--- a/src/HOL/Number_Theory/Binomial.thy Thu Oct 30 11:24:53 2014 +0100
+++ b/src/HOL/Number_Theory/Binomial.thy Thu Oct 30 16:36:44 2014 +0000
@@ -32,8 +32,8 @@
lemma choose_reduce_nat:
"0 < (n::nat) \<Longrightarrow> 0 < k \<Longrightarrow>
- (n choose k) = ((n - 1) choose k) + ((n - 1) choose (k - 1))"
- by (metis Suc_diff_1 binomial.simps(2) add.commute neq0_conv)
+ (n choose k) = ((n - 1) choose (k - 1)) + ((n - 1) choose k)"
+ by (metis Suc_diff_1 binomial.simps(2) neq0_conv)
lemma binomial_eq_0: "n < k \<Longrightarrow> n choose k = 0"
by (induct n arbitrary: k) auto
@@ -524,7 +524,6 @@
using Suc
apply auto
done
-
have "of_nat (fact (Suc k)) * (a gchoose k + (a gchoose (Suc k))) =
((a gchoose Suc h) * of_nat (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0\<Colon>nat..Suc h}. a - of_nat i)"
apply (simp add: Suc field_simps del: fact_Suc)
@@ -547,6 +546,10 @@
finally show ?thesis by (simp del: fact_Suc)
qed
+lemma gbinomial_reduce_nat:
+ "0 < k \<Longrightarrow> (a::'a::field_char_0) gchoose k = (a - 1) gchoose (k - 1) + ((a - 1) gchoose k)"
+by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc)
+
lemma binomial_symmetric:
assumes kn: "k \<le> n"