup_pred_data thy name
- of NONE => error ("No such predicate " ^ quote name)
- | SOME data => data;
-
-val is_registered = is_some oo lookup_pred_data
-
-val all_preds_of = Graph.keys o PredData.get
-
-fun intros_of thy = map (Thm.transfer thy) o #intros o the_pred_data thy
-
-fun the_elim_of thy name = case #elim (the_pred_data thy name)
- of NONE => error ("No elimination rule for predicate " ^ quote name)
- | SOME thm => Thm.transfer thy thm
-
-val has_elim = is_some o #elim oo the_pred_data;
-
-val nparams_of = #nparams oo the_pred_data
-
-val modes_of = (map fst) o #functions oo the_pred_data
-
-fun all_modes_of thy = map (fn name => (name, modes_of thy name)) (all_preds_of thy)
-
-val is_compiled = not o null o #functions oo the_pred_data
-
-fun lookup_predfun_data thy name mode =
- Option.map rep_predfun_data (AList.lookup (op =)
- (#functions (the_pred_data thy name)) mode)
-
-fun the_predfun_data thy name mode = case lookup_predfun_data thy name mode
- of NONE => error ("No function defined for mode " ^ string_of_mode mode ^ " of predicate " ^ name)
- | SOME data => data;
-
-val predfun_name_of = #name ooo the_predfun_data
-
-val predfun_definition_of = #definition ooo the_predfun_data
-
-val predfun_intro_of = #intro ooo the_predfun_data
-
-val predfun_elim_of = #elim ooo the_predfun_data
-
-fun lookup_generator_data thy name mode =
- Option.map rep_function_data (AList.lookup (op =)
- (#generators (the_pred_data thy name)) mode)
-
-fun the_generator_data thy name mode = case lookup_generator_data thy name mode
- of NONE => error ("No generator defined for mode " ^ string_of_mode mode ^ " of predicate " ^ name)
- | SOME data => data
-
-val generator_name_of = #name ooo the_generator_data
-
-val generator_modes_of = (map fst) o #generators oo the_pred_data
-
-fun all_generator_modes_of thy =
- map (fn name => (name, generator_modes_of thy name)) (all_preds_of thy)
-
-fun lookup_sizelim_function_data thy name mode =
- Option.map rep_function_data (AList.lookup (op =)
- (#sizelim_functions (the_pred_data thy name)) mode)
-
-fun the_sizelim_function_data thy name mode = case lookup_sizelim_function_data thy name mode
- of NONE => error ("No size-limited function defined for mode " ^ string_of_mode mode
- ^ " of predicate " ^ name)
- | SOME data => data
-
-val sizelim_function_name_of = #name ooo the_sizelim_function_data
-
-(*val generator_modes_of = (map fst) o #generators oo the_pred_data*)
-
-(* diagnostic display functions *)
-
-fun print_modes modes = Output.tracing ("Inferred modes:\n" ^
- cat_lines (map (fn (s, ms) => s ^ ": " ^ commas (map
- string_of_mode ms)) modes));
-
-fun print_pred_mode_table string_of_entry thy pred_mode_table =
- let
- fun print_mode pred (mode, entry) = "mode : " ^ (string_of_mode mode)
- ^ (string_of_entry pred mode entry)
- fun print_pred (pred, modes) =
- "predicate " ^ pred ^ ": " ^ cat_lines (map (print_mode pred) modes)
- val _ = Output.tracing (cat_lines (map print_pred pred_mode_table))
- in () end;
-
-fun string_of_moded_prem thy (Prem (ts, p), tmode) =
- (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
- "(" ^ (string_of_tmode tmode) ^ ")"
- | string_of_moded_prem thy (GeneratorPrem (ts, p), Mode (predmode, is, _)) =
- (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
- "(generator_mode: " ^ (string_of_mode predmode) ^ ")"
- | string_of_moded_prem thy (Generator (v, T), _) =
- "Generator for " ^ v ^ " of Type " ^ (Syntax.string_of_typ_global thy T)
- | string_of_moded_prem thy (Negprem (ts, p), Mode (_, is, _)) =
- (Syntax.string_of_term_global thy (list_comb (p, ts))) ^
- "(negative mode: " ^ string_of_smode is ^ ")"
- | string_of_moded_prem thy (Sidecond t, Mode (_, is, _)) =
- (Syntax.string_of_term_global thy t) ^
- "(sidecond mode: " ^ string_of_smode is ^ ")"
- | string_of_moded_prem _ _ = error "string_of_moded_prem: unimplemented"
-
-fun print_moded_clauses thy =
- let
- fun string_of_clause pred mode clauses =
- cat_lines (map (fn (ts, prems) => (space_implode " --> "
- (map (string_of_moded_prem thy) prems)) ^ " --> " ^ pred ^ " "
- ^ (space_implode " " (map (Syntax.string_of_term_global thy) ts))) clauses)
- in print_pred_mode_table string_of_clause thy end;
-
-fun print_compiled_terms thy =
- print_pred_mode_table (fn _ => fn _ => Syntax.string_of_term_global thy) thy
-
-fun print_stored_rules thy =
- let
- val preds = (Graph.keys o PredData.get) thy
- fun print pred () = let
- val _ = writeln ("predicate: " ^ pred)
- val _ = writeln ("number of parameters: " ^ string_of_int (nparams_of thy pred))
- val _ = writeln ("introrules: ")
- val _ = fold (fn thm => fn u => writeln (Display.string_of_thm_global thy thm))
- (rev (intros_of thy pred)) ()
- in
- if (has_elim thy pred) then
- writeln ("elimrule: " ^ Display.string_of_thm_global thy (the_elim_of thy pred))
- else
- writeln ("no elimrule defined")
- end
- in
- fold print preds ()
- end;
-
-fun print_all_modes thy =
- let
- val _ = writeln ("Inferred modes:")
- fun print (pred, modes) u =
- let
- val _ = writeln ("predicate: " ^ pred)
- val _ = writeln ("modes: " ^ (commas (map string_of_mode modes)))
- in u end
- in
- fold print (all_modes_of thy) ()
- end
-
-(** preprocessing rules **)
-
-fun imp_prems_conv cv ct =
- case Thm.term_of ct of
- Const ("==>", _) $ _ $ _ => Conv.combination_conv (Conv.arg_conv cv) (imp_prems_conv cv) ct
- | _ => Conv.all_conv ct
-
-fun Trueprop_conv cv ct =
- case Thm.term_of ct of
- Const ("Trueprop", _) $ _ => Conv.arg_conv cv ct
- | _ => error "Trueprop_conv"
-
-fun preprocess_intro thy rule =
- Conv.fconv_rule
- (imp_prems_conv
- (Trueprop_conv (Conv.try_conv (Conv.rewr_conv (Thm.symmetric @{thm Predicate.eq_is_eq})))))
- (Thm.transfer thy rule)
-
-fun preprocess_elim thy nparams elimrule =
- let
- val _ = Output.tracing ("Preprocessing elimination rule "
- ^ (Display.string_of_thm_global thy elimrule))
- fun replace_eqs (Const ("Trueprop", _) $ (Const ("op =", T) $ lhs $ rhs)) =
- HOLogic.mk_Trueprop (Const (@{const_name Predicate.eq}, T) $ lhs $ rhs)
- | replace_eqs t = t
- val prems = Thm.prems_of elimrule
- val nargs = length (snd (strip_comb (HOLogic.dest_Trueprop (hd prems)))) - nparams
- fun preprocess_case t =
- let
- val params = Logic.strip_params t
- val (assums1, assums2) = chop nargs (Logic.strip_assums_hyp t)
- val assums_hyp' = assums1 @ (map replace_eqs assums2)
- in
- list_all (params, Logic.list_implies (assums_hyp', Logic.strip_assums_concl t))
- end
- val cases' = map preprocess_case (tl prems)
- val elimrule' = Logic.list_implies ((hd prems) :: cases', Thm.concl_of elimrule)
- (*
- (*val _ = Output.tracing ("elimrule': "^ (Syntax.string_of_term_global thy elimrule'))*)
- val bigeq = (Thm.symmetric (Conv.implies_concl_conv (MetaSimplifier.rewrite true [@{thm Predicate.eq_is_eq}])
- (cterm_of thy elimrule')))
- val _ = Output.tracing ("bigeq:" ^ (Display.string_of_thm_global thy bigeq))
- val res =
- Thm.equal_elim bigeq
-
- elimrule
- *)
- val t = (fn {...} => mycheat_tac thy 1)
- val eq = Goal.prove (ProofContext.init thy) [] [] (Logic.mk_equals ((Thm.prop_of elimrule), elimrule')) t
- val _ = Output.tracing "Preprocessed elimination rule"
- in
- Thm.equal_elim eq elimrule
- end;
-
-(* special case: predicate with no introduction rule *)
-fun noclause thy predname elim = let
- val T = (Logic.unvarifyT o Sign.the_const_type thy) predname
- val Ts = binder_types T
- val names = Name.variant_list []
- (map (fn i => "x" ^ (string_of_int i)) (1 upto (length Ts)))
- val vs = map2 (curry Free) names Ts
- val clausehd = HOLogic.mk_Trueprop (list_comb (Const (predname, T), vs))
- val intro_t = Logic.mk_implies (@{prop False}, clausehd)
- val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT))
- val elim_t = Logic.list_implies ([clausehd, Logic.mk_implies (@{prop False}, P)], P)
- val intro = Goal.prove (ProofContext.init thy) names [] intro_t
- (fn {...} => etac @{thm FalseE} 1)
- val elim = Goal.prove (ProofContext.init thy) ("P" :: names) [] elim_t
- (fn {...} => etac elim 1)
-in
- ([intro], elim)
-end
-
-fun fetch_pred_data thy name =
- case try (Inductive.the_inductive (ProofContext.init thy)) name of
- SOME (info as (_, result)) =>
- let
- fun is_intro_of intro =
- let
- val (const, _) = strip_comb (HOLogic.dest_Trueprop (concl_of intro))
- in (fst (dest_Const const) = name) end;
- val intros = ind_set_codegen_preproc thy ((map (preprocess_intro thy))
- (filter is_intro_of (#intrs result)))
- val pre_elim = nth (#elims result) (find_index (fn s => s = name) (#names (fst info)))
- val nparams = length (Inductive.params_of (#raw_induct result))
- val elim = singleton (ind_set_codegen_preproc thy) (preprocess_elim thy nparams pre_elim)
- val (intros, elim) = if null intros then noclause thy name elim else (intros, elim)
- in
- mk_pred_data ((intros, SOME elim, nparams), ([], [], []))
- end
- | NONE => error ("No such predicate: " ^ quote name)
-
-(* updaters *)
-
-fun apfst3 f (x, y, z) = (f x, y, z)
-fun apsnd3 f (x, y, z) = (x, f y, z)
-fun aptrd3 f (x, y, z) = (x, y, f z)
-
-fun add_predfun name mode data =
- let
- val add = (apsnd o apfst3 o cons) (mode, mk_predfun_data data)
- in PredData.map (Graph.map_node name (map_pred_data add)) end
-
-fun is_inductive_predicate thy name =
- is_some (try (Inductive.the_inductive (ProofContext.init thy)) name)
-
-fun depending_preds_of thy (key, value) =
- let
- val intros = (#intros o rep_pred_data) value
- in
- fold Term.add_const_names (map Thm.prop_of intros) []
- |> filter (fn c => (not (c = key)) andalso (is_inductive_predicate thy c orelse is_registered thy c))
- end;
-
-
-(* code dependency graph *)
-(*
-fun dependencies_of thy name =
- let
- val (intros, elim, nparams) = fetch_pred_data thy name
- val data = mk_pred_data ((intros, SOME elim, nparams), ([], [], []))
- val keys = depending_preds_of thy intros
- in
- (data, keys)
- end;
-*)
-(* guessing number of parameters *)
-fun find_indexes pred xs =
- let
- fun find is n [] = is
- | find is n (x :: xs) = find (if pred x then (n :: is) else is) (n + 1) xs;
- in rev (find [] 0 xs) end;
-
-fun is_predT (T as Type("fun", [_, _])) = (snd (strip_type T) = HOLogic.boolT)
- | is_predT _ = false
-
-fun guess_nparams T =
- let
- val argTs = binder_types T
- val nparams = fold (curry Int.max)
- (map (fn x => x + 1) (find_indexes is_predT argTs)) 0
- in nparams end;
-
-fun add_intro thm thy = let
- val (name, T) = dest_Const (fst (strip_intro_concl 0 (prop_of thm)))
- fun cons_intro gr =
- case try (Graph.get_node gr) name of
- SOME pred_data => Graph.map_node name (map_pred_data
- (apfst (fn (intro, elim, nparams) => (thm::intro, elim, nparams)))) gr
- | NONE =>
- let
- val nparams = the_default (guess_nparams T) (try (#nparams o rep_pred_data o (fetch_pred_data thy)) name)
- in Graph.new_node (name, mk_pred_data (([thm], NONE, nparams), ([], [], []))) gr end;
- in PredData.map cons_intro thy end
-
-fun set_elim thm = let
- val (name, _) = dest_Const (fst
- (strip_comb (HOLogic.dest_Trueprop (hd (prems_of thm)))))
- fun set (intros, _, nparams) = (intros, SOME thm, nparams)
- in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end
-
-fun set_nparams name nparams = let
- fun set (intros, elim, _ ) = (intros, elim, nparams)
- in PredData.map (Graph.map_node name (map_pred_data (apfst set))) end
-
-fun register_predicate (pre_intros, pre_elim, nparams) thy = let
- val (name, _) = dest_Const (fst (strip_intro_concl nparams (prop_of (hd pre_intros))))
- (* preprocessing *)
- val intros = ind_set_codegen_preproc thy (map (preprocess_intro thy) pre_intros)
- val elim = singleton (ind_set_codegen_preproc thy) (preprocess_elim thy nparams pre_elim)
- in
- PredData.map
- (Graph.new_node (name, mk_pred_data ((intros, SOME elim, nparams), ([], [], [])))) thy
- end
-
-fun set_generator_name pred mode name =
- let
- val set = (apsnd o apsnd3 o cons) (mode, mk_function_data (name, NONE))
- in
- PredData.map (Graph.map_node pred (map_pred_data set))
- end
-
-fun set_sizelim_function_name pred mode name =
- let
- val set = (apsnd o aptrd3 o cons) (mode, mk_function_data (name, NONE))
- in
- PredData.map (Graph.map_node pred (map_pred_data set))
- end
-
-(** data structures for generic compilation for different monads **)
-
-(* maybe rename functions more generic:
- mk_predT -> mk_monadT; dest_predT -> dest_monadT
- mk_single -> mk_return (?)
-*)
-datatype compilation_funs = CompilationFuns of {
- mk_predT : typ -> typ,
- dest_predT : typ -> typ,
- mk_bot : typ -> term,
- mk_single : term -> term,
- mk_bind : term * term -> term,
- mk_sup : term * term -> term,
- mk_if : term -> term,
- mk_not : term -> term,
-(* funT_of : mode -> typ -> typ, *)
-(* mk_fun_of : theory -> (string * typ) -> mode -> term, *)
- mk_map : typ -> typ -> term -> term -> term,
- lift_pred : term -> term
-};
-
-fun mk_predT (CompilationFuns funs) = #mk_predT funs
-fun dest_predT (CompilationFuns funs) = #dest_predT funs
-fun mk_bot (CompilationFuns funs) = #mk_bot funs
-fun mk_single (CompilationFuns funs) = #mk_single funs
-fun mk_bind (CompilationFuns funs) = #mk_bind funs
-fun mk_sup (CompilationFuns funs) = #mk_sup funs
-fun mk_if (CompilationFuns funs) = #mk_if funs
-fun mk_not (CompilationFuns funs) = #mk_not funs
-(*fun funT_of (CompilationFuns funs) = #funT_of funs*)
-(*fun mk_fun_of (CompilationFuns funs) = #mk_fun_of funs*)
-fun mk_map (CompilationFuns funs) = #mk_map funs
-fun lift_pred (CompilationFuns funs) = #lift_pred funs
-
-fun funT_of compfuns (iss, is) T =
- let
- val Ts = binder_types T
- val (paramTs, (inargTs, outargTs)) = split_modeT (iss, is) Ts
- val paramTs' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) iss paramTs
- in
- (paramTs' @ inargTs) ---> (mk_predT compfuns (mk_tupleT outargTs))
- end;
-
-fun sizelim_funT_of compfuns (iss, is) T =
- let
- val Ts = binder_types T
- val (paramTs, (inargTs, outargTs)) = split_modeT (iss, is) Ts
- val paramTs' = map2 (fn SOME is => sizelim_funT_of compfuns ([], is) | NONE => I) iss paramTs
- in
- (paramTs' @ inargTs @ [@{typ "code_numeral"}]) ---> (mk_predT compfuns (mk_tupleT outargTs))
- end;
-
-fun mk_fun_of compfuns thy (name, T) mode =
- Const (predfun_name_of thy name mode, funT_of compfuns mode T)
-
-fun mk_sizelim_fun_of compfuns thy (name, T) mode =
- Const (sizelim_function_name_of thy name mode, sizelim_funT_of compfuns mode T)
-
-fun mk_generator_of compfuns thy (name, T) mode =
- Const (generator_name_of thy name mode, sizelim_funT_of compfuns mode T)
-
-
-structure PredicateCompFuns =
-struct
-
-fun mk_predT T = Type (@{type_name "Predicate.pred"}, [T])
-
-fun dest_predT (Type (@{type_name "Predicate.pred"}, [T])) = T
- | dest_predT T = raise TYPE ("dest_predT", [T], []);
-
-fun mk_bot T = Const (@{const_name Orderings.bot}, mk_predT T);
-
-fun mk_single t =
- let val T = fastype_of t
- in Const(@{const_name Predicate.single}, T --> mk_predT T) $ t end;
-
-fun mk_bind (x, f) =
- let val T as Type ("fun", [_, U]) = fastype_of f
- in
- Const (@{const_name Predicate.bind}, fastype_of x --> T --> U) $ x $ f
- end;
-
-val mk_sup = HOLogic.mk_binop @{const_name sup};
-
-fun mk_if cond = Const (@{const_name Predicate.if_pred},
- HOLogic.boolT --> mk_predT HOLogic.unitT) $ cond;
-
-fun mk_not t = let val T = mk_predT HOLogic.unitT
- in Const (@{const_name Predicate.not_pred}, T --> T) $ t end
-
-fun mk_Enum f =
- let val T as Type ("fun", [T', _]) = fastype_of f
- in
- Const (@{const_name Predicate.Pred}, T --> mk_predT T') $ f
- end;
-
-fun mk_Eval (f, x) =
- let
- val T = fastype_of x
- in
- Const (@{const_name Predicate.eval}, mk_predT T --> T --> HOLogic.boolT) $ f $ x
- end;
-
-fun mk_map T1 T2 tf tp = Const (@{const_name Predicate.map},
- (T1 --> T2) --> mk_predT T1 --> mk_predT T2) $ tf $ tp;
-
-val lift_pred = I
-
-val compfuns = CompilationFuns {mk_predT = mk_predT, dest_predT = dest_predT, mk_bot = mk_bot,
- mk_single = mk_single, mk_bind = mk_bind, mk_sup = mk_sup, mk_if = mk_if, mk_not = mk_not,
- mk_map = mk_map, lift_pred = lift_pred};
-
-end;
-
-(* termify_code:
-val termT = Type ("Code_Eval.term", []);
-fun termifyT T = HOLogic.mk_prodT (T, HOLogic.unitT --> termT)
-*)
-(*
-fun lift_random random =
- let
- val T = dest_randomT (fastype_of random)
- in
- mk_scomp (random,
- mk_fun_comp (HOLogic.pair_const (PredicateCompFuns.mk_predT T) @{typ Random.seed},
- mk_fun_comp (Const (@{const_name Predicate.single}, T --> (PredicateCompFuns.mk_predT T)),
- Const (@{const_name "fst"}, HOLogic.mk_prodT (T, @{typ "unit => term"}) --> T))))
- end;
-*)
-
-structure RPredCompFuns =
-struct
-
-fun mk_rpredT T =
- @{typ "Random.seed"} --> HOLogic.mk_prodT (PredicateCompFuns.mk_predT T, @{typ "Random.seed"})
-
-fun dest_rpredT (Type ("fun", [_,
- Type (@{type_name "*"}, [Type (@{type_name "Predicate.pred"}, [T]), _])])) = T
- | dest_rpredT T = raise TYPE ("dest_rpredT", [T], []);
-
-fun mk_bot T = Const(@{const_name RPred.bot}, mk_rpredT T)
-
-fun mk_single t =
- let
- val T = fastype_of t
- in
- Const (@{const_name RPred.return}, T --> mk_rpredT T) $ t
- end;
-
-fun mk_bind (x, f) =
- let
- val T as (Type ("fun", [_, U])) = fastype_of f
- in
- Const (@{const_name RPred.bind}, fastype_of x --> T --> U) $ x $ f
- end
-
-val mk_sup = HOLogic.mk_binop @{const_name RPred.supp}
-
-fun mk_if cond = Const (@{const_name RPred.if_rpred},
- HOLogic.boolT --> mk_rpredT HOLogic.unitT) $ cond;
-
-fun mk_not t = error "Negation is not defined for RPred"
-
-fun mk_map t = error "FIXME" (*FIXME*)
-
-fun lift_pred t =
- let
- val T = PredicateCompFuns.dest_predT (fastype_of t)
- val lift_predT = PredicateCompFuns.mk_predT T --> mk_rpredT T
- in
- Const (@{const_name "RPred.lift_pred"}, lift_predT) $ t
- end;
-
-val compfuns = CompilationFuns {mk_predT = mk_rpredT, dest_predT = dest_rpredT, mk_bot = mk_bot,
- mk_single = mk_single, mk_bind = mk_bind, mk_sup = mk_sup, mk_if = mk_if, mk_not = mk_not,
- mk_map = mk_map, lift_pred = lift_pred};
-
-end;
-(* for external use with interactive mode *)
-val rpred_compfuns = RPredCompFuns.compfuns;
-
-fun lift_random random =
- let
- val T = dest_randomT (fastype_of random)
- in
- Const (@{const_name lift_random}, (@{typ Random.seed} -->
- HOLogic.mk_prodT (HOLogic.mk_prodT (T, @{typ "unit => term"}), @{typ Random.seed})) -->
- RPredCompFuns.mk_rpredT T) $ random
- end;
-
-(* Mode analysis *)
-
-(*** check if a term contains only constructor functions ***)
-fun is_constrt thy =
- let
- val cnstrs = flat (maps
- (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
- (Symtab.dest (Datatype.get_all thy)));
- fun check t = (case strip_comb t of
- (Free _, []) => true
- | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
- (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
- | _ => false)
- | _ => false)
- in check end;
-
-(*** check if a type is an equality type (i.e. doesn't contain fun)
- FIXME this is only an approximation ***)
-fun is_eqT (Type (s, Ts)) = s <> "fun" andalso forall is_eqT Ts
- | is_eqT _ = true;
-
-fun term_vs tm = fold_aterms (fn Free (x, T) => cons x | _ => I) tm [];
-val terms_vs = distinct (op =) o maps term_vs;
-
-(** collect all Frees in a term (with duplicates!) **)
-fun term_vTs tm =
- fold_aterms (fn Free xT => cons xT | _ => I) tm [];
-
-(*FIXME this function should not be named merge... make it local instead*)
-fun merge xs [] = xs
- | merge [] ys = ys
- | merge (x::xs) (y::ys) = if length x >= length y then x::merge xs (y::ys)
- else y::merge (x::xs) ys;
-
-fun subsets i j = if i <= j then
- let val is = subsets (i+1) j
- in merge (map (fn ks => i::ks) is) is end
- else [[]];
-
-(* FIXME: should be in library - map_prod *)
-fun cprod ([], ys) = []
- | cprod (x :: xs, ys) = map (pair x) ys @ cprod (xs, ys);
-
-fun cprods xss = foldr (map op :: o cprod) [[]] xss;
-
-fun cprods_subset [] = [[]]
- | cprods_subset (xs :: xss) =
- let
- val yss = (cprods_subset xss)
- in maps (fn ys => map (fn x => cons x ys) xs) yss @ yss end
-
-(*TODO: cleanup function and put together with modes_of_term *)
-(*
-fun modes_of_param default modes t = let
- val (vs, t') = strip_abs t
- val b = length vs
- fun mk_modes name args = Option.map (maps (fn (m as (iss, is)) =>
- let
- val (args1, args2) =
- if length args < length iss then
- error ("Too few arguments for inductive predicate " ^ name)
- else chop (length iss) args;
- val k = length args2;
- val perm = map (fn i => (find_index_eq (Bound (b - i)) args2) + 1)
- (1 upto b)
- val partial_mode = (1 upto k) \\ perm
- in
- if not (partial_mode subset is) then [] else
- let
- val is' =
- (fold_index (fn (i, j) => if j mem is then cons (i + 1) else I) perm [])
- |> fold (fn i => if i > k then cons (i - k + b) else I) is
-
- val res = map (fn x => Mode (m, is', x)) (cprods (map
- (fn (NONE, _) => [NONE]
- | (SOME js, arg) => map SOME (filter
- (fn Mode (_, js', _) => js=js') (modes_of_term modes arg)))
- (iss ~~ args1)))
- in res end
- end)) (AList.lookup op = modes name)
- in case strip_comb t' of
- (Const (name, _), args) => the_default default (mk_modes name args)
- | (Var ((name, _), _), args) => the (mk_modes name args)
- | (Free (name, _), args) => the (mk_modes name args)
- | _ => default end
-
-and
-*)
-fun modes_of_term modes t =
- let
- val ks = map_index (fn (i, T) => (i, NONE)) (binder_types (fastype_of t));
- val default = [Mode (([], ks), ks, [])];
- fun mk_modes name args = Option.map (maps (fn (m as (iss, is)) =>
- let
- val (args1, args2) =
- if length args < length iss then
- error ("Too few arguments for inductive predicate " ^ name)
- else chop (length iss) args;
- val k = length args2;
- val prfx = map (rpair NONE) (1 upto k)
- in
- if not (is_prefix op = prfx is) then [] else
- let val is' = List.drop (is, k)
- in map (fn x => Mode (m, is', x)) (cprods (map
- (fn (NONE, _) => [NONE]
- | (SOME js, arg) => map SOME (filter
- (fn Mode (_, js', _) => js=js') (modes_of_term modes arg)))
- (iss ~~ args1)))
- end
- end)) (AList.lookup op = modes name)
-
- in
- case strip_comb (Envir.eta_contract t) of
- (Const (name, _), args) => the_default default (mk_modes name args)
- | (Var ((name, _), _), args) => the (mk_modes name args)
- | (Free (name, _), args) => the (mk_modes name args)
- | (Abs _, []) => error "Abs at param position" (* modes_of_param default modes t *)
- | _ => default
- end
-
-fun select_mode_prem thy modes vs ps =
- find_first (is_some o snd) (ps ~~ map
- (fn Prem (us, t) => find_first (fn Mode (_, is, _) =>
- let
- val (in_ts, out_ts) = split_smode is us;
- val (out_ts', in_ts') = List.partition (is_constrt thy) out_ts;
- val vTs = maps term_vTs out_ts';
- val dupTs = map snd (duplicates (op =) vTs) @
- List.mapPartial (AList.lookup (op =) vTs) vs;
- in
- terms_vs (in_ts @ in_ts') subset vs andalso
- forall (is_eqT o fastype_of) in_ts' andalso
- term_vs t subset vs andalso
- forall is_eqT dupTs
- end)
- (modes_of_term modes t handle Option =>
- error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
- | Negprem (us, t) => find_first (fn Mode (_, is, _) =>
- length us = length is andalso
- terms_vs us subset vs andalso
- term_vs t subset vs)
- (modes_of_term modes t handle Option =>
- error ("Bad predicate: " ^ Syntax.string_of_term_global thy t))
- | Sidecond t => if term_vs t subset vs then SOME (Mode (([], []), [], []))
- else NONE
- ) ps);
-
-fun fold_prem f (Prem (args, _)) = fold f args
- | fold_prem f (Negprem (args, _)) = fold f args
- | fold_prem f (Sidecond t) = f t
-
-fun all_subsets [] = [[]]
- | all_subsets (x::xs) = let val xss' = all_subsets xs in xss' @ (map (cons x) xss') end
-
-fun generator vTs v =
- let
- val T = the (AList.lookup (op =) vTs v)
- in
- (Generator (v, T), Mode (([], []), [], []))
- end;
-
-fun gen_prem (Prem (us, t)) = GeneratorPrem (us, t)
- | gen_prem _ = error "gen_prem : invalid input for gen_prem"
-
-fun param_gen_prem param_vs (p as Prem (us, t as Free (v, _))) =
- if member (op =) param_vs v then
- GeneratorPrem (us, t)
- else p
- | param_gen_prem param_vs p = p
-
-fun check_mode_clause with_generator thy param_vs modes gen_modes (iss, is) (ts, ps) =
- let
- val modes' = modes @ List.mapPartial
- (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
- (param_vs ~~ iss);
- val gen_modes' = gen_modes @ List.mapPartial
- (fn (_, NONE) => NONE | (v, SOME js) => SOME (v, [([], js)]))
- (param_vs ~~ iss);
- val vTs = distinct (op =) ((fold o fold_prem) Term.add_frees ps (fold Term.add_frees ts []))
- val prem_vs = distinct (op =) ((fold o fold_prem) Term.add_free_names ps [])
- fun check_mode_prems acc_ps vs [] = SOME (acc_ps, vs)
- | check_mode_prems acc_ps vs ps = (case select_mode_prem thy modes' vs ps of
- NONE =>
- (if with_generator then
- (case select_mode_prem thy gen_modes' vs ps of
- SOME (p, SOME mode) => check_mode_prems ((gen_prem p, mode) :: acc_ps)
- (case p of Prem (us, _) => vs union terms_vs us | _ => vs)
- (filter_out (equal p) ps)
- | NONE =>
- let
- val all_generator_vs = all_subsets (prem_vs \\ vs) |> sort (int_ord o (pairself length))
- in
- case (find_first (fn generator_vs => is_some
- (select_mode_prem thy modes' (vs union generator_vs) ps)) all_generator_vs) of
- SOME generator_vs => check_mode_prems ((map (generator vTs) generator_vs) @ acc_ps)
- (vs union generator_vs) ps
- | NONE => NONE
- end)
- else
- NONE)
- | SOME (p, SOME mode) => check_mode_prems ((if with_generator then param_gen_prem param_vs p else p, mode) :: acc_ps)
- (case p of Prem (us, _) => vs union terms_vs us | _ => vs)
- (filter_out (equal p) ps))
- val (in_ts, in_ts') = List.partition (is_constrt thy) (fst (split_smode is ts));
- val in_vs = terms_vs in_ts;
- val concl_vs = terms_vs ts
- in
- if forall is_eqT (map snd (duplicates (op =) (maps term_vTs in_ts))) andalso
- forall (is_eqT o fastype_of) in_ts' then
- case check_mode_prems [] (param_vs union in_vs) ps of
- NONE => NONE
- | SOME (acc_ps, vs) =>
- if with_generator then
- SOME (ts, (rev acc_ps) @ (map (generator vTs) (concl_vs \\ vs)))
- else
- if concl_vs subset vs then SOME (ts, rev acc_ps) else NONE
- else NONE
- end;
-
-fun check_modes_pred with_generator thy param_vs clauses modes gen_modes (p, ms) =
- let val SOME rs = AList.lookup (op =) clauses p
- in (p, List.filter (fn m => case find_index
- (is_none o check_mode_clause with_generator thy param_vs modes gen_modes m) rs of
- ~1 => true
- | i => (Output.tracing ("Clause " ^ string_of_int (i + 1) ^ " of " ^
- p ^ " violates mode " ^ string_of_mode m);
- Output.tracing (commas (map (Syntax.string_of_term_global thy) (fst (nth rs i)))); false)) ms)
- end;
-
-fun get_modes_pred with_generator thy param_vs clauses modes gen_modes (p, ms) =
- let
- val SOME rs = AList.lookup (op =) clauses p
- in
- (p, map (fn m =>
- (m, map (the o check_mode_clause with_generator thy param_vs modes gen_modes m) rs)) ms)
- end;
-
-fun fixp f (x : (string * mode list) list) =
- let val y = f x
- in if x = y then x else fixp f y end;
-
-fun infer_modes thy extra_modes all_modes param_vs clauses =
- let
- val modes =
- fixp (fn modes =>
- map (check_modes_pred false thy param_vs clauses (modes @ extra_modes) []) modes)
- all_modes
- in
- map (get_modes_pred false thy param_vs clauses (modes @ extra_modes) []) modes
- end;
-
-fun remove_from rem [] = []
- | remove_from rem ((k, vs) :: xs) =
- (case AList.lookup (op =) rem k of
- NONE => (k, vs)
- | SOME vs' => (k, vs \\ vs'))
- :: remove_from rem xs
-
-fun infer_modes_with_generator thy extra_modes all_modes param_vs clauses =
- let
- val prednames = map fst clauses
- val extra_modes = all_modes_of thy
- val gen_modes = all_generator_modes_of thy
- |> filter_out (fn (name, _) => member (op =) prednames name)
- val starting_modes = remove_from extra_modes all_modes
- val modes =
- fixp (fn modes =>
- map (check_modes_pred true thy param_vs clauses extra_modes (gen_modes @ modes)) modes)
- starting_modes
- in
- map (get_modes_pred true thy param_vs clauses extra_modes (gen_modes @ modes)) modes
- end;
-
-(* term construction *)
-
-fun mk_v (names, vs) s T = (case AList.lookup (op =) vs s of
- NONE => (Free (s, T), (names, (s, [])::vs))
- | SOME xs =>
- let
- val s' = Name.variant names s;
- val v = Free (s', T)
- in
- (v, (s'::names, AList.update (op =) (s, v::xs) vs))
- end);
-
-fun distinct_v (Free (s, T)) nvs = mk_v nvs s T
- | distinct_v (t $ u) nvs =
- let
- val (t', nvs') = distinct_v t nvs;
- val (u', nvs'') = distinct_v u nvs';
- in (t' $ u', nvs'') end
- | distinct_v x nvs = (x, nvs);
-
-fun compile_match thy compfuns eqs eqs' out_ts success_t =
- let
- val eqs'' = maps mk_eq eqs @ eqs'
- val names = fold Term.add_free_names (success_t :: eqs'' @ out_ts) [];
- val name = Name.variant names "x";
- val name' = Name.variant (name :: names) "y";
- val T = mk_tupleT (map fastype_of out_ts);
- val U = fastype_of success_t;
- val U' = dest_predT compfuns U;
- val v = Free (name, T);
- val v' = Free (name', T);
- in
- lambda v (fst (Datatype.make_case
- (ProofContext.init thy) false [] v
- [(mk_tuple out_ts,
- if null eqs'' then success_t
- else Const (@{const_name HOL.If}, HOLogic.boolT --> U --> U --> U) $
- foldr1 HOLogic.mk_conj eqs'' $ success_t $
- mk_bot compfuns U'),
- (v', mk_bot compfuns U')]))
- end;
-
-(*FIXME function can be removed*)
-fun mk_funcomp f t =
- let
- val names = Term.add_free_names t [];
- val Ts = binder_types (fastype_of t);
- val vs = map Free
- (Name.variant_list names (replicate (length Ts) "x") ~~ Ts)
- in
- fold_rev lambda vs (f (list_comb (t, vs)))
- end;
-(*
-fun compile_param_ext thy compfuns modes (NONE, t) = t
- | compile_param_ext thy compfuns modes (m as SOME (Mode ((iss, is'), is, ms)), t) =
- let
- val (vs, u) = strip_abs t
- val (ivs, ovs) = split_mode is vs
- val (f, args) = strip_comb u
- val (params, args') = chop (length ms) args
- val (inargs, outargs) = split_mode is' args'
- val b = length vs
- val perm = map (fn i => (find_index_eq (Bound (b - i)) args') + 1) (1 upto b)
- val outp_perm =
- snd (split_mode is perm)
- |> map (fn i => i - length (filter (fn x => x < i) is'))
- val names = [] -- TODO
- val out_names = Name.variant_list names (replicate (length outargs) "x")
- val f' = case f of
- Const (name, T) =>
- if AList.defined op = modes name then
- mk_predfun_of thy compfuns (name, T) (iss, is')
- else error "compile param: Not an inductive predicate with correct mode"
- | Free (name, T) => Free (name, param_funT_of compfuns T (SOME is'))
- val outTs = dest_tupleT (dest_predT compfuns (body_type (fastype_of f')))
- val out_vs = map Free (out_names ~~ outTs)
- val params' = map (compile_param thy modes) (ms ~~ params)
- val f_app = list_comb (f', params' @ inargs)
- val single_t = (mk_single compfuns (mk_tuple (map (fn i => nth out_vs (i - 1)) outp_perm)))
- val match_t = compile_match thy compfuns [] [] out_vs single_t
- in list_abs (ivs,
- mk_bind compfuns (f_app, match_t))
- end
- | compile_param_ext _ _ _ _ = error "compile params"
-*)
-
-fun compile_param size thy compfuns (NONE, t) = t
- | compile_param size thy compfuns (m as SOME (Mode ((iss, is'), is, ms)), t) =
- let
- val (f, args) = strip_comb (Envir.eta_contract t)
- val (params, args') = chop (length ms) args
- val params' = map (compile_param size thy compfuns) (ms ~~ params)
- val mk_fun_of = case size of NONE => mk_fun_of | SOME _ => mk_sizelim_fun_of
- val funT_of = case size of NONE => funT_of | SOME _ => sizelim_funT_of
- val f' =
- case f of
- Const (name, T) =>
- mk_fun_of compfuns thy (name, T) (iss, is')
- | Free (name, T) => Free (name, funT_of compfuns (iss, is') T)
- | _ => error ("PredicateCompiler: illegal parameter term")
- in list_comb (f', params' @ args') end
-
-fun compile_expr size thy ((Mode (mode, is, ms)), t) =
- case strip_comb t of
- (Const (name, T), params) =>
- let
- val params' = map (compile_param size thy PredicateCompFuns.compfuns) (ms ~~ params)
- val mk_fun_of = case size of NONE => mk_fun_of | SOME _ => mk_sizelim_fun_of
- in
- list_comb (mk_fun_of PredicateCompFuns.compfuns thy (name, T) mode, params')
- end
- | (Free (name, T), args) =>
- let
- val funT_of = case size of NONE => funT_of | SOME _ => sizelim_funT_of
- in
- list_comb (Free (name, funT_of PredicateCompFuns.compfuns ([], is) T), args)
- end;
-
-fun compile_gen_expr size thy compfuns ((Mode (mode, is, ms)), t) =
- case strip_comb t of
- (Const (name, T), params) =>
- let
- val params' = map (compile_param size thy compfuns) (ms ~~ params)
- in
- list_comb (mk_generator_of compfuns thy (name, T) mode, params')
- end
- | (Free (name, T), args) =>
- list_comb (Free (name, sizelim_funT_of RPredCompFuns.compfuns ([], is) T), args)
-
-(** specific rpred functions -- move them to the correct place in this file *)
-
-(* uncommented termify code; causes more trouble than expected at first *)
-(*
-fun mk_valtermify_term (t as Const (c, T)) = HOLogic.mk_prod (t, Abs ("u", HOLogic.unitT, HOLogic.reflect_term t))
- | mk_valtermify_term (Free (x, T)) = Free (x, termifyT T)
- | mk_valtermify_term (t1 $ t2) =
- let
- val T = fastype_of t1
- val (T1, T2) = dest_funT T
- val t1' = mk_valtermify_term t1
- val t2' = mk_valtermify_term t2
- in
- Const ("Code_Eval.valapp", termifyT T --> termifyT T1 --> termifyT T2) $ t1' $ t2'
- end
- | mk_valtermify_term _ = error "Not a valid term for mk_valtermify_term"
-*)
-
-fun compile_clause compfuns size final_term thy all_vs param_vs (iss, is) inp (ts, moded_ps) =
- let
- fun check_constrt t (names, eqs) =
- if is_constrt thy t then (t, (names, eqs)) else
- let
- val s = Name.variant names "x";
- val v = Free (s, fastype_of t)
- in (v, (s::names, HOLogic.mk_eq (v, t)::eqs)) end;
-
- val (in_ts, out_ts) = split_smode is ts;
- val (in_ts', (all_vs', eqs)) =
- fold_map check_constrt in_ts (all_vs, []);
-
- fun compile_prems out_ts' vs names [] =
- let
- val (out_ts'', (names', eqs')) =
- fold_map check_constrt out_ts' (names, []);
- val (out_ts''', (names'', constr_vs)) = fold_map distinct_v
- out_ts'' (names', map (rpair []) vs);
- in
- (* termify code:
- compile_match thy compfuns constr_vs (eqs @ eqs') out_ts'''
- (mk_single compfuns (mk_tuple (map mk_valtermify_term out_ts)))
- *)
- compile_match thy compfuns constr_vs (eqs @ eqs') out_ts'''
- (final_term out_ts)
- end
- | compile_prems out_ts vs names ((p, mode as Mode ((_, is), _, _)) :: ps) =
- let
- val vs' = distinct (op =) (flat (vs :: map term_vs out_ts));
- val (out_ts', (names', eqs)) =
- fold_map check_constrt out_ts (names, [])
- val (out_ts'', (names'', constr_vs')) = fold_map distinct_v
- out_ts' ((names', map (rpair []) vs))
- val (compiled_clause, rest) = case p of
- Prem (us, t) =>
- let
- val (in_ts, out_ts''') = split_smode is us;
- val args = case size of
- NONE => in_ts
- | SOME size_t => in_ts @ [size_t]
- val u = lift_pred compfuns
- (list_comb (compile_expr size thy (mode, t), args))
- val rest = compile_prems out_ts''' vs' names'' ps
- in
- (u, rest)
- end
- | Negprem (us, t) =>
- let
- val (in_ts, out_ts''') = split_smode is us
- val u = lift_pred compfuns
- (mk_not PredicateCompFuns.compfuns (list_comb (compile_expr NONE thy (mode, t), in_ts)))
- val rest = compile_prems out_ts''' vs' names'' ps
- in
- (u, rest)
- end
- | Sidecond t =>
- let
- val rest = compile_prems [] vs' names'' ps;
- in
- (mk_if compfuns t, rest)
- end
- | GeneratorPrem (us, t) =>
- let
- val (in_ts, out_ts''') = split_smode is us;
- val args = case size of
- NONE => in_ts
- | SOME size_t => in_ts @ [size_t]
- val u = list_comb (compile_gen_expr size thy compfuns (mode, t), args)
- val rest = compile_prems out_ts''' vs' names'' ps
- in
- (u, rest)
- end
- | Generator (v, T) =>
- let
- val u = lift_random (HOLogic.mk_random T @{term "1::code_numeral"})
- val rest = compile_prems [Free (v, T)] vs' names'' ps;
- in
- (u, rest)
- end
- in
- compile_match thy compfuns constr_vs' eqs out_ts''
- (mk_bind compfuns (compiled_clause, rest))
- end
- val prem_t = compile_prems in_ts' param_vs all_vs' moded_ps;
- in
- mk_bind compfuns (mk_single compfuns inp, prem_t)
- end
-
-fun compile_pred compfuns mk_fun_of use_size thy all_vs param_vs s T mode moded_cls =
- let
- val (Ts1, Ts2) = chop (length (fst mode)) (binder_types T)
- val (Us1, Us2) = split_smodeT (snd mode) Ts2
- val funT_of = if use_size then sizelim_funT_of else funT_of
- val Ts1' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) (fst mode) Ts1
- val size_name = Name.variant (all_vs @ param_vs) "size"
- fun mk_input_term (i, NONE) =
- [Free (Name.variant (all_vs @ param_vs) ("x" ^ string_of_int i), nth Ts2 (i - 1))]
- | mk_input_term (i, SOME pis) = case HOLogic.strip_tupleT (nth Ts2 (i - 1)) of
- [] => error "strange unit input"
- | [T] => [Free (Name.variant (all_vs @ param_vs) ("x" ^ string_of_int i), nth Ts2 (i - 1))]
- | Ts => let
- val vnames = Name.variant_list (all_vs @ param_vs)
- (map (fn j => "x" ^ string_of_int i ^ "p" ^ string_of_int j)
- pis)
- in if null pis then []
- else [HOLogic.mk_tuple (map Free (vnames ~~ map (fn j => nth Ts (j - 1)) pis))] end
- val in_ts = maps mk_input_term (snd mode)
- val params = map2 (fn s => fn T => Free (s, T)) param_vs Ts1'
- val size = Free (size_name, @{typ "code_numeral"})
- val decr_size =
- if use_size then
- SOME (Const ("HOL.minus_class.minus", @{typ "code_numeral => code_numeral => code_numeral"})
- $ size $ Const ("HOL.one_class.one", @{typ "Code_Numeral.code_numeral"}))
- else
- NONE
- val cl_ts =
- map (compile_clause compfuns decr_size (fn out_ts => mk_single compfuns (mk_tuple out_ts))
- thy all_vs param_vs mode (mk_tuple in_ts)) moded_cls;
- val t = foldr1 (mk_sup compfuns) cl_ts
- val T' = mk_predT compfuns (mk_tupleT Us2)
- val size_t = Const (@{const_name "If"}, @{typ bool} --> T' --> T' --> T')
- $ HOLogic.mk_eq (size, @{term "0 :: code_numeral"})
- $ mk_bot compfuns (dest_predT compfuns T') $ t
- val fun_const = mk_fun_of compfuns thy (s, T) mode
- val eq = if use_size then
- (list_comb (fun_const, params @ in_ts @ [size]), size_t)
- else
- (list_comb (fun_const, params @ in_ts), t)
- in
- HOLogic.mk_Trueprop (HOLogic.mk_eq eq)
- end;
-
-(* special setup for simpset *)
-val HOL_basic_ss' = HOL_basic_ss addsimps (@{thms "HOL.simp_thms"} @ [@{thm Pair_eq}])
- setSolver (mk_solver "all_tac_solver" (fn _ => fn _ => all_tac))
- setSolver (mk_solver "True_solver" (fn _ => rtac @{thm TrueI}))
-
-(* Definition of executable functions and their intro and elim rules *)
-
-fun print_arities arities = tracing ("Arities:\n" ^
- cat_lines (map (fn (s, (ks, k)) => s ^ ": " ^
- space_implode " -> " (map
- (fn NONE => "X" | SOME k' => string_of_int k')
- (ks @ [SOME k]))) arities));
-
-fun mk_Eval_of ((x, T), NONE) names = (x, names)
- | mk_Eval_of ((x, T), SOME mode) names =
- let
- val Ts = binder_types T
- (*val argnames = Name.variant_list names
- (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
- val args = map Free (argnames ~~ Ts)
- val (inargs, outargs) = split_smode mode args*)
- fun mk_split_lambda [] t = lambda (Free (Name.variant names "x", HOLogic.unitT)) t
- | mk_split_lambda [x] t = lambda x t
- | mk_split_lambda xs t =
- let
- fun mk_split_lambda' (x::y::[]) t = HOLogic.mk_split (lambda x (lambda y t))
- | mk_split_lambda' (x::xs) t = HOLogic.mk_split (lambda x (mk_split_lambda' xs t))
- in
- mk_split_lambda' xs t
- end;
- fun mk_arg (i, T) =
- let
- val vname = Name.variant names ("x" ^ string_of_int i)
- val default = Free (vname, T)
- in
- case AList.lookup (op =) mode i of
- NONE => (([], [default]), [default])
- | SOME NONE => (([default], []), [default])
- | SOME (SOME pis) =>
- case HOLogic.strip_tupleT T of
- [] => error "pair mode but unit tuple" (*(([default], []), [default])*)
- | [_] => error "pair mode but not a tuple" (*(([default], []), [default])*)
- | Ts =>
- let
- val vnames = Name.variant_list names
- (map (fn j => "x" ^ string_of_int i ^ "p" ^ string_of_int j)
- (1 upto length Ts))
- val args = map Free (vnames ~~ Ts)
- fun split_args (i, arg) (ins, outs) =
- if member (op =) pis i then
- (arg::ins, outs)
- else
- (ins, arg::outs)
- val (inargs, outargs) = fold_rev split_args ((1 upto length Ts) ~~ args) ([], [])
- fun tuple args = if null args then [] else [HOLogic.mk_tuple args]
- in ((tuple inargs, tuple outargs), args) end
- end
- val (inoutargs, args) = split_list (map mk_arg (1 upto (length Ts) ~~ Ts))
- val (inargs, outargs) = pairself flat (split_list inoutargs)
- val r = PredicateCompFuns.mk_Eval (list_comb (x, inargs), mk_tuple outargs)
- val t = fold_rev mk_split_lambda args r
- in
- (t, names)
- end;
-
-fun create_intro_elim_rule (mode as (iss, is)) defthm mode_id funT pred thy =
-let
- val Ts = binder_types (fastype_of pred)
- val funtrm = Const (mode_id, funT)
- val (Ts1, Ts2) = chop (length iss) Ts;
- val Ts1' = map2 (fn NONE => I | SOME is => funT_of (PredicateCompFuns.compfuns) ([], is)) iss Ts1
- val param_names = Name.variant_list []
- (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts1)));
- val params = map Free (param_names ~~ Ts1')
- fun mk_args (i, T) argnames =
- let
- val vname = Name.variant (param_names @ argnames) ("x" ^ string_of_int (length Ts1' + i))
- val default = (Free (vname, T), vname :: argnames)
- in
- case AList.lookup (op =) is i of
- NONE => default
- | SOME NONE => default
- | SOME (SOME pis) =>
- case HOLogic.strip_tupleT T of
- [] => default
- | [_] => default
- | Ts =>
- let
- val vnames = Name.variant_list (param_names @ argnames)
- (map (fn j => "x" ^ string_of_int (length Ts1' + i) ^ "p" ^ string_of_int j)
- (1 upto (length Ts)))
- in (HOLogic.mk_tuple (map Free (vnames ~~ Ts)), vnames @ argnames) end
- end
- val (args, argnames) = fold_map mk_args (1 upto (length Ts2) ~~ Ts2) []
- val (inargs, outargs) = split_smode is args
- val param_names' = Name.variant_list (param_names @ argnames)
- (map (fn i => "p" ^ string_of_int i) (1 upto (length iss)))
- val param_vs = map Free (param_names' ~~ Ts1)
- val (params', names) = fold_map mk_Eval_of ((params ~~ Ts1) ~~ iss) []
- val predpropI = HOLogic.mk_Trueprop (list_comb (pred, param_vs @ args))
- val predpropE = HOLogic.mk_Trueprop (list_comb (pred, params' @ args))
- val param_eqs = map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (param_vs ~~ params')
- val funargs = params @ inargs
- val funpropE = HOLogic.mk_Trueprop (PredicateCompFuns.mk_Eval (list_comb (funtrm, funargs),
- if null outargs then Free("y", HOLogic.unitT) else mk_tuple outargs))
- val funpropI = HOLogic.mk_Trueprop (PredicateCompFuns.mk_Eval (list_comb (funtrm, funargs),
- mk_tuple outargs))
- val introtrm = Logic.list_implies (predpropI :: param_eqs, funpropI)
- val simprules = [defthm, @{thm eval_pred},
- @{thm "split_beta"}, @{thm "fst_conv"}, @{thm "snd_conv"}, @{thm pair_collapse}]
- val unfolddef_tac = Simplifier.asm_full_simp_tac (HOL_basic_ss addsimps simprules) 1
- val introthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ param_names' @ ["y"]) [] introtrm (fn {...} => unfolddef_tac)
- val P = HOLogic.mk_Trueprop (Free ("P", HOLogic.boolT));
- val elimtrm = Logic.list_implies ([funpropE, Logic.mk_implies (predpropE, P)], P)
- val elimthm = Goal.prove (ProofContext.init thy) (argnames @ param_names @ param_names' @ ["y", "P"]) [] elimtrm (fn {...} => unfolddef_tac)
- val _ = Output.tracing (Display.string_of_thm_global thy elimthm)
- val _ = Output.tracing (Display.string_of_thm_global thy introthm)
-
-in
- (introthm, elimthm)
-end;
-
-fun create_constname_of_mode thy prefix name mode =
- let
- fun string_of_mode mode = if null mode then "0"
- else space_implode "_" (map (fn (i, NONE) => string_of_int i | (i, SOME pis) => string_of_int i ^ "p"
- ^ space_implode "p" (map string_of_int pis)) mode)
- val HOmode = space_implode "_and_"
- (fold (fn NONE => I | SOME mode => cons (string_of_mode mode)) (fst mode) [])
- in
- (Sign.full_bname thy (prefix ^ (Long_Name.base_name name))) ^
- (if HOmode = "" then "_" else "_for_" ^ HOmode ^ "_yields_") ^ (string_of_mode (snd mode))
- end;
-
-fun split_tupleT is T =
- let
- fun split_tuple' _ _ [] = ([], [])
- | split_tuple' is i (T::Ts) =
- (if i mem is then apfst else apsnd) (cons T)
- (split_tuple' is (i+1) Ts)
- in
- split_tuple' is 1 (HOLogic.strip_tupleT T)
- end
-
-fun mk_arg xin xout pis T =
- let
- val n = length (HOLogic.strip_tupleT T)
- val ni = length pis
- fun mk_proj i j t =
- (if i = j then I else HOLogic.mk_fst)
- (funpow (i - 1) HOLogic.mk_snd t)
- fun mk_arg' i (si, so) = if i mem pis then
- (mk_proj si ni xin, (si+1, so))
- else
- (mk_proj so (n - ni) xout, (si, so+1))
- val (args, _) = fold_map mk_arg' (1 upto n) (1, 1)
- in
- HOLogic.mk_tuple args
- end
-
-fun create_definitions preds (name, modes) thy =
- let
- val compfuns = PredicateCompFuns.compfuns
- val T = AList.lookup (op =) preds name |> the
- fun create_definition (mode as (iss, is)) thy = let
- val mode_cname = create_constname_of_mode thy "" name mode
- val mode_cbasename = Long_Name.base_name mode_cname
- val Ts = binder_types T
- val (Ts1, Ts2) = chop (length iss) Ts
- val (Us1, Us2) = split_smodeT is Ts2
- val Ts1' = map2 (fn NONE => I | SOME is => funT_of compfuns ([], is)) iss Ts1
- val funT = (Ts1' @ Us1) ---> (mk_predT compfuns (mk_tupleT Us2))
- val names = Name.variant_list []
- (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts)));
- (* old *)
- (*
- val xs = map Free (names ~~ (Ts1' @ Ts2))
- val (xparams, xargs) = chop (length iss) xs
- val (xins, xouts) = split_smode is xargs
- *)
- (* new *)
- val param_names = Name.variant_list []
- (map (fn i => "x" ^ string_of_int i) (1 upto (length Ts1')))
- val xparams = map Free (param_names ~~ Ts1')
- fun mk_vars (i, T) names =
- let
- val vname = Name.variant names ("x" ^ string_of_int (length Ts1' + i))
- in
- case AList.lookup (op =) is i of
- NONE => ((([], [Free (vname, T)]), Free (vname, T)), vname :: names)
- | SOME NONE => ((([Free (vname, T)], []), Free (vname, T)), vname :: names)
- | SOME (SOME pis) =>
- let
- val (Tins, Touts) = split_tupleT pis T
- val name_in = Name.variant names ("x" ^ string_of_int (length Ts1' + i) ^ "in")
- val name_out = Name.variant names ("x" ^ string_of_int (length Ts1' + i) ^ "out")
- val xin = Free (name_in, HOLogic.mk_tupleT Tins)
- val xout = Free (name_out, HOLogic.mk_tupleT Touts)
- val xarg = mk_arg xin xout pis T
- in (((if null Tins then [] else [xin], if null Touts then [] else [xout]), xarg), name_in :: name_out :: names) end
- (* HOLogic.strip_tupleT T of
- [] =>
- in (Free (vname, T), vname :: names) end
- | [_] => let val vname = Name.variant names ("x" ^ string_of_int (length Ts1' + i))
- in (Free (vname, T), vname :: names) end
- | Ts =>
- let
- val vnames = Name.variant_list names
- (map (fn j => "x" ^ string_of_int (length Ts1' + i) ^ "p" ^ string_of_int j)
- (1 upto (length Ts)))
- in (HOLogic.mk_tuple (map Free (vnames ~~ Ts)), vnames @ names) end *)
- end
- val (xinoutargs, names) = fold_map mk_vars ((1 upto (length Ts2)) ~~ Ts2) param_names
- val (xinout, xargs) = split_list xinoutargs
- val (xins, xouts) = pairself flat (split_list xinout)
- (*val (xins, xouts) = split_smode is xargs*)
- val (xparams', names') = fold_map mk_Eval_of ((xparams ~~ Ts1) ~~ iss) names
- val _ = Output.tracing ("xargs:" ^ commas (map (Syntax.string_of_term_global thy) xargs))
- fun mk_split_lambda [] t = lambda (Free (Name.variant names' "x", HOLogic.unitT)) t
- | mk_split_lambda [x] t = lambda x t
- | mk_split_lambda xs t =
- let
- fun mk_split_lambda' (x::y::[]) t = HOLogic.mk_split (lambda x (lambda y t))
- | mk_split_lambda' (x::xs) t = HOLogic.mk_split (lambda x (mk_split_lambda' xs t))
- in
- mk_split_lambda' xs t
- end;
- val predterm = PredicateCompFuns.mk_Enum (mk_split_lambda xouts
- (list_comb (Const (name, T), xparams' @ xargs)))
- val lhs = list_comb (Const (mode_cname, funT), xparams @ xins)
- val def = Logic.mk_equals (lhs, predterm)
- val _ = Output.tracing ("def:" ^ (Syntax.string_of_term_global thy def))
- val ([definition], thy') = thy |>
- Sign.add_consts_i [(Binding.name mode_cbasename, funT, NoSyn)] |>
- PureThy.add_defs false [((Binding.name (mode_cbasename ^ "_def"), def), [])]
- val (intro, elim) =
- create_intro_elim_rule mode definition mode_cname funT (Const (name, T)) thy'
- val _ = Output.tracing (Display.string_of_thm_global thy' definition)
- in thy'
- |> add_predfun name mode (mode_cname, definition, intro, elim)
- |> PureThy.store_thm (Binding.name (mode_cbasename ^ "I"), intro) |> snd
- |> PureThy.store_thm (Binding.name (mode_cbasename ^ "E"), elim) |> snd
- |> Theory.checkpoint
- end;
- in
- fold create_definition modes thy
- end;
-
-fun sizelim_create_definitions preds (name, modes) thy =
- let
- val T = AList.lookup (op =) preds name |> the
- fun create_definition mode thy =
- let
- val mode_cname = create_constname_of_mode thy "sizelim_" name mode
- val funT = sizelim_funT_of PredicateCompFuns.compfuns mode T
- in
- thy |> Sign.add_consts_i [(Binding.name (Long_Name.base_name mode_cname), funT, NoSyn)]
- |> set_sizelim_function_name name mode mode_cname
- end;
- in
- fold create_definition modes thy
- end;
-
-fun rpred_create_definitions preds (name, modes) thy =
- let
- val T = AList.lookup (op =) preds name |> the
- fun create_definition mode thy =
- let
- val mode_cname = create_constname_of_mode thy "gen_" name mode
- val funT = sizelim_funT_of RPredCompFuns.compfuns mode T
- in
- thy |> Sign.add_consts_i [(Binding.name (Long_Name.base_name mode_cname), funT, NoSyn)]
- |> set_generator_name name mode mode_cname
- end;
- in
- fold create_definition modes thy
- end;
-
-(* Proving equivalence of term *)
-
-fun is_Type (Type _) = true
- | is_Type _ = false
-
-(* returns true if t is an application of an datatype constructor *)
-(* which then consequently would be splitted *)
-(* else false *)
-fun is_constructor thy t =
- if (is_Type (fastype_of t)) then
- (case Datatype.get_info thy ((fst o dest_Type o fastype_of) t) of
- NONE => false
- | SOME info => (let
- val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
- val (c, _) = strip_comb t
- in (case c of
- Const (name, _) => name mem_string constr_consts
- | _ => false) end))
- else false
-
-(* MAJOR FIXME: prove_params should be simple
- - different form of introrule for parameters ? *)
-fun prove_param thy (NONE, t) = TRY (rtac @{thm refl} 1)
- | prove_param thy (m as SOME (Mode (mode, is, ms)), t) =
- let
- val (f, args) = strip_comb (Envir.eta_contract t)
- val (params, _) = chop (length ms) args
- val f_tac = case f of
- Const (name, T) => simp_tac (HOL_basic_ss addsimps
- ([@{thm eval_pred}, (predfun_definition_of thy name mode),
- @{thm "split_eta"}, @{thm "split_beta"}, @{thm "fst_conv"},
- @{thm "snd_conv"}, @{thm pair_collapse}, @{thm "Product_Type.split_conv"}])) 1
- | Free _ => TRY (rtac @{thm refl} 1)
- | Abs _ => error "prove_param: No valid parameter term"
- in
- REPEAT_DETERM (etac @{thm thin_rl} 1)
- THEN REPEAT_DETERM (rtac @{thm ext} 1)
- THEN print_tac "prove_param"
- THEN f_tac
- THEN print_tac "after simplification in prove_args"
- THEN (EVERY (map (prove_param thy) (ms ~~ params)))
- THEN (REPEAT_DETERM (atac 1))
- end
-
-fun prove_expr thy (Mode (mode, is, ms), t, us) (premposition : int) =
- case strip_comb t of
- (Const (name, T), args) =>
- let
- val introrule = predfun_intro_of thy name mode
- val (args1, args2) = chop (length ms) args
- in
- rtac @{thm bindI} 1
- THEN print_tac "before intro rule:"
- (* for the right assumption in first position *)
- THEN rotate_tac premposition 1
- THEN debug_tac (Display.string_of_thm (ProofContext.init thy) introrule)
- THEN rtac introrule 1
- THEN print_tac "after intro rule"
- (* work with parameter arguments *)
- THEN (atac 1)
- THEN (print_tac "parameter goal")
- THEN (EVERY (map (prove_param thy) (ms ~~ args1)))
- THEN (REPEAT_DETERM (atac 1))
- end
- | _ => rtac @{thm bindI} 1
- THEN asm_full_simp_tac
- (HOL_basic_ss' addsimps [@{thm "split_eta"}, @{thm "split_beta"}, @{thm "fst_conv"},
- @{thm "snd_conv"}, @{thm pair_collapse}]) 1
- THEN (atac 1)
- THEN print_tac "after prove parameter call"
-
-
-fun SOLVED tac st = FILTER (fn st' => nprems_of st' = nprems_of st - 1) tac st;
-
-fun SOLVEDALL tac st = FILTER (fn st' => nprems_of st' = 0) tac st
-
-fun prove_match thy (out_ts : term list) = let
- fun get_case_rewrite t =
- if (is_constructor thy t) then let
- val case_rewrites = (#case_rewrites (Datatype.the_info thy
- ((fst o dest_Type o fastype_of) t)))
- in case_rewrites @ (flat (map get_case_rewrite (snd (strip_comb t)))) end
- else []
- val simprules = @{thm "unit.cases"} :: @{thm "prod.cases"} :: (flat (map get_case_rewrite out_ts))
-(* replace TRY by determining if it necessary - are there equations when calling compile match? *)
-in
- (* make this simpset better! *)
- asm_full_simp_tac (HOL_basic_ss' addsimps simprules) 1
- THEN print_tac "after prove_match:"
- THEN (DETERM (TRY (EqSubst.eqsubst_tac (ProofContext.init thy) [0] [@{thm "HOL.if_P"}] 1
- THEN (REPEAT_DETERM (rtac @{thm conjI} 1 THEN (SOLVED (asm_simp_tac HOL_basic_ss 1))))
- THEN (SOLVED (asm_simp_tac HOL_basic_ss 1)))))
- THEN print_tac "after if simplification"
-end;
-
-(* corresponds to compile_fun -- maybe call that also compile_sidecond? *)
-
-fun prove_sidecond thy modes t =
- let
- fun preds_of t nameTs = case strip_comb t of
- (f as Const (name, T), args) =>
- if AList.defined (op =) modes name then (name, T) :: nameTs
- else fold preds_of args nameTs
- | _ => nameTs
- val preds = preds_of t []
- val defs = map
- (fn (pred, T) => predfun_definition_of thy pred
- ([], map (rpair NONE) (1 upto (length (binder_types T)))))
- preds
- in
- (* remove not_False_eq_True when simpset in prove_match is better *)
- simp_tac (HOL_basic_ss addsimps
- (@{thms "HOL.simp_thms"} @ (@{thm not_False_eq_True} :: @{thm eval_pred} :: defs))) 1
- (* need better control here! *)
- end
-
-fun prove_clause thy nargs modes (iss, is) (_, clauses) (ts, moded_ps) =
- let
- val (in_ts, clause_out_ts) = split_smode is ts;
- fun prove_prems out_ts [] =
- (prove_match thy out_ts)
- THEN print_tac "before simplifying assumptions"
- THEN asm_full_simp_tac HOL_basic_ss' 1
- THEN print_tac "before single intro rule"
- THEN (rtac (if null clause_out_ts then @{thm singleI_unit} else @{thm singleI}) 1)
- | prove_prems out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
- let
- val premposition = (find_index (equal p) clauses) + nargs
- val rest_tac = (case p of Prem (us, t) =>
- let
- val (_, out_ts''') = split_smode is us
- val rec_tac = prove_prems out_ts''' ps
- in
- print_tac "before clause:"
- THEN asm_simp_tac HOL_basic_ss 1
- THEN print_tac "before prove_expr:"
- THEN prove_expr thy (mode, t, us) premposition
- THEN print_tac "after prove_expr:"
- THEN rec_tac
- end
- | Negprem (us, t) =>
- let
- val (_, out_ts''') = split_smode is us
- val rec_tac = prove_prems out_ts''' ps
- val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
- val (_, params) = strip_comb t
- in
- rtac @{thm bindI} 1
- THEN (if (is_some name) then
- simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1
- THEN rtac @{thm not_predI} 1
- THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
- THEN (REPEAT_DETERM (atac 1))
- (* FIXME: work with parameter arguments *)
- THEN (EVERY (map (prove_param thy) (param_modes ~~ params)))
- else
- rtac @{thm not_predI'} 1)
- THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
- THEN rec_tac
- end
- | Sidecond t =>
- rtac @{thm bindI} 1
- THEN rtac @{thm if_predI} 1
- THEN print_tac "before sidecond:"
- THEN prove_sidecond thy modes t
- THEN print_tac "after sidecond:"
- THEN prove_prems [] ps)
- in (prove_match thy out_ts)
- THEN rest_tac
- end;
- val prems_tac = prove_prems in_ts moded_ps
- in
- rtac @{thm bindI} 1
- THEN rtac @{thm singleI} 1
- THEN prems_tac
- end;
-
-fun select_sup 1 1 = []
- | select_sup _ 1 = [rtac @{thm supI1}]
- | select_sup n i = (rtac @{thm supI2})::(select_sup (n - 1) (i - 1));
-
-fun prove_one_direction thy clauses preds modes pred mode moded_clauses =
- let
- val T = the (AList.lookup (op =) preds pred)
- val nargs = length (binder_types T) - nparams_of thy pred
- val pred_case_rule = the_elim_of thy pred
- in
- REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"}))
- THEN print_tac "before applying elim rule"
- THEN etac (predfun_elim_of thy pred mode) 1
- THEN etac pred_case_rule 1
- THEN (EVERY (map
- (fn i => EVERY' (select_sup (length moded_clauses) i) i)
- (1 upto (length moded_clauses))))
- THEN (EVERY (map2 (prove_clause thy nargs modes mode) clauses moded_clauses))
- THEN print_tac "proved one direction"
- end;
-
-(** Proof in the other direction **)
-
-fun prove_match2 thy out_ts = let
- fun split_term_tac (Free _) = all_tac
- | split_term_tac t =
- if (is_constructor thy t) then let
- val info = Datatype.the_info thy ((fst o dest_Type o fastype_of) t)
- val num_of_constrs = length (#case_rewrites info)
- (* special treatment of pairs -- because of fishing *)
- val split_rules = case (fst o dest_Type o fastype_of) t of
- "*" => [@{thm prod.split_asm}]
- | _ => PureThy.get_thms thy (((fst o dest_Type o fastype_of) t) ^ ".split_asm")
- val (_, ts) = strip_comb t
- in
- (Splitter.split_asm_tac split_rules 1)
-(* THEN (Simplifier.asm_full_simp_tac HOL_basic_ss 1)
- THEN (DETERM (TRY (etac @{thm Pair_inject} 1))) *)
- THEN (REPEAT_DETERM_N (num_of_constrs - 1) (etac @{thm botE} 1 ORELSE etac @{thm botE} 2))
- THEN (EVERY (map split_term_tac ts))
- end
- else all_tac
- in
- split_term_tac (mk_tuple out_ts)
- THEN (DETERM (TRY ((Splitter.split_asm_tac [@{thm "split_if_asm"}] 1) THEN (etac @{thm botE} 2))))
- end
-
-(* VERY LARGE SIMILIRATIY to function prove_param
--- join both functions
-*)
-(* TODO: remove function *)
-
-fun prove_param2 thy (NONE, t) = all_tac
- | prove_param2 thy (m as SOME (Mode (mode, is, ms)), t) = let
- val (f, args) = strip_comb (Envir.eta_contract t)
- val (params, _) = chop (length ms) args
- val f_tac = case f of
- Const (name, T) => full_simp_tac (HOL_basic_ss addsimps
- (@{thm eval_pred}::(predfun_definition_of thy name mode)
- :: @{thm "Product_Type.split_conv"}::[])) 1
- | Free _ => all_tac
- | _ => error "prove_param2: illegal parameter term"
- in
- print_tac "before simplification in prove_args:"
- THEN f_tac
- THEN print_tac "after simplification in prove_args"
- THEN (EVERY (map (prove_param2 thy) (ms ~~ params)))
- end
-
-
-fun prove_expr2 thy (Mode (mode, is, ms), t) =
- (case strip_comb t of
- (Const (name, T), args) =>
- etac @{thm bindE} 1
- THEN (REPEAT_DETERM (CHANGED (rewtac @{thm "split_paired_all"})))
- THEN print_tac "prove_expr2-before"
- THEN (debug_tac (Syntax.string_of_term_global thy
- (prop_of (predfun_elim_of thy name mode))))
- THEN (etac (predfun_elim_of thy name mode) 1)
- THEN print_tac "prove_expr2"
- THEN (EVERY (map (prove_param2 thy) (ms ~~ args)))
- THEN print_tac "finished prove_expr2"
- | _ => etac @{thm bindE} 1)
-
-(* FIXME: what is this for? *)
-(* replace defined by has_mode thy pred *)
-(* TODO: rewrite function *)
-fun prove_sidecond2 thy modes t = let
- fun preds_of t nameTs = case strip_comb t of
- (f as Const (name, T), args) =>
- if AList.defined (op =) modes name then (name, T) :: nameTs
- else fold preds_of args nameTs
- | _ => nameTs
- val preds = preds_of t []
- val defs = map
- (fn (pred, T) => predfun_definition_of thy pred
- ([], map (rpair NONE) (1 upto (length (binder_types T)))))
- preds
- in
- (* only simplify the one assumption *)
- full_simp_tac (HOL_basic_ss' addsimps @{thm eval_pred} :: defs) 1
- (* need better control here! *)
- THEN print_tac "after sidecond2 simplification"
- end
-
-fun prove_clause2 thy modes pred (iss, is) (ts, ps) i =
- let
- val pred_intro_rule = nth (intros_of thy pred) (i - 1)
- val (in_ts, clause_out_ts) = split_smode is ts;
- fun prove_prems2 out_ts [] =
- print_tac "before prove_match2 - last call:"
- THEN prove_match2 thy out_ts
- THEN print_tac "after prove_match2 - last call:"
- THEN (etac @{thm singleE} 1)
- THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
- THEN (asm_full_simp_tac HOL_basic_ss' 1)
- THEN (REPEAT_DETERM (etac @{thm Pair_inject} 1))
- THEN (asm_full_simp_tac HOL_basic_ss' 1)
- THEN SOLVED (print_tac "state before applying intro rule:"
- THEN (rtac pred_intro_rule 1)
- (* How to handle equality correctly? *)
- THEN (print_tac "state before assumption matching")
- THEN (REPEAT (atac 1 ORELSE
- (CHANGED (asm_full_simp_tac (HOL_basic_ss' addsimps
- [@{thm split_eta}, @{thm "split_beta"}, @{thm "fst_conv"}, @{thm "snd_conv"}, @{thm pair_collapse}]) 1)
- THEN print_tac "state after simp_tac:"))))
- | prove_prems2 out_ts ((p, mode as Mode ((iss, is), _, param_modes)) :: ps) =
- let
- val rest_tac = (case p of
- Prem (us, t) =>
- let
- val (_, out_ts''') = split_smode is us
- val rec_tac = prove_prems2 out_ts''' ps
- in
- (prove_expr2 thy (mode, t)) THEN rec_tac
- end
- | Negprem (us, t) =>
- let
- val (_, out_ts''') = split_smode is us
- val rec_tac = prove_prems2 out_ts''' ps
- val name = (case strip_comb t of (Const (c, _), _) => SOME c | _ => NONE)
- val (_, params) = strip_comb t
- in
- print_tac "before neg prem 2"
- THEN etac @{thm bindE} 1
- THEN (if is_some name then
- full_simp_tac (HOL_basic_ss addsimps [predfun_definition_of thy (the name) (iss, is)]) 1
- THEN etac @{thm not_predE} 1
- THEN simp_tac (HOL_basic_ss addsimps [@{thm not_False_eq_True}]) 1
- THEN (EVERY (map (prove_param2 thy) (param_modes ~~ params)))
- else
- etac @{thm not_predE'} 1)
- THEN rec_tac
- end
- | Sidecond t =>
- etac @{thm bindE} 1
- THEN etac @{thm if_predE} 1
- THEN prove_sidecond2 thy modes t
- THEN prove_prems2 [] ps)
- in print_tac "before prove_match2:"
- THEN prove_match2 thy out_ts
- THEN print_tac "after prove_match2:"
- THEN rest_tac
- end;
- val prems_tac = prove_prems2 in_ts ps
- in
- print_tac "starting prove_clause2"
- THEN etac @{thm bindE} 1
- THEN (etac @{thm singleE'} 1)
- THEN (TRY (etac @{thm Pair_inject} 1))
- THEN print_tac "after singleE':"
- THEN prems_tac
- end;
-
-fun prove_other_direction thy modes pred mode moded_clauses =
- let
- fun prove_clause clause i =
- (if i < length moded_clauses then etac @{thm supE} 1 else all_tac)
- THEN (prove_clause2 thy modes pred mode clause i)
- in
- (DETERM (TRY (rtac @{thm unit.induct} 1)))
- THEN (REPEAT_DETERM (CHANGED (rewtac @{thm split_paired_all})))
- THEN (rtac (predfun_intro_of thy pred mode) 1)
- THEN (REPEAT_DETERM (rtac @{thm refl} 2))
- THEN (EVERY (map2 prove_clause moded_clauses (1 upto (length moded_clauses))))
- end;
-
-(** proof procedure **)
-
-fun prove_pred thy clauses preds modes pred mode (moded_clauses, compiled_term) =
- let
- val ctxt = ProofContext.init thy
- val clauses = the (AList.lookup (op =) clauses pred)
- in
- Goal.prove ctxt (Term.add_free_names compiled_term []) [] compiled_term
- (if !do_proofs then
- (fn _ =>
- rtac @{thm pred_iffI} 1
- THEN print_tac "after pred_iffI"
- THEN prove_one_direction thy clauses preds modes pred mode moded_clauses
- THEN print_tac "proved one direction"
- THEN prove_other_direction thy modes pred mode moded_clauses
- THEN print_tac "proved other direction")
- else (fn _ => mycheat_tac thy 1))
- end;
-
-(* composition of mode inference, definition, compilation and proof *)
-
-(** auxillary combinators for table of preds and modes **)
-
-fun map_preds_modes f preds_modes_table =
- map (fn (pred, modes) =>
- (pred, map (fn (mode, value) => (mode, f pred mode value)) modes)) preds_modes_table
-
-fun join_preds_modes table1 table2 =
- map_preds_modes (fn pred => fn mode => fn value =>
- (value, the (AList.lookup (op =) (the (AList.lookup (op =) table2 pred)) mode))) table1
-
-fun maps_modes preds_modes_table =
- map (fn (pred, modes) =>
- (pred, map (fn (mode, value) => value) modes)) preds_modes_table
-
-fun compile_preds compfuns mk_fun_of use_size thy all_vs param_vs preds moded_clauses =
- map_preds_modes (fn pred => compile_pred compfuns mk_fun_of use_size thy all_vs param_vs pred
- (the (AList.lookup (op =) preds pred))) moded_clauses
-
-fun prove thy clauses preds modes moded_clauses compiled_terms =
- map_preds_modes (prove_pred thy clauses preds modes)
- (join_preds_modes moded_clauses compiled_terms)
-
-fun prove_by_skip thy _ _ _ _ compiled_terms =
- map_preds_modes (fn pred => fn mode => fn t => Drule.standard (SkipProof.make_thm thy t))
- compiled_terms
-
-fun prepare_intrs thy prednames =
- let
- val intrs = maps (intros_of thy) prednames
- |> map (Logic.unvarify o prop_of)
- val nparams = nparams_of thy (hd prednames)
- val extra_modes = all_modes_of thy |> filter_out (fn (name, _) => member (op =) prednames name)
- val preds = distinct (op =) (map (dest_Const o fst o (strip_intro_concl nparams)) intrs)
- val _ $ u = Logic.strip_imp_concl (hd intrs);
- val params = List.take (snd (strip_comb u), nparams);
- val param_vs = maps term_vs params
- val all_vs = terms_vs intrs
- fun dest_prem t =
- (case strip_comb t of
- (v as Free _, ts) => if v mem params then Prem (ts, v) else Sidecond t
- | (c as Const (@{const_name Not}, _), [t]) => (case dest_prem t of
- Prem (ts, t) => Negprem (ts, t)
- | Negprem _ => error ("Double negation not allowed in premise: " ^ (Syntax.string_of_term_global thy (c $ t)))
- | Sidecond t => Sidecond (c $ t))
- | (c as Const (s, _), ts) =>
- if is_registered thy s then
- let val (ts1, ts2) = chop (nparams_of thy s) ts
- in Prem (ts2, list_comb (c, ts1)) end
- else Sidecond t
- | _ => Sidecond t)
- fun add_clause intr (clauses, arities) =
- let
- val _ $ t = Logic.strip_imp_concl intr;
- val (Const (name, T), ts) = strip_comb t;
- val (ts1, ts2) = chop nparams ts;
- val prems = map (dest_prem o HOLogic.dest_Trueprop) (Logic.strip_imp_prems intr);
- val (Ts, Us) = chop nparams (binder_types T)
- in
- (AList.update op = (name, these (AList.lookup op = clauses name) @
- [(ts2, prems)]) clauses,
- AList.update op = (name, (map (fn U => (case strip_type U of
- (Rs as _ :: _, Type ("bool", [])) => SOME (length Rs)
- | _ => NONE)) Ts,
- length Us)) arities)
- end;
- val (clauses, arities) = fold add_clause intrs ([], []);
- fun modes_of_arities arities =
- (map (fn (s, (ks, k)) => (s, cprod (cprods (map
- (fn NONE => [NONE]
- | SOME k' => map SOME (map (map (rpair NONE)) (subsets 1 k'))) ks),
- map (map (rpair NONE)) (subsets 1 k)))) arities)
- fun modes_of_typ T =
- let
- val (Ts, Us) = chop nparams (binder_types T)
- fun all_smodes_of_typs Ts = cprods_subset (
- map_index (fn (i, U) =>
- case HOLogic.strip_tupleT U of
- [] => [(i + 1, NONE)]
- | [U] => [(i + 1, NONE)]
- | Us => map (pair (i + 1) o SOME) ((subsets 1 (length Us)) \\ [[], 1 upto (length Us)]))
- Ts)
- in
- cprod (cprods (map (fn T => case strip_type T of
- (Rs as _ :: _, Type ("bool", [])) => map SOME (all_smodes_of_typs Rs) | _ => [NONE]) Ts),
- all_smodes_of_typs Us)
- end
- val all_modes = map (fn (s, T) => (s, modes_of_typ T)) preds
- in (preds, nparams, all_vs, param_vs, extra_modes, clauses, all_modes) end;
-
-(** main function of predicate compiler **)
-
-fun add_equations_of steps prednames thy =
- let
- val _ = Output.tracing ("Starting predicate compiler for predicates " ^ commas prednames ^ "...")
- val (preds, nparams, all_vs, param_vs, extra_modes, clauses, all_modes) =
- prepare_intrs thy prednames
- val _ = Output.tracing "Infering modes..."
- val moded_clauses = #infer_modes steps thy extra_modes all_modes param_vs clauses
- val modes = map (fn (p, mps) => (p, map fst mps)) moded_clauses
- val _ = print_modes modes
- val _ = print_moded_clauses thy moded_clauses
- val _ = Output.tracing "Defining executable functions..."
- val thy' = fold (#create_definitions steps preds) modes thy
- |> Theory.checkpoint
- val _ = Output.tracing "Compiling equations..."
- val compiled_terms =
- (#compile_preds steps) thy' all_vs param_vs preds moded_clauses
- val _ = print_compiled_terms thy' compiled_terms
- val _ = Output.tracing "Proving equations..."
- val result_thms = #prove steps thy' clauses preds (extra_modes @ modes)
- moded_clauses compiled_terms
- val qname = #qname steps
- (* val attrib = gn thy => Attrib.attribute_i thy Code.add_eqn_attrib *)
- val attrib = fn thy => Attrib.attribute_i thy (Attrib.internal (K (Thm.declaration_attribute
- (fn thm => Context.mapping (Code.add_eqn thm) I))))
- val thy'' = fold (fn (name, result_thms) => fn thy => snd (PureThy.add_thmss
- [((Binding.qualify true (Long_Name.base_name name) (Binding.name qname), result_thms),
- [attrib thy ])] thy))
- (maps_modes result_thms) thy'
- |> Theory.checkpoint
- in
- thy''
- end
-
-fun extend' value_of edges_of key (G, visited) =
- let
- val (G', v) = case try (Graph.get_node G) key of
- SOME v => (G, v)
- | NONE => (Graph.new_node (key, value_of key) G, value_of key)
- val (G'', visited') = fold (extend' value_of edges_of) (edges_of (key, v) \\ visited)
- (G', key :: visited)
- in
- (fold (Graph.add_edge o (pair key)) (edges_of (key, v)) G'', visited')
- end;
-
-fun extend value_of edges_of key G = fst (extend' value_of edges_of key (G, []))
-
-fun gen_add_equations steps names thy =
- let
- val thy' = PredData.map (fold (extend (fetch_pred_data thy) (depending_preds_of thy)) names) thy
- |> Theory.checkpoint;
- fun strong_conn_of gr keys =
- Graph.strong_conn (Graph.subgraph (member (op =) (Graph.all_succs gr keys)) gr)
- val scc = strong_conn_of (PredData.get thy') names
- val thy'' = fold_rev
- (fn preds => fn thy =>
- if #are_not_defined steps thy preds then add_equations_of steps preds thy else thy)
- scc thy' |> Theory.checkpoint
- in thy'' end
-
-(* different instantiantions of the predicate compiler *)
-
-val add_equations = gen_add_equations
- {infer_modes = infer_modes,
- create_definitions = create_definitions,
- compile_preds = compile_preds PredicateCompFuns.compfuns mk_fun_of false,
- prove = prove,
- are_not_defined = (fn thy => forall (null o modes_of thy)),
- qname = "equation"}
-
-val add_sizelim_equations = gen_add_equations
- {infer_modes = infer_modes,
- create_definitions = sizelim_create_definitions,
- compile_preds = compile_preds PredicateCompFuns.compfuns mk_sizelim_fun_of true,
- prove = prove_by_skip,
- are_not_defined = (fn thy => fn preds => true), (* TODO *)
- qname = "sizelim_equation"
- }
-
-val add_quickcheck_equations = gen_add_equations
- {infer_modes = infer_modes_with_generator,
- create_definitions = rpred_create_definitions,
- compile_preds = compile_preds RPredCompFuns.compfuns mk_generator_of true,
- prove = prove_by_skip,
- are_not_defined = (fn thy => fn preds => true), (* TODO *)
- qname = "rpred_equation"}
-
-(** user interface **)
-
-(* generation of case rules from user-given introduction rules *)
-
-fun mk_casesrule ctxt nparams introrules =
- let
- val intros = map (Logic.unvarify o prop_of) introrules
- val (pred, (params, args)) = strip_intro_concl nparams (hd intros)
- val ([propname], ctxt1) = Variable.variant_fixes ["thesis"] ctxt
- val prop = HOLogic.mk_Trueprop (Free (propname, HOLogic.boolT))
- val (argnames, ctxt2) = Variable.variant_fixes
- (map (fn i => "a" ^ string_of_int i) (1 upto (length args))) ctxt1
- val argvs = map2 (curry Free) argnames (map fastype_of args)
- fun mk_case intro =
- let
- val (_, (_, args)) = strip_intro_concl nparams intro
- val prems = Logic.strip_imp_prems intro
- val eqprems = map (HOLogic.mk_Trueprop o HOLogic.mk_eq) (argvs ~~ args)
- val frees = (fold o fold_aterms)
- (fn t as Free _ =>
- if member (op aconv) params t then I else insert (op aconv) t
- | _ => I) (args @ prems) []
- in fold Logic.all frees (Logic.list_implies (eqprems @ prems, prop)) end
- val assm = HOLogic.mk_Trueprop (list_comb (pred, params @ argvs))
- val cases = map mk_case intros
- in Logic.list_implies (assm :: cases, prop) end;
-
-(* code_pred_intro attribute *)
-
-fun attrib f = Thm.declaration_attribute (fn thm => Context.mapping (f thm) I);
-
-val code_pred_intros_attrib = attrib add_intro;
-
-local
-
-(* TODO: make TheoryDataFun to GenericDataFun & remove duplication of local theory and theory *)
-fun generic_code_pred prep_const raw_const lthy =
- let
- val thy = ProofContext.theory_of lthy
- val const = prep_const thy raw_const
- val lthy' = LocalTheory.theory (PredData.map
- (extend (fetch_pred_data thy) (depending_preds_of thy) const)) lthy
- |> LocalTheory.checkpoint
- val thy' = ProofContext.theory_of lthy'
- val preds = Graph.all_preds (PredData.get thy') [const] |> filter_out (has_elim thy')
- fun mk_cases const =
- let
- val nparams = nparams_of thy' const
- val intros = intros_of thy' const
- in mk_casesrule lthy' nparams intros end
- val cases_rules = map mk_cases preds
- val cases =
- map (fn case_rule => RuleCases.Case {fixes = [],
- assumes = [("", Logic.strip_imp_prems case_rule)],
- binds = [], cases = []}) cases_rules
- val case_env = map2 (fn p => fn c => (Long_Name.base_name p, SOME c)) preds cases
- val lthy'' = lthy'
- |> fold Variable.auto_fixes cases_rules
- |> ProofContext.add_cases true case_env
- fun after_qed thms goal_ctxt =
- let
- val global_thms = ProofContext.export goal_ctxt
- (ProofContext.init (ProofContext.theory_of goal_ctxt)) (map the_single thms)
- in
- goal_ctxt |> LocalTheory.theory (fold set_elim global_thms #> add_equations [const])
- end
- in
- Proof.theorem_i NONE after_qed (map (single o (rpair [])) cases_rules) lthy''
- end;
-
-structure P = OuterParse
-
-in
-
-val code_pred = generic_code_pred (K I);
-val code_pred_cmd = generic_code_pred Code.read_const
-
-val setup = PredData.put (Graph.empty) #>
- Attrib.setup @{binding code_pred_intros} (Scan.succeed (attrib add_intro))
- "adding alternative introduction rules for code generation of inductive predicates"
-(* Attrib.setup @{binding code_ind_cases} (Scan.succeed add_elim_attrib)
- "adding alternative elimination rules for code generation of inductive predicates";
- *)
- (*FIXME name discrepancy in attribs and ML code*)
- (*FIXME intros should be better named intro*)
- (*FIXME why distinguished attribute for cases?*)
-
-val _ = OuterSyntax.local_theory_to_proof "code_pred"
- "prove equations for predicate specified by intro/elim rules"
- OuterKeyword.thy_goal (P.term_group >> code_pred_cmd)
-
-end
-
-(*FIXME
-- Naming of auxiliary rules necessary?
-- add default code equations P x y z = P_i_i_i x y z
-*)
-
-(* transformation for code generation *)
-
-val eval_ref = ref (NONE : (unit -> term Predicate.pred) option);
-
-(*FIXME turn this into an LCF-guarded preprocessor for comprehensions*)
-fun analyze_compr thy t_compr =
- let
- val split = case t_compr of (Const (@{const_name Collect}, _) $ t) => t
- | _ => error ("Not a set comprehension: " ^ Syntax.string_of_term_global thy t_compr);
- val (body, Ts, fp) = HOLogic.strip_psplits split;
- val (pred as Const (name, T), all_args) = strip_comb body;
- val (params, args) = chop (nparams_of thy name) all_args;
- val user_mode = map_filter I (map_index
- (fn (i, t) => case t of Bound j => if j < length Ts then NONE
- else SOME (i+1) | _ => SOME (i+1)) args); (*FIXME dangling bounds should not occur*)
- val user_mode' = map (rpair NONE) user_mode
- val modes = filter (fn Mode (_, is, _) => is = user_mode')
- (modes_of_term (all_modes_of thy) (list_comb (pred, params)));
- val m = case modes
- of [] => error ("No mode possible for comprehension "
- ^ Syntax.string_of_term_global thy t_compr)
- | [m] => m
- | m :: _ :: _ => (warning ("Multiple modes possible for comprehension "
- ^ Syntax.string_of_term_global thy t_compr); m);
- val (inargs, outargs) = split_smode user_mode' args;
- val t_pred = list_comb (compile_expr NONE thy (m, list_comb (pred, params)), inargs);
- val t_eval = if null outargs then t_pred else let
- val outargs_bounds = map (fn Bound i => i) outargs;
- val outargsTs = map (nth Ts) outargs_bounds;
- val T_pred = HOLogic.mk_tupleT outargsTs;
- val T_compr = HOLogic.mk_ptupleT fp Ts;
- val arrange_bounds = map_index I outargs_bounds
- |> sort (prod_ord (K EQUAL) int_ord)
- |> map fst;
- val arrange = funpow (length outargs_bounds - 1) HOLogic.mk_split
- (Term.list_abs (map (pair "") outargsTs,
- HOLogic.mk_ptuple fp T_compr (map Bound arrange_bounds)))
- in mk_map PredicateCompFuns.compfuns T_pred T_compr arrange t_pred end
- in t_eval end;
-
-fun eval thy t_compr =
- let
- val t = analyze_compr thy t_compr;
- val T = dest_predT PredicateCompFuns.compfuns (fastype_of t);
- val t' = mk_map PredicateCompFuns.compfuns T HOLogic.termT (HOLogic.term_of_const T) t;
- in (T, Code_ML.eval NONE ("Predicate_Compile.eval_ref", eval_ref) Predicate.map thy t' []) end;
-
-fun values ctxt k t_compr =
- let
- val thy = ProofContext.theory_of ctxt;
- val (T, t) = eval thy t_compr;
- val setT = HOLogic.mk_setT T;
- val (ts, _) = Predicate.yieldn k t;
- val elemsT = HOLogic.mk_set T ts;
- in if k = ~1 orelse length ts < k then elemsT
- else Const (@{const_name Set.union}, setT --> setT --> setT) $ elemsT $ t_compr
- end;
-
-fun values_cmd modes k raw_t state =
- let
- val ctxt = Toplevel.context_of state;
- val t = Syntax.read_term ctxt raw_t;
- val t' = values ctxt k t;
- val ty' = Term.type_of t';
- val ctxt' = Variable.auto_fixes t' ctxt;
- val p = PrintMode.with_modes modes (fn () =>
- Pretty.block [Pretty.quote (Syntax.pretty_term ctxt' t'), Pretty.fbrk,
- Pretty.str "::", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt' ty')]) ();
- in Pretty.writeln p end;
-
-local structure P = OuterParse in
-
-val opt_modes = Scan.optional (P.$$$ "(" |-- P.!!! (Scan.repeat1 P.xname --| P.$$$ ")")) [];
-
-val _ = OuterSyntax.improper_command "values" "enumerate and print comprehensions" OuterKeyword.diag
- (opt_modes -- Scan.optional P.nat ~1 -- P.term
- >> (fn ((modes, k), t) => Toplevel.no_timing o Toplevel.keep
- (values_cmd modes k t)));
-
-end;
-
-end;