moved Integ files to canonical place;
authorwenzelm
Thu, 31 May 2007 12:06:31 +0200
changeset 23146 0bc590051d95
parent 23145 5d8faadf3ecf
child 23147 a5db2f7d7654
moved Integ files to canonical place;
src/HOL/Integ/Presburger.thy
src/HOL/Integ/cooper_dec.ML
src/HOL/Integ/cooper_proof.ML
src/HOL/Integ/presburger.ML
src/HOL/Integ/qelim.ML
src/HOL/Integ/reflected_cooper.ML
src/HOL/Integ/reflected_presburger.ML
src/HOL/IsaMakefile
src/HOL/Presburger.thy
src/ZF/Bin.thy
src/ZF/EquivClass.thy
src/ZF/Int.thy
src/ZF/IntArith.thy
src/ZF/IntDiv.thy
src/ZF/Integ/Bin.thy
src/ZF/Integ/EquivClass.thy
src/ZF/Integ/Int.thy
src/ZF/Integ/IntArith.thy
src/ZF/Integ/IntDiv.thy
src/ZF/Integ/int_arith.ML
src/ZF/Integ/twos_compl.ML
src/ZF/IsaMakefile
src/ZF/ROOT.ML
src/ZF/Tools/numeral_syntax.ML
src/ZF/Tools/twos_compl.ML
src/ZF/int_arith.ML
--- a/src/HOL/Integ/Presburger.thy	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1279 +0,0 @@
-(*  Title:      HOL/Integ/Presburger.thy
-    ID:         $Id$
-    Author:     Amine Chaieb, Tobias Nipkow and Stefan Berghofer, TU Muenchen
-
-File containing necessary theorems for the proof
-generation for Cooper Algorithm  
-*)
-
-header {* Presburger Arithmetic: Cooper's Algorithm *}
-
-theory Presburger
-imports NatSimprocs "../SetInterval"
-uses
-  ("cooper_dec.ML") ("cooper_proof.ML") ("qelim.ML") 
-  ("reflected_presburger.ML") ("reflected_cooper.ML") ("presburger.ML")
-begin
-
-text {* Theorem for unitifying the coeffitients of @{text x} in an existential formula*}
-
-theorem unity_coeff_ex: "(\<exists>x::int. P (l * x)) = (\<exists>x. l dvd (1*x+0) \<and> P x)"
-  apply (rule iffI)
-  apply (erule exE)
-  apply (rule_tac x = "l * x" in exI)
-  apply simp
-  apply (erule exE)
-  apply (erule conjE)
-  apply (erule dvdE)
-  apply (rule_tac x = k in exI)
-  apply simp
-  done
-
-lemma uminus_dvd_conv: "(d dvd (t::int)) = (-d dvd t)"
-apply(unfold dvd_def)
-apply(rule iffI)
-apply(clarsimp)
-apply(rename_tac k)
-apply(rule_tac x = "-k" in exI)
-apply simp
-apply(clarsimp)
-apply(rename_tac k)
-apply(rule_tac x = "-k" in exI)
-apply simp
-done
-
-lemma uminus_dvd_conv': "(d dvd (t::int)) = (d dvd -t)"
-apply(unfold dvd_def)
-apply(rule iffI)
-apply(clarsimp)
-apply(rule_tac x = "-k" in exI)
-apply simp
-apply(clarsimp)
-apply(rule_tac x = "-k" in exI)
-apply simp
-done
-
-
-
-text {*Theorems for the combination of proofs of the equality of @{text P} and @{text P_m} for integers @{text x} less than some integer @{text z}.*}
-
-theorem eq_minf_conjI: "\<exists>z1::int. \<forall>x. x < z1 \<longrightarrow> (A1 x = A2 x) \<Longrightarrow>
-  \<exists>z2::int. \<forall>x. x < z2 \<longrightarrow> (B1 x = B2 x) \<Longrightarrow>
-  \<exists>z::int. \<forall>x. x < z \<longrightarrow> ((A1 x \<and> B1 x) = (A2 x \<and> B2 x))"
-  apply (erule exE)+
-  apply (rule_tac x = "min z1 z2" in exI)
-  apply simp
-  done
-
-
-theorem eq_minf_disjI: "\<exists>z1::int. \<forall>x. x < z1 \<longrightarrow> (A1 x = A2 x) \<Longrightarrow>
-  \<exists>z2::int. \<forall>x. x < z2 \<longrightarrow> (B1 x = B2 x) \<Longrightarrow>
-  \<exists>z::int. \<forall>x. x < z \<longrightarrow> ((A1 x \<or> B1 x) = (A2 x \<or> B2 x))"
-
-  apply (erule exE)+
-  apply (rule_tac x = "min z1 z2" in exI)
-  apply simp
-  done
-
-
-text {*Theorems for the combination of proofs of the equality of @{text P} and @{text P_m} for integers @{text x} greather than some integer @{text z}.*}
-
-theorem eq_pinf_conjI: "\<exists>z1::int. \<forall>x. z1 < x \<longrightarrow> (A1 x = A2 x) \<Longrightarrow>
-  \<exists>z2::int. \<forall>x. z2 < x \<longrightarrow> (B1 x = B2 x) \<Longrightarrow>
-  \<exists>z::int. \<forall>x. z < x \<longrightarrow> ((A1 x \<and> B1 x) = (A2 x \<and> B2 x))"
-  apply (erule exE)+
-  apply (rule_tac x = "max z1 z2" in exI)
-  apply simp
-  done
-
-
-theorem eq_pinf_disjI: "\<exists>z1::int. \<forall>x. z1 < x \<longrightarrow> (A1 x = A2 x) \<Longrightarrow>
-  \<exists>z2::int. \<forall>x. z2 < x \<longrightarrow> (B1 x = B2 x) \<Longrightarrow>
-  \<exists>z::int. \<forall>x. z < x  \<longrightarrow> ((A1 x \<or> B1 x) = (A2 x \<or> B2 x))"
-  apply (erule exE)+
-  apply (rule_tac x = "max z1 z2" in exI)
-  apply simp
-  done
-
-text {*
-  \medskip Theorems for the combination of proofs of the modulo @{text
-  D} property for @{text "P plusinfinity"}
-
-  FIXME: This is THE SAME theorem as for the @{text minusinf} version,
-  but with @{text "+k.."} instead of @{text "-k.."} In the future
-  replace these both with only one. *}
-
-theorem modd_pinf_conjI: "\<forall>(x::int) k. A x = A (x+k*d) \<Longrightarrow>
-  \<forall>(x::int) k. B x = B (x+k*d) \<Longrightarrow>
-  \<forall>(x::int) (k::int). (A x \<and> B x) = (A (x+k*d) \<and> B (x+k*d))"
-  by simp
-
-theorem modd_pinf_disjI: "\<forall>(x::int) k. A x = A (x+k*d) \<Longrightarrow>
-  \<forall>(x::int) k. B x = B (x+k*d) \<Longrightarrow>
-  \<forall>(x::int) (k::int). (A x \<or> B x) = (A (x+k*d) \<or> B (x+k*d))"
-  by simp
-
-text {*
-  This is one of the cases where the simplifed formula is prooved to
-  habe some property (in relation to @{text P_m}) but we need to prove
-  the property for the original formula (@{text P_m})
-
-  FIXME: This is exaclty the same thm as for @{text minusinf}. *}
-
-lemma pinf_simp_eq: "ALL x. P(x) = Q(x) ==> (EX (x::int). P(x)) --> (EX (x::int). F(x))  ==> (EX (x::int). Q(x)) --> (EX (x::int). F(x)) "
-  by blast
-
-
-text {*
-  \medskip Theorems for the combination of proofs of the modulo @{text D}
-  property for @{text "P minusinfinity"} *}
-
-theorem modd_minf_conjI: "\<forall>(x::int) k. A x = A (x-k*d) \<Longrightarrow>
-  \<forall>(x::int) k. B x = B (x-k*d) \<Longrightarrow>
-  \<forall>(x::int) (k::int). (A x \<and> B x) = (A (x-k*d) \<and> B (x-k*d))"
-  by simp
-
-theorem modd_minf_disjI: "\<forall>(x::int) k. A x = A (x-k*d) \<Longrightarrow>
-  \<forall>(x::int) k. B x = B (x-k*d) \<Longrightarrow>
-  \<forall>(x::int) (k::int). (A x \<or> B x) = (A (x-k*d) \<or> B (x-k*d))"
-  by simp
-
-text {*
-  This is one of the cases where the simplifed formula is prooved to
-  have some property (in relation to @{text P_m}) but we need to
-  prove the property for the original formula (@{text P_m}). *}
-
-lemma minf_simp_eq: "ALL x. P(x) = Q(x) ==> (EX (x::int). P(x)) --> (EX (x::int). F(x))  ==> (EX (x::int). Q(x)) --> (EX (x::int). F(x)) "
-  by blast
-
-text {*
-  Theorem needed for proving at runtime divide properties using the
-  arithmetic tactic (which knows only about modulo = 0). *}
-
-lemma zdvd_iff_zmod_eq_0: "(m dvd n) = (n mod m = (0::int))"
-  by(simp add:dvd_def zmod_eq_0_iff)
-
-text {*
-  \medskip Theorems used for the combination of proof for the
-  backwards direction of Cooper's Theorem. They rely exclusively on
-  Predicate calculus.*}
-
-lemma not_ast_p_disjI: "(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> P1(x) --> P1(x + d))
-==>
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> P2(x) --> P2(x + d))
-==>
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) -->(P1(x) \<or> P2(x)) --> (P1(x + d) \<or> P2(x + d))) "
-  by blast
-
-
-lemma not_ast_p_conjI: "(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a- j)) --> P1(x) --> P1(x + d))
-==>
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> P2(x) --> P2(x + d))
-==>
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) -->(P1(x) \<and> P2(x)) --> (P1(x + d)
-\<and> P2(x + d))) "
-  by blast
-
-lemma not_ast_p_Q_elim: "
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) -->P(x) --> P(x + d))
-==> ( P = Q )
-==> (ALL x. ~(EX (j::int) : {1..d}. EX (a::int) : A. P(a - j)) -->P(x) --> P(x + d))"
-  by blast
-
-text {*
-  \medskip Theorems used for the combination of proof for the
-  backwards direction of Cooper's Theorem. They rely exclusively on
-  Predicate calculus.*}
-
-lemma not_bst_p_disjI: "(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P1(x) --> P1(x - d))
-==>
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P2(x) --> P2(x - d))
-==>
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) -->(P1(x) \<or> P2(x)) --> (P1(x - d)
-\<or> P2(x-d))) "
-  by blast
-
-lemma not_bst_p_conjI: "(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P1(x) --> P1(x - d))
-==>
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P2(x) --> P2(x - d))
-==>
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) -->(P1(x) \<and> P2(x)) --> (P1(x - d)
-\<and> P2(x-d))) "
-  by blast
-
-lemma not_bst_p_Q_elim: "
-(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) -->P(x) --> P(x - d)) 
-==> ( P = Q )
-==> (ALL x. ~(EX (j::int) : {1..d}. EX (b::int) : B. P(b+j)) -->P(x) --> P(x - d))"
-  by blast
-
-text {* \medskip This is the first direction of Cooper's Theorem. *}
-lemma cooper_thm: "(R --> (EX x::int. P x))  ==> (Q -->(EX x::int.  P x )) ==> ((R|Q) --> (EX x::int. P x )) "
-  by blast
-
-text {*
-  \medskip The full Cooper's Theorem in its equivalence Form. Given
-  the premises it is trivial too, it relies exclusively on prediacte calculus.*}
-lemma cooper_eq_thm: "(R --> (EX x::int. P x))  ==> (Q -->(EX x::int.  P x )) ==> ((~Q)
---> (EX x::int. P x ) --> R) ==> (EX x::int. P x) = R|Q "
-  by blast
-
-text {*
-  \medskip Some of the atomic theorems generated each time the atom
-  does not depend on @{text x}, they are trivial.*}
-
-lemma  fm_eq_minf: "EX z::int. ALL x. x < z --> (P = P) "
-  by blast
-
-lemma  fm_modd_minf: "ALL (x::int). ALL (k::int). (P = P)"
-  by blast
-
-lemma not_bst_p_fm: "ALL (x::int). Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> fm --> fm"
-  by blast
-
-lemma  fm_eq_pinf: "EX z::int. ALL x. z < x --> (P = P) "
-  by blast
-
-text {* The next two thms are the same as the @{text minusinf} version. *}
-
-lemma  fm_modd_pinf: "ALL (x::int). ALL (k::int). (P = P)"
-  by blast
-
-lemma not_ast_p_fm: "ALL (x::int). Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> fm --> fm"
-  by blast
-
-text {* Theorems to be deleted from simpset when proving simplified formulaes. *}
-
-lemma P_eqtrue: "(P=True) = P"
-  by iprover
-
-lemma P_eqfalse: "(P=False) = (~P)"
-  by iprover
-
-text {*
-  \medskip Theorems for the generation of the bachwards direction of
-  Cooper's Theorem.
-
-  These are the 6 interesting atomic cases which have to be proved relying on the
-  properties of B-set and the arithmetic and contradiction proofs. *}
-
-lemma not_bst_p_lt: "0 < (d::int) ==>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> ( 0 < -x + a) --> (0 < -(x - d) + a )"
-  by arith
-
-lemma not_bst_p_gt: "\<lbrakk> (g::int) \<in> B; g = -a \<rbrakk> \<Longrightarrow>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> (0 < (x) + a) --> ( 0 < (x - d) + a)"
-apply clarsimp
-apply(rule ccontr)
-apply(drule_tac x = "x+a" in bspec)
-apply(simp add:atLeastAtMost_iff)
-apply(drule_tac x = "-a" in bspec)
-apply assumption
-apply(simp)
-done
-
-lemma not_bst_p_eq: "\<lbrakk> 0 < d; (g::int) \<in> B; g = -a - 1 \<rbrakk> \<Longrightarrow>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> (0 = x + a) --> (0 = (x - d) + a )"
-apply clarsimp
-apply(subgoal_tac "x = -a")
- prefer 2 apply arith
-apply(drule_tac x = "1" in bspec)
-apply(simp add:atLeastAtMost_iff)
-apply(drule_tac x = "-a- 1" in bspec)
-apply assumption
-apply(simp)
-done
-
-
-lemma not_bst_p_ne: "\<lbrakk> 0 < d; (g::int) \<in> B; g = -a \<rbrakk> \<Longrightarrow>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> ~(0 = x + a) --> ~(0 = (x - d) + a)"
-apply clarsimp
-apply(subgoal_tac "x = -a+d")
- prefer 2 apply arith
-apply(drule_tac x = "d" in bspec)
-apply(simp add:atLeastAtMost_iff)
-apply(drule_tac x = "-a" in bspec)
-apply assumption
-apply(simp)
-done
-
-
-lemma not_bst_p_dvd: "(d1::int) dvd d ==>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> d1 dvd (x + a) --> d1 dvd ((x - d) + a )"
-apply(clarsimp simp add:dvd_def)
-apply(rename_tac m)
-apply(rule_tac x = "m - k" in exI)
-apply(simp add:int_distrib)
-done
-
-lemma not_bst_p_ndvd: "(d1::int) dvd d ==>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> ~(d1 dvd (x + a)) --> ~(d1 dvd ((x - d) + a ))"
-apply(clarsimp simp add:dvd_def)
-apply(rename_tac m)
-apply(erule_tac x = "m + k" in allE)
-apply(simp add:int_distrib)
-done
-
-text {*
-  \medskip Theorems for the generation of the bachwards direction of
-  Cooper's Theorem.
-
-  These are the 6 interesting atomic cases which have to be proved
-  relying on the properties of A-set ant the arithmetic and
-  contradiction proofs. *}
-
-lemma not_ast_p_gt: "0 < (d::int) ==>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> ( 0 < x + t) --> (0 < (x + d) + t )"
-  by arith
-
-lemma not_ast_p_lt: "\<lbrakk>0 < d ;(t::int) \<in> A \<rbrakk> \<Longrightarrow>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> (0 < -x + t) --> ( 0 < -(x + d) + t)"
-  apply clarsimp
-  apply (rule ccontr)
-  apply (drule_tac x = "t-x" in bspec)
-  apply simp
-  apply (drule_tac x = "t" in bspec)
-  apply assumption
-  apply simp
-  done
-
-lemma not_ast_p_eq: "\<lbrakk> 0 < d; (g::int) \<in> A; g = -t + 1 \<rbrakk> \<Longrightarrow>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> (0 = x + t) --> (0 = (x + d) + t )"
-  apply clarsimp
-  apply (drule_tac x="1" in bspec)
-  apply simp
-  apply (drule_tac x="- t + 1" in bspec)
-  apply assumption
-  apply(subgoal_tac "x = -t")
-  prefer 2 apply arith
-  apply simp
-  done
-
-lemma not_ast_p_ne: "\<lbrakk> 0 < d; (g::int) \<in> A; g = -t \<rbrakk> \<Longrightarrow>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> ~(0 = x + t) --> ~(0 = (x + d) + t)"
-  apply clarsimp
-  apply (subgoal_tac "x = -t-d")
-  prefer 2 apply arith
-  apply (drule_tac x = "d" in bspec)
-  apply simp
-  apply (drule_tac x = "-t" in bspec)
-  apply assumption
-  apply simp
-  done
-
-lemma not_ast_p_dvd: "(d1::int) dvd d ==>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> d1 dvd (x + t) --> d1 dvd ((x + d) + t )"
-  apply(clarsimp simp add:dvd_def)
-  apply(rename_tac m)
-  apply(rule_tac x = "m + k" in exI)
-  apply(simp add:int_distrib)
-  done
-
-lemma not_ast_p_ndvd: "(d1::int) dvd d ==>
- ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> ~(d1 dvd (x + t)) --> ~(d1 dvd ((x + d) + t ))"
-  apply(clarsimp simp add:dvd_def)
-  apply(rename_tac m)
-  apply(erule_tac x = "m - k" in allE)
-  apply(simp add:int_distrib)
-  done
-
-text {*
-  \medskip These are the atomic cases for the proof generation for the
-  modulo @{text D} property for @{text "P plusinfinity"}
-
-  They are fully based on arithmetics. *}
-
-lemma  dvd_modd_pinf: "((d::int) dvd d1) ==>
- (ALL (x::int). ALL (k::int). (((d::int) dvd (x + t)) = (d dvd (x+k*d1 + t))))"
-  apply(clarsimp simp add:dvd_def)
-  apply(rule iffI)
-  apply(clarsimp)
-  apply(rename_tac n m)
-  apply(rule_tac x = "m + n*k" in exI)
-  apply(simp add:int_distrib)
-  apply(clarsimp)
-  apply(rename_tac n m)
-  apply(rule_tac x = "m - n*k" in exI)
-  apply(simp add:int_distrib mult_ac)
-  done
-
-lemma  not_dvd_modd_pinf: "((d::int) dvd d1) ==>
- (ALL (x::int). ALL k. (~((d::int) dvd (x + t))) = (~(d dvd (x+k*d1 + t))))"
-  apply(clarsimp simp add:dvd_def)
-  apply(rule iffI)
-  apply(clarsimp)
-  apply(rename_tac n m)
-  apply(erule_tac x = "m - n*k" in allE)
-  apply(simp add:int_distrib mult_ac)
-  apply(clarsimp)
-  apply(rename_tac n m)
-  apply(erule_tac x = "m + n*k" in allE)
-  apply(simp add:int_distrib mult_ac)
-  done
-
-text {*
-  \medskip These are the atomic cases for the proof generation for the
-  equivalence of @{text P} and @{text "P plusinfinity"} for integers
-  @{text x} greater than some integer @{text z}.
-
-  They are fully based on arithmetics. *}
-
-lemma  eq_eq_pinf: "EX z::int. ALL x. z < x --> (( 0 = x +t ) = False )"
-  apply(rule_tac x = "-t" in exI)
-  apply simp
-  done
-
-lemma  neq_eq_pinf: "EX z::int. ALL x.  z < x --> ((~( 0 = x +t )) = True )"
-  apply(rule_tac x = "-t" in exI)
-  apply simp
-  done
-
-lemma  le_eq_pinf: "EX z::int. ALL x.  z < x --> ( 0 < x +t  = True )"
-  apply(rule_tac x = "-t" in exI)
-  apply simp
-  done
-
-lemma  len_eq_pinf: "EX z::int. ALL x. z < x  --> (0 < -x +t  = False )"
-  apply(rule_tac x = "t" in exI)
-  apply simp
-  done
-
-lemma  dvd_eq_pinf: "EX z::int. ALL x.  z < x --> ((d dvd (x + t)) = (d dvd (x + t))) "
-  by simp
-
-lemma  not_dvd_eq_pinf: "EX z::int. ALL x. z < x  --> ((~(d dvd (x + t))) = (~(d dvd (x + t)))) "
-  by simp
-
-text {*
-  \medskip These are the atomic cases for the proof generation for the
-  modulo @{text D} property for @{text "P minusinfinity"}.
-
-  They are fully based on arithmetics. *}
-
-lemma  dvd_modd_minf: "((d::int) dvd d1) ==>
- (ALL (x::int). ALL (k::int). (((d::int) dvd (x + t)) = (d dvd (x-k*d1 + t))))"
-apply(clarsimp simp add:dvd_def)
-apply(rule iffI)
-apply(clarsimp)
-apply(rename_tac n m)
-apply(rule_tac x = "m - n*k" in exI)
-apply(simp add:int_distrib)
-apply(clarsimp)
-apply(rename_tac n m)
-apply(rule_tac x = "m + n*k" in exI)
-apply(simp add:int_distrib mult_ac)
-done
-
-
-lemma  not_dvd_modd_minf: "((d::int) dvd d1) ==>
- (ALL (x::int). ALL k. (~((d::int) dvd (x + t))) = (~(d dvd (x-k*d1 + t))))"
-apply(clarsimp simp add:dvd_def)
-apply(rule iffI)
-apply(clarsimp)
-apply(rename_tac n m)
-apply(erule_tac x = "m + n*k" in allE)
-apply(simp add:int_distrib mult_ac)
-apply(clarsimp)
-apply(rename_tac n m)
-apply(erule_tac x = "m - n*k" in allE)
-apply(simp add:int_distrib mult_ac)
-done
-
-text {*
-  \medskip These are the atomic cases for the proof generation for the
-  equivalence of @{text P} and @{text "P minusinfinity"} for integers
-  @{text x} less than some integer @{text z}.
-
-  They are fully based on arithmetics. *}
-
-lemma  eq_eq_minf: "EX z::int. ALL x. x < z --> (( 0 = x +t ) = False )"
-apply(rule_tac x = "-t" in exI)
-apply simp
-done
-
-lemma  neq_eq_minf: "EX z::int. ALL x. x < z --> ((~( 0 = x +t )) = True )"
-apply(rule_tac x = "-t" in exI)
-apply simp
-done
-
-lemma  le_eq_minf: "EX z::int. ALL x. x < z --> ( 0 < x +t  = False )"
-apply(rule_tac x = "-t" in exI)
-apply simp
-done
-
-
-lemma  len_eq_minf: "EX z::int. ALL x. x < z --> (0 < -x +t  = True )"
-apply(rule_tac x = "t" in exI)
-apply simp
-done
-
-lemma  dvd_eq_minf: "EX z::int. ALL x. x < z --> ((d dvd (x + t)) = (d dvd (x + t))) "
-  by simp
-
-lemma  not_dvd_eq_minf: "EX z::int. ALL x. x < z --> ((~(d dvd (x + t))) = (~(d dvd (x + t)))) "
-  by simp
-
-text {*
-  \medskip This Theorem combines whithnesses about @{text "P
-  minusinfinity"} to show one component of the equivalence proof for
-  Cooper's Theorem.
-
-  FIXME: remove once they are part of the distribution. *}
-
-theorem int_ge_induct[consumes 1,case_names base step]:
-  assumes ge: "k \<le> (i::int)" and
-        base: "P(k)" and
-        step: "\<And>i. \<lbrakk>k \<le> i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
-  shows "P i"
-proof -
-  { fix n have "\<And>i::int. n = nat(i-k) \<Longrightarrow> k <= i \<Longrightarrow> P i"
-    proof (induct n)
-      case 0
-      hence "i = k" by arith
-      thus "P i" using base by simp
-    next
-      case (Suc n)
-      hence "n = nat((i - 1) - k)" by arith
-      moreover
-      have ki1: "k \<le> i - 1" using Suc.prems by arith
-      ultimately
-      have "P(i - 1)" by(rule Suc.hyps)
-      from step[OF ki1 this] show ?case by simp
-    qed
-  }
-  from this ge show ?thesis by fast
-qed
-
-theorem int_gr_induct[consumes 1,case_names base step]:
-  assumes gr: "k < (i::int)" and
-        base: "P(k+1)" and
-        step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
-  shows "P i"
-apply(rule int_ge_induct[of "k + 1"])
-  using gr apply arith
- apply(rule base)
-apply(rule step)
- apply simp+
-done
-
-lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (abs(x-z)+1) * d < z"
-apply(induct rule: int_gr_induct)
- apply simp
-apply (simp add:int_distrib)
-done
-
-lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (abs(x-z)+1) * d"
-apply(induct rule: int_gr_induct)
- apply simp
-apply (simp add:int_distrib)
-done
-
-lemma  minusinfinity:
-  assumes "0 < d" and
-    P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and
-    ePeqP1: "EX z::int. ALL x. x < z \<longrightarrow> (P x = P1 x)"
-  shows "(EX x. P1 x) \<longrightarrow> (EX x. P x)"
-proof
-  assume eP1: "EX x. P1 x"
-  then obtain x where P1: "P1 x" ..
-  from ePeqP1 obtain z where P1eqP: "ALL x. x < z \<longrightarrow> (P x = P1 x)" ..
-  let ?w = "x - (abs(x-z)+1) * d"
-  show "EX x. P x"
-  proof
-    have w: "?w < z" by(rule decr_lemma)
-    have "P1 x = P1 ?w" using P1eqP1 by blast
-    also have "\<dots> = P(?w)" using w P1eqP by blast
-    finally show "P ?w" using P1 by blast
-  qed
-qed
-
-text {*
-  \medskip This Theorem combines whithnesses about @{text "P
-  minusinfinity"} to show one component of the equivalence proof for
-  Cooper's Theorem. *}
-
-lemma plusinfinity:
-  assumes "0 < d" and
-    P1eqP1: "ALL (x::int) (k::int). P1 x = P1 (x + k * d)" and
-    ePeqP1: "EX z::int. ALL x. z < x  --> (P x = P1 x)"
-  shows "(EX x::int. P1 x) --> (EX x::int. P x)"
-proof
-  assume eP1: "EX x. P1 x"
-  then obtain x where P1: "P1 x" ..
-  from ePeqP1 obtain z where P1eqP: "ALL x. z < x \<longrightarrow> (P x = P1 x)" ..
-  let ?w = "x + (abs(x-z)+1) * d"
-  show "EX x. P x"
-  proof
-    have w: "z < ?w" by(rule incr_lemma)
-    have "P1 x = P1 ?w" using P1eqP1 by blast
-    also have "\<dots> = P(?w)" using w P1eqP by blast
-    finally show "P ?w" using P1 by blast
-  qed
-qed
- 
-text {*
-  \medskip Theorem for periodic function on discrete sets. *}
-
-lemma minf_vee:
-  assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)"
-  shows "(EX x. P x) = (EX j : {1..d}. P j)"
-  (is "?LHS = ?RHS")
-proof
-  assume ?LHS
-  then obtain x where P: "P x" ..
-  have "x mod d = x - (x div d)*d"
-    by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq)
-  hence Pmod: "P x = P(x mod d)" using modd by simp
-  show ?RHS
-  proof (cases)
-    assume "x mod d = 0"
-    hence "P 0" using P Pmod by simp
-    moreover have "P 0 = P(0 - (-1)*d)" using modd by blast
-    ultimately have "P d" by simp
-    moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff)
-    ultimately show ?RHS ..
-  next
-    assume not0: "x mod d \<noteq> 0"
-    have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound)
-    moreover have "x mod d : {1..d}"
-    proof -
-      have "0 \<le> x mod d" by(rule pos_mod_sign)
-      moreover have "x mod d < d" by(rule pos_mod_bound)
-      ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff)
-    qed
-    ultimately show ?RHS ..
-  qed
-next
-  assume ?RHS thus ?LHS by blast
-qed
-
-text {*
-  \medskip Theorem for periodic function on discrete sets. *}
-
-lemma pinf_vee:
-  assumes dpos: "0 < (d::int)" and modd: "ALL (x::int) (k::int). P x = P (x+k*d)"
-  shows "(EX x::int. P x) = (EX (j::int) : {1..d} . P j)"
-  (is "?LHS = ?RHS")
-proof
-  assume ?LHS
-  then obtain x where P: "P x" ..
-  have "x mod d = x + (-(x div d))*d"
-    by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq)
-  hence Pmod: "P x = P(x mod d)" using modd by (simp only:)
-  show ?RHS
-  proof (cases)
-    assume "x mod d = 0"
-    hence "P 0" using P Pmod by simp
-    moreover have "P 0 = P(0 + 1*d)" using modd by blast
-    ultimately have "P d" by simp
-    moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff)
-    ultimately show ?RHS ..
-  next
-    assume not0: "x mod d \<noteq> 0"
-    have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound)
-    moreover have "x mod d : {1..d}"
-    proof -
-      have "0 \<le> x mod d" by(rule pos_mod_sign)
-      moreover have "x mod d < d" by(rule pos_mod_bound)
-      ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff)
-    qed
-    ultimately show ?RHS ..
-  qed
-next
-  assume ?RHS thus ?LHS by blast
-qed
-
-lemma decr_mult_lemma:
-  assumes dpos: "(0::int) < d" and
-          minus: "ALL x::int. P x \<longrightarrow> P(x - d)" and
-          knneg: "0 <= k"
-  shows "ALL x. P x \<longrightarrow> P(x - k*d)"
-using knneg
-proof (induct rule:int_ge_induct)
-  case base thus ?case by simp
-next
-  case (step i)
-  show ?case
-  proof
-    fix x
-    have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast
-    also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)"
-      using minus[THEN spec, of "x - i * d"]
-      by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric])
-    ultimately show "P x \<longrightarrow> P(x - (i + 1) * d)" by blast
-  qed
-qed
-
-lemma incr_mult_lemma:
-  assumes dpos: "(0::int) < d" and
-          plus: "ALL x::int. P x \<longrightarrow> P(x + d)" and
-          knneg: "0 <= k"
-  shows "ALL x. P x \<longrightarrow> P(x + k*d)"
-using knneg
-proof (induct rule:int_ge_induct)
-  case base thus ?case by simp
-next
-  case (step i)
-  show ?case
-  proof
-    fix x
-    have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast
-    also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)"
-      using plus[THEN spec, of "x + i * d"]
-      by (simp add:int_distrib zadd_ac)
-    ultimately show "P x \<longrightarrow> P(x + (i + 1) * d)" by blast
-  qed
-qed
-
-lemma cpmi_eq: "0 < D \<Longrightarrow> (EX z::int. ALL x. x < z --> (P x = P1 x))
-==> ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D) 
-==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x-k*D))))
-==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (b::int) : B. P (b+j)))"
-apply(rule iffI)
-prefer 2
-apply(drule minusinfinity)
-apply assumption+
-apply(fastsimp)
-apply clarsimp
-apply(subgoal_tac "!!k. 0<=k \<Longrightarrow> !x. P x \<longrightarrow> P (x - k*D)")
-apply(frule_tac x = x and z=z in decr_lemma)
-apply(subgoal_tac "P1(x - (\<bar>x - z\<bar> + 1) * D)")
-prefer 2
-apply(subgoal_tac "0 <= (\<bar>x - z\<bar> + 1)")
-prefer 2 apply arith
- apply fastsimp
-apply(drule (1) minf_vee)
-apply blast
-apply(blast dest:decr_mult_lemma)
-done
-
-text {* Cooper Theorem, plus infinity version. *}
-lemma cppi_eq: "0 < D \<Longrightarrow> (EX z::int. ALL x. z < x --> (P x = P1 x))
-==> ALL x.~(EX (j::int) : {1..D}. EX (a::int) : A. P(a - j)) --> P (x) --> P (x + D) 
-==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x+k*D))))
-==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (a::int) : A. P (a - j)))"
-  apply(rule iffI)
-  prefer 2
-  apply(drule plusinfinity)
-  apply assumption+
-  apply(fastsimp)
-  apply clarsimp
-  apply(subgoal_tac "!!k. 0<=k \<Longrightarrow> !x. P x \<longrightarrow> P (x + k*D)")
-  apply(frule_tac x = x and z=z in incr_lemma)
-  apply(subgoal_tac "P1(x + (\<bar>x - z\<bar> + 1) * D)")
-  prefer 2
-  apply(subgoal_tac "0 <= (\<bar>x - z\<bar> + 1)")
-  prefer 2 apply arith
-  apply fastsimp
-  apply(drule (1) pinf_vee)
-  apply blast
-  apply(blast dest:incr_mult_lemma)
-  done
-
-
-text {*
-  \bigskip Theorems for the quantifier elminination Functions. *}
-
-lemma qe_ex_conj: "(EX (x::int). A x) = R
-		==> (EX (x::int). P x) = (Q & (EX x::int. A x))
-		==> (EX (x::int). P x) = (Q & R)"
-by blast
-
-lemma qe_ex_nconj: "(EX (x::int). P x) = (True & Q)
-		==> (EX (x::int). P x) = Q"
-by blast
-
-lemma qe_conjI: "P1 = P2 ==> Q1 = Q2 ==> (P1 & Q1) = (P2 & Q2)"
-by blast
-
-lemma qe_disjI: "P1 = P2 ==> Q1 = Q2 ==> (P1 | Q1) = (P2 | Q2)"
-by blast
-
-lemma qe_impI: "P1 = P2 ==> Q1 = Q2 ==> (P1 --> Q1) = (P2 --> Q2)"
-by blast
-
-lemma qe_eqI: "P1 = P2 ==> Q1 = Q2 ==> (P1 = Q1) = (P2 = Q2)"
-by blast
-
-lemma qe_Not: "P = Q ==> (~P) = (~Q)"
-by blast
-
-lemma qe_ALL: "(EX x. ~P x) = R ==> (ALL x. P x) = (~R)"
-by blast
-
-text {* \bigskip Theorems for proving NNF *}
-
-lemma nnf_im: "((~P) = P1) ==> (Q=Q1) ==> ((P --> Q) = (P1 | Q1))"
-by blast
-
-lemma nnf_eq: "((P & Q) = (P1 & Q1)) ==> (((~P) & (~Q)) = (P2 & Q2)) ==> ((P = Q) = ((P1 & Q1)|(P2 & Q2)))"
-by blast
-
-lemma nnf_nn: "(P = Q) ==> ((~~P) = Q)"
-  by blast
-lemma nnf_ncj: "((~P) = P1) ==> ((~Q) = Q1) ==> ((~(P & Q)) = (P1 | Q1))"
-by blast
-
-lemma nnf_ndj: "((~P) = P1) ==> ((~Q) = Q1) ==> ((~(P | Q)) = (P1 & Q1))"
-by blast
-lemma nnf_nim: "(P = P1) ==> ((~Q) = Q1) ==> ((~(P --> Q)) = (P1 & Q1))"
-by blast
-lemma nnf_neq: "((P & (~Q)) = (P1 & Q1)) ==> (((~P) & Q) = (P2 & Q2)) ==> ((~(P = Q)) = ((P1 & Q1)|(P2 & Q2)))"
-by blast
-lemma nnf_sdj: "((A & (~B)) = (A1 & B1)) ==> ((C & (~D)) = (C1 & D1)) ==> (A = (~C)) ==> ((~((A & B) | (C & D))) = ((A1 & B1) | (C1 & D1)))"
-by blast
-
-
-lemma qe_exI2: "A = B ==> (EX (x::int). A(x)) = (EX (x::int). B(x))"
-  by simp
-
-lemma qe_exI: "(!!x::int. A x = B x) ==> (EX (x::int). A(x)) = (EX (x::int). B(x))"
-  by iprover
-
-lemma qe_ALLI: "(!!x::int. A x = B x) ==> (ALL (x::int). A(x)) = (ALL (x::int). B(x))"
-  by iprover
-
-lemma cp_expand: "(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (b::int) : B. (P1 (j) | P(b+j)))
-==>(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (b::int) : B. (P1 (j) | P(b+j))) "
-by blast
-
-lemma cppi_expand: "(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (a::int) : A. (P1 (j) | P(a - j)))
-==>(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (a::int) : A. (P1 (j) | P(a - j))) "
-by blast
-
-
-lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"
-apply(simp add:atLeastAtMost_def atLeast_def atMost_def)
-apply(fastsimp)
-done
-
-text {* \bigskip Theorems required for the @{text adjustcoeffitienteq} *}
-
-lemma ac_dvd_eq: assumes not0: "0 ~= (k::int)"
-shows "((m::int) dvd (c*n+t)) = (k*m dvd ((k*c)*n+(k*t)))" (is "?P = ?Q")
-proof
-  assume ?P
-  thus ?Q
-    apply(simp add:dvd_def)
-    apply clarify
-    apply(rename_tac d)
-    apply(drule_tac f = "op * k" in arg_cong)
-    apply(simp only:int_distrib)
-    apply(rule_tac x = "d" in exI)
-    apply(simp only:mult_ac)
-    done
-next
-  assume ?Q
-  then obtain d where "k * c * n + k * t = (k*m)*d" by(fastsimp simp:dvd_def)
-  hence "(c * n + t) * k = (m*d) * k" by(simp add:int_distrib mult_ac)
-  hence "((c * n + t) * k) div k = ((m*d) * k) div k" by(rule arg_cong[of _ _ "%t. t div k"])
-  hence "c*n+t = m*d" by(simp add: zdiv_zmult_self1[OF not0[symmetric]])
-  thus ?P by(simp add:dvd_def)
-qed
-
-lemma ac_lt_eq: assumes gr0: "0 < (k::int)"
-shows "((m::int) < (c*n+t)) = (k*m <((k*c)*n+(k*t)))" (is "?P = ?Q")
-proof
-  assume P: ?P
-  show ?Q using zmult_zless_mono2[OF P gr0] by(simp add: int_distrib mult_ac)
-next
-  assume ?Q
-  hence "0 < k*(c*n + t - m)" by(simp add: int_distrib mult_ac)
-  with gr0 have "0 < (c*n + t - m)" by(simp add: zero_less_mult_iff)
-  thus ?P by(simp)
-qed
-
-lemma ac_eq_eq : assumes not0: "0 ~= (k::int)" shows "((m::int) = (c*n+t)) = (k*m =((k*c)*n+(k*t)) )" (is "?P = ?Q")
-proof
-  assume ?P
-  thus ?Q
-    apply(drule_tac f = "op * k" in arg_cong)
-    apply(simp only:int_distrib)
-    done
-next
-  assume ?Q
-  hence "m * k = (c*n + t) * k" by(simp add:int_distrib mult_ac)
-  hence "((m) * k) div k = ((c*n + t) * k) div k" by(rule arg_cong[of _ _ "%t. t div k"])
-  thus ?P by(simp add: zdiv_zmult_self1[OF not0[symmetric]])
-qed
-
-lemma ac_pi_eq: assumes gr0: "0 < (k::int)" shows "(~((0::int) < (c*n + t))) = (0 < ((-k)*c)*n + ((-k)*t + k))"
-proof -
-  have "(~ (0::int) < (c*n + t)) = (0<1-(c*n + t))" by arith
-  also have  "(1-(c*n + t)) = (-1*c)*n + (-t+1)" by(simp add: int_distrib mult_ac)
-  also have "0<(-1*c)*n + (-t+1) = (0 < (k*(-1*c)*n) + (k*(-t+1)))" by(rule ac_lt_eq[of _ 0,OF gr0,simplified])
-  also have "(k*(-1*c)*n) + (k*(-t+1)) = ((-k)*c)*n + ((-k)*t + k)" by(simp add: int_distrib mult_ac)
-  finally show ?thesis .
-qed
-
-lemma binminus_uminus_conv: "(a::int) - b = a + (-b)"
-by arith
-
-lemma  linearize_dvd: "(t::int) = t1 ==> (d dvd t) = (d dvd t1)"
-by simp
-
-lemma lf_lt: "(l::int) = ll ==> (r::int) = lr ==> (l < r) =(ll < lr)"
-by simp
-
-lemma lf_eq: "(l::int) = ll ==> (r::int) = lr ==> (l = r) =(ll = lr)"
-by simp
-
-lemma lf_dvd: "(l::int) = ll ==> (r::int) = lr ==> (l dvd r) =(ll dvd lr)"
-by simp
-
-text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*}
-
-theorem all_nat: "(\<forall>x::nat. P x) = (\<forall>x::int. 0 <= x \<longrightarrow> P (nat x))"
-  by (simp split add: split_nat)
-
-
-theorem zdiff_int_split: "P (int (x - y)) =
-  ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))"
-  apply (case_tac "y \<le> x")
-  apply (simp_all add: zdiff_int)
-  done
-
-
-theorem number_of1: "(0::int) <= number_of n \<Longrightarrow> (0::int) <= number_of (n BIT b)"
-  by simp
-
-theorem number_of2: "(0::int) <= Numeral0" by simp
-
-theorem Suc_plus1: "Suc n = n + 1" by simp
-
-text {*
-  \medskip Specific instances of congruence rules, to prevent
-  simplifier from looping. *}
-
-theorem imp_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<longrightarrow> P) = (0 <= x \<longrightarrow> P')"
-  by simp
-
-theorem conj_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<and> P) = (0 <= x \<and> P')"
-  by (simp cong: conj_cong)
-
-    (* Theorems used in presburger.ML for the computation simpset*)
-    (* FIXME: They are present in Float.thy, so may be Float.thy should be lightened.*)
-
-lemma lift_bool: "x \<Longrightarrow> x=True"
-  by simp
-
-lemma nlift_bool: "~x \<Longrightarrow> x=False"
-  by simp
-
-lemma not_false_eq_true: "(~ False) = True" by simp
-
-lemma not_true_eq_false: "(~ True) = False" by simp
-
-
-lemma int_eq_number_of_eq:
-  "(((number_of v)::int) = (number_of w)) = iszero ((number_of (v + (uminus w)))::int)"
-  by simp
-lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)" 
-  by (simp only: iszero_number_of_Pls)
-
-lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))"
-  by simp
-
-lemma int_iszero_number_of_0: "iszero ((number_of (w BIT bit.B0))::int) = iszero ((number_of w)::int)"
-  by simp
-
-lemma int_iszero_number_of_1: "\<not> iszero ((number_of (w BIT bit.B1))::int)" 
-  by simp
-
-lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (x + (uminus y)))::int)"
-  by simp
-
-lemma int_not_neg_number_of_Pls: "\<not> (neg (Numeral0::int))" 
-  by simp
-
-lemma int_neg_number_of_Min: "neg (-1::int)"
-  by simp
-
-lemma int_neg_number_of_BIT: "neg ((number_of (w BIT x))::int) = neg ((number_of w)::int)"
-  by simp
-
-lemma int_le_number_of_eq: "(((number_of x)::int) \<le> number_of y) = (\<not> neg ((number_of (y + (uminus x)))::int))"
-  by simp
-lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (v + w)"
-  by simp
-
-lemma int_number_of_diff_sym:
-  "((number_of v)::int) - number_of w = number_of (v + (uminus w))"
-  by simp
-
-lemma int_number_of_mult_sym:
-  "((number_of v)::int) * number_of w = number_of (v * w)"
-  by simp
-
-lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (uminus v)"
-  by simp
-lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
-  by simp
-
-lemma add_right_zero: "a + 0 = (a::'a::comm_monoid_add)"
-  by simp
-
-lemma mult_left_one: "1 * a = (a::'a::semiring_1)"
-  by simp
-
-lemma mult_right_one: "a * 1 = (a::'a::semiring_1)"
-  by simp
-
-lemma int_pow_0: "(a::int)^(Numeral0) = 1"
-  by simp
-
-lemma int_pow_1: "(a::int)^(Numeral1) = a"
-  by simp
-
-lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0"
-  by simp
-
-lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1"
-  by simp
-
-lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0"
-  by simp
-
-lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1"
-  by simp
-
-lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1"
-  by simp
-
-lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1"
-proof -
-  have 1:"((-1)::nat) = 0"
-    by simp
-  show ?thesis by (simp add: 1)
-qed
-
-use "cooper_dec.ML"
-use "reflected_presburger.ML" 
-use "reflected_cooper.ML"
-oracle
-  presburger_oracle ("term") = ReflectedCooper.presburger_oracle
-
-use "cooper_proof.ML"
-use "qelim.ML"
-use "presburger.ML"
-
-setup "Presburger.setup"
-
-
-subsection {* Code generator setup *}
-
-text {*
-  Presburger arithmetic is convenient to prove some
-  of the following code lemmas on integer numerals:
-*}
-
-lemma eq_Pls_Pls:
-  "Numeral.Pls = Numeral.Pls \<longleftrightarrow> True" by rule+
-
-lemma eq_Pls_Min:
-  "Numeral.Pls = Numeral.Min \<longleftrightarrow> False"
-  unfolding Pls_def Min_def by auto
-
-lemma eq_Pls_Bit0:
-  "Numeral.Pls = Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls = k"
-  unfolding Pls_def Bit_def bit.cases by auto
-
-lemma eq_Pls_Bit1:
-  "Numeral.Pls = Numeral.Bit k bit.B1 \<longleftrightarrow> False"
-  unfolding Pls_def Bit_def bit.cases by arith
-
-lemma eq_Min_Pls:
-  "Numeral.Min = Numeral.Pls \<longleftrightarrow> False"
-  unfolding Pls_def Min_def by auto
-
-lemma eq_Min_Min:
-  "Numeral.Min = Numeral.Min \<longleftrightarrow> True" by rule+
-
-lemma eq_Min_Bit0:
-  "Numeral.Min = Numeral.Bit k bit.B0 \<longleftrightarrow> False"
-  unfolding Min_def Bit_def bit.cases by arith
-
-lemma eq_Min_Bit1:
-  "Numeral.Min = Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min = k"
-  unfolding Min_def Bit_def bit.cases by auto
-
-lemma eq_Bit0_Pls:
-  "Numeral.Bit k bit.B0 = Numeral.Pls \<longleftrightarrow> Numeral.Pls = k"
-  unfolding Pls_def Bit_def bit.cases by auto
-
-lemma eq_Bit1_Pls:
-  "Numeral.Bit k bit.B1 = Numeral.Pls \<longleftrightarrow> False"
-  unfolding Pls_def Bit_def bit.cases by arith
-
-lemma eq_Bit0_Min:
-  "Numeral.Bit k bit.B0 = Numeral.Min \<longleftrightarrow> False"
-  unfolding Min_def Bit_def bit.cases by arith
-
-lemma eq_Bit1_Min:
-  "(Numeral.Bit k bit.B1) = Numeral.Min \<longleftrightarrow> Numeral.Min = k"
-  unfolding Min_def Bit_def bit.cases by auto
-
-lemma eq_Bit_Bit:
-  "Numeral.Bit k1 v1 = Numeral.Bit k2 v2 \<longleftrightarrow>
-    v1 = v2 \<and> k1 = k2"
-  unfolding Bit_def
-  apply (cases v1)
-  apply (cases v2)
-  apply auto
-  apply arith
-  apply (cases v2)
-  apply auto
-  apply arith
-  apply (cases v2)
-  apply auto
-done
-
-lemma eq_number_of:
-  "(number_of k \<Colon> int) = number_of l \<longleftrightarrow> k = l"
-  unfolding number_of_is_id ..
-
-
-lemma less_eq_Pls_Pls:
-  "Numeral.Pls \<le> Numeral.Pls \<longleftrightarrow> True" by rule+
-
-lemma less_eq_Pls_Min:
-  "Numeral.Pls \<le> Numeral.Min \<longleftrightarrow> False"
-  unfolding Pls_def Min_def by auto
-
-lemma less_eq_Pls_Bit:
-  "Numeral.Pls \<le> Numeral.Bit k v \<longleftrightarrow> Numeral.Pls \<le> k"
-  unfolding Pls_def Bit_def by (cases v) auto
-
-lemma less_eq_Min_Pls:
-  "Numeral.Min \<le> Numeral.Pls \<longleftrightarrow> True"
-  unfolding Pls_def Min_def by auto
-
-lemma less_eq_Min_Min:
-  "Numeral.Min \<le> Numeral.Min \<longleftrightarrow> True" by rule+
-
-lemma less_eq_Min_Bit0:
-  "Numeral.Min \<le> Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Min < k"
-  unfolding Min_def Bit_def by auto
-
-lemma less_eq_Min_Bit1:
-  "Numeral.Min \<le> Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min \<le> k"
-  unfolding Min_def Bit_def by auto
-
-lemma less_eq_Bit0_Pls:
-  "Numeral.Bit k bit.B0 \<le> Numeral.Pls \<longleftrightarrow> k \<le> Numeral.Pls"
-  unfolding Pls_def Bit_def by simp
-
-lemma less_eq_Bit1_Pls:
-  "Numeral.Bit k bit.B1 \<le> Numeral.Pls \<longleftrightarrow> k < Numeral.Pls"
-  unfolding Pls_def Bit_def by auto
-
-lemma less_eq_Bit_Min:
-  "Numeral.Bit k v \<le> Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min"
-  unfolding Min_def Bit_def by (cases v) auto
-
-lemma less_eq_Bit0_Bit:
-  "Numeral.Bit k1 bit.B0 \<le> Numeral.Bit k2 v \<longleftrightarrow> k1 \<le> k2"
-  unfolding Bit_def bit.cases by (cases v) auto
-
-lemma less_eq_Bit_Bit1:
-  "Numeral.Bit k1 v \<le> Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2"
-  unfolding Bit_def bit.cases by (cases v) auto
-
-lemma less_eq_Bit1_Bit0:
-  "Numeral.Bit k1 bit.B1 \<le> Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2"
-  unfolding Bit_def by (auto split: bit.split)
-
-lemma less_eq_number_of:
-  "(number_of k \<Colon> int) \<le> number_of l \<longleftrightarrow> k \<le> l"
-  unfolding number_of_is_id ..
-
-
-lemma less_Pls_Pls:
-  "Numeral.Pls < Numeral.Pls \<longleftrightarrow> False" by auto
-
-lemma less_Pls_Min:
-  "Numeral.Pls < Numeral.Min \<longleftrightarrow> False"
-  unfolding Pls_def Min_def by auto
-
-lemma less_Pls_Bit0:
-  "Numeral.Pls < Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls < k"
-  unfolding Pls_def Bit_def by auto
-
-lemma less_Pls_Bit1:
-  "Numeral.Pls < Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Pls \<le> k"
-  unfolding Pls_def Bit_def by auto
-
-lemma less_Min_Pls:
-  "Numeral.Min < Numeral.Pls \<longleftrightarrow> True"
-  unfolding Pls_def Min_def by auto
-
-lemma less_Min_Min:
-  "Numeral.Min < Numeral.Min \<longleftrightarrow> False" by auto
-
-lemma less_Min_Bit:
-  "Numeral.Min < Numeral.Bit k v \<longleftrightarrow> Numeral.Min < k"
-  unfolding Min_def Bit_def by (auto split: bit.split)
-
-lemma less_Bit_Pls:
-  "Numeral.Bit k v < Numeral.Pls \<longleftrightarrow> k < Numeral.Pls"
-  unfolding Pls_def Bit_def by (auto split: bit.split)
-
-lemma less_Bit0_Min:
-  "Numeral.Bit k bit.B0 < Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min"
-  unfolding Min_def Bit_def by auto
-
-lemma less_Bit1_Min:
-  "Numeral.Bit k bit.B1 < Numeral.Min \<longleftrightarrow> k < Numeral.Min"
-  unfolding Min_def Bit_def by auto
-
-lemma less_Bit_Bit0:
-  "Numeral.Bit k1 v < Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2"
-  unfolding Bit_def by (auto split: bit.split)
-
-lemma less_Bit1_Bit:
-  "Numeral.Bit k1 bit.B1 < Numeral.Bit k2 v \<longleftrightarrow> k1 < k2"
-  unfolding Bit_def by (auto split: bit.split)
-
-lemma less_Bit0_Bit1:
-  "Numeral.Bit k1 bit.B0 < Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2"
-  unfolding Bit_def bit.cases by auto
-
-lemma less_number_of:
-  "(number_of k \<Colon> int) < number_of l \<longleftrightarrow> k < l"
-  unfolding number_of_is_id ..
-
-
-lemmas pred_succ_numeral_code [code func] =
-  arith_simps(5-12)
-
-lemmas plus_numeral_code [code func] =
-  arith_simps(13-17)
-  arith_simps(26-27)
-  arith_extra_simps(1) [where 'a = int]
-
-lemmas minus_numeral_code [code func] =
-  arith_simps(18-21)
-  arith_extra_simps(2) [where 'a = int]
-  arith_extra_simps(5) [where 'a = int]
-
-lemmas times_numeral_code [code func] =
-  arith_simps(22-25)
-  arith_extra_simps(4) [where 'a = int]
-
-lemmas eq_numeral_code [code func] =
-  eq_Pls_Pls eq_Pls_Min eq_Pls_Bit0 eq_Pls_Bit1
-  eq_Min_Pls eq_Min_Min eq_Min_Bit0 eq_Min_Bit1
-  eq_Bit0_Pls eq_Bit1_Pls eq_Bit0_Min eq_Bit1_Min eq_Bit_Bit
-  eq_number_of
-
-lemmas less_eq_numeral_code [code func] = less_eq_Pls_Pls less_eq_Pls_Min less_eq_Pls_Bit
-  less_eq_Min_Pls less_eq_Min_Min less_eq_Min_Bit0 less_eq_Min_Bit1
-  less_eq_Bit0_Pls less_eq_Bit1_Pls less_eq_Bit_Min less_eq_Bit0_Bit less_eq_Bit_Bit1 less_eq_Bit1_Bit0
-  less_eq_number_of
-
-lemmas less_numeral_code [code func] = less_Pls_Pls less_Pls_Min less_Pls_Bit0
-  less_Pls_Bit1 less_Min_Pls less_Min_Min less_Min_Bit less_Bit_Pls
-  less_Bit0_Min less_Bit1_Min less_Bit_Bit0 less_Bit1_Bit less_Bit0_Bit1
-  less_number_of
-
-end
--- a/src/HOL/Integ/cooper_dec.ML	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,920 +0,0 @@
-(*  Title:      HOL/Integ/cooper_dec.ML
-    ID:         $Id$
-    Author:     Amine Chaieb and Tobias Nipkow, TU Muenchen
-
-File containing the implementation of Cooper Algorithm
-decision procedure (intensively inspired from J.Harrison)
-*)
-
-
-signature COOPER_DEC = 
-sig
-  exception COOPER
-  val mk_number : IntInf.int -> term
-  val zero : term
-  val one : term
-  val dest_number : term -> IntInf.int
-  val is_number : term -> bool
-  val is_arith_rel : term -> bool
-  val linear_cmul : IntInf.int -> term -> term
-  val linear_add : string list -> term -> term -> term 
-  val linear_sub : string list -> term -> term -> term 
-  val linear_neg : term -> term
-  val lint : string list -> term -> term
-  val linform : string list -> term -> term
-  val formlcm : term -> term -> IntInf.int
-  val adjustcoeff : term -> IntInf.int -> term -> term
-  val unitycoeff : term -> term -> term
-  val divlcm : term -> term -> IntInf.int
-  val bset : term -> term -> term list
-  val aset : term -> term -> term list
-  val linrep : string list -> term -> term -> term -> term
-  val list_disj : term list -> term
-  val list_conj : term list -> term
-  val simpl : term -> term
-  val fv : term -> string list
-  val negate : term -> term
-  val operations : (string * (IntInf.int * IntInf.int -> bool)) list
-  val conjuncts : term -> term list
-  val disjuncts : term -> term list
-  val has_bound : term -> bool
-  val minusinf : term -> term -> term
-  val plusinf : term -> term -> term
-  val onatoms : (term -> term) -> term -> term
-  val evalc : term -> term
-  val cooper_w : string list -> term -> (term option * term)
-  val integer_qelim : Term.term -> Term.term
-end;
-
-structure CooperDec : COOPER_DEC =
-struct
-
-(* ========================================================================= *) 
-(* Cooper's algorithm for Presburger arithmetic.                             *) 
-(* ========================================================================= *) 
-exception COOPER;
-
-
-(* ------------------------------------------------------------------------- *) 
-(* Lift operations up to numerals.                                           *) 
-(* ------------------------------------------------------------------------- *) 
- 
-(*Assumption : The construction of atomar formulas in linearl arithmetic is based on 
-relation operations of Type : [IntInf.int,IntInf.int]---> bool *) 
- 
-(* ------------------------------------------------------------------------- *) 
- 
-(*Function is_arith_rel returns true if and only if the term is an atomar presburger 
-formula *) 
-fun is_arith_rel tm = case tm
- of Const(p, Type ("fun", [Type ("IntDef.int", []), Type ("fun", [Type ("IntDef.int", []),
-      Type ("bool", [])])])) $ _ $_ => true
-  | _ => false;
- 
-(*Function is_arith_rel returns true if and only if the term is an operation of the 
-form [int,int]---> int*) 
- 
-val mk_number = HOLogic.mk_number HOLogic.intT;
-val zero = mk_number 0; 
-val one = mk_number 1; 
-fun dest_number t = let
-    val (T, n) = HOLogic.dest_number t
-  in if T = HOLogic.intT then n else error ("bad typ: " ^ Display.raw_string_of_typ T) end;
-val is_number = can dest_number; 
-
-(*maps a unary natural function on a term containing an natural number*) 
-fun numeral1 f n = mk_number (f (dest_number n)); 
- 
-(*maps a binary natural function on 2 term containing  natural numbers*) 
-fun numeral2 f m n = mk_number (f (dest_number m) (dest_number n));
- 
-(* ------------------------------------------------------------------------- *) 
-(* Operations on canonical linear terms c1 * x1 + ... + cn * xn + k          *) 
-(*                                                                           *) 
-(* Note that we're quite strict: the ci must be present even if 1            *) 
-(* (but if 0 we expect the monomial to be omitted) and k must be there       *) 
-(* even if it's zero. Thus, it's a constant iff not an addition term.        *) 
-(* ------------------------------------------------------------------------- *)  
- 
- 
-fun linear_cmul n tm =  if n = 0 then zero else let fun times n k = n*k in  
-  ( case tm of  
-     (Const(@{const_name HOL.plus},T)  $  (Const (@{const_name HOL.times},T1 ) $c1 $  x1) $ rest) => 
-       Const(@{const_name HOL.plus},T) $ ((Const(@{const_name HOL.times},T1) $ (numeral1 (times n) c1) $ x1)) $ (linear_cmul n rest) 
-    |_ =>  numeral1 (times n) tm) 
-    end ; 
- 
- 
- 
- 
-(* Whether the first of two items comes earlier in the list  *) 
-fun earlier [] x y = false 
-	|earlier (h::t) x y =if h = y then false 
-              else if h = x then true 
-              	else earlier t x y ; 
- 
-fun earlierv vars (Bound i) (Bound j) = i < j 
-   |earlierv vars (Bound _) _ = true 
-   |earlierv vars _ (Bound _)  = false 
-   |earlierv vars (Free (x,_)) (Free (y,_)) = earlier vars x y; 
- 
- 
-fun linear_add vars tm1 tm2 = 
-  let fun addwith x y = x + y in
- (case (tm1,tm2) of 
-	((Const (@{const_name HOL.plus},T1) $ ( Const(@{const_name HOL.times},T2) $ c1 $  x1) $ rest1),(Const 
-	(@{const_name HOL.plus},T3)$( Const(@{const_name HOL.times},T4) $ c2 $  x2) $ rest2)) => 
-         if x1 = x2 then 
-              let val c = (numeral2 (addwith) c1 c2) 
-	      in 
-              if c = zero then (linear_add vars rest1  rest2)  
-	      else (Const(@{const_name HOL.plus},T1) $ (Const(@{const_name HOL.times},T2) $ c $ x1) $ (linear_add vars  rest1 rest2)) 
-              end 
-	   else 
-		if earlierv vars x1 x2 then (Const(@{const_name HOL.plus},T1) $  
-		(Const(@{const_name HOL.times},T2)$ c1 $ x1) $ (linear_add vars rest1 tm2)) 
-    	       else (Const(@{const_name HOL.plus},T1) $ (Const(@{const_name HOL.times},T2) $ c2 $ x2) $ (linear_add vars tm1 rest2)) 
-   	|((Const(@{const_name HOL.plus},T1) $ (Const(@{const_name HOL.times},T2) $ c1 $ x1) $ rest1) ,_) => 
-    	  (Const(@{const_name HOL.plus},T1)$ (Const(@{const_name HOL.times},T2) $ c1 $ x1) $ (linear_add vars 
-	  rest1 tm2)) 
-   	|(_, (Const(@{const_name HOL.plus},T1) $(Const(@{const_name HOL.times},T2) $ c2 $ x2) $ rest2)) => 
-      	  (Const(@{const_name HOL.plus},T1) $ (Const(@{const_name HOL.times},T2) $ c2 $ x2) $ (linear_add vars tm1 
-	  rest2)) 
-   	| (_,_) => numeral2 (addwith) tm1 tm2) 
-	 
-	end; 
- 
-(*To obtain the unary - applyed on a formula*) 
- 
-fun linear_neg tm = linear_cmul (0 - 1) tm; 
- 
-(*Substraction of two terms *) 
- 
-fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2); 
- 
- 
-(* ------------------------------------------------------------------------- *) 
-(* Linearize a term.                                                         *) 
-(* ------------------------------------------------------------------------- *) 
- 
-(* linearises a term from the point of view of Variable Free (x,T). 
-After this fuction the all expressions containig ths variable will have the form  
- c*Free(x,T) + t where c is a constant ant t is a Term which is not containing 
- Free(x,T)*) 
-  
-fun lint vars tm = if is_number tm then tm else case tm of 
-   (Free (x,T)) =>  (HOLogic.mk_binop @{const_name HOL.plus} ((HOLogic.mk_binop @{const_name HOL.times} ((mk_number 1),Free (x,T))), zero)) 
-  |(Bound i) =>  (Const(@{const_name HOL.plus},HOLogic.intT -->HOLogic.intT -->HOLogic.intT) $ 
-  (Const(@{const_name HOL.times},HOLogic.intT -->HOLogic.intT -->HOLogic.intT) $ (mk_number 1) $ (Bound i)) $ zero) 
-  |(Const(@{const_name HOL.uminus},_) $ t ) => (linear_neg (lint vars t)) 
-  |(Const(@{const_name HOL.plus},_) $ s $ t) => (linear_add vars (lint vars s) (lint vars t)) 
-  |(Const(@{const_name HOL.minus},_) $ s $ t) => (linear_sub vars (lint vars s) (lint vars t)) 
-  |(Const (@{const_name HOL.times},_) $ s $ t) => 
-        let val s' = lint vars s  
-            val t' = lint vars t  
-        in 
-        if is_number s' then (linear_cmul (dest_number s') t') 
-        else if is_number t' then (linear_cmul (dest_number t') s') 
- 
-         else raise COOPER
-         end 
-  |_ =>  raise COOPER;
-   
- 
- 
-(* ------------------------------------------------------------------------- *) 
-(* Linearize the atoms in a formula, and eliminate non-strict inequalities.  *) 
-(* ------------------------------------------------------------------------- *) 
- 
-fun mkatom vars p t = Const(p,HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ zero $ (lint vars t); 
- 
-fun linform vars (Const ("Divides.dvd",_) $ c $ t) =
-    if is_number c then   
-      let val c' = (mk_number(abs(dest_number c)))  
-      in (HOLogic.mk_binrel "Divides.dvd" (c,lint vars t)) 
-      end 
-    else (warning "Nonlinear term --- Non numeral leftside at dvd"
-      ;raise COOPER)
-  |linform vars  (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ s $ t ) = (mkatom vars "op =" (Const (@{const_name HOL.minus},HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ t $ s) ) 
-  |linform vars  (Const(@{const_name Orderings.less},_)$ s $t ) = (mkatom vars @{const_name Orderings.less} (Const (@{const_name HOL.minus},HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ t $ s))
-  |linform vars  (Const("op >",_) $ s $ t ) = (mkatom vars @{const_name Orderings.less} (Const (@{const_name HOL.minus},HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ s $ t)) 
-  |linform vars  (Const(@{const_name Orderings.less_eq},_)$ s $ t ) = 
-        (mkatom vars @{const_name Orderings.less} (Const (@{const_name HOL.minus},HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ (Const(@{const_name HOL.plus},HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $t $(mk_number 1)) $ s)) 
-  |linform vars  (Const("op >=",_)$ s $ t ) = 
-        (mkatom vars @{const_name Orderings.less} (Const (@{const_name HOL.minus},HOLogic.intT --> HOLogic.intT --> 
-	HOLogic.intT) $ (Const(@{const_name HOL.plus},HOLogic.intT --> HOLogic.intT --> 
-	HOLogic.intT) $s $(mk_number 1)) $ t)) 
- 
-   |linform vars  fm =  fm; 
- 
-(* ------------------------------------------------------------------------- *) 
-(* Post-NNF transformation eliminating negated inequalities.                 *) 
-(* ------------------------------------------------------------------------- *) 
- 
-fun posineq fm = case fm of  
- (Const ("Not",_)$(Const(@{const_name Orderings.less},_)$ c $ t)) =>
-   (HOLogic.mk_binrel @{const_name Orderings.less}  (zero , (linear_sub [] (mk_number 1) (linear_add [] c t ) ))) 
-  | ( Const ("op &",_) $ p $ q)  => HOLogic.mk_conj (posineq p,posineq q)
-  | ( Const ("op |",_) $ p $ q ) => HOLogic.mk_disj (posineq p,posineq q)
-  | _ => fm; 
-  
-
-(* ------------------------------------------------------------------------- *) 
-(* Find the LCM of the coefficients of x.                                    *) 
-(* ------------------------------------------------------------------------- *) 
-(*gcd calculates gcd (a,b) and helps lcm_num calculating lcm (a,b)*) 
- 
-(*BEWARE: replaces Library.gcd!! There is also Library.lcm!*)
-fun gcd (a:IntInf.int) b = if a=0 then b else gcd (b mod a) a ; 
-fun lcm_num a b = (abs a*b) div (gcd (abs a) (abs b)); 
- 
-fun formlcm x fm = case fm of 
-    (Const (p,_)$ _ $(Const (@{const_name HOL.plus}, _)$(Const (@{const_name HOL.times},_)$ c $ y ) $z ) ) =>  if 
-    (is_arith_rel fm) andalso (x = y) then  (abs(dest_number c)) else 1 
-  | ( Const ("Not", _) $p) => formlcm x p 
-  | ( Const ("op &",_) $ p $ q) => lcm_num (formlcm x p) (formlcm x q) 
-  | ( Const ("op |",_) $ p $ q )=> lcm_num (formlcm x p) (formlcm x q) 
-  |  _ => 1; 
- 
-(* ------------------------------------------------------------------------- *) 
-(* Adjust all coefficients of x in formula; fold in reduction to +/- 1.      *) 
-(* ------------------------------------------------------------------------- *) 
- 
-fun adjustcoeff x l fm = 
-     case fm of  
-      (Const(p,_) $d $( Const (@{const_name HOL.plus}, _)$(Const (@{const_name HOL.times},_) $ 
-      c $ y ) $z )) => if (is_arith_rel fm) andalso (x = y) then  
-        let val m = l div (dest_number c) 
-            val n = (if p = @{const_name Orderings.less} then abs(m) else m) 
-            val xtm = HOLogic.mk_binop @{const_name HOL.times} ((mk_number (m div n)), x) 
-	in
-        (HOLogic.mk_binrel p ((linear_cmul n d),(HOLogic.mk_binop @{const_name HOL.plus} ( xtm ,( linear_cmul n z) )))) 
-	end 
-	else fm 
-  |( Const ("Not", _) $ p) => HOLogic.Not $ (adjustcoeff x l p) 
-  |( Const ("op &",_) $ p $ q) => HOLogic.conj$(adjustcoeff x l p) $(adjustcoeff x l q) 
-  |( Const ("op |",_) $ p $ q) => HOLogic.disj $(adjustcoeff x l p)$ (adjustcoeff x l q) 
-  |_ => fm; 
- 
-(* ------------------------------------------------------------------------- *) 
-(* Hence make coefficient of x one in existential formula.                   *) 
-(* ------------------------------------------------------------------------- *) 
- 
-fun unitycoeff x fm = 
-  let val l = formlcm x fm
-      val fm' = adjustcoeff x l fm in
-      if l = 1 then fm' 
-	 else 
-     let val xp = (HOLogic.mk_binop @{const_name HOL.plus}  
-     		((HOLogic.mk_binop @{const_name HOL.times} ((mk_number 1), x )), zero))
-	in 
-      HOLogic.conj $(HOLogic.mk_binrel "Divides.dvd" ((mk_number l) , xp )) $ (adjustcoeff x l fm) 
-      end 
-  end; 
- 
-(* adjustcoeffeq l fm adjusts the coeffitients c_i of x  overall in fm to l*)
-(* Here l must be a multiple of all c_i otherwise the obtained formula is not equivalent*)
-(*
-fun adjustcoeffeq x l fm = 
-    case fm of  
-      (Const(p,_) $d $( Const (@{const_name HOL.plus}, _)$(Const (@{const_name HOL.times},_) $ 
-      c $ y ) $z )) => if (is_arith_rel fm) andalso (x = y) then  
-        let val m = l div (dest_number c) 
-            val n = (if p = @{const_name Orderings.less} then abs(m) else m)  
-            val xtm = (HOLogic.mk_binop @{const_name HOL.times} ((mk_number ((m div n)*l) ), x))
-            in (HOLogic.mk_binrel p ((linear_cmul n d),(HOLogic.mk_binop @{const_name HOL.plus} ( xtm ,( linear_cmul n z) )))) 
-	    end 
-	else fm 
-  |( Const ("Not", _) $ p) => HOLogic.Not $ (adjustcoeffeq x l p) 
-  |( Const ("op &",_) $ p $ q) => HOLogic.conj$(adjustcoeffeq x l p) $(adjustcoeffeq x l q) 
-  |( Const ("op |",_) $ p $ q) => HOLogic.disj $(adjustcoeffeq x l p)$ (adjustcoeffeq x l q) 
-  |_ => fm;
- 
-
-*)
-
-(* ------------------------------------------------------------------------- *) 
-(* The "minus infinity" version.                                             *) 
-(* ------------------------------------------------------------------------- *) 
- 
-fun minusinf x fm = case fm of  
-    (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ (c1 ) $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z)) => 
-  	 if (is_arith_rel fm) andalso (x=y) andalso (c2 = one) andalso (c1 =zero) then HOLogic.false_const  
-	 				 else fm 
- 
-  |(Const(@{const_name Orderings.less},_) $ c $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ pm1 $ y ) $ z 
-  )) => if (x = y) 
-	then if (pm1 = one) andalso (c = zero) then HOLogic.false_const 
-	     else if (dest_number pm1 = ~1) andalso (c = zero) then HOLogic.true_const 
-	          else error "minusinf : term not in normal form!!!"
-	else fm
-	 
-  |(Const ("Not", _) $ p) => HOLogic.Not $ (minusinf x p) 
-  |(Const ("op &",_) $ p $ q) => HOLogic.conj $ (minusinf x p) $ (minusinf x q) 
-  |(Const ("op |",_) $ p $ q) => HOLogic.disj $ (minusinf x p) $ (minusinf x q) 
-  |_ => fm; 
-
-(* ------------------------------------------------------------------------- *)
-(* The "Plus infinity" version.                                             *)
-(* ------------------------------------------------------------------------- *)
-
-fun plusinf x fm = case fm of
-    (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ (c1 ) $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z)) =>
-  	 if (is_arith_rel fm) andalso (x=y) andalso (c2 = one) andalso (c1 =zero) then HOLogic.false_const
-	 				 else fm
-
-  |(Const(@{const_name Orderings.less},_) $ c $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ pm1 $ y ) $ z
-  )) => if (x = y) 
-	then if (pm1 = one) andalso (c = zero) then HOLogic.true_const 
-	     else if (dest_number pm1 = ~1) andalso (c = zero) then HOLogic.false_const
-	     else error "plusinf : term not in normal form!!!"
-	else fm 
-
-  |(Const ("Not", _) $ p) => HOLogic.Not $ (plusinf x p)
-  |(Const ("op &",_) $ p $ q) => HOLogic.conj $ (plusinf x p) $ (plusinf x q)
-  |(Const ("op |",_) $ p $ q) => HOLogic.disj $ (plusinf x p) $ (plusinf x q)
-  |_ => fm;
- 
-(* ------------------------------------------------------------------------- *) 
-(* The LCM of all the divisors that involve x.                               *) 
-(* ------------------------------------------------------------------------- *) 
- 
-fun divlcm x (Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z ) ) =  
-        if x = y then abs(dest_number d) else 1 
-  |divlcm x ( Const ("Not", _) $ p) = divlcm x p 
-  |divlcm x ( Const ("op &",_) $ p $ q) = lcm_num (divlcm x p) (divlcm x q) 
-  |divlcm x ( Const ("op |",_) $ p $ q ) = lcm_num (divlcm x p) (divlcm x q) 
-  |divlcm x  _ = 1; 
- 
-(* ------------------------------------------------------------------------- *) 
-(* Construct the B-set.                                                      *) 
-(* ------------------------------------------------------------------------- *) 
- 
-fun bset x fm = case fm of 
-   (Const ("Not", _) $ p) => if (is_arith_rel p) then  
-          (case p of  
-	      (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $c2 $y) $a ) )  
-	             => if (is_arith_rel p) andalso (x=	y) andalso (c2 = one) andalso (c1 = zero)  
-	                then [linear_neg a] 
-			else  bset x p 
-   	  |_ =>[]) 
-			 
-			else bset x p 
-  |(Const ("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $c2 $ x) $ a)) =>  if (c1 =zero) andalso (c2 = one) then [linear_neg(linear_add [] a (mk_number 1))]  else [] 
-  |(Const (@{const_name Orderings.less},_) $ c1$ (Const (@{const_name HOL.plus},_) $(Const (@{const_name HOL.times},_)$ c2 $ x) $ a)) => if (c1 =zero) andalso (c2 = one) then [linear_neg a] else [] 
-  |(Const ("op &",_) $ p $ q) => (bset x p) union (bset x q) 
-  |(Const ("op |",_) $ p $ q) => (bset x p) union (bset x q) 
-  |_ => []; 
- 
-(* ------------------------------------------------------------------------- *)
-(* Construct the A-set.                                                      *)
-(* ------------------------------------------------------------------------- *)
-
-fun aset x fm = case fm of
-   (Const ("Not", _) $ p) => if (is_arith_rel p) then
-          (case p of
-	      (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $c2 $y) $a ) )
-	             => if (x=	y) andalso (c2 = one) andalso (c1 = zero)
-	                then [linear_neg a]
-			else  []
-   	  |_ =>[])
-
-			else aset x p
-  |(Const ("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $c2 $ x) $ a)) =>  if (c1 =zero) andalso (c2 = one) then [linear_sub [] (mk_number 1) a]  else []
-  |(Const (@{const_name Orderings.less},_) $ c1$ (Const (@{const_name HOL.plus},_) $(Const (@{const_name HOL.times},_)$ c2 $ x) $ a)) => if (c1 =zero) andalso (c2 = (mk_number (~1))) then [a] else []
-  |(Const ("op &",_) $ p $ q) => (aset x p) union (aset x q)
-  |(Const ("op |",_) $ p $ q) => (aset x p) union (aset x q)
-  |_ => [];
-
-
-(* ------------------------------------------------------------------------- *) 
-(* Replace top variable with another linear form, retaining canonicality.    *) 
-(* ------------------------------------------------------------------------- *) 
- 
-fun linrep vars x t fm = case fm of  
-   ((Const(p,_)$ d $ (Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$ c $ y) $ z))) => 
-      if (x = y) andalso (is_arith_rel fm)  
-      then  
-        let val ct = linear_cmul (dest_number c) t  
-	in (HOLogic.mk_binrel p (d, linear_add vars ct z)) 
-	end 
-	else fm 
-  |(Const ("Not", _) $ p) => HOLogic.Not $ (linrep vars x t p) 
-  |(Const ("op &",_) $ p $ q) => HOLogic.conj $ (linrep vars x t p) $ (linrep vars x t q) 
-  |(Const ("op |",_) $ p $ q) => HOLogic.disj $ (linrep vars x t p) $ (linrep vars x t q) 
-  |_ => fm;
- 
-(* ------------------------------------------------------------------------- *) 
-(* Evaluation of constant expressions.                                       *) 
-(* ------------------------------------------------------------------------- *) 
-
-(* An other implementation of divides, that covers more cases*) 
-
-exception DVD_UNKNOWN
-
-fun dvd_op (d, t) = 
- if not(is_number d) then raise DVD_UNKNOWN
- else let 
-   val dn = dest_number d
-   fun coeffs_of x = case x of 
-     Const(p,_) $ tl $ tr => 
-       if p = @{const_name HOL.plus} then (coeffs_of tl) union (coeffs_of tr)
-          else if p = @{const_name HOL.times} 
-	        then if (is_number tr) 
-		 then [(dest_number tr) * (dest_number tl)] 
-		 else [dest_number tl]
-	        else []
-    |_ => if (is_number t) then [dest_number t]  else []
-   val ts = coeffs_of t
-   in case ts of
-     [] => raise DVD_UNKNOWN
-    |_  => fold_rev (fn k => fn r => r andalso (k mod dn = 0)) ts true
-   end;
-
-
-val operations = 
-  [("op =",op=), (@{const_name Orderings.less},IntInf.<), ("op >",IntInf.>), (@{const_name Orderings.less_eq},IntInf.<=) , 
-   ("op >=",IntInf.>=), 
-   ("Divides.dvd",fn (x,y) =>((IntInf.mod(y, x)) = 0))]; 
- 
-fun applyoperation (SOME f) (a,b) = f (a, b) 
-    |applyoperation _ (_, _) = false; 
- 
-(*Evaluation of constant atomic formulas*) 
- (*FIXME : This is an optimation but still incorrect !! *)
-(*
-fun evalc_atom at = case at of  
-  (Const (p,_) $ s $ t) =>
-   (if p="Divides.dvd" then 
-     ((if dvd_op(s,t) then HOLogic.true_const
-     else HOLogic.false_const)
-      handle _ => at)
-    else
-  case AList.lookup (op =) operations p of 
-    SOME f => ((if (f ((dest_number s),(dest_number t))) then HOLogic.true_const else HOLogic.false_const)  
-    handle _ => at) 
-      | _ =>  at) 
-      |Const("Not",_)$(Const (p,_) $ s $ t) =>(  
-  case AList.lookup (op =) operations p of 
-    SOME f => ((if (f ((dest_number s),(dest_number t))) then 
-    HOLogic.false_const else HOLogic.true_const)  
-    handle _ => at) 
-      | _ =>  at) 
-      | _ =>  at; 
-
-*)
-
-fun evalc_atom at = case at of  
-  (Const (p,_) $ s $ t) =>
-   ( case AList.lookup (op =) operations p of 
-    SOME f => ((if (f ((dest_number s),(dest_number t))) then HOLogic.true_const 
-                else HOLogic.false_const)  
-    handle _ => at) 
-      | _ =>  at) 
-      |Const("Not",_)$(Const (p,_) $ s $ t) =>(  
-  case AList.lookup (op =) operations p of 
-    SOME f => ((if (f ((dest_number s),(dest_number t))) 
-               then HOLogic.false_const else HOLogic.true_const)  
-    handle _ => at) 
-      | _ =>  at) 
-      | _ =>  at; 
-
- (*Function onatoms apllys function f on the atomic formulas involved in a.*) 
- 
-fun onatoms f a = if (is_arith_rel a) then f a else case a of 
- 
-  	(Const ("Not",_) $ p) => if is_arith_rel p then HOLogic.Not $ (f p) 
-				 
-				else HOLogic.Not $ (onatoms f p) 
-  	|(Const ("op &",_) $ p $ q) => HOLogic.conj $ (onatoms f p) $ (onatoms f q) 
-  	|(Const ("op |",_) $ p $ q) => HOLogic.disj $ (onatoms f p) $ (onatoms f q) 
-  	|(Const ("op -->",_) $ p $ q) => HOLogic.imp $ (onatoms f p) $ (onatoms f q) 
-  	|((Const ("op =", Type ("fun",[Type ("bool", []),_]))) $ p $ q) => (Const ("op =", [HOLogic.boolT, HOLogic.boolT] ---> HOLogic.boolT)) $ (onatoms f p) $ (onatoms f q) 
-  	|(Const("All",_) $ Abs(x,T,p)) => Const("All", [HOLogic.intT --> 
-	HOLogic.boolT] ---> HOLogic.boolT)$ Abs (x ,T, (onatoms f p)) 
-  	|(Const("Ex",_) $ Abs(x,T,p)) => Const("Ex", [HOLogic.intT --> HOLogic.boolT]---> HOLogic.boolT) $ Abs( x ,T, (onatoms f p)) 
-  	|_ => a; 
- 
-val evalc = onatoms evalc_atom; 
- 
-(* ------------------------------------------------------------------------- *) 
-(* Hence overall quantifier elimination.                                     *) 
-(* ------------------------------------------------------------------------- *) 
- 
- 
-(*list_disj[conj] makes a disj[conj] of a given list. used with conjucts or disjuncts 
-it liearises iterated conj[disj]unctions. *) 
- 
-fun list_disj [] = HOLogic.false_const
-  | list_disj ps = foldr1 (fn (p, q) => HOLogic.disj $ p $ q) ps;
-
-fun list_conj [] = HOLogic.true_const
-  | list_conj ps = foldr1 (fn (p, q) => HOLogic.conj $ p $ q) ps;
-
-
-(*Simplification of Formulas *) 
- 
-(*Function q_bnd_chk checks if a quantified Formula makes sens : Means if in 
-the body of the existential quantifier there are bound variables to the 
-existential quantifier.*) 
- 
-fun has_bound fm =let fun has_boundh fm i = case fm of 
-		 Bound n => (i = n) 
-		 |Abs (_,_,p) => has_boundh p (i+1) 
-		 |t1 $ t2 => (has_boundh t1 i) orelse (has_boundh t2 i) 
-		 |_ =>false
-
-in  case fm of 
-	Bound _ => true 
-       |Abs (_,_,p) => has_boundh p 0 
-       |t1 $ t2 => (has_bound t1 ) orelse (has_bound t2 ) 
-       |_ =>false
-end;
- 
-(*has_sub_abs checks if in a given Formula there are subformulas which are quantifed 
-too. Is no used no more.*) 
- 
-fun has_sub_abs fm = case fm of  
-		 Abs (_,_,_) => true 
-		 |t1 $ t2 => (has_bound t1 ) orelse (has_bound t2 ) 
-		 |_ =>false ; 
-		  
-(*update_bounds called with i=0 udates the numeration of bounded variables because the 
-formula will not be quantified any more.*) 
- 
-fun update_bounds fm i = case fm of 
-		 Bound n => if n >= i then Bound (n-1) else fm 
-		 |Abs (x,T,p) => Abs(x,T,(update_bounds p (i+1))) 
-		 |t1 $ t2 => (update_bounds t1 i) $ (update_bounds t2 i) 
-		 |_ => fm ; 
- 
-(*psimpl : Simplification of propositions (general purpose)*) 
-fun psimpl1 fm = case fm of 
-    Const("Not",_) $ Const ("False",_) => HOLogic.true_const 
-  | Const("Not",_) $ Const ("True",_) => HOLogic.false_const 
-  | Const("op &",_) $ Const ("False",_) $ q => HOLogic.false_const 
-  | Const("op &",_) $ p $ Const ("False",_)  => HOLogic.false_const 
-  | Const("op &",_) $ Const ("True",_) $ q => q 
-  | Const("op &",_) $ p $ Const ("True",_) => p 
-  | Const("op |",_) $ Const ("False",_) $ q => q 
-  | Const("op |",_) $ p $ Const ("False",_)  => p 
-  | Const("op |",_) $ Const ("True",_) $ q => HOLogic.true_const 
-  | Const("op |",_) $ p $ Const ("True",_)  => HOLogic.true_const 
-  | Const("op -->",_) $ Const ("False",_) $ q => HOLogic.true_const 
-  | Const("op -->",_) $ Const ("True",_) $  q => q 
-  | Const("op -->",_) $ p $ Const ("True",_)  => HOLogic.true_const 
-  | Const("op -->",_) $ p $ Const ("False",_)  => HOLogic.Not $  p 
-  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ Const ("True",_) $ q => q 
-  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ p $ Const ("True",_) => p 
-  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ Const ("False",_) $ q => HOLogic.Not $  q 
-  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ p $ Const ("False",_)  => HOLogic.Not $  p 
-  | _ => fm; 
- 
-fun psimpl fm = case fm of 
-   Const ("Not",_) $ p => psimpl1 (HOLogic.Not $ (psimpl p)) 
-  | Const("op &",_) $ p $ q => psimpl1 (HOLogic.mk_conj (psimpl p,psimpl q)) 
-  | Const("op |",_) $ p $ q => psimpl1 (HOLogic.mk_disj (psimpl p,psimpl q)) 
-  | Const("op -->",_) $ p $ q => psimpl1 (HOLogic.mk_imp(psimpl p,psimpl q)) 
-  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ p $ q => psimpl1 (HOLogic.mk_eq(psimpl p,psimpl q))
-  | _ => fm; 
- 
- 
-(*simpl : Simplification of Terms involving quantifiers too. 
- This function is able to drop out some quantified expressions where there are no 
- bound varaibles.*) 
-  
-fun simpl1 fm  = 
-  case fm of 
-    Const("All",_) $Abs(x,_,p) => if (has_bound fm ) then fm  
-    				else (update_bounds p 0) 
-  | Const("Ex",_) $ Abs (x,_,p) => if has_bound fm then fm  
-    				else (update_bounds p 0) 
-  | _ => psimpl fm; 
- 
-fun simpl fm = case fm of 
-    Const ("Not",_) $ p => simpl1 (HOLogic.Not $(simpl p))  
-  | Const ("op &",_) $ p $ q => simpl1 (HOLogic.mk_conj (simpl p ,simpl q))  
-  | Const ("op |",_) $ p $ q => simpl1 (HOLogic.mk_disj (simpl p ,simpl q ))  
-  | Const ("op -->",_) $ p $ q => simpl1 (HOLogic.mk_imp(simpl p ,simpl q ))  
-  | Const("op =", Type ("fun",[Type ("bool", []),_]))$ p $ q => simpl1 
-  (HOLogic.mk_eq(simpl p ,simpl q ))  
-(*  | Const ("All",Ta) $ Abs(Vn,VT,p) => simpl1(Const("All",Ta) $ 
-  Abs(Vn,VT,simpl p ))  
-  | Const ("Ex",Ta)  $ Abs(Vn,VT,p) => simpl1(Const("Ex",Ta)  $ 
-  Abs(Vn,VT,simpl p ))  
-*)
-  | _ => fm; 
- 
-(* ------------------------------------------------------------------------- *) 
- 
-(* Puts fm into NNF*) 
- 
-fun  nnf fm = if (is_arith_rel fm) then fm  
-else (case fm of 
-  ( Const ("op &",_) $ p $ q)  => HOLogic.conj $ (nnf p) $(nnf q) 
-  | (Const("op |",_) $ p $q) => HOLogic.disj $ (nnf p)$(nnf q) 
-  | (Const ("op -->",_)  $ p $ q) => HOLogic.disj $ (nnf (HOLogic.Not $ p)) $ (nnf q) 
-  | ((Const ("op =", Type ("fun",[Type ("bool", []),_]))) $ p $ q) =>(HOLogic.disj $ (HOLogic.conj $ (nnf p) $ (nnf q)) $ (HOLogic.conj $ (nnf (HOLogic.Not $ p) ) $ (nnf(HOLogic.Not $ q)))) 
-  | (Const ("Not",_)) $ ((Const ("Not",_)) $ p) => (nnf p) 
-  | (Const ("Not",_)) $ (( Const ("op &",_)) $ p $ q) =>HOLogic.disj $ (nnf(HOLogic.Not $ p)) $ (nnf(HOLogic.Not $q)) 
-  | (Const ("Not",_)) $ (( Const ("op |",_)) $ p $ q) =>HOLogic.conj $ (nnf(HOLogic.Not $ p)) $ (nnf(HOLogic.Not $ q)) 
-  | (Const ("Not",_)) $ (( Const ("op -->",_)) $ p $ q ) =>HOLogic.conj $ (nnf p) $(nnf(HOLogic.Not $ q)) 
-  | (Const ("Not",_)) $ ((Const ("op =", Type ("fun",[Type ("bool", []),_]))) $ p $ q ) =>(HOLogic.disj $ (HOLogic.conj $(nnf p) $ (nnf(HOLogic.Not $ q))) $ (HOLogic.conj $(nnf(HOLogic.Not $ p)) $ (nnf q))) 
-  | _ => fm); 
- 
- 
-(* Function remred to remove redundancy in a list while keeping the order of appearance of the 
-elements. but VERY INEFFICIENT!! *) 
- 
-fun remred1 el [] = [] 
-    |remred1 el (h::t) = if el=h then (remred1 el t) else h::(remred1 el t); 
-     
-fun remred [] = [] 
-    |remred (x::l) =  x::(remred1 x (remred l)); 
- 
-(*Makes sure that all free Variables are of the type integer but this function is only 
-used temporarily, this job must be done by the parser later on.*) 
- 
-fun mk_uni_vars T  (node $ rest) = (case node of 
-    Free (name,_) => Free (name,T) $ (mk_uni_vars T rest) 
-    |_=> (mk_uni_vars T node) $ (mk_uni_vars T rest )  ) 
-    |mk_uni_vars T (Free (v,_)) = Free (v,T) 
-    |mk_uni_vars T tm = tm; 
- 
-fun mk_uni_int T (Const (@{const_name HOL.zero},T2)) = if T = T2 then (mk_number 0) else (Const (@{const_name HOL.zero},T2)) 
-    |mk_uni_int T (Const (@{const_name HOL.one},T2)) = if T = T2 then (mk_number 1) else (Const (@{const_name HOL.one},T2)) 
-    |mk_uni_int T (node $ rest) = (mk_uni_int T node) $ (mk_uni_int T rest )  
-    |mk_uni_int T (Abs(AV,AT,p)) = Abs(AV,AT,mk_uni_int T p) 
-    |mk_uni_int T tm = tm; 
- 
-
-(* Minusinfinity Version*)    
-fun myupto (m:IntInf.int) n = if m > n then [] else m::(myupto (m+1) n)
-
-fun coopermi vars1 fm = 
-  case fm of 
-   Const ("Ex",_) $ Abs(x0,T,p0) => 
-   let 
-    val (xn,p1) = Syntax.variant_abs (x0,T,p0) 
-    val x = Free (xn,T)  
-    val vars = (xn::vars1) 
-    val p = unitycoeff x  (posineq (simpl p1))
-    val p_inf = simpl (minusinf x p) 
-    val bset = bset x p 
-    val js = myupto 1 (divlcm x p)
-    fun p_element j b = linrep vars x (linear_add vars b (mk_number j)) p  
-    fun stage j = list_disj (linrep vars x (mk_number j) p_inf :: map (p_element j) bset)  
-   in (list_disj (map stage js))
-    end 
-  | _ => error "cooper: not an existential formula"; 
- 
-
-
-(* The plusinfinity version of cooper*)
-fun cooperpi vars1 fm =
-  case fm of
-   Const ("Ex",_) $ Abs(x0,T,p0) => let 
-    val (xn,p1) = Syntax.variant_abs (x0,T,p0)
-    val x = Free (xn,T)
-    val vars = (xn::vars1)
-    val p = unitycoeff x  (posineq (simpl p1))
-    val p_inf = simpl (plusinf x p)
-    val aset = aset x p
-    val js = myupto 1 (divlcm x p)
-    fun p_element j a = linrep vars x (linear_sub vars a (mk_number j)) p
-    fun stage j = list_disj (linrep vars x (mk_number j) p_inf :: map (p_element j) aset)
-   in (list_disj (map stage js))
-   end
-  | _ => error "cooper: not an existential formula";
-  
-
-(* Try to find a withness for the formula *)
-
-fun inf_w mi d vars x p = 
-  let val f = if mi then minusinf else plusinf in
-   case (simpl (minusinf x p)) of
-   Const("True",_)  => (SOME (mk_number 1), HOLogic.true_const)
-  |Const("False",_) => (NONE,HOLogic.false_const)
-  |F => 
-      let 
-      fun h n =
-       case ((simpl o evalc) (linrep vars x (mk_number n) F)) of 
-	Const("True",_) => (SOME (mk_number n),HOLogic.true_const)
-       |F' => if n=1 then (NONE,F')
-	     else let val (rw,rf) = h (n-1) in 
-	       (rw,HOLogic.mk_disj(F',rf))
-	     end
-
-      in (h d)
-      end
-  end;
-
-fun set_w d b st vars x p = let 
-    fun h ns = case ns of 
-    [] => (NONE,HOLogic.false_const)
-   |n::nl => ( case ((simpl o evalc) (linrep vars x n p)) of
-      Const("True",_) => (SOME n,HOLogic.true_const)
-      |F' => let val (rw,rf) = h nl 
-             in (rw,HOLogic.mk_disj(F',rf)) 
-	     end)
-    val f = if b then linear_add else linear_sub
-    val p_elements = fold_rev (fn i => fn l => l union (map (fn e => f [] e (mk_number i)) st)) (myupto 1 d) []
-    in h p_elements
-    end;
-
-fun withness d b st vars x p = case (inf_w b d vars x p) of 
-   (SOME n,_) => (SOME n,HOLogic.true_const)
-  |(NONE,Pinf) => (case (set_w d b st vars x p) of 
-    (SOME n,_) => (SOME n,HOLogic.true_const)
-    |(_,Pst) => (NONE,HOLogic.mk_disj(Pinf,Pst)));
-
-
-
-
-(*Cooper main procedure*) 
-
-exception STAGE_TRUE;
-
-  
-fun cooper vars1 fm =
-  case fm of
-   Const ("Ex",_) $ Abs(x0,T,p0) => let 
-    val (xn,p1) = Syntax.variant_abs (x0,T,p0)
-    val x = Free (xn,T)
-    val vars = (xn::vars1)
-(*     val p = unitycoeff x  (posineq (simpl p1)) *)
-    val p = unitycoeff x  p1 
-    val ast = aset x p
-    val bst = bset x p
-    val js = myupto 1 (divlcm x p)
-    val (p_inf,f,S ) = 
-    if (length bst) <= (length ast) 
-     then (simpl (minusinf x p),linear_add,bst)
-     else (simpl (plusinf x p), linear_sub,ast)
-    fun p_element j a = linrep vars x (f vars a (mk_number j)) p
-    fun stage j = list_disj (linrep vars x (mk_number j) p_inf :: map (p_element j) S)
-    fun stageh n = ((if n = 0 then []
-	else 
-	let 
-	val nth_stage = simpl (evalc (stage n))
-	in 
-	if (nth_stage = HOLogic.true_const) 
-	  then raise STAGE_TRUE 
-	  else if (nth_stage = HOLogic.false_const) then stageh (n-1)
-	    else nth_stage::(stageh (n-1))
-	end )
-        handle STAGE_TRUE => [HOLogic.true_const])
-    val slist = stageh (divlcm x p)
-   in (list_disj slist)
-   end
-  | _ => error "cooper: not an existential formula";
-
-
-(* A Version of cooper that returns a withness *)
-fun cooper_w vars1 fm =
-  case fm of
-   Const ("Ex",_) $ Abs(x0,T,p0) => let 
-    val (xn,p1) = Syntax.variant_abs (x0,T,p0)
-    val x = Free (xn,T)
-    val vars = (xn::vars1)
-(*     val p = unitycoeff x  (posineq (simpl p1)) *)
-    val p = unitycoeff x  p1 
-    val ast = aset x p
-    val bst = bset x p
-    val d = divlcm x p
-    val (p_inf,S ) = 
-    if (length bst) <= (length ast) 
-     then (true,bst)
-     else (false,ast)
-    in withness d p_inf S vars x p 
-(*    fun p_element j a = linrep vars x (f vars a (mk_number j)) p
-    fun stage j = list_disj (linrep vars x (mk_number j) p_inf :: map (p_element j) S)
-   in (list_disj (map stage js))
-*)
-   end
-  | _ => error "cooper: not an existential formula";
-
- 
-(* ------------------------------------------------------------------------- *) 
-(* Free variables in terms and formulas.	                             *) 
-(* ------------------------------------------------------------------------- *) 
- 
-fun fvt tml = case tml of 
-    [] => [] 
-  | Free(x,_)::r => x::(fvt r) 
- 
-fun fv fm = fvt (term_frees fm); 
- 
- 
-(* ========================================================================= *) 
-(* Quantifier elimination.                                                   *) 
-(* ========================================================================= *) 
-(*conj[/disj]uncts lists iterated conj[disj]unctions*) 
- 
-fun disjuncts fm = case fm of 
-    Const ("op |",_) $ p $ q => (disjuncts p) @ (disjuncts q) 
-  | _ => [fm]; 
- 
-fun conjuncts fm = case fm of 
-    Const ("op &",_) $p $ q => (conjuncts p) @ (conjuncts q) 
-  | _ => [fm]; 
- 
- 
- 
-(* ------------------------------------------------------------------------- *) 
-(* Lift procedure given literal modifier, formula normalizer & basic quelim. *) 
-(* ------------------------------------------------------------------------- *)
-
-fun lift_qelim afn nfn qfn isat = 
-let 
-fun qelift vars fm = if (isat fm) then afn vars fm 
-else  
-case fm of 
-  Const ("Not",_) $ p => HOLogic.Not $ (qelift vars p) 
-  | Const ("op &",_) $ p $q => HOLogic.conj $ (qelift vars p) $ (qelift vars q) 
-  | Const ("op |",_) $ p $ q => HOLogic.disj $ (qelift vars p) $ (qelift vars q) 
-  | Const ("op -->",_) $ p $ q => HOLogic.imp $ (qelift vars p) $ (qelift vars q) 
-  | Const ("op =",Type ("fun",[Type ("bool", []),_])) $ p $ q => HOLogic.mk_eq ((qelift vars p),(qelift vars q)) 
-  | Const ("All",QT) $ Abs(x,T,p) => HOLogic.Not $(qelift vars (Const ("Ex",QT) $ Abs(x,T,(HOLogic.Not $ p)))) 
-  | (e as Const ("Ex",_)) $ Abs (x,T,p)  =>  qfn vars (e$Abs (x,T,(nfn(qelift (x::vars) p))))
-  | _ => fm 
- 
-in (fn fm => qelift (fv fm) fm)
-end; 
-
- 
-(*   
-fun lift_qelim afn nfn qfn isat = 
- let   fun qelim x vars p = 
-  let val cjs = conjuncts p 
-      val (ycjs,ncjs) = List.partition (has_bound) cjs in 
-      (if ycjs = [] then p else 
-                          let val q = (qfn vars ((HOLogic.exists_const HOLogic.intT 
-			  ) $ Abs(x,HOLogic.intT,(list_conj ycjs)))) in 
-                          (fold_rev conj_help ncjs q)  
-			  end) 
-       end 
-    
-  fun qelift vars fm = if (isat fm) then afn vars fm 
-    else  
-    case fm of 
-      Const ("Not",_) $ p => HOLogic.Not $ (qelift vars p) 
-    | Const ("op &",_) $ p $q => HOLogic.conj $ (qelift vars p) $ (qelift vars q) 
-    | Const ("op |",_) $ p $ q => HOLogic.disj $ (qelift vars p) $ (qelift vars q) 
-    | Const ("op -->",_) $ p $ q => HOLogic.imp $ (qelift vars p) $ (qelift vars q) 
-    | Const ("op =",Type ("fun",[Type ("bool", []),_])) $ p $ q => HOLogic.mk_eq ((qelift vars p),(qelift vars q)) 
-    | Const ("All",QT) $ Abs(x,T,p) => HOLogic.Not $(qelift vars (Const ("Ex",QT) $ Abs(x,T,(HOLogic.Not $ p)))) 
-    | Const ("Ex",_) $ Abs (x,T,p)  => let  val djs = disjuncts(nfn(qelift (x::vars) p)) in 
-    			list_disj(map (qelim x vars) djs) end 
-    | _ => fm 
- 
-  in (fn fm => simpl(qelift (fv fm) fm)) 
-  end; 
-*)
- 
-(* ------------------------------------------------------------------------- *) 
-(* Cleverer (proposisional) NNF with conditional and literal modification.   *) 
-(* ------------------------------------------------------------------------- *) 
- 
-(*Function Negate used by cnnf, negates a formula p*) 
- 
-fun negate (Const ("Not",_) $ p) = p 
-    |negate p = (HOLogic.Not $ p); 
- 
-fun cnnf lfn = 
-  let fun cnnfh fm = case  fm of 
-      (Const ("op &",_) $ p $ q) => HOLogic.mk_conj(cnnfh p,cnnfh q) 
-    | (Const ("op |",_) $ p $ q) => HOLogic.mk_disj(cnnfh p,cnnfh q) 
-    | (Const ("op -->",_) $ p $q) => HOLogic.mk_disj(cnnfh(HOLogic.Not $ p),cnnfh q) 
-    | (Const ("op =",Type ("fun",[Type ("bool", []),_])) $ p $ q) => HOLogic.mk_disj( 
-    		HOLogic.mk_conj(cnnfh p,cnnfh q), 
-		HOLogic.mk_conj(cnnfh(HOLogic.Not $ p),cnnfh(HOLogic.Not $q))) 
-
-    | (Const ("Not",_) $ (Const("Not",_) $ p)) => cnnfh p 
-    | (Const ("Not",_) $ (Const ("op &",_) $ p $ q)) => HOLogic.mk_disj(cnnfh(HOLogic.Not $ p),cnnfh(HOLogic.Not $ q)) 
-    | (Const ("Not",_) $(Const ("op |",_) $ (Const ("op &",_) $ p $ q) $  
-    			(Const ("op &",_) $ p1 $ r))) => if p1 = negate p then 
-		         HOLogic.mk_disj(  
-			   cnnfh (HOLogic.mk_conj(p,cnnfh(HOLogic.Not $ q))), 
-			   cnnfh (HOLogic.mk_conj(p1,cnnfh(HOLogic.Not $ r)))) 
-			 else  HOLogic.mk_conj(
-			  cnnfh (HOLogic.mk_disj(cnnfh (HOLogic.Not $ p),cnnfh(HOLogic.Not $ q))), 
-			   cnnfh (HOLogic.mk_disj(cnnfh (HOLogic.Not $ p1),cnnfh(HOLogic.Not $ r)))
-			 ) 
-    | (Const ("Not",_) $ (Const ("op |",_) $ p $ q)) => HOLogic.mk_conj(cnnfh(HOLogic.Not $ p),cnnfh(HOLogic.Not $ q)) 
-    | (Const ("Not",_) $ (Const ("op -->",_) $ p $q)) => HOLogic.mk_conj(cnnfh p,cnnfh(HOLogic.Not $ q)) 
-    | (Const ("Not",_) $ (Const ("op =",Type ("fun",[Type ("bool", []),_]))  $ p $ q)) => HOLogic.mk_disj(HOLogic.mk_conj(cnnfh p,cnnfh(HOLogic.Not $ q)),HOLogic.mk_conj(cnnfh(HOLogic.Not $ p),cnnfh q)) 
-    | _ => lfn fm  
-in cnnfh
- end; 
- 
-(*End- function the quantifierelimination an decion procedure of presburger formulas.*)   
-
-(*
-val integer_qelim = simpl o evalc o (lift_qelim linform (simpl o (cnnf posineq o evalc)) cooper is_arith_rel) ; 
-*)
-
-
-val integer_qelim = simpl o evalc o (lift_qelim linform (cnnf posineq o evalc) cooper is_arith_rel) ; 
-
-end;
--- a/src/HOL/Integ/cooper_proof.ML	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,988 +0,0 @@
-(*  Title:      HOL/Integ/cooper_proof.ML
-    ID:         $Id$
-    Author:     Amine Chaieb and Tobias Nipkow, TU Muenchen
-
-File containing the implementation of the proof
-generation for Cooper Algorithm
-*)
-
-
-signature COOPER_PROOF =
-sig
-  val qe_Not : thm
-  val qe_conjI : thm
-  val qe_disjI : thm
-  val qe_impI : thm
-  val qe_eqI : thm
-  val qe_exI : thm
-  val list_to_set : typ -> term list -> term
-  val qe_get_terms : thm -> term * term
-  val cooper_prv  : theory -> term -> term -> thm
-  val proof_of_evalc : theory -> term -> thm
-  val proof_of_cnnf : theory -> term -> (term -> thm) -> thm
-  val proof_of_linform : theory -> string list -> term -> thm
-  val proof_of_adjustcoeffeq : theory -> term -> IntInf.int -> term -> thm
-  val prove_elementar : theory -> string -> term -> thm
-  val thm_of : theory -> (term -> (term list * (thm list -> thm))) -> term -> thm
-end;
-
-structure CooperProof : COOPER_PROOF =
-struct
-open CooperDec;
-
-val presburger_ss = simpset ()
-  addsimps [diff_int_def] delsimps [thm "diff_int_def_symmetric"];
-
-val cboolT = ctyp_of HOL.thy HOLogic.boolT;
-
-(*Theorems that will be used later for the proofgeneration*)
-
-val zdvd_iff_zmod_eq_0 = thm "zdvd_iff_zmod_eq_0";
-val unity_coeff_ex = thm "unity_coeff_ex";
-
-(* Theorems for proving the adjustment of the coefficients*)
-
-val ac_lt_eq =  thm "ac_lt_eq";
-val ac_eq_eq = thm "ac_eq_eq";
-val ac_dvd_eq = thm "ac_dvd_eq";
-val ac_pi_eq = thm "ac_pi_eq";
-
-(* The logical compination of the sythetised properties*)
-val qe_Not = thm "qe_Not";
-val qe_conjI = thm "qe_conjI";
-val qe_disjI = thm "qe_disjI";
-val qe_impI = thm "qe_impI";
-val qe_eqI = thm "qe_eqI";
-val qe_exI = thm "qe_exI";
-val qe_ALLI = thm "qe_ALLI";
-
-(*Modulo D property for Pminusinf an Plusinf *)
-val fm_modd_minf = thm "fm_modd_minf";
-val not_dvd_modd_minf = thm "not_dvd_modd_minf";
-val dvd_modd_minf = thm "dvd_modd_minf";
-
-val fm_modd_pinf = thm "fm_modd_pinf";
-val not_dvd_modd_pinf = thm "not_dvd_modd_pinf";
-val dvd_modd_pinf = thm "dvd_modd_pinf";
-
-(* the minusinfinity proprty*)
-
-val fm_eq_minf = thm "fm_eq_minf";
-val neq_eq_minf = thm "neq_eq_minf";
-val eq_eq_minf = thm "eq_eq_minf";
-val le_eq_minf = thm "le_eq_minf";
-val len_eq_minf = thm "len_eq_minf";
-val not_dvd_eq_minf = thm "not_dvd_eq_minf";
-val dvd_eq_minf = thm "dvd_eq_minf";
-
-(* the Plusinfinity proprty*)
-
-val fm_eq_pinf = thm "fm_eq_pinf";
-val neq_eq_pinf = thm "neq_eq_pinf";
-val eq_eq_pinf = thm "eq_eq_pinf";
-val le_eq_pinf = thm "le_eq_pinf";
-val len_eq_pinf = thm "len_eq_pinf";
-val not_dvd_eq_pinf = thm "not_dvd_eq_pinf";
-val dvd_eq_pinf = thm "dvd_eq_pinf";
-
-(*Logical construction of the Property*)
-val eq_minf_conjI = thm "eq_minf_conjI";
-val eq_minf_disjI = thm "eq_minf_disjI";
-val modd_minf_disjI = thm "modd_minf_disjI";
-val modd_minf_conjI = thm "modd_minf_conjI";
-
-val eq_pinf_conjI = thm "eq_pinf_conjI";
-val eq_pinf_disjI = thm "eq_pinf_disjI";
-val modd_pinf_disjI = thm "modd_pinf_disjI";
-val modd_pinf_conjI = thm "modd_pinf_conjI";
-
-(*Cooper Backwards...*)
-(*Bset*)
-val not_bst_p_fm = thm "not_bst_p_fm";
-val not_bst_p_ne = thm "not_bst_p_ne";
-val not_bst_p_eq = thm "not_bst_p_eq";
-val not_bst_p_gt = thm "not_bst_p_gt";
-val not_bst_p_lt = thm "not_bst_p_lt";
-val not_bst_p_ndvd = thm "not_bst_p_ndvd";
-val not_bst_p_dvd = thm "not_bst_p_dvd";
-
-(*Aset*)
-val not_ast_p_fm = thm "not_ast_p_fm";
-val not_ast_p_ne = thm "not_ast_p_ne";
-val not_ast_p_eq = thm "not_ast_p_eq";
-val not_ast_p_gt = thm "not_ast_p_gt";
-val not_ast_p_lt = thm "not_ast_p_lt";
-val not_ast_p_ndvd = thm "not_ast_p_ndvd";
-val not_ast_p_dvd = thm "not_ast_p_dvd";
-
-(*Logical construction of the prop*)
-(*Bset*)
-val not_bst_p_conjI = thm "not_bst_p_conjI";
-val not_bst_p_disjI = thm "not_bst_p_disjI";
-val not_bst_p_Q_elim = thm "not_bst_p_Q_elim";
-
-(*Aset*)
-val not_ast_p_conjI = thm "not_ast_p_conjI";
-val not_ast_p_disjI = thm "not_ast_p_disjI";
-val not_ast_p_Q_elim = thm "not_ast_p_Q_elim";
-
-(*Cooper*)
-val cppi_eq = thm "cppi_eq";
-val cpmi_eq = thm "cpmi_eq";
-
-(*Others*)
-val simp_from_to = thm "simp_from_to";
-val P_eqtrue = thm "P_eqtrue";
-val P_eqfalse = thm "P_eqfalse";
-
-(*For Proving NNF*)
-
-val nnf_nn = thm "nnf_nn";
-val nnf_im = thm "nnf_im";
-val nnf_eq = thm "nnf_eq";
-val nnf_sdj = thm "nnf_sdj";
-val nnf_ncj = thm "nnf_ncj";
-val nnf_nim = thm "nnf_nim";
-val nnf_neq = thm "nnf_neq";
-val nnf_ndj = thm "nnf_ndj";
-
-(*For Proving term linearizition*)
-val linearize_dvd = thm "linearize_dvd";
-val lf_lt = thm "lf_lt";
-val lf_eq = thm "lf_eq";
-val lf_dvd = thm "lf_dvd";
-
-
-(* ------------------------------------------------------------------------- *)
-(*This function norm_zero_one  replaces the occurences of Numeral1 and Numeral0*)
-(*Respectively by their abstract representation Const(@{const_name HOL.one},..) and Const(@{const_name HOL.zero},..)*)
-(*this is necessary because the theorems use this representation.*)
-(* This function should be elminated in next versions...*)
-(* ------------------------------------------------------------------------- *)
-
-fun norm_zero_one fm = case fm of
-  (Const (@{const_name HOL.times},_) $ c $ t) => 
-    if c = one then (norm_zero_one t)
-    else if (dest_number c = ~1) 
-         then (Const(@{const_name HOL.uminus},HOLogic.intT --> HOLogic.intT) $ (norm_zero_one t))
-         else (HOLogic.mk_binop @{const_name HOL.times} (norm_zero_one c,norm_zero_one t))
-  |(node $ rest) => ((norm_zero_one node)$(norm_zero_one rest))
-  |(Abs(x,T,p)) => (Abs(x,T,(norm_zero_one p)))
-  |_ => fm;
-
-(* ------------------------------------------------------------------------- *)
-(*function list to Set, constructs a set containing all elements of a given list.*)
-(* ------------------------------------------------------------------------- *)
-fun list_to_set T1 l = let val T = (HOLogic.mk_setT T1) in 
-	case l of 
-		[] => Const ("{}",T)
-		|(h::t) => Const("insert", T1 --> (T --> T)) $ h $(list_to_set T1 t)
-		end;
-		
-(* ------------------------------------------------------------------------- *)
-(* Returns both sides of an equvalence in the theorem*)
-(* ------------------------------------------------------------------------- *)
-fun qe_get_terms th = let val (_$(Const("op =",Type ("fun",[Type ("bool", []),_])) $ A $ B )) = prop_of th in (A,B) end;
-
-(* ------------------------------------------------------------------------- *)
-(*This function proove elementar will be used to generate proofs at
-  runtime*) (*It is thought to prove properties such as a dvd b
-  (essentially) that are only to make at runtime.*)
-(* ------------------------------------------------------------------------- *)
-fun prove_elementar thy s fm2 =
-  Goal.prove (ProofContext.init thy) [] [] (HOLogic.mk_Trueprop fm2) (fn _ => EVERY
-  (case s of
-  (*"ss" like simplification with simpset*)
-  "ss" =>
-    let val ss = presburger_ss addsimps [zdvd_iff_zmod_eq_0,unity_coeff_ex]
-    in [simp_tac ss 1, TRY (simple_arith_tac 1)] end
-
-  (*"bl" like blast tactic*)
-  (* Is only used in the harrisons like proof procedure *)
-  | "bl" => [blast_tac HOL_cs 1]
-
-  (*"ed" like Existence disjunctions ...*)
-  (* Is only used in the harrisons like proof procedure *)
-  | "ed" =>
-    let
-      val ex_disj_tacs =
-        let
-          val tac1 = EVERY[REPEAT(resolve_tac [disjI1,disjI2] 1), etac exI 1]
-          val tac2 = EVERY[etac exE 1, rtac exI 1,
-            REPEAT(resolve_tac [disjI1,disjI2] 1), assumption 1]
-	in [rtac iffI 1,
-          etac exE 1, REPEAT(EVERY[etac disjE 1, tac1]), tac1,
-          REPEAT(EVERY[etac disjE 1, tac2]), tac2]
-        end
-    in ex_disj_tacs end
-
-  | "fa" => [simple_arith_tac 1]
-
-  | "sa" =>
-    let val ss = presburger_ss addsimps zadd_ac
-    in [simp_tac ss 1, TRY (simple_arith_tac 1)] end
-
-  (* like Existance Conjunction *)
-  | "ec" =>
-    let val ss = presburger_ss addsimps zadd_ac
-    in [simp_tac ss 1, TRY (blast_tac HOL_cs 1)] end
-
-  | "ac" =>
-    let val ss = HOL_basic_ss addsimps zadd_ac
-    in [simp_tac ss 1] end
-
-  | "lf" =>
-    let val ss = presburger_ss addsimps zadd_ac
-    in [simp_tac ss 1, TRY (simple_arith_tac 1)] end));
-
-(*=============================================================*)
-(*-------------------------------------------------------------*)
-(*              The new compact model                          *)
-(*-------------------------------------------------------------*)
-(*=============================================================*)
-
-fun thm_of sg decomp t = 
-    let val (ts,recomb) = decomp t 
-    in recomb (map (thm_of sg decomp) ts) 
-    end;
-
-(*==================================================*)
-(*     Compact Version for adjustcoeffeq            *)
-(*==================================================*)
-
-fun decomp_adjustcoeffeq sg x l fm = case fm of
-    (Const("Not",_)$(Const(@{const_name Orderings.less},_) $ zero $(rt as (Const (@{const_name HOL.plus}, _)$(Const (@{const_name HOL.times},_) $    c $ y ) $z )))) => 
-     let  
-        val m = l div (dest_number c) 
-        val n = if (x = y) then abs (m) else 1
-        val xtm = (HOLogic.mk_binop @{const_name HOL.times} ((mk_number ((m div n)*l) ), x)) 
-        val rs = if (x = y) 
-                 then (HOLogic.mk_binrel @{const_name Orderings.less} (zero,linear_sub [] (mk_number n) (HOLogic.mk_binop @{const_name HOL.plus} ( xtm ,( linear_cmul n z) )))) 
-                 else HOLogic.mk_binrel @{const_name Orderings.less} (zero,linear_sub [] one rt )
-        val ck = cterm_of sg (mk_number n)
-        val cc = cterm_of sg c
-        val ct = cterm_of sg z
-        val cx = cterm_of sg y
-        val pre = prove_elementar sg "lf" 
-            (HOLogic.mk_binrel @{const_name Orderings.less} (zero, mk_number n))
-        val th1 = (pre RS (instantiate' [] [SOME ck,SOME cc, SOME cx, SOME ct] (ac_pi_eq)))
-        in ([], fn [] => [th1,(prove_elementar sg "sa" (HOLogic.mk_eq (snd (qe_get_terms th1) ,rs)))] MRS trans)
-        end
-
-  |(Const(p,_) $a $( Const (@{const_name HOL.plus}, _)$(Const (@{const_name HOL.times},_) $ 
-      c $ y ) $t )) => 
-   if (is_arith_rel fm) andalso (x = y) 
-   then  
-        let val m = l div (dest_number c) 
-           val k = (if p = @{const_name Orderings.less} then abs(m) else m)  
-           val xtm = (HOLogic.mk_binop @{const_name HOL.times} ((mk_number ((m div k)*l) ), x))
-           val rs = (HOLogic.mk_binrel p ((linear_cmul k a),(HOLogic.mk_binop @{const_name HOL.plus} ( xtm ,( linear_cmul k t) )))) 
-
-           val ck = cterm_of sg (mk_number k)
-           val cc = cterm_of sg c
-           val ct = cterm_of sg t
-           val cx = cterm_of sg x
-           val ca = cterm_of sg a
-
-	   in 
-	case p of
-	  @{const_name Orderings.less} => 
-	let val pre = prove_elementar sg "lf" 
-	    (HOLogic.mk_binrel @{const_name Orderings.less} (zero, mk_number k))
-            val th1 = (pre RS (instantiate' [] [SOME ck,SOME ca,SOME cc, SOME cx, SOME ct] (ac_lt_eq)))
-	in ([], fn [] => [th1,(prove_elementar sg "lf" (HOLogic.mk_eq (snd (qe_get_terms th1) ,rs)))] MRS trans)
-         end
-
-           |"op =" =>
-	     let val pre = prove_elementar sg "lf" 
-	    (HOLogic.Not $ (HOLogic.mk_binrel "op =" (zero, mk_number k)))
-	         val th1 = (pre RS(instantiate' [] [SOME ck,SOME ca,SOME cc, SOME cx, SOME ct] (ac_eq_eq)))
-	     in ([], fn [] => [th1,(prove_elementar sg "lf" (HOLogic.mk_eq (snd (qe_get_terms th1) ,rs)))] MRS trans)
-             end
-
-             |"Divides.dvd" =>
-	       let val pre = prove_elementar sg "lf" 
-	   (HOLogic.Not $ (HOLogic.mk_binrel "op =" (zero, mk_number k)))
-                   val th1 = (pre RS (instantiate' [] [SOME ck,SOME ca,SOME cc, SOME cx, SOME ct]) (ac_dvd_eq))
-               in ([], fn [] => [th1,(prove_elementar sg "lf" (HOLogic.mk_eq (snd (qe_get_terms th1) ,rs)))] MRS trans)
-                        
-               end
-              end
-  else ([], fn [] => instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] refl)
-
- |( Const ("Not", _) $ p) => ([p], fn [th] => th RS qe_Not)
-  |( Const ("op &",_) $ p $ q) => ([p,q], fn [th1,th2] => [th1,th2] MRS qe_conjI)
-  |( Const ("op |",_) $ p $ q) =>([p,q], fn [th1,th2] => [th1,th2] MRS qe_disjI)
-
-  |_ => ([], fn [] => instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] refl);
-
-fun proof_of_adjustcoeffeq sg x l = thm_of sg (decomp_adjustcoeffeq sg x l);
-
-
-
-(*==================================================*)
-(*   Finding rho for modd_minusinfinity             *)
-(*==================================================*)
-fun rho_for_modd_minf x dlcm sg fm1 =
-let
-    (*Some certified Terms*)
-    
-   val ctrue = cterm_of sg HOLogic.true_const
-   val cfalse = cterm_of sg HOLogic.false_const
-   val fm = norm_zero_one fm1
-  in  case fm1 of 
-      (Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z))) => 
-         if (x=y) andalso (c1= zero) andalso (c2= one) then (instantiate' [SOME cboolT] [SOME ctrue] (fm_modd_minf))
-           else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_minf))
-
-      |(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z)) =>
-  	   if (is_arith_rel fm) andalso (x=y) andalso (c1= zero) andalso (c2= one) 
-	   then (instantiate' [SOME cboolT] [SOME cfalse] (fm_modd_minf))
-	 	 else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_minf)) 
-
-      |(Const(@{const_name Orderings.less},_) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ pm1 $ y ) $ z )) =>
-           if (y=x) andalso (c1 = zero) then 
-            if (pm1 = one) then (instantiate' [SOME cboolT] [SOME cfalse] (fm_modd_minf)) else
-	     (instantiate' [SOME cboolT] [SOME ctrue] (fm_modd_minf))
-	    else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_minf))
-  
-      |Const ("Not",_) $ (Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-         if y=x then  let val cz = cterm_of sg (norm_zero_one z)
-			  val fm2 = HOLogic.mk_binrel "op =" (HOLogic.mk_binop @{const_name Divides.mod} (dlcm,d),norm_zero_one zero)
-	 	      in(instantiate' [] [SOME cz ] ((((prove_elementar sg "ss" fm2)) RS(((zdvd_iff_zmod_eq_0)RS sym) RS iffD1) ) RS (not_dvd_modd_minf)))
-		      end
-		else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_minf))
-      |(Const("Divides.dvd",_)$ d $ (db as (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $
-      c $ y ) $ z))) => 
-         if y=x then  let val cz = cterm_of sg (norm_zero_one z)
-			  val fm2 = HOLogic.mk_binrel "op =" (HOLogic.mk_binop @{const_name Divides.mod} (dlcm,d),norm_zero_one zero)
-	 	      in(instantiate' [] [SOME cz ] ((((prove_elementar sg "ss" fm2)) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1) ) RS (dvd_modd_minf)))
-		      end
-		else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_minf))
-		
-    
-   |_ => instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_minf)
-   end;	 
-(*=========================================================================*)
-(*=========================================================================*)
-fun rho_for_eq_minf x dlcm  sg fm1 =  
-   let
-   val fm = norm_zero_one fm1
-    in  case fm1 of 
-      (Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z))) => 
-         if  (x=y) andalso (c1=zero) andalso (c2=one) 
-	   then (instantiate' [] [SOME (cterm_of sg (norm_zero_one z))] (neq_eq_minf))
-           else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_minf))
-
-      |(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z)) =>
-  	   if (is_arith_rel fm) andalso (x=y) andalso ((c1=zero) orelse (c1 = norm_zero_one zero)) andalso ((c2=one) orelse (c1 = norm_zero_one one))
-	     then (instantiate' [] [SOME (cterm_of sg (norm_zero_one z))] (eq_eq_minf))
-	     else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_minf)) 
-
-      |(Const(@{const_name Orderings.less},_) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ pm1 $ y ) $ z )) =>
-           if (y=x) andalso (c1 =zero) then 
-            if pm1 = one then (instantiate' [] [SOME (cterm_of sg (norm_zero_one z))] (le_eq_minf)) else
-	     (instantiate' [] [SOME (cterm_of sg (norm_zero_one z))] (len_eq_minf))
-	    else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_minf))
-      |Const ("Not",_) $ (Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-         if y=x then  let val cd = cterm_of sg (norm_zero_one d)
-	 		  val cz = cterm_of sg (norm_zero_one z)
-	 	      in(instantiate' [] [SOME cd,  SOME cz] (not_dvd_eq_minf)) 
-		      end
-
-		else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_minf))
-		
-      |(Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-         if y=x then  let val cd = cterm_of sg (norm_zero_one d)
-	 		  val cz = cterm_of sg (norm_zero_one z)
-	 	      in(instantiate' [] [SOME cd, SOME cz ] (dvd_eq_minf))
-		      end
-		else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_minf))
-
-      		
-    |_ => (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_minf))
- end;
-
-(*=====================================================*)
-(*=====================================================*)
-(*=========== minf proofs with the compact version==========*)
-fun decomp_minf_eq x dlcm sg t =  case t of
-   Const ("op &",_) $ p $q => ([p,q],fn [th1,th2] => [th1,th2] MRS eq_minf_conjI)
-   |Const ("op |",_) $ p $q => ([p,q],fn [th1,th2] => [th1,th2] MRS eq_minf_disjI)
-   |_ => ([],fn [] => rho_for_eq_minf x dlcm sg t);
-
-fun decomp_minf_modd x dlcm sg t = case t of
-   Const ("op &",_) $ p $q => ([p,q],fn [th1,th2] => [th1,th2] MRS modd_minf_conjI)
-   |Const ("op |",_) $ p $q => ([p,q],fn [th1,th2] => [th1,th2] MRS modd_minf_disjI)
-   |_ => ([],fn [] => rho_for_modd_minf x dlcm sg t);
-
-(* -------------------------------------------------------------*)
-(*                    Finding rho for pinf_modd                 *)
-(* -------------------------------------------------------------*)
-fun rho_for_modd_pinf x dlcm sg fm1 = 
-let
-    (*Some certified Terms*)
-    
-  val ctrue = cterm_of sg HOLogic.true_const
-  val cfalse = cterm_of sg HOLogic.false_const
-  val fm = norm_zero_one fm1
- in  case fm1 of 
-      (Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z))) => 
-         if ((x=y) andalso (c1= zero) andalso (c2= one))
-	 then (instantiate' [SOME cboolT] [SOME ctrue] (fm_modd_pinf))
-         else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_pinf))
-
-      |(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z)) =>
-  	if ((is_arith_rel fm) andalso (x = y) andalso (c1 = zero)  andalso (c2 = one)) 
-	then (instantiate' [SOME cboolT] [SOME cfalse] (fm_modd_pinf))
-	else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_pinf))
-
-      |(Const(@{const_name Orderings.less},_) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ pm1 $ y ) $ z )) =>
-        if ((y=x) andalso (c1 = zero)) then 
-          if (pm1 = one) 
-	  then (instantiate' [SOME cboolT] [SOME ctrue] (fm_modd_pinf)) 
-	  else (instantiate' [SOME cboolT] [SOME cfalse] (fm_modd_pinf))
-	else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_pinf))
-  
-      |Const ("Not",_) $ (Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-         if y=x then  let val cz = cterm_of sg (norm_zero_one z)
-			  val fm2 = HOLogic.mk_binrel "op =" (HOLogic.mk_binop @{const_name Divides.mod} (dlcm,d),norm_zero_one zero)
-	 	      in(instantiate' [] [SOME cz ] ((((prove_elementar sg "ss" fm2)) RS(((zdvd_iff_zmod_eq_0)RS sym) RS iffD1) ) RS (not_dvd_modd_pinf)))
-		      end
-		else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_pinf))
-      |(Const("Divides.dvd",_)$ d $ (db as (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $
-      c $ y ) $ z))) => 
-         if y=x then  let val cz = cterm_of sg (norm_zero_one z)
-			  val fm2 = HOLogic.mk_binrel "op =" (HOLogic.mk_binop @{const_name Divides.mod} (dlcm,d),norm_zero_one zero)
-	 	      in(instantiate' [] [SOME cz ] ((((prove_elementar sg "ss" fm2)) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1) ) RS (dvd_modd_pinf)))
-		      end
-		else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_pinf))
-		
-    
-   |_ => instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_modd_pinf)
-   end;	
-(* -------------------------------------------------------------*)
-(*                    Finding rho for pinf_eq                 *)
-(* -------------------------------------------------------------*)
-fun rho_for_eq_pinf x dlcm sg fm1 = 
-  let
-					val fm = norm_zero_one fm1
-    in  case fm1 of 
-      (Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z))) => 
-         if  (x=y) andalso (c1=zero) andalso (c2=one) 
-	   then (instantiate' [] [SOME (cterm_of sg (norm_zero_one z))] (neq_eq_pinf))
-           else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_pinf))
-
-      |(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z)) =>
-  	   if (is_arith_rel fm) andalso (x=y) andalso ((c1=zero) orelse (c1 = norm_zero_one zero)) andalso ((c2=one) orelse (c1 = norm_zero_one one))
-	     then (instantiate' [] [SOME (cterm_of sg (norm_zero_one z))] (eq_eq_pinf))
-	     else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_pinf)) 
-
-      |(Const(@{const_name Orderings.less},_) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ pm1 $ y ) $ z )) =>
-           if (y=x) andalso (c1 =zero) then 
-            if pm1 = one then (instantiate' [] [SOME (cterm_of sg (norm_zero_one z))] (le_eq_pinf)) else
-	     (instantiate' [] [SOME (cterm_of sg (norm_zero_one z))] (len_eq_pinf))
-	    else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_pinf))
-      |Const ("Not",_) $ (Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-         if y=x then  let val cd = cterm_of sg (norm_zero_one d)
-	 		  val cz = cterm_of sg (norm_zero_one z)
-	 	      in(instantiate' [] [SOME cd,  SOME cz] (not_dvd_eq_pinf)) 
-		      end
-
-		else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_pinf))
-		
-      |(Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-         if y=x then  let val cd = cterm_of sg (norm_zero_one d)
-	 		  val cz = cterm_of sg (norm_zero_one z)
-	 	      in(instantiate' [] [SOME cd, SOME cz ] (dvd_eq_pinf))
-		      end
-		else (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_pinf))
-
-      		
-    |_ => (instantiate' [SOME cboolT] [SOME (cterm_of sg fm)] (fm_eq_pinf))
- end;
-
-
-
-fun  minf_proof_of_c sg x dlcm t =
-  let val minf_eqth   = thm_of sg (decomp_minf_eq x dlcm sg) t
-      val minf_moddth = thm_of sg (decomp_minf_modd x dlcm sg) t
-  in (minf_eqth, minf_moddth)
-end;
-
-(*=========== pinf proofs with the compact version==========*)
-fun decomp_pinf_eq x dlcm sg t = case t of
-   Const ("op &",_) $ p $q => ([p,q],fn [th1,th2] => [th1,th2] MRS eq_pinf_conjI)
-   |Const ("op |",_) $ p $q => ([p,q],fn [th1,th2] => [th1,th2] MRS eq_pinf_disjI)
-   |_ =>([],fn [] => rho_for_eq_pinf x dlcm sg t) ;
-
-fun decomp_pinf_modd x dlcm sg t =  case t of
-   Const ("op &",_) $ p $q => ([p,q],fn [th1,th2] => [th1,th2] MRS modd_pinf_conjI)
-   |Const ("op |",_) $ p $q => ([p,q],fn [th1,th2] => [th1,th2] MRS modd_pinf_disjI)
-   |_ => ([],fn [] => rho_for_modd_pinf x dlcm sg t);
-
-fun  pinf_proof_of_c sg x dlcm t =
-  let val pinf_eqth   = thm_of sg (decomp_pinf_eq x dlcm sg) t
-      val pinf_moddth = thm_of sg (decomp_pinf_modd x dlcm sg) t
-  in (pinf_eqth,pinf_moddth)
-end;
-
-
-(* ------------------------------------------------------------------------- *)
-(* Here we generate the theorem for the Bset Property in the simple direction*)
-(* It is just an instantiation*)
-(* ------------------------------------------------------------------------- *)
-(*
-fun bsetproof_of sg (x as Free(xn,xT)) fm bs dlcm   = 
-  let
-    val cp = cterm_of sg (absfree (xn,xT,(norm_zero_one fm)))
-    val cdlcm = cterm_of sg dlcm
-    val cB = cterm_of sg (list_to_set HOLogic.intT (map norm_zero_one bs))
-  in instantiate' [] [SOME cdlcm,SOME cB, SOME cp] (bst_thm)
-end;
-
-fun asetproof_of sg (x as Free(xn,xT)) fm ast dlcm = 
-  let
-    val cp = cterm_of sg (absfree (xn,xT,(norm_zero_one fm)))
-    val cdlcm = cterm_of sg dlcm
-    val cA = cterm_of sg (list_to_set HOLogic.intT (map norm_zero_one ast))
-  in instantiate' [] [SOME cdlcm,SOME cA, SOME cp] (ast_thm)
-end;
-*)
-
-(* For the generation of atomic Theorems*)
-(* Prove the premisses on runtime and then make RS*)
-(* ------------------------------------------------------------------------- *)
-
-(*========= this is rho ============*)
-fun generate_atomic_not_bst_p sg (x as Free(xn,xT)) fm dlcm B at = 
-  let
-    val cdlcm = cterm_of sg dlcm
-    val cB = cterm_of sg B
-    val cfma = cterm_of sg (absfree (xn,xT,(norm_zero_one fm)))
-    val cat = cterm_of sg (norm_zero_one at)
-  in
-  case at of 
-   (Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z))) => 
-      if  (x=y) andalso (c1=zero) andalso (c2=one) 
-	 then let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ (norm_zero_one (linear_cmul ~1 z)) $ B)
-	          val th2 =  prove_elementar sg "ss" (HOLogic.mk_eq ((norm_zero_one (linear_cmul ~1 z)),Const(@{const_name HOL.uminus},HOLogic.intT --> HOLogic.intT) $(norm_zero_one  z)))
-        val th3 = prove_elementar sg "ss" (HOLogic.mk_binrel @{const_name Orderings.less} (zero ,dlcm))
-	 in  (instantiate' [] [SOME cfma]([th3,th1,th2] MRS (not_bst_p_ne)))
-	 end
-         else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cB,SOME cat] (not_bst_p_fm))
-
-   |(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const (@{const_name HOL.plus}, T) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z)) =>
-     if (is_arith_rel at) andalso (x=y)
-    then let
-      val bst_z = norm_zero_one (linear_neg (linear_add [] z (mk_number 1)))
-    in
-      let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ bst_z $ B)
-	          val th2 =  prove_elementar sg "ss" (HOLogic.mk_eq (bst_z,Const(@{const_name HOL.minus},T) $ (Const(@{const_name HOL.uminus},HOLogic.intT --> HOLogic.intT) $ norm_zero_one z) $ HOLogic.mk_number HOLogic.intT 1))
-		  val th3 = prove_elementar sg "ss" (HOLogic.mk_binrel @{const_name Orderings.less} (zero, dlcm))
-	 in  (instantiate' [] [SOME cfma] ([th3,th1,th2] MRS (not_bst_p_eq)))
-	 end
-       end
-         else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cB,SOME cat] (not_bst_p_fm))
-
-   |(Const(@{const_name Orderings.less},_) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ pm1 $ y ) $ z )) =>
-        if (y=x) andalso (c1 =zero) then 
-        if pm1 = one then 
-	  let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ (norm_zero_one (linear_cmul ~1 z)) $ B)
-              val th2 =  prove_elementar sg "ss" (HOLogic.mk_eq ((norm_zero_one (linear_cmul ~1 z)),Const(@{const_name HOL.uminus},HOLogic.intT --> HOLogic.intT) $(norm_zero_one z)))
-	  in  (instantiate' [] [SOME cfma,  SOME cdlcm]([th1,th2] MRS (not_bst_p_gt)))
-	    end
-	 else let val th1 = prove_elementar sg "ss" (HOLogic.mk_binrel @{const_name Orderings.less} (zero, dlcm))
-	      in (instantiate' [] [SOME cfma, SOME cB,SOME (cterm_of sg (norm_zero_one z))] (th1 RS (not_bst_p_lt)))
-	      end
-      else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cB,SOME cat] (not_bst_p_fm))
-
-   |Const ("Not",_) $ (Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-      if y=x then  
-           let val cz = cterm_of sg (norm_zero_one z)
-	       val th1 = (prove_elementar sg "ss"  (HOLogic.mk_binrel "op =" (HOLogic.mk_binop @{const_name Divides.mod} (dlcm,d),norm_zero_one zero))) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1)
- 	     in (instantiate' []  [SOME cfma, SOME cB,SOME cz] (th1 RS (not_bst_p_ndvd)))
-	     end
-      else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cB,SOME cat] (not_bst_p_fm))
-
-   |(Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-       if y=x then  
-	 let val cz = cterm_of sg (norm_zero_one z)
-	     val th1 = (prove_elementar sg "ss"  (HOLogic.mk_binrel "op =" (HOLogic.mk_binop @{const_name Divides.mod} (dlcm,d),norm_zero_one zero))) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1)
- 	    in (instantiate' []  [SOME cfma,SOME cB,SOME cz] (th1 RS (not_bst_p_dvd)))
-	  end
-      else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cB,SOME cat] (not_bst_p_fm))
-      		
-   |_ => (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cB,SOME cat] (not_bst_p_fm))
-      		
-    end;
-    
-
-(* ------------------------------------------------------------------------- *)    
-(* Main interpretation function for this backwards dirction*)
-(* if atomic do generate atomis formulae else Construct theorems and then make RS with the construction theorems*)
-(*Help Function*)
-(* ------------------------------------------------------------------------- *)
-
-(*==================== Proof with the compact version   *)
-
-fun decomp_nbstp sg x dlcm B fm t = case t of 
-   Const("op &",_) $ ls $ rs => ([ls,rs],fn [th1,th2] => [th1,th2] MRS not_bst_p_conjI )
-  |Const("op |",_) $ ls $ rs => ([ls,rs],fn [th1,th2] => [th1,th2] MRS not_bst_p_disjI)
-  |_ => ([], fn [] => generate_atomic_not_bst_p sg x fm dlcm B t);
-
-fun not_bst_p_proof_of_c sg (x as Free(xn,xT)) fm dlcm B t =
-  let 
-       val th =  thm_of sg (decomp_nbstp sg x dlcm (list_to_set xT (map norm_zero_one B)) fm) t
-      val fma = absfree (xn,xT, norm_zero_one fm)
-  in let val th1 =  prove_elementar sg "ss"  (HOLogic.mk_eq (fma,fma))
-     in [th,th1] MRS (not_bst_p_Q_elim)
-     end
-  end;
-
-
-(* ------------------------------------------------------------------------- *)    
-(* Protokol interpretation function for the backwards direction for cooper's Theorem*)
-
-(* For the generation of atomic Theorems*)
-(* Prove the premisses on runtime and then make RS*)
-(* ------------------------------------------------------------------------- *)
-(*========= this is rho ============*)
-fun generate_atomic_not_ast_p sg (x as Free(xn,xT)) fm dlcm A at = 
-  let
-    val cdlcm = cterm_of sg dlcm
-    val cA = cterm_of sg A
-    val cfma = cterm_of sg (absfree (xn,xT,(norm_zero_one fm)))
-    val cat = cterm_of sg (norm_zero_one at)
-  in
-  case at of 
-   (Const ("Not", _) $ (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z))) => 
-      if  (x=y) andalso (c1=zero) andalso (c2=one) 
-	 then let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ (norm_zero_one (linear_cmul ~1 z)) $ A)
-	          val th2 =  prove_elementar sg "ss" (HOLogic.mk_eq ((norm_zero_one (linear_cmul ~1 z)),Const(@{const_name HOL.uminus},HOLogic.intT --> HOLogic.intT) $(norm_zero_one  z)))
-		  val th3 = prove_elementar sg "ss" (HOLogic.mk_binrel @{const_name Orderings.less} (zero, dlcm))
-	 in  (instantiate' [] [SOME cfma]([th3,th1,th2] MRS (not_ast_p_ne)))
-	 end
-         else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cA,SOME cat] (not_ast_p_fm))
-
-   |(Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $(Const (@{const_name HOL.plus}, T) $(Const (@{const_name HOL.times},_) $ c2 $ y) $z)) =>
-     if (is_arith_rel at) andalso (x=y)
-	then let val ast_z = norm_zero_one (linear_sub [] one z )
-	         val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ ast_z $ A)
-	         val th2 =  prove_elementar sg "ss" (HOLogic.mk_eq (ast_z,Const(@{const_name HOL.plus},T) $ (Const(@{const_name HOL.uminus},HOLogic.intT --> HOLogic.intT) $(norm_zero_one z)) $ one))
-		 val th3 = prove_elementar sg "ss" (HOLogic.mk_binrel @{const_name Orderings.less} (zero, dlcm))
-	 in  (instantiate' [] [SOME cfma] ([th3,th1,th2] MRS (not_ast_p_eq)))
-       end
-         else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cA,SOME cat] (not_ast_p_fm))
-
-   |(Const(@{const_name Orderings.less},_) $ c1 $(Const (@{const_name HOL.plus}, _) $(Const (@{const_name HOL.times},_) $ pm1 $ y ) $ z )) =>
-        if (y=x) andalso (c1 =zero) then 
-        if pm1 = (mk_number ~1) then 
-	  let val th1 = prove_elementar sg "ss" (Const ("op :",HOLogic.intT --> (HOLogic.mk_setT HOLogic.intT) --> HOLogic.boolT) $ (norm_zero_one z) $ A)
-              val th2 =  prove_elementar sg "ss" (HOLogic.mk_binrel @{const_name Orderings.less} (zero,dlcm))
-	  in  (instantiate' [] [SOME cfma]([th2,th1] MRS (not_ast_p_lt)))
-	    end
-	 else let val th1 = prove_elementar sg "ss" (HOLogic.mk_binrel @{const_name Orderings.less} (zero, dlcm))
-	      in (instantiate' [] [SOME cfma, SOME cA,SOME (cterm_of sg (norm_zero_one z))] (th1 RS (not_ast_p_gt)))
-	      end
-      else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cA,SOME cat] (not_ast_p_fm))
-
-   |Const ("Not",_) $ (Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-      if y=x then  
-           let val cz = cterm_of sg (norm_zero_one z)
-	       val th1 = (prove_elementar sg "ss"  (HOLogic.mk_binrel "op =" (HOLogic.mk_binop @{const_name Divides.mod} (dlcm,d),norm_zero_one zero))) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1)
- 	     in (instantiate' []  [SOME cfma, SOME cA,SOME cz] (th1 RS (not_ast_p_ndvd)))
-	     end
-      else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cA,SOME cat] (not_ast_p_fm))
-
-   |(Const("Divides.dvd",_)$ d $ (Const (@{const_name HOL.plus},_) $ (Const (@{const_name HOL.times},_) $ c $ y ) $ z)) => 
-       if y=x then  
-	 let val cz = cterm_of sg (norm_zero_one z)
-	     val th1 = (prove_elementar sg "ss"  (HOLogic.mk_binrel "op =" (HOLogic.mk_binop @{const_name Divides.mod} (dlcm,d),norm_zero_one zero))) RS (((zdvd_iff_zmod_eq_0)RS sym) RS iffD1)
- 	    in (instantiate' []  [SOME cfma,SOME cA,SOME cz] (th1 RS (not_ast_p_dvd)))
-	  end
-      else (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cA,SOME cat] (not_ast_p_fm))
-      		
-   |_ => (instantiate' [] [SOME cfma,  SOME cdlcm, SOME cA,SOME cat] (not_ast_p_fm))
-      		
-    end;
-
-(* ------------------------------------------------------------------------ *)
-(* Main interpretation function for this backwards dirction*)
-(* if atomic do generate atomis formulae else Construct theorems and then make RS with the construction theorems*)
-(*Help Function*)
-(* ------------------------------------------------------------------------- *)
-
-fun decomp_nastp sg x dlcm A fm t = case t of 
-   Const("op &",_) $ ls $ rs => ([ls,rs],fn [th1,th2] => [th1,th2] MRS not_ast_p_conjI )
-  |Const("op |",_) $ ls $ rs => ([ls,rs],fn [th1,th2] => [th1,th2] MRS not_ast_p_disjI)
-  |_ => ([], fn [] => generate_atomic_not_ast_p sg x fm dlcm A t);
-
-fun not_ast_p_proof_of_c sg (x as Free(xn,xT)) fm dlcm A t =
-  let 
-       val th =  thm_of sg (decomp_nastp sg x dlcm (list_to_set xT (map norm_zero_one A)) fm) t
-      val fma = absfree (xn,xT, norm_zero_one fm)
-  in let val th1 =  prove_elementar sg "ss"  (HOLogic.mk_eq (fma,fma))
-     in [th,th1] MRS (not_ast_p_Q_elim)
-     end
-  end;
-
-
-(* -------------------------------*)
-(* Finding rho and beta for evalc *)
-(* -------------------------------*)
-
-fun rho_for_evalc sg at = case at of  
-    (Const (p,_) $ s $ t) =>(  
-    case AList.lookup (op =) operations p of 
-        SOME f => 
-           ((if (f ((dest_number s),(dest_number t))) 
-             then prove_elementar sg "ss" (HOLogic.mk_eq(at,HOLogic.true_const)) 
-             else prove_elementar sg "ss" (HOLogic.mk_eq(at, HOLogic.false_const)))  
-		   handle _ => instantiate' [SOME cboolT] [SOME (cterm_of sg at)] refl)
-        | _ => instantiate' [SOME cboolT] [SOME (cterm_of sg at)] refl )
-     |Const("Not",_)$(Const (p,_) $ s $ t) =>(  
-       case AList.lookup (op =) operations p of 
-         SOME f => 
-           ((if (f ((dest_number s),(dest_number t))) 
-             then prove_elementar sg "ss" (HOLogic.mk_eq(at, HOLogic.false_const))  
-             else prove_elementar sg "ss" (HOLogic.mk_eq(at,HOLogic.true_const)))  
-		      handle _ => instantiate' [SOME cboolT] [SOME (cterm_of sg at)] refl) 
-         | _ => instantiate' [SOME cboolT] [SOME (cterm_of sg at)] refl ) 
-     | _ =>   instantiate' [SOME cboolT] [SOME (cterm_of sg at)] refl;
-
-
-(*=========================================================*)
-fun decomp_evalc sg t = case t of
-   (Const("op &",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_conjI)
-   |(Const("op |",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_disjI)
-   |(Const("op -->",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_impI)
-   |(Const("op =", Type ("fun",[Type ("bool", []),_]))$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_eqI)
-   |_ => ([], fn [] => rho_for_evalc sg t);
-
-
-fun proof_of_evalc sg fm = thm_of sg (decomp_evalc sg) fm;
-
-(*==================================================*)
-(*     Proof of linform with the compact model      *)
-(*==================================================*)
-
-
-fun decomp_linform sg vars t = case t of
-   (Const("op &",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_conjI)
-   |(Const("op |",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_disjI)
-   |(Const("op -->",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_impI)
-   |(Const("op =", Type ("fun",[Type ("bool", []),_]))$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_eqI)
-   |(Const("Not",_)$p) => ([p],fn [th] => th RS qe_Not)
-   |(Const("Divides.dvd",_)$d$r) => 
-     if is_number d then ([], fn [] => (prove_elementar sg "lf" (HOLogic.mk_eq (r, lint vars r))) RS (instantiate' [] [NONE , NONE, SOME (cterm_of sg d)](linearize_dvd)))
-     else (warning "Nonlinear Term --- Non numeral leftside at dvd";
-       raise COOPER)
-   |_ => ([], fn [] => prove_elementar sg "lf" (HOLogic.mk_eq (t, linform vars t)));
-
-fun proof_of_linform sg vars f = thm_of sg (decomp_linform sg vars) f;
-
-(* ------------------------------------------------------------------------- *)
-(* Interpretaion of Protocols of the cooper procedure : minusinfinity version*)
-(* ------------------------------------------------------------------------- *)
-fun coopermi_proof_of sg (x as Free(xn,xT)) fm B dlcm =
-  (* Get the Bset thm*)
-  let val (minf_eqth, minf_moddth) = minf_proof_of_c sg x dlcm fm 
-      val dpos = prove_elementar sg "ss" (HOLogic.mk_binrel @{const_name Orderings.less} (zero,dlcm));
-      val nbstpthm = not_bst_p_proof_of_c sg x fm dlcm B fm
-  in (dpos,minf_eqth,nbstpthm,minf_moddth)
-end;
-
-(* ------------------------------------------------------------------------- *)
-(* Interpretaion of Protocols of the cooper procedure : plusinfinity version *)
-(* ------------------------------------------------------------------------- *)
-fun cooperpi_proof_of sg (x as Free(xn,xT)) fm A dlcm =
-  let val (pinf_eqth,pinf_moddth) = pinf_proof_of_c sg x dlcm fm
-      val dpos = prove_elementar sg "ss" (HOLogic.mk_binrel @{const_name Orderings.less} (zero,dlcm));
-      val nastpthm = not_ast_p_proof_of_c sg x fm dlcm A fm
-  in (dpos,pinf_eqth,nastpthm,pinf_moddth)
-end;
-
-(* ------------------------------------------------------------------------- *)
-(* Interpretaion of Protocols of the cooper procedure : full version*)
-(* ------------------------------------------------------------------------- *)
-fun cooper_thm sg s (x as Free(xn,xT)) cfm dlcm ast bst= case s of
-  "pi" => let val (dpsthm,pinf_eqth,nbpth,pinf_moddth) = cooperpi_proof_of sg x cfm ast dlcm 
-	      in [dpsthm,pinf_eqth,nbpth,pinf_moddth] MRS (cppi_eq)
-           end
-  |"mi" => let val (dpsthm,minf_eqth,nbpth,minf_moddth) = coopermi_proof_of sg x cfm bst dlcm
-	       in [dpsthm,minf_eqth,nbpth,minf_moddth] MRS (cpmi_eq)
-                end
- |_ => error "parameter error";
-
-(* ------------------------------------------------------------------------- *)
-(* This function should evoluate to the end prove Procedure for one quantifier elimination for Presburger arithmetic*)
-(* It shoud be plugged in the qfnp argument of the quantifier elimination proof function*)
-(* ------------------------------------------------------------------------- *)
-
-(* val (timef:(unit->thm) -> thm,prtime,time_reset) = gen_timer();*)
-(* val (timef2:(unit->thm) -> thm,prtime2,time_reset2) = gen_timer(); *)
-
-fun cooper_prv sg (x as Free(xn,xT)) efm = let 
-   (* lfm_thm : efm = linearized form of efm*)
-   val lfm_thm = proof_of_linform sg [xn] efm
-   (*efm2 is the linearized form of efm *) 
-   val efm2 = snd(qe_get_terms lfm_thm)
-   (* l is the lcm of all coefficients of x *)
-   val l = formlcm x efm2
-   (*ac_thm: efm = efm2 with adjusted coefficients of x *)
-   val ac_thm = [lfm_thm , (proof_of_adjustcoeffeq sg x l efm2)] MRS trans
-   (* fm is efm2 with adjusted coefficients of x *)
-   val fm = snd (qe_get_terms ac_thm)
-  (* cfm is l dvd x & fm' where fm' is fm where l*x is replaced by x*)
-   val  cfm = unitycoeff x fm
-   (*afm is fm where c*x is replaced by 1*x or -1*x *)
-   val afm = adjustcoeff x l fm
-   (* P = %x.afm*)
-   val P = absfree(xn,xT,afm)
-   (* This simpset allows the elimination of the sets in bex {1..d} *)
-   val ss = presburger_ss addsimps
-     [simp_from_to] delsimps [P_eqtrue, P_eqfalse, bex_triv, insert_iff]
-   (* uth : EX x.P(l*x) = EX x. l dvd x & P x*)
-   val uth = instantiate' [] [SOME (cterm_of sg P) , SOME (cterm_of sg (mk_number l))] (unity_coeff_ex)
-   (* e_ac_thm : Ex x. efm = EX x. fm*)
-   val e_ac_thm = (forall_intr (cterm_of sg x) ac_thm) COMP (qe_exI)
-   (* A and B set of the formula*)
-   val A = aset x cfm
-   val B = bset x cfm
-   (* the divlcm (delta) of the formula*)
-   val dlcm = mk_number (divlcm x cfm)
-   (* Which set is smaller to generate the (hoepfully) shorter proof*)
-   val cms = if ((length A) < (length B )) then "pi" else "mi"
-(*   val _ = if cms = "pi" then writeln "Plusinfinity" else writeln "Minusinfinity"*)
-   (* synthesize the proof of cooper's theorem*)
-    (* cp_thm: EX x. cfm = Q*)
-   val cp_thm =  cooper_thm sg cms x cfm dlcm A B
-   (* Exxpand the right hand side to get rid of EX j : {1..d} to get a huge disjunction*)
-   (* exp_cp_thm: EX x.cfm = Q' , where Q' is a simplified version of Q*)
-(*
-   val _ = prth cp_thm
-   val _ = writeln "Expanding the bounded EX..."
-*)
-   val exp_cp_thm = refl RS (simplify ss (cp_thm RSN (2,trans)))
-(*
-   val _ = writeln "Expanded" *)
-   (* lsuth = EX.P(l*x) ; rsuth = EX x. l dvd x & P x*)
-   val (lsuth,rsuth) = qe_get_terms (uth)
-   (* lseacth = EX x. efm; rseacth = EX x. fm*)
-   val (lseacth,rseacth) = qe_get_terms(e_ac_thm)
-   (* lscth = EX x. cfm; rscth = Q' *)
-   val (lscth,rscth) = qe_get_terms (exp_cp_thm)
-   (* u_c_thm: EX x. P(l*x) = Q'*)
-   val  u_c_thm = [([uth,prove_elementar sg "ss" (HOLogic.mk_eq (rsuth,lscth))] MRS trans),exp_cp_thm] MRS trans
-   (* result: EX x. efm = Q'*)
- in  ([e_ac_thm,[(prove_elementar sg "ss" (HOLogic.mk_eq (rseacth,lsuth))),u_c_thm] MRS trans] MRS trans)
-   end
-|cooper_prv _ _ _ =  error "Parameters format";
-
-(* **************************************** *)
-(*    An Other Version of cooper proving    *)
-(*     by giving a withness for EX          *)
-(* **************************************** *)
-
-
-
-fun cooper_prv_w sg (x as Free(xn,xT)) efm = let 
-   (* lfm_thm : efm = linearized form of efm*)
-   val lfm_thm = proof_of_linform sg [xn] efm
-   (*efm2 is the linearized form of efm *) 
-   val efm2 = snd(qe_get_terms lfm_thm)
-   (* l is the lcm of all coefficients of x *)
-   val l = formlcm x efm2
-   (*ac_thm: efm = efm2 with adjusted coefficients of x *)
-   val ac_thm = [lfm_thm , (proof_of_adjustcoeffeq sg x l efm2)] MRS trans
-   (* fm is efm2 with adjusted coefficients of x *)
-   val fm = snd (qe_get_terms ac_thm)
-  (* cfm is l dvd x & fm' where fm' is fm where l*x is replaced by x*)
-   val  cfm = unitycoeff x fm
-   (*afm is fm where c*x is replaced by 1*x or -1*x *)
-   val afm = adjustcoeff x l fm
-   (* P = %x.afm*)
-   val P = absfree(xn,xT,afm)
-   (* This simpset allows the elimination of the sets in bex {1..d} *)
-   val ss = presburger_ss addsimps
-     [simp_from_to] delsimps [P_eqtrue, P_eqfalse, bex_triv, insert_iff]
-   (* uth : EX x.P(l*x) = EX x. l dvd x & P x*)
-   val uth = instantiate' [] [SOME (cterm_of sg P) , SOME (cterm_of sg (mk_number l))] (unity_coeff_ex)
-   (* e_ac_thm : Ex x. efm = EX x. fm*)
-   val e_ac_thm = (forall_intr (cterm_of sg x) ac_thm) COMP (qe_exI)
-   (* lsuth = EX.P(l*x) ; rsuth = EX x. l dvd x & P x*)
-   val (lsuth,rsuth) = qe_get_terms (uth)
-   (* lseacth = EX x. efm; rseacth = EX x. fm*)
-   val (lseacth,rseacth) = qe_get_terms(e_ac_thm)
-
-   val (w,rs) = cooper_w [] cfm
-   val exp_cp_thm =  case w of 
-     (* FIXME - e_ac_thm just tipped to test syntactical correctness of the program!!!!*)
-    SOME n =>  e_ac_thm (* Prove cfm (n) and use exI and then Eq_TrueI*)
-   |_ => let 
-    (* A and B set of the formula*)
-    val A = aset x cfm
-    val B = bset x cfm
-    (* the divlcm (delta) of the formula*)
-    val dlcm = mk_number (divlcm x cfm)
-    (* Which set is smaller to generate the (hoepfully) shorter proof*)
-    val cms = if ((length A) < (length B )) then "pi" else "mi"
-    (* synthesize the proof of cooper's theorem*)
-     (* cp_thm: EX x. cfm = Q*)
-    val cp_thm = cooper_thm sg cms x cfm dlcm A B
-     (* Exxpand the right hand side to get rid of EX j : {1..d} to get a huge disjunction*)
-    (* exp_cp_thm: EX x.cfm = Q' , where Q' is a simplified version of Q*)
-    in refl RS (simplify ss (cp_thm RSN (2,trans)))
-    end
-   (* lscth = EX x. cfm; rscth = Q' *)
-   val (lscth,rscth) = qe_get_terms (exp_cp_thm)
-   (* u_c_thm: EX x. P(l*x) = Q'*)
-   val  u_c_thm = [([uth,prove_elementar sg "ss" (HOLogic.mk_eq (rsuth,lscth))] MRS trans),exp_cp_thm] MRS trans
-   (* result: EX x. efm = Q'*)
- in  ([e_ac_thm,[(prove_elementar sg "ss" (HOLogic.mk_eq (rseacth,lsuth))),u_c_thm] MRS trans] MRS trans)
-   end
-|cooper_prv_w _ _ _ =  error "Parameters format";
-
-
-
-fun decomp_cnnf sg lfnp P = case P of 
-     Const ("op &",_) $ p $q => ([p,q] , fn [th1,th2] => [th1,th2] MRS qe_conjI )
-   |Const ("op |",_) $ p $q => ([p,q] , fn [th1,th2] => [th1,th2] MRS  qe_disjI)
-   |Const ("Not",_) $ (Const("Not",_) $ p) => ([p], fn [th] => th RS nnf_nn)
-   |Const("Not",_) $ (Const(opn,T) $ p $ q) => 
-     if opn = "op |" 
-      then case (p,q) of 
-         (A as (Const ("op &",_) $ r $ s),B as (Const ("op &",_) $ r1 $ t)) =>
-          if r1 = negate r 
-          then  ([r,HOLogic.Not$s,r1,HOLogic.Not$t],fn [th1_1,th1_2,th2_1,th2_2] => [[th1_1,th1_1] MRS qe_conjI,[th2_1,th2_2] MRS qe_conjI] MRS nnf_sdj)
-
-          else ([HOLogic.Not $ p,HOLogic.Not $ q ], fn [th1,th2] => [th1,th2] MRS nnf_ndj)
-        |(_,_) => ([HOLogic.Not $ p,HOLogic.Not $ q ], fn [th1,th2] => [th1,th2] MRS nnf_ndj)
-      else (
-         case (opn,T) of 
-           ("op &",_) => ([HOLogic.Not $ p,HOLogic.Not $ q ], fn [th1,th2] =>[th1,th2] MRS nnf_ncj )
-           |("op -->",_) => ([p,HOLogic.Not $ q ], fn [th1,th2] =>[th1,th2] MRS nnf_nim )
-           |("op =",Type ("fun",[Type ("bool", []),_])) => 
-           ([HOLogic.conj $ p $ (HOLogic.Not $ q),HOLogic.conj $ (HOLogic.Not $ p) $ q], fn [th1,th2] => [th1,th2] MRS nnf_neq)
-            |(_,_) => ([], fn [] => lfnp P)
-)
-
-   |(Const ("op -->",_) $ p $ q) => ([HOLogic.Not$p,q], fn [th1,th2] => [th1,th2] MRS nnf_im)
-
-   |(Const ("op =", Type ("fun",[Type ("bool", []),_])) $ p $ q) =>
-     ([HOLogic.conj $ p $ q,HOLogic.conj $ (HOLogic.Not $ p) $ (HOLogic.Not $ q) ], fn [th1,th2] =>[th1,th2] MRS nnf_eq )
-   |_ => ([], fn [] => lfnp P);
-
-
-
-
-fun proof_of_cnnf sg p lfnp = 
- let val th1 = thm_of sg (decomp_cnnf sg lfnp) p
-     val rs = snd(qe_get_terms th1)
-     val th2 = prove_elementar sg "ss" (HOLogic.mk_eq(rs,simpl rs))
-  in [th1,th2] MRS trans
-  end;
-
-end;
-
--- a/src/HOL/Integ/presburger.ML	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,372 +0,0 @@
-(*  Title:      HOL/Integ/presburger.ML
-    ID:         $Id$
-    Author:     Amine Chaieb and Stefan Berghofer, TU Muenchen
-
-Tactic for solving arithmetical Goals in Presburger Arithmetic.
-
-This version of presburger deals with occurences of functional symbols
-in the subgoal and abstract over them to try to prove the more general
-formula. It then resolves with the subgoal. To enable this feature
-call the procedure with the parameter abs.
-*)
-
-signature PRESBURGER =
-sig
- val presburger_tac : bool -> bool -> int -> tactic
- val setup : theory -> theory
- val trace : bool ref
-end;
-
-structure Presburger: PRESBURGER =
-struct
-
-val trace = ref false;
-fun trace_msg s = if !trace then tracing s else ();
-
-(*-----------------------------------------------------------------*)
-(*cooper_pp: provefunction for the one-existance quantifier elimination*)
-(* Here still only one problem : The proof for the arithmetical transformations done on the dvd atomic formulae*)
-(*-----------------------------------------------------------------*)
-
-
-val presburger_ss = simpset ();
-val binarith = map thm
-  ["Pls_0_eq", "Min_1_eq",
- "pred_Pls","pred_Min","pred_1","pred_0",
-  "succ_Pls", "succ_Min", "succ_1", "succ_0",
-  "add_Pls", "add_Min", "add_BIT_0", "add_BIT_10",
-  "add_BIT_11", "minus_Pls", "minus_Min", "minus_1",
-  "minus_0", "mult_Pls", "mult_Min", "mult_num1", "mult_num0",
-  "add_Pls_right", "add_Min_right"];
- val intarithrel =
-     (map thm ["int_eq_number_of_eq","int_neg_number_of_BIT",
-                "int_le_number_of_eq","int_iszero_number_of_0",
-                "int_less_number_of_eq_neg"]) @
-     (map (fn s => thm s RS thm "lift_bool")
-          ["int_iszero_number_of_Pls","int_iszero_number_of_1",
-           "int_neg_number_of_Min"])@
-     (map (fn s => thm s RS thm "nlift_bool")
-          ["int_nonzero_number_of_Min","int_not_neg_number_of_Pls"]);
-
-val intarith = map thm ["int_number_of_add_sym", "int_number_of_minus_sym",
-                        "int_number_of_diff_sym", "int_number_of_mult_sym"];
-val natarith = map thm ["add_nat_number_of", "diff_nat_number_of",
-                        "mult_nat_number_of", "eq_nat_number_of",
-                        "less_nat_number_of"]
-val powerarith =
-    (map thm ["nat_number_of", "zpower_number_of_even",
-              "zpower_Pls", "zpower_Min"]) @
-    [(MetaSimplifier.simplify true [thm "zero_eq_Numeral0_nring",
-                           thm "one_eq_Numeral1_nring"]
-  (thm "zpower_number_of_odd"))]
-
-val comp_arith = binarith @ intarith @ intarithrel @ natarith
-            @ powerarith @[thm"not_false_eq_true", thm "not_true_eq_false"];
-
-fun cooper_pp sg (fm as e$Abs(xn,xT,p)) =
-  let val (xn1,p1) = Syntax.variant_abs (xn,xT,p)
-  in (CooperProof.cooper_prv sg (Free (xn1, xT)) p1) end;
-
-fun mnnf_pp sg fm = CooperProof.proof_of_cnnf sg fm
-  (CooperProof.proof_of_evalc sg);
-
-fun tmproof_of_int_qelim sg fm =
-  Qelim.tproof_of_mlift_qelim sg CooperDec.is_arith_rel
-    (CooperProof.proof_of_linform sg) (mnnf_pp sg) (cooper_pp sg) fm;
-
-
-(* Theorems to be used in this tactic*)
-
-val zdvd_int = thm "zdvd_int";
-val zdiff_int_split = thm "zdiff_int_split";
-val all_nat = thm "all_nat";
-val ex_nat = thm "ex_nat";
-val number_of1 = thm "number_of1";
-val number_of2 = thm "number_of2";
-val split_zdiv = thm "split_zdiv";
-val split_zmod = thm "split_zmod";
-val mod_div_equality' = thm "mod_div_equality'";
-val split_div' = thm "split_div'";
-val Suc_plus1 = thm "Suc_plus1";
-val imp_le_cong = thm "imp_le_cong";
-val conj_le_cong = thm "conj_le_cong";
-val nat_mod_add_eq = mod_add1_eq RS sym;
-val nat_mod_add_left_eq = mod_add_left_eq RS sym;
-val nat_mod_add_right_eq = mod_add_right_eq RS sym;
-val int_mod_add_eq = @{thm zmod_zadd1_eq} RS sym;
-val int_mod_add_left_eq = @{thm zmod_zadd_left_eq} RS sym;
-val int_mod_add_right_eq = @{thm zmod_zadd_right_eq} RS sym;
-val nat_div_add_eq = @{thm div_add1_eq} RS sym;
-val int_div_add_eq = @{thm zdiv_zadd1_eq} RS sym;
-val ZDIVISION_BY_ZERO_MOD = @{thm DIVISION_BY_ZERO} RS conjunct2;
-val ZDIVISION_BY_ZERO_DIV = @{thm DIVISION_BY_ZERO} RS conjunct1;
-
-
-(* extract all the constants in a term*)
-fun add_term_typed_consts (Const (c, T), cs) = insert (op =) (c, T) cs
-  | add_term_typed_consts (t $ u, cs) =
-      add_term_typed_consts (t, add_term_typed_consts (u, cs))
-  | add_term_typed_consts (Abs (_, _, t), cs) = add_term_typed_consts (t, cs)
-  | add_term_typed_consts (_, cs) = cs;
-
-fun term_typed_consts t = add_term_typed_consts(t,[]);
-
-(* Some Types*)
-val bT = HOLogic.boolT;
-val bitT = HOLogic.bitT;
-val iT = HOLogic.intT;
-val nT = HOLogic.natT;
-
-(* Allowed Consts in formulae for presburger tactic*)
-
-val allowed_consts =
-  [("All", (iT --> bT) --> bT),
-   ("Ex", (iT --> bT) --> bT),
-   ("All", (nT --> bT) --> bT),
-   ("Ex", (nT --> bT) --> bT),
-
-   ("op &", bT --> bT --> bT),
-   ("op |", bT --> bT --> bT),
-   ("op -->", bT --> bT --> bT),
-   ("op =", bT --> bT --> bT),
-   ("Not", bT --> bT),
-
-   (@{const_name Orderings.less_eq}, iT --> iT --> bT),
-   ("op =", iT --> iT --> bT),
-   (@{const_name Orderings.less}, iT --> iT --> bT),
-   (@{const_name Divides.dvd}, iT --> iT --> bT),
-   (@{const_name Divides.div}, iT --> iT --> iT),
-   (@{const_name Divides.mod}, iT --> iT --> iT),
-   (@{const_name HOL.plus}, iT --> iT --> iT),
-   (@{const_name HOL.minus}, iT --> iT --> iT),
-   (@{const_name HOL.times}, iT --> iT --> iT),
-   (@{const_name HOL.abs}, iT --> iT),
-   (@{const_name HOL.uminus}, iT --> iT),
-   (@{const_name Orderings.max}, iT --> iT --> iT),
-   (@{const_name Orderings.min}, iT --> iT --> iT),
-
-   (@{const_name Orderings.less_eq}, nT --> nT --> bT),
-   ("op =", nT --> nT --> bT),
-   (@{const_name Orderings.less}, nT --> nT --> bT),
-   (@{const_name Divides.dvd}, nT --> nT --> bT),
-   (@{const_name Divides.div}, nT --> nT --> nT),
-   (@{const_name Divides.mod}, nT --> nT --> nT),
-   (@{const_name HOL.plus}, nT --> nT --> nT),
-   (@{const_name HOL.minus}, nT --> nT --> nT),
-   (@{const_name HOL.times}, nT --> nT --> nT),
-   (@{const_name Suc}, nT --> nT),
-   (@{const_name Orderings.max}, nT --> nT --> nT),
-   (@{const_name Orderings.min}, nT --> nT --> nT),
-
-   (@{const_name Numeral.bit.B0}, bitT),
-   (@{const_name Numeral.bit.B1}, bitT),
-   (@{const_name Numeral.Bit}, iT --> bitT --> iT),
-   (@{const_name Numeral.Pls}, iT),
-   (@{const_name Numeral.Min}, iT),
-   (@{const_name Numeral.number_of}, iT --> iT),
-   (@{const_name Numeral.number_of}, iT --> nT),
-   (@{const_name HOL.zero}, nT),
-   (@{const_name HOL.zero}, iT),
-   (@{const_name HOL.one}, nT),
-   (@{const_name HOL.one}, iT),
-   (@{const_name False}, bT),
-   (@{const_name True}, bT)];
-
-(* Preparation of the formula to be sent to the Integer quantifier *)
-(* elimination procedure                                           *)
-(* Transforms meta implications and meta quantifiers to object     *)
-(* implications and object quantifiers                             *)
-
-
-(*==================================*)
-(* Abstracting on subterms  ========*)
-(*==================================*)
-(* Returns occurences of terms that are function application of type int or nat*)
-
-fun getfuncs fm = case strip_comb fm of
-    (Free (_, T), ts as _ :: _) =>
-      if body_type T mem [iT, nT]
-         andalso not (ts = []) andalso forall (null o loose_bnos) ts
-      then [fm]
-      else Library.foldl op union ([], map getfuncs ts)
-  | (Var (_, T), ts as _ :: _) =>
-      if body_type T mem [iT, nT]
-         andalso not (ts = []) andalso forall (null o loose_bnos) ts then [fm]
-      else Library.foldl op union ([], map getfuncs ts)
-  | (Const (s, T), ts) =>
-      if (s, T) mem allowed_consts orelse not (body_type T mem [iT, nT])
-      then Library.foldl op union ([], map getfuncs ts)
-      else [fm]
-  | (Abs (s, T, t), _) => getfuncs t
-  | _ => [];
-
-
-fun abstract_pres sg fm =
-  foldr (fn (t, u) =>
-      let val T = fastype_of t
-      in all T $ Abs ("x", T, abstract_over (t, u)) end)
-         fm (getfuncs fm);
-
-
-
-(* hasfuncs_on_bounds dont care of the type of the functions applied!
- It returns true if there is a subterm coresponding to the application of
- a function on a bounded variable.
-
- Function applications are allowed only for well predefined functions a
- consts*)
-
-fun has_free_funcs fm  = case strip_comb fm of
-    (Free (_, T), ts as _ :: _) =>
-      if (body_type T mem [iT,nT]) andalso (not (T mem [iT,nT]))
-      then true
-      else exists (fn x => x) (map has_free_funcs ts)
-  | (Var (_, T), ts as _ :: _) =>
-      if (body_type T mem [iT,nT]) andalso not (T mem [iT,nT])
-      then true
-      else exists (fn x => x) (map has_free_funcs ts)
-  | (Const (s, T), ts) =>  exists (fn x => x) (map has_free_funcs ts)
-  | (Abs (s, T, t), _) => has_free_funcs t
-  |_ => false;
-
-
-(*returns true if the formula is relevant for presburger arithmetic tactic
-The constants occuring in term t should be a subset of the allowed_consts
- There also should be no occurences of application of functions on bounded
- variables. Whenever this function will be used, it will be ensured that t
- will not contain subterms with function symbols that could have been
- abstracted over.*)
-
-fun relevant ps t = (term_typed_consts t) subset allowed_consts andalso
-  map (fn i => snd (List.nth (ps, i))) (loose_bnos t) @
-  map (snd o dest_Free) (term_frees t) @ map (snd o dest_Var) (term_vars t)
-  subset [iT, nT]
-  andalso not (has_free_funcs t);
-
-
-fun prepare_for_presburger sg q fm =
-  let
-    val ps = Logic.strip_params fm
-    val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
-    val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
-    val _ = if relevant (rev ps) c then ()
-               else  (trace_msg ("Conclusion is not a presburger term:\n" ^
-             Sign.string_of_term sg c); raise CooperDec.COOPER)
-    fun mk_all ((s, T), (P,n)) =
-      if 0 mem loose_bnos P then
-        (HOLogic.all_const T $ Abs (s, T, P), n)
-      else (incr_boundvars ~1 P, n-1)
-    fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
-    val (rhs,irhs) = List.partition (relevant (rev ps)) hs
-    val np = length ps
-    val (fm',np) =  foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
-      (foldr HOLogic.mk_imp c rhs, np) ps
-    val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
-      (term_frees fm' @ term_vars fm');
-    val fm2 = foldr mk_all2 fm' vs
-  in (fm2, np + length vs, length rhs) end;
-
-(*Object quantifier to meta --*)
-fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
-
-(* object implication to meta---*)
-fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
-
-(* the presburger tactic*)
-
-(* Parameters : q = flag for quantify ofer free variables ;
-                a = flag for abstracting over function occurences
-                i = subgoal  *)
-
-fun presburger_tac q a i = ObjectLogic.atomize_tac i THEN (fn st =>
-  let
-    val g = List.nth (prems_of st, i - 1)
-    val sg = Thm.theory_of_thm st
-    (* The Abstraction step *)
-    val g' = if a then abstract_pres sg g else g
-    (* Transform the term*)
-    val (t,np,nh) = prepare_for_presburger sg q g'
-    (* Some simpsets for dealing with mod div abs and nat*)
-    val mod_div_simpset = Simplifier.theory_context sg HOL_basic_ss
-                        addsimps [refl,nat_mod_add_eq, nat_mod_add_left_eq,
-                                  nat_mod_add_right_eq, int_mod_add_eq,
-                                  int_mod_add_right_eq, int_mod_add_left_eq,
-                                  nat_div_add_eq, int_div_add_eq,
-                                  mod_self, @{thm zmod_self},
-                                  DIVISION_BY_ZERO_MOD,DIVISION_BY_ZERO_DIV,
-                                  ZDIVISION_BY_ZERO_MOD,ZDIVISION_BY_ZERO_DIV,
-                                  @{thm zdiv_zero}, @{thm zmod_zero}, div_0,mod_0,
-                                  @{thm zdiv_1}, @{thm zmod_1}, @{thm div_1}, @{thm mod_1},
-                                  Suc_plus1]
-                        addsimps add_ac
-                        addsimprocs [cancel_div_mod_proc]
-    val simpset0 = HOL_basic_ss
-      addsimps [@{thm mod_div_equality'}, @{thm Suc_plus1}]
-      addsimps comp_arith
-      addsplits [split_zdiv, split_zmod, split_div', @{thm split_min}, @{thm split_max}]
-    (* Simp rules for changing (n::int) to int n *)
-    val simpset1 = HOL_basic_ss
-      addsimps [nat_number_of_def, zdvd_int] @ map (fn r => r RS sym)
-        [int_int_eq, zle_int, zless_int, zadd_int, zmult_int]
-      addsplits [zdiff_int_split]
-    (*simp rules for elimination of int n*)
-
-    val simpset2 = HOL_basic_ss
-      addsimps [nat_0_le, all_nat, ex_nat, number_of1, number_of2, int_0, int_1]
-      addcongs [conj_le_cong, imp_le_cong]
-    (* simp rules for elimination of abs *)
-    val simpset3 = HOL_basic_ss addsplits [abs_split]
-    val ct = cterm_of sg (HOLogic.mk_Trueprop t)
-    (* Theorem for the nat --> int transformation *)
-    val pre_thm = Seq.hd (EVERY
-      [simp_tac mod_div_simpset 1, simp_tac simpset0 1,
-       TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1),
-       TRY (simp_tac simpset3 1), TRY (simp_tac presburger_ss 1)]
-      (trivial ct))
-    fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
-    (* The result of the quantifier elimination *)
-    val (th, tac) = case (prop_of pre_thm) of
-        Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
-    let val pth =
-          (* If quick_and_dirty then run without proof generation as oracle*)
-             if !quick_and_dirty
-             then presburger_oracle sg (Pattern.eta_long [] t1)
-(*
-assume (cterm_of sg
-               (HOLogic.mk_Trueprop(HOLogic.mk_eq(t1,CooperDec.integer_qelim (Pattern.eta_long [] t1)))))
-*)
-             else tmproof_of_int_qelim sg (Pattern.eta_long [] t1)
-    in
-          (trace_msg ("calling procedure with term:\n" ^
-             Sign.string_of_term sg t1);
-           ((pth RS iffD2) RS pre_thm,
-            assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)))
-    end
-      | _ => (pre_thm, assm_tac i)
-  in (rtac (((mp_step nh) o (spec_step np)) th) i
-      THEN tac) st
-  end handle Subscript => no_tac st | CooperDec.COOPER => no_tac st);
-
-val presburger_meth =
- let val parse_flag =
-         Args.$$$ "no_quantify" >> K (apfst (K false))
-      || Args.$$$ "no_abs" >> K (apsnd (K false));
- in
-   Method.simple_args
-     (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
-      curry (Library.foldl op |>) (true, true))
-     (fn (q,a) => K (Method.SIMPLE_METHOD' (presburger_tac q a)))
-  end;
-
-val presburger_arith_tac = mk_arith_tactic "presburger" (fn i => fn st =>
-  (warning "Trying full Presburger arithmetic ...";
-   presburger_tac true true i st));
-
-val setup =
-  Method.add_method ("presburger", presburger_meth,
-    "decision procedure for Presburger arithmetic") #>
-  arith_tactic_add presburger_arith_tac;
-
-end;
-
-val presburger_tac = Presburger.presburger_tac true true;
--- a/src/HOL/Integ/qelim.ML	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,110 +0,0 @@
-(*  Title:      HOL/Integ/qelim.ML
-    ID:         $Id$
-    Author:     Amine Chaieb and Tobias Nipkow, TU Muenchen
-
-File containing the implementation of the proof protocoling
-and proof generation for multiple quantified formulae.
-*)
-
-signature QELIM =
- sig
- val tproof_of_mlift_qelim: theory -> (term -> bool) ->
-   (string list -> term -> thm) -> (term -> thm) ->
-   (term -> thm) -> term -> thm
- val standard_qelim_conv: (cterm list -> cterm -> thm) ->
-   (cterm list -> Conv.conv) -> (cterm list -> cterm -> thm) -> cterm -> thm
- val gen_qelim_conv: Conv.conv -> Conv.conv -> Conv.conv ->
-   (cterm -> 'a -> 'a) -> 'a -> ('a -> cterm -> thm) ->
-   ('a -> Conv.conv) -> ('a -> cterm -> thm) -> Conv.conv
-
-end;
-
-structure Qelim : QELIM =
-struct
-open CooperDec;
-open CooperProof;
-open Conv;
-
-val cboolT = ctyp_of HOL.thy HOLogic.boolT;
-
-(* List of the theorems to be used in the following*)
-
-val qe_ex_conj = thm "qe_ex_conj";
-val qe_ex_nconj = thm "qe_ex_nconj";
-val qe_ALL = thm "qe_ALL";
-
-
-(*============= Compact version =====*)
-
-
-fun decomp_qe is_at afnp nfnp qfnp sg P = 
-   if is_at P then ([], fn [] => afnp [] P) else 
-   case P of
-   (Const("op &",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_conjI)
-   |(Const("op |",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_disjI)
-   |(Const("op -->",_)$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_impI)
-   |(Const("op =", Type ("fun",[Type ("bool", []),_]))$A$B) => ([A,B], fn [th1,th2] => [th1,th2] MRS qe_eqI)
-   |(Const("Not",_)$p) => ([p],fn [th] => th RS qe_Not)
-   |(Const("Ex",_)$Abs(xn,xT,p)) => 
-      let val (xn1,p1) = Syntax.variant_abs(xn,xT,p) 
-      in ([p1],
-        fn [th1_1] => 
-          let val th2 = [th1_1,nfnp (snd (qe_get_terms th1_1))] MRS trans
-              val eth1 = (forall_intr (cterm_of sg (Free(xn1,xT))) th2) COMP  qe_exI
-              val th3 = qfnp (snd(qe_get_terms eth1))
-          in [eth1,th3] MRS trans
-          end )
-      end
-
-   |(Const("All",_)$Abs(xn,xT,p)) => ([(HOLogic.exists_const xT)$Abs(xn,xT,HOLogic.Not $ p)], fn [th] => th RS qe_ALL)
-   | _ => ([],fn [] => instantiate' [SOME (ctyp_of sg (type_of P))] [SOME (cterm_of sg P)] refl);
- 
-
-fun tproof_of_mlift_qelim sg isat afnp nfnp qfnp p = 
-   let val th1 = thm_of sg (decomp_qe isat afnp nfnp qfnp sg) p
-       val th2 = nfnp (snd (qe_get_terms th1))
-    in [th1,th2] MRS trans
-    end;
-
-val is_refl = op aconv o Logic.dest_equals o Thm.prop_of;
-
-fun gen_qelim_conv precv postcv simpex_conv ins env atcv ncv qcv  = 
- let fun conv p =
-  case (term_of p) of 
-   Const(s,T)$_$_ => if domain_type T = HOLogic.boolT 
-                        andalso s mem ["op &","op |","op -->","op ="]
-                    then binop_conv conv p else atcv env p
- | Const("Not",_)$_ => arg_conv conv p
- | Const("Ex",_)$Abs(s,_,_) => 
-   let 
-    val (e,p0) = Thm.dest_comb p
-    val (x,p') = Thm.dest_abs (SOME s) p0
-    val th = Thm.abstract_rule s x 
-                  (((gen_qelim_conv precv postcv simpex_conv ins (ins x env) atcv ncv qcv) 
-                      then_conv (ncv (ins x env))) p')
-                  |> Drule.arg_cong_rule e
-    val th' = simpex_conv (Thm.rhs_of th)
-    val (l,r) = Thm.dest_equals (cprop_of th')
-   in if is_refl th' then Thm.transitive th (qcv env (Thm.rhs_of th))
-      else Thm.transitive (Thm.transitive th th') (conv r) end
- | _ => atcv env p
- in precv then_conv conv then_conv postcv end;
-
-fun cterm_frees ct = 
- let fun h acc t = 
-   case (term_of t) of 
-    _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
-  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
-  | Free _ => insert (op aconvc) t acc
-  | _ => acc
- in h [] ct end;
-
-val standard_qelim_conv = 
- let val pcv = Simplifier.rewrite 
-                 (HOL_basic_ss addsimps (simp_thms @ (List.take(ex_simps,4)) 
-                     @ [not_all,ex_disj_distrib]))
- in fn atcv => fn ncv => fn qcv => fn p => 
-       gen_qelim_conv pcv pcv pcv (curry (op ::)) (cterm_frees p) atcv ncv qcv p 
- end;
-
-end;
--- a/src/HOL/Integ/reflected_cooper.ML	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,119 +0,0 @@
-(* $Id$ *)
-(* The oracle for Presburger arithmetic based on the verified Code *)
-    (* in HOL/ex/Reflected_Presburger.thy *)
-
-structure ReflectedCooper =
-struct
-
-open Generated;
-(* pseudo reification : term -> intterm *)
-
-fun i_of_term vs t =  case t of
-    Free(xn,xT) => (case AList.lookup (op =) vs t of 
-        NONE   => error "Variable not found in the list!!"
-      | SOME n => Var n)
-  | Const(@{const_name HOL.zero},iT) => Cst 0
-  | Const(@{const_name HOL.one},iT) => Cst 1
-  | Bound i => Var (nat (IntInf.fromInt i))
-  | Const(@{const_name HOL.uminus},_)$t' => Neg (i_of_term vs t')
-  | Const (@{const_name HOL.plus},_)$t1$t2 => Add (i_of_term vs t1,i_of_term vs t2)
-  | Const (@{const_name HOL.minus},_)$t1$t2 => Sub (i_of_term vs t1,i_of_term vs t2)
-  | Const (@{const_name HOL.times},_)$t1$t2 => Mult (i_of_term vs t1,i_of_term vs t2)
-  | Const (@{const_name Numeral.number_of},_)$t' => Cst (HOLogic.dest_numeral t')
-  | _ => error "i_of_term: unknown term";
-
-(* pseudo reification : term -> QF *)
-fun qf_of_term vs t = case t of 
-	Const("True",_) => T
-      | Const("False",_) => F
-      | Const(@{const_name Orderings.less},_)$t1$t2 => Lt (i_of_term vs t1,i_of_term vs t2)
-      | Const(@{const_name Orderings.less_eq},_)$t1$t2 => Le (i_of_term vs t1,i_of_term vs t2)
-      | Const ("Divides.dvd",_)$t1$t2 => 
-	Divides(i_of_term vs t1,i_of_term vs t2)
-      | Const("op =",eqT)$t1$t2 => 
-	if (domain_type eqT = HOLogic.intT)
-	then let val i1 = i_of_term vs t1
-		 val i2 = i_of_term vs t2
-	     in	Eq (i1,i2)
-	     end 
-	else Equ(qf_of_term vs t1,qf_of_term vs t2)
-      | Const("op &",_)$t1$t2 => And(qf_of_term vs t1,qf_of_term vs t2)
-      | Const("op |",_)$t1$t2 => Or(qf_of_term vs t1,qf_of_term vs t2)
-      | Const("op -->",_)$t1$t2 => Imp(qf_of_term vs t1,qf_of_term vs t2)
-      | Const("Not",_)$t' => NOT(qf_of_term vs t')
-      | Const("Ex",_)$Abs(xn,xT,p) => 
-	QEx(qf_of_term (map (fn(v,n) => (v,n + 1)) vs) p)
-      | Const("All",_)$Abs(xn,xT,p) => 
-	QAll(qf_of_term (map (fn(v,n) => (v,n + 1)) vs) p)
-      | _ => error "qf_of_term : unknown term!";
-
-(*
-fun parse thy s = term_of (Thm.read_cterm thy (s, HOLogic.boolT));
-
-val t = parse "ALL (i::int) (j::int). i < 8* j --> (i - 1 = j + 3 + 2*j) & (j <= -i + k ) | 4 = i | 5 dvd i";
-*)
-fun zip [] [] = []
-  | zip (x::xs) (y::ys) = (x,y)::(zip xs ys);
-
-
-fun start_vs t =
-    let val fs = term_frees t
-    in zip fs (map (nat o IntInf.fromInt) (0 upto  (length fs - 1)))
-    end ;
-
-(* transform intterm and QF back to terms *)
-val iT = HOLogic.intT;
-val bT = HOLogic.boolT;
-fun myassoc2 l v =
-    case l of
-	[] => NONE
-      | (x,v')::xs => if v = v' then SOME x
-		      else myassoc2 xs v;
-
-fun term_of_i vs t =
-    case t of 
-	Cst i => CooperDec.mk_number i
-      | Var n => valOf (myassoc2 vs n)
-      | Neg t' => Const(@{const_name HOL.uminus},iT --> iT)$(term_of_i vs t')
-      | Add(t1,t2) => Const(@{const_name HOL.plus},[iT,iT] ---> iT)$
-			   (term_of_i vs t1)$(term_of_i vs t2)
-      | Sub(t1,t2) => Const(@{const_name HOL.minus},[iT,iT] ---> iT)$
-			   (term_of_i vs t1)$(term_of_i vs t2)
-      | Mult(t1,t2) => Const(@{const_name HOL.times},[iT,iT] ---> iT)$
-			   (term_of_i vs t1)$(term_of_i vs t2);
-
-fun term_of_qf vs t = 
-    case t of 
-	T => HOLogic.true_const 
-      | F => HOLogic.false_const
-      | Lt(t1,t2) => Const(@{const_name Orderings.less},[iT,iT] ---> bT)$
-			   (term_of_i vs t1)$(term_of_i vs t2)
-      | Le(t1,t2) => Const(@{const_name Orderings.less_eq},[iT,iT] ---> bT)$
-			  (term_of_i vs t1)$(term_of_i vs t2)
-      | Gt(t1,t2) => Const(@{const_name Orderings.less},[iT,iT] ---> bT)$
-			   (term_of_i vs t2)$(term_of_i vs t1)
-      | Ge(t1,t2) => Const(@{const_name Orderings.less_eq},[iT,iT] ---> bT)$
-			  (term_of_i vs t2)$(term_of_i vs t1)
-      | Eq(t1,t2) => Const("op =",[iT,iT] ---> bT)$
-			   (term_of_i vs t1)$(term_of_i vs t2)
-      | Divides(t1,t2) => Const("Divides.dvd",[iT,iT] ---> bT)$
-			       (term_of_i vs t1)$(term_of_i vs t2)
-      | NOT t' => HOLogic.Not$(term_of_qf vs t')
-      | And(t1,t2) => HOLogic.conj$(term_of_qf vs t1)$(term_of_qf vs t2)
-      | Or(t1,t2) => HOLogic.disj$(term_of_qf vs t1)$(term_of_qf vs t2)
-      | Imp(t1,t2) => HOLogic.imp$(term_of_qf vs t1)$(term_of_qf vs t2)
-      | Equ(t1,t2) => (HOLogic.eq_const bT)$(term_of_qf vs t1)$
-					   (term_of_qf vs t2)
-      | _ => error "If this is raised, Isabelle/HOL or generate_code is inconsistent!";
-
-(* The oracle *)
-fun presburger_oracle thy t =
-    let val vs = start_vs t
-	val result = lift_un (term_of_qf vs) (pa (qf_of_term vs t))
-    in 
-    case result of 
-	None => raise CooperDec.COOPER
-      | Some t' => HOLogic.mk_Trueprop (HOLogic.mk_eq(t,t'))
-    end ;
- 
-end;
--- a/src/HOL/Integ/reflected_presburger.ML	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2172 +0,0 @@
-(* $Id$ *)
-
-    (* Caution: This file should not be modified. *)
-    (* It is autmatically generated from HOL/ex/Reflected_Presburger.thy *)
-fun nat (i:IntInf.int) = if i < 0 then 0 else i : IntInf.int;
-structure Generated =
-struct
-
-datatype intterm = Cst of IntInf.int | Var of IntInf.int | Neg of intterm
-  | Add of intterm * intterm | Sub of intterm * intterm
-  | Mult of intterm * intterm;
-
-datatype QF = Lt of intterm * intterm | Gt of intterm * intterm
-  | Le of intterm * intterm | Ge of intterm * intterm | Eq of intterm * intterm
-  | Divides of intterm * intterm | T | F | NOT of QF | And of QF * QF
-  | Or of QF * QF | Imp of QF * QF | Equ of QF * QF | QAll of QF | QEx of QF;
-
-datatype 'a option = None | Some of 'a;
-
-fun lift_un c None = None
-  | lift_un c (Some p) = Some (c p);
-
-fun lift_bin (c, (Some a, Some b)) = Some (c a b)
-  | lift_bin (c, (None, y)) = None
-  | lift_bin (c, (Some y, None)) = None;
-
-fun lift_qe qe None = None
-  | lift_qe qe (Some p) = qe p;
-
-fun qelim (qe, QAll p) = lift_un NOT (lift_qe qe (lift_un NOT (qelim (qe, p))))
-  | qelim (qe, QEx p) = lift_qe qe (qelim (qe, p))
-  | qelim (qe, And (p, q)) =
-    lift_bin ((fn x => fn xa => And (x, xa)), (qelim (qe, p), qelim (qe, q)))
-  | qelim (qe, Or (p, q)) =
-    lift_bin ((fn x => fn xa => Or (x, xa)), (qelim (qe, p), qelim (qe, q)))
-  | qelim (qe, Imp (p, q)) =
-    lift_bin ((fn x => fn xa => Imp (x, xa)), (qelim (qe, p), qelim (qe, q)))
-  | qelim (qe, Equ (p, q)) =
-    lift_bin ((fn x => fn xa => Equ (x, xa)), (qelim (qe, p), qelim (qe, q)))
-  | qelim (qe, NOT p) = lift_un NOT (qelim (qe, p))
-  | qelim (qe, Lt (w, x)) = Some (Lt (w, x))
-  | qelim (qe, Gt (y, z)) = Some (Gt (y, z))
-  | qelim (qe, Le (aa, ab)) = Some (Le (aa, ab))
-  | qelim (qe, Ge (ac, ad)) = Some (Ge (ac, ad))
-  | qelim (qe, Eq (ae, af)) = Some (Eq (ae, af))
-  | qelim (qe, Divides (ag, ah)) = Some (Divides (ag, ah))
-  | qelim (qe, T) = Some T
-  | qelim (qe, F) = Some F;
-
-fun lin_mul (c, Cst i) = Cst (c * i)
-  | lin_mul (c, Add (Mult (Cst c', Var n), r)) =
-    (if (c = 0) then Cst 0
-      else Add (Mult (Cst (c * c'), Var n), lin_mul (c, r)));
-
-fun op_60_def0 m n = IntInf.< (m,n);
-
-fun op_60_61_def0 m n = not (op_60_def0 n m);
-
-fun lin_add (Add (Mult (Cst c1, Var n1), r1), Add (Mult (Cst c2, Var n2), r2)) =
-    (if (n1 = n2)
-      then let val c = Cst (c1 + c2)
-           in (if ((c1 + c2) = 0) then lin_add (r1, r2)
-                else Add (Mult (c, Var n1), lin_add (r1, r2)))
-           end
-      else (if op_60_61_def0 n1 n2
-             then Add (Mult (Cst c1, Var n1),
-                        lin_add (r1, Add (Mult (Cst c2, Var n2), r2)))
-             else Add (Mult (Cst c2, Var n2),
-                        lin_add (Add (Mult (Cst c1, Var n1), r1), r2))))
-  | lin_add (Add (Mult (Cst c1, Var n1), r1), Cst b) =
-    Add (Mult (Cst c1, Var n1), lin_add (r1, Cst b))
-  | lin_add (Cst x, Add (Mult (Cst c2, Var n2), r2)) =
-    Add (Mult (Cst c2, Var n2), lin_add (Cst x, r2))
-  | lin_add (Cst b1, Cst b2) = Cst (b1 + b2);
-
-fun lin_neg i = lin_mul (~1, i);
-
-fun linearize (Cst b) = Some (Cst b)
-  | linearize (Var n) = Some (Add (Mult (Cst 1, Var n), Cst 0))
-  | linearize (Neg i) = lift_un lin_neg (linearize i)
-  | linearize (Add (i, j)) =
-    lift_bin ((fn x => fn y => lin_add (x, y)), (linearize i, linearize j))
-  | linearize (Sub (i, j)) =
-    lift_bin
-      ((fn x => fn y => lin_add (x, lin_neg y)), (linearize i, linearize j))
-  | linearize (Mult (i, j)) =
-    (case linearize i of None => None
-      | Some x =>
-          (case x of
-            Cst xa =>
-              (case linearize j of None => None
-                | Some x => Some (lin_mul (xa, x)))
-            | Var xa =>
-                (case linearize j of None => None
-                  | Some xa =>
-                      (case xa of Cst xa => Some (lin_mul (xa, x))
-                        | Var xa => None | Neg xa => None | Add (xa, xb) => None
-                        | Sub (xa, xb) => None | Mult (xa, xb) => None))
-            | Neg xa =>
-                (case linearize j of None => None
-                  | Some xa =>
-                      (case xa of Cst xa => Some (lin_mul (xa, x))
-                        | Var xa => None | Neg xa => None | Add (xa, xb) => None
-                        | Sub (xa, xb) => None | Mult (xa, xb) => None))
-            | Add (xa, xb) =>
-                (case linearize j of None => None
-                  | Some xa =>
-                      (case xa of Cst xa => Some (lin_mul (xa, x))
-                        | Var xa => None | Neg xa => None | Add (xa, xb) => None
-                        | Sub (xa, xb) => None | Mult (xa, xb) => None))
-            | Sub (xa, xb) =>
-                (case linearize j of None => None
-                  | Some xa =>
-                      (case xa of Cst xa => Some (lin_mul (xa, x))
-                        | Var xa => None | Neg xa => None | Add (xa, xb) => None
-                        | Sub (xa, xb) => None | Mult (xa, xb) => None))
-            | Mult (xa, xb) =>
-                (case linearize j of None => None
-                  | Some xa =>
-                      (case xa of Cst xa => Some (lin_mul (xa, x))
-                        | Var xa => None | Neg xa => None | Add (xa, xb) => None
-                        | Sub (xa, xb) => None | Mult (xa, xb) => None))));
-
-fun linform (Le (it1, it2)) =
-    lift_bin
-      ((fn x => fn y => Le (lin_add (x, lin_neg y), Cst 0)),
-        (linearize it1, linearize it2))
-  | linform (Eq (it1, it2)) =
-    lift_bin
-      ((fn x => fn y => Eq (lin_add (x, lin_neg y), Cst 0)),
-        (linearize it1, linearize it2))
-  | linform (Divides (d, t)) =
-    (case linearize d of None => None
-      | Some x =>
-          (case x of
-            Cst xa =>
-              (if (xa = 0) then None
-                else (case linearize t of None => None
-                       | Some xa => Some (Divides (x, xa))))
-            | Var xa => None | Neg xa => None | Add (xa, xb) => None
-            | Sub (xa, xb) => None | Mult (xa, xb) => None))
-  | linform T = Some T
-  | linform F = Some F
-  | linform (NOT p) = lift_un NOT (linform p)
-  | linform (And (p, q)) =
-    lift_bin ((fn f => fn g => And (f, g)), (linform p, linform q))
-  | linform (Or (p, q)) =
-    lift_bin ((fn f => fn g => Or (f, g)), (linform p, linform q));
-
-fun nnf (Lt (it1, it2)) = Le (Sub (it1, it2), Cst (~ 1))
-  | nnf (Gt (it1, it2)) = Le (Sub (it2, it1), Cst (~ 1))
-  | nnf (Le (it1, it2)) = Le (it1, it2)
-  | nnf (Ge (it1, it2)) = Le (it2, it1)
-  | nnf (Eq (it1, it2)) = Eq (it2, it1)
-  | nnf (Divides (d, t)) = Divides (d, t)
-  | nnf T = T
-  | nnf F = F
-  | nnf (And (p, q)) = And (nnf p, nnf q)
-  | nnf (Or (p, q)) = Or (nnf p, nnf q)
-  | nnf (Imp (p, q)) = Or (nnf (NOT p), nnf q)
-  | nnf (Equ (p, q)) = Or (And (nnf p, nnf q), And (nnf (NOT p), nnf (NOT q)))
-  | nnf (NOT (Lt (it1, it2))) = Le (it2, it1)
-  | nnf (NOT (Gt (it1, it2))) = Le (it1, it2)
-  | nnf (NOT (Le (it1, it2))) = Le (Sub (it2, it1), Cst (~ 1))
-  | nnf (NOT (Ge (it1, it2))) = Le (Sub (it1, it2), Cst (~ 1))
-  | nnf (NOT (Eq (it1, it2))) = NOT (Eq (it1, it2))
-  | nnf (NOT (Divides (d, t))) = NOT (Divides (d, t))
-  | nnf (NOT T) = F
-  | nnf (NOT F) = T
-  | nnf (NOT (NOT p)) = nnf p
-  | nnf (NOT (And (p, q))) = Or (nnf (NOT p), nnf (NOT q))
-  | nnf (NOT (Or (p, q))) = And (nnf (NOT p), nnf (NOT q))
-  | nnf (NOT (Imp (p, q))) = And (nnf p, nnf (NOT q))
-  | nnf (NOT (Equ (p, q))) =
-    Or (And (nnf p, nnf (NOT q)), And (nnf (NOT p), nnf q));
-
-fun op_45_def2 z w =  IntInf.+ (z,~ w);
-
-fun op_45_def0 m n = nat (op_45_def2 (m) (n));
-
-val id_1_def0 : IntInf.int = (0 + 1);
-
-fun decrvarsI (Cst i) = Cst i
-  | decrvarsI (Var n) = Var (op_45_def0 n id_1_def0)
-  | decrvarsI (Neg a) = Neg (decrvarsI a)
-  | decrvarsI (Add (a, b)) = Add (decrvarsI a, decrvarsI b)
-  | decrvarsI (Sub (a, b)) = Sub (decrvarsI a, decrvarsI b)
-  | decrvarsI (Mult (a, b)) = Mult (decrvarsI a, decrvarsI b);
-
-fun decrvars (Lt (a, b)) = Lt (decrvarsI a, decrvarsI b)
-  | decrvars (Gt (a, b)) = Gt (decrvarsI a, decrvarsI b)
-  | decrvars (Le (a, b)) = Le (decrvarsI a, decrvarsI b)
-  | decrvars (Ge (a, b)) = Ge (decrvarsI a, decrvarsI b)
-  | decrvars (Eq (a, b)) = Eq (decrvarsI a, decrvarsI b)
-  | decrvars (Divides (a, b)) = Divides (decrvarsI a, decrvarsI b)
-  | decrvars T = T
-  | decrvars F = F
-  | decrvars (NOT p) = NOT (decrvars p)
-  | decrvars (And (p, q)) = And (decrvars p, decrvars q)
-  | decrvars (Or (p, q)) = Or (decrvars p, decrvars q)
-  | decrvars (Imp (p, q)) = Imp (decrvars p, decrvars q)
-  | decrvars (Equ (p, q)) = Equ (decrvars p, decrvars q);
-
-fun op_64 [] ys = ys
-  | op_64 (x :: xs) ys = (x :: op_64 xs ys);
-
-fun map f [] = []
-  | map f (x :: xs) = (f x :: map f xs);
-
-fun iupto (i:IntInf.int, j:IntInf.int) = (if (j < i) then [] else (i :: iupto ((i + 1), j)));
-
-fun all_sums (j:IntInf.int, []) = []
-  | all_sums (j, (i :: is)) =
-    op_64 (map (fn x => lin_add (i, Cst x)) (iupto (1, j))) (all_sums (j, is));
-
-fun split x = (fn p => x (fst p) (snd p));
-
-fun negateSnd x = split (fn q => fn r => (q, IntInf.~ r)) x;
-
-fun adjust b =
-  (fn (q:IntInf.int, r:IntInf.int) =>
-    (if (0 <= op_45_def2 r b) then ((((2:IntInf.int) * q) + (1:IntInf.int)), op_45_def2 r b)
-      else (((2:IntInf.int) * q), r)));
-
-fun negDivAlg (a:IntInf.int, b:IntInf.int) =
-    (if ((0 <= (a + b)) orelse (b <= 0)) then (~1, (a + b))
-      else adjust b (negDivAlg (a, (2 * b))));
-
-fun posDivAlg (a:IntInf.int, b:IntInf.int) =
-    (if ((a < b) orelse (b <= 0)) then (0, a)
-      else adjust b (posDivAlg (a, (2 * b))));
-
-fun divAlg x =
-  split (fn a:IntInf.int => fn b:IntInf.int =>
-          (if (0 <= a)
-            then (if (0 <= b) then posDivAlg (a, b)
-                   else (if (a = 0) then (0, 0)
-                          else negateSnd (negDivAlg (~ a, ~ b))))
-            else (if (0 < b) then negDivAlg (a, b)
-                   else negateSnd (posDivAlg (~ a, ~ b)))))
-    x;
-
-fun op_mod_def1 a b = snd (divAlg (a, b));
-
-fun op_dvd m n = (op_mod_def1 n m = 0);
-
-fun psimpl (Le (l, r)) =
-    (case lift_bin
-            ((fn x => fn y => lin_add (x, lin_neg y)),
-              (linearize l, linearize r)) of
-      None => Le (l, r)
-      | Some x =>
-          (case x of Cst xa => (if (xa <= 0) then T else F)
-            | Var xa => Le (x, Cst 0) | Neg xa => Le (x, Cst 0)
-            | Add (xa, xb) => Le (x, Cst 0) | Sub (xa, xb) => Le (x, Cst 0)
-            | Mult (xa, xb) => Le (x, Cst 0)))
-  | psimpl (Eq (l, r)) =
-    (case lift_bin
-            ((fn x => fn y => lin_add (x, lin_neg y)),
-              (linearize l, linearize r)) of
-      None => Eq (l, r)
-      | Some x =>
-          (case x of Cst xa => (if (xa = 0) then T else F)
-            | Var xa => Eq (x, Cst 0) | Neg xa => Eq (x, Cst 0)
-            | Add (xa, xb) => Eq (x, Cst 0) | Sub (xa, xb) => Eq (x, Cst 0)
-            | Mult (xa, xb) => Eq (x, Cst 0)))
-  | psimpl (Divides (Cst d, t)) =
-    (case linearize t of None => Divides (Cst d, t)
-      | Some x =>
-          (case x of Cst xa => (if op_dvd d xa then T else F)
-            | Var xa => Divides (Cst d, x) | Neg xa => Divides (Cst d, x)
-            | Add (xa, xb) => Divides (Cst d, x)
-            | Sub (xa, xb) => Divides (Cst d, x)
-            | Mult (xa, xb) => Divides (Cst d, x)))
-  | psimpl (Equ (p, q)) =
-    let val p' = psimpl p; val q' = psimpl q
-    in (case p' of
-         Lt (x, xa) =>
-           (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-             | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-             | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-             | T => p' | F => NOT p' | NOT x => Equ (p', q')
-             | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-             | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-             | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | Gt (x, xa) =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | Le (x, xa) =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | Ge (x, xa) =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | Eq (x, xa) =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | Divides (x, xa) =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | T => q'
-         | F => (case q' of Lt (x, xa) => NOT q' | Gt (x, xa) => NOT q'
-                  | Le (x, xa) => NOT q' | Ge (x, xa) => NOT q'
-                  | Eq (x, xa) => NOT q' | Divides (x, xa) => NOT q' | T => F
-                  | F => T | NOT x => x | And (x, xa) => NOT q'
-                  | Or (x, xa) => NOT q' | Imp (x, xa) => NOT q'
-                  | Equ (x, xa) => NOT q' | QAll x => NOT q' | QEx x => NOT q')
-         | NOT x =>
-             (case q' of Lt (xa, xb) => Equ (p', q')
-               | Gt (xa, xb) => Equ (p', q') | Le (xa, xb) => Equ (p', q')
-               | Ge (xa, xb) => Equ (p', q') | Eq (xa, xb) => Equ (p', q')
-               | Divides (xa, xb) => Equ (p', q') | T => p' | F => x
-               | NOT xa => Equ (x, xa) | And (xa, xb) => Equ (p', q')
-               | Or (xa, xb) => Equ (p', q') | Imp (xa, xb) => Equ (p', q')
-               | Equ (xa, xb) => Equ (p', q') | QAll xa => Equ (p', q')
-               | QEx xa => Equ (p', q'))
-         | And (x, xa) =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | Or (x, xa) =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | Imp (x, xa) =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | Equ (x, xa) =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | QAll x =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q'))
-         | QEx x =>
-             (case q' of Lt (x, xa) => Equ (p', q') | Gt (x, xa) => Equ (p', q')
-               | Le (x, xa) => Equ (p', q') | Ge (x, xa) => Equ (p', q')
-               | Eq (x, xa) => Equ (p', q') | Divides (x, xa) => Equ (p', q')
-               | T => p' | F => NOT p' | NOT x => Equ (p', q')
-               | And (x, xa) => Equ (p', q') | Or (x, xa) => Equ (p', q')
-               | Imp (x, xa) => Equ (p', q') | Equ (x, xa) => Equ (p', q')
-               | QAll x => Equ (p', q') | QEx x => Equ (p', q')))
-    end
-  | psimpl (NOT p) =
-    let val p' = psimpl p
-    in (case p' of Lt (x, xa) => NOT p' | Gt (x, xa) => NOT p'
-         | Le (x, xa) => NOT p' | Ge (x, xa) => NOT p' | Eq (x, xa) => NOT p'
-         | Divides (x, xa) => NOT p' | T => F | F => T | NOT x => x
-         | And (x, xa) => NOT p' | Or (x, xa) => NOT p' | Imp (x, xa) => NOT p'
-         | Equ (x, xa) => NOT p' | QAll x => NOT p' | QEx x => NOT p')
-    end
-  | psimpl (Lt (u, v)) = Lt (u, v)
-  | psimpl (Gt (w, x)) = Gt (w, x)
-  | psimpl (Ge (aa, ab)) = Ge (aa, ab)
-  | psimpl (Divides (Var bp, af)) = Divides (Var bp, af)
-  | psimpl (Divides (Neg bq, af)) = Divides (Neg bq, af)
-  | psimpl (Divides (Add (br, bs), af)) = Divides (Add (br, bs), af)
-  | psimpl (Divides (Sub (bt, bu), af)) = Divides (Sub (bt, bu), af)
-  | psimpl (Divides (Mult (bv, bw), af)) = Divides (Mult (bv, bw), af)
-  | psimpl T = T
-  | psimpl F = F
-  | psimpl (QAll ap) = QAll ap
-  | psimpl (QEx aq) = QEx aq
-  | psimpl (And (p, q)) =
-    let val p' = psimpl p
-    in (case p' of
-         Lt (x, xa) =>
-           let val q' = psimpl q
-           in (case q' of Lt (x, xa) => And (p', q')
-                | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                | Divides (x, xa) => And (p', q') | T => p' | F => F
-                | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                | QEx x => And (p', q'))
-           end
-         | Gt (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | Le (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | Ge (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | Eq (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | Divides (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | T => psimpl q | F => F
-         | NOT x =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | And (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | Or (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | Imp (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | Equ (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | QAll x =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end
-         | QEx x =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => And (p', q')
-                  | Gt (x, xa) => And (p', q') | Le (x, xa) => And (p', q')
-                  | Ge (x, xa) => And (p', q') | Eq (x, xa) => And (p', q')
-                  | Divides (x, xa) => And (p', q') | T => p' | F => F
-                  | NOT x => And (p', q') | And (x, xa) => And (p', q')
-                  | Or (x, xa) => And (p', q') | Imp (x, xa) => And (p', q')
-                  | Equ (x, xa) => And (p', q') | QAll x => And (p', q')
-                  | QEx x => And (p', q'))
-             end)
-    end
-  | psimpl (Or (p, q)) =
-    let val p' = psimpl p
-    in (case p' of
-         Lt (x, xa) =>
-           let val q' = psimpl q
-           in (case q' of Lt (x, xa) => Or (p', q') | Gt (x, xa) => Or (p', q')
-                | Le (x, xa) => Or (p', q') | Ge (x, xa) => Or (p', q')
-                | Eq (x, xa) => Or (p', q') | Divides (x, xa) => Or (p', q')
-                | T => T | F => p' | NOT x => Or (p', q')
-                | And (x, xa) => Or (p', q') | Or (x, xa) => Or (p', q')
-                | Imp (x, xa) => Or (p', q') | Equ (x, xa) => Or (p', q')
-                | QAll x => Or (p', q') | QEx x => Or (p', q'))
-           end
-         | Gt (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | Le (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | Ge (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | Eq (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | Divides (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | T => T | F => psimpl q
-         | NOT x =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | And (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | Or (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | Imp (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | Equ (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | QAll x =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end
-         | QEx x =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Or (p', q')
-                  | Gt (x, xa) => Or (p', q') | Le (x, xa) => Or (p', q')
-                  | Ge (x, xa) => Or (p', q') | Eq (x, xa) => Or (p', q')
-                  | Divides (x, xa) => Or (p', q') | T => T | F => p'
-                  | NOT x => Or (p', q') | And (x, xa) => Or (p', q')
-                  | Or (x, xa) => Or (p', q') | Imp (x, xa) => Or (p', q')
-                  | Equ (x, xa) => Or (p', q') | QAll x => Or (p', q')
-                  | QEx x => Or (p', q'))
-             end)
-    end
-  | psimpl (Imp (p, q)) =
-    let val p' = psimpl p
-    in (case p' of
-         Lt (x, xa) =>
-           let val q' = psimpl q
-           in (case q' of Lt (x, xa) => Imp (p', q')
-                | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                | QEx x => Imp (p', q'))
-           end
-         | Gt (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | Le (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | Ge (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | Eq (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | Divides (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | T => psimpl q | F => T
-         | NOT x =>
-             let val q' = psimpl q
-             in (case q' of Lt (xa, xb) => Or (x, q')
-                  | Gt (xa, xb) => Or (x, q') | Le (xa, xb) => Or (x, q')
-                  | Ge (xa, xb) => Or (x, q') | Eq (xa, xb) => Or (x, q')
-                  | Divides (xa, xb) => Or (x, q') | T => T | F => x
-                  | NOT xa => Or (x, q') | And (xa, xb) => Or (x, q')
-                  | Or (xa, xb) => Or (x, q') | Imp (xa, xb) => Or (x, q')
-                  | Equ (xa, xb) => Or (x, q') | QAll xa => Or (x, q')
-                  | QEx xa => Or (x, q'))
-             end
-         | And (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | Or (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | Imp (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | Equ (x, xa) =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | QAll x =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end
-         | QEx x =>
-             let val q' = psimpl q
-             in (case q' of Lt (x, xa) => Imp (p', q')
-                  | Gt (x, xa) => Imp (p', q') | Le (x, xa) => Imp (p', q')
-                  | Ge (x, xa) => Imp (p', q') | Eq (x, xa) => Imp (p', q')
-                  | Divides (x, xa) => Imp (p', q') | T => T | F => NOT p'
-                  | NOT x => Imp (p', q') | And (x, xa) => Imp (p', q')
-                  | Or (x, xa) => Imp (p', q') | Imp (x, xa) => Imp (p', q')
-                  | Equ (x, xa) => Imp (p', q') | QAll x => Imp (p', q')
-                  | QEx x => Imp (p', q'))
-             end)
-    end;
-
-fun subst_it i (Cst b) = Cst b
-  | subst_it i (Var n) = (if (n = 0) then i else Var n)
-  | subst_it i (Neg it) = Neg (subst_it i it)
-  | subst_it i (Add (it1, it2)) = Add (subst_it i it1, subst_it i it2)
-  | subst_it i (Sub (it1, it2)) = Sub (subst_it i it1, subst_it i it2)
-  | subst_it i (Mult (it1, it2)) = Mult (subst_it i it1, subst_it i it2);
-
-fun subst_p i (Le (it1, it2)) = Le (subst_it i it1, subst_it i it2)
-  | subst_p i (Lt (it1, it2)) = Lt (subst_it i it1, subst_it i it2)
-  | subst_p i (Ge (it1, it2)) = Ge (subst_it i it1, subst_it i it2)
-  | subst_p i (Gt (it1, it2)) = Gt (subst_it i it1, subst_it i it2)
-  | subst_p i (Eq (it1, it2)) = Eq (subst_it i it1, subst_it i it2)
-  | subst_p i (Divides (d, t)) = Divides (subst_it i d, subst_it i t)
-  | subst_p i T = T
-  | subst_p i F = F
-  | subst_p i (And (p, q)) = And (subst_p i p, subst_p i q)
-  | subst_p i (Or (p, q)) = Or (subst_p i p, subst_p i q)
-  | subst_p i (Imp (p, q)) = Imp (subst_p i p, subst_p i q)
-  | subst_p i (Equ (p, q)) = Equ (subst_p i p, subst_p i q)
-  | subst_p i (NOT p) = NOT (subst_p i p);
-
-fun explode_disj ([], p) = F
-  | explode_disj ((i :: is), p) =
-    let val pi = psimpl (subst_p i p)
-    in (case pi of
-         Lt (x, xa) =>
-           let val r = explode_disj (is, p)
-           in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                | T => T | F => pi | NOT x => Or (pi, r)
-                | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-           end
-         | Gt (x, xa) =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | Le (x, xa) =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | Ge (x, xa) =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | Eq (x, xa) =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | Divides (x, xa) =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | T => T | F => explode_disj (is, p)
-         | NOT x =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | And (x, xa) =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | Or (x, xa) =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | Imp (x, xa) =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | Equ (x, xa) =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | QAll x =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end
-         | QEx x =>
-             let val r = explode_disj (is, p)
-             in (case r of Lt (x, xa) => Or (pi, r) | Gt (x, xa) => Or (pi, r)
-                  | Le (x, xa) => Or (pi, r) | Ge (x, xa) => Or (pi, r)
-                  | Eq (x, xa) => Or (pi, r) | Divides (x, xa) => Or (pi, r)
-                  | T => T | F => pi | NOT x => Or (pi, r)
-                  | And (x, xa) => Or (pi, r) | Or (x, xa) => Or (pi, r)
-                  | Imp (x, xa) => Or (pi, r) | Equ (x, xa) => Or (pi, r)
-                  | QAll x => Or (pi, r) | QEx x => Or (pi, r))
-             end)
-    end;
-
-fun minusinf (And (p, q)) = And (minusinf p, minusinf q)
-  | minusinf (Or (p, q)) = Or (minusinf p, minusinf q)
-  | minusinf (Lt (u, v)) = Lt (u, v)
-  | minusinf (Gt (w, x)) = Gt (w, x)
-  | minusinf (Le (Cst bo, z)) = Le (Cst bo, z)
-  | minusinf (Le (Var bp, z)) = Le (Var bp, z)
-  | minusinf (Le (Neg bq, z)) = Le (Neg bq, z)
-  | minusinf (Le (Add (Cst cg, bs), z)) = Le (Add (Cst cg, bs), z)
-  | minusinf (Le (Add (Var ch, bs), z)) = Le (Add (Var ch, bs), z)
-  | minusinf (Le (Add (Neg ci, bs), z)) = Le (Add (Neg ci, bs), z)
-  | minusinf (Le (Add (Add (cj, ck), bs), z)) = Le (Add (Add (cj, ck), bs), z)
-  | minusinf (Le (Add (Sub (cl, cm), bs), z)) = Le (Add (Sub (cl, cm), bs), z)
-  | minusinf (Le (Add (Mult (Cst cy, Cst dq), bs), z)) =
-    Le (Add (Mult (Cst cy, Cst dq), bs), z)
-  | minusinf (Le (Add (Mult (Cst cy, Var ei), bs), z)) =
-    (if (ei = 0) then (if (cy < 0) then F else T)
-      else Le (Add (Mult (Cst cy, Var (op_45_def0 ei id_1_def0 + 1)), bs), z))
-  | minusinf (Le (Add (Mult (Cst cy, Neg ds), bs), z)) =
-    Le (Add (Mult (Cst cy, Neg ds), bs), z)
-  | minusinf (Le (Add (Mult (Cst cy, Add (dt, du)), bs), z)) =
-    Le (Add (Mult (Cst cy, Add (dt, du)), bs), z)
-  | minusinf (Le (Add (Mult (Cst cy, Sub (dv, dw)), bs), z)) =
-    Le (Add (Mult (Cst cy, Sub (dv, dw)), bs), z)
-  | minusinf (Le (Add (Mult (Cst cy, Mult (dx, dy)), bs), z)) =
-    Le (Add (Mult (Cst cy, Mult (dx, dy)), bs), z)
-  | minusinf (Le (Add (Mult (Var cz, co), bs), z)) =
-    Le (Add (Mult (Var cz, co), bs), z)
-  | minusinf (Le (Add (Mult (Neg da, co), bs), z)) =
-    Le (Add (Mult (Neg da, co), bs), z)
-  | minusinf (Le (Add (Mult (Add (db, dc), co), bs), z)) =
-    Le (Add (Mult (Add (db, dc), co), bs), z)
-  | minusinf (Le (Add (Mult (Sub (dd, de), co), bs), z)) =
-    Le (Add (Mult (Sub (dd, de), co), bs), z)
-  | minusinf (Le (Add (Mult (Mult (df, dg), co), bs), z)) =
-    Le (Add (Mult (Mult (df, dg), co), bs), z)
-  | minusinf (Le (Sub (bt, bu), z)) = Le (Sub (bt, bu), z)
-  | minusinf (Le (Mult (bv, bw), z)) = Le (Mult (bv, bw), z)
-  | minusinf (Ge (aa, ab)) = Ge (aa, ab)
-  | minusinf (Eq (Cst ek, ad)) = Eq (Cst ek, ad)
-  | minusinf (Eq (Var el, ad)) = Eq (Var el, ad)
-  | minusinf (Eq (Neg em, ad)) = Eq (Neg em, ad)
-  | minusinf (Eq (Add (Cst fc, eo), ad)) = Eq (Add (Cst fc, eo), ad)
-  | minusinf (Eq (Add (Var fd, eo), ad)) = Eq (Add (Var fd, eo), ad)
-  | minusinf (Eq (Add (Neg fe, eo), ad)) = Eq (Add (Neg fe, eo), ad)
-  | minusinf (Eq (Add (Add (ff, fg), eo), ad)) = Eq (Add (Add (ff, fg), eo), ad)
-  | minusinf (Eq (Add (Sub (fh, fi), eo), ad)) = Eq (Add (Sub (fh, fi), eo), ad)
-  | minusinf (Eq (Add (Mult (Cst fu, Cst gm), eo), ad)) =
-    Eq (Add (Mult (Cst fu, Cst gm), eo), ad)
-  | minusinf (Eq (Add (Mult (Cst fu, Var he), eo), ad)) =
-    (if (he = 0) then F
-      else Eq (Add (Mult (Cst fu, Var (op_45_def0 he id_1_def0 + 1)), eo), ad))
-  | minusinf (Eq (Add (Mult (Cst fu, Neg go), eo), ad)) =
-    Eq (Add (Mult (Cst fu, Neg go), eo), ad)
-  | minusinf (Eq (Add (Mult (Cst fu, Add (gp, gq)), eo), ad)) =
-    Eq (Add (Mult (Cst fu, Add (gp, gq)), eo), ad)
-  | minusinf (Eq (Add (Mult (Cst fu, Sub (gr, gs)), eo), ad)) =
-    Eq (Add (Mult (Cst fu, Sub (gr, gs)), eo), ad)
-  | minusinf (Eq (Add (Mult (Cst fu, Mult (gt, gu)), eo), ad)) =
-    Eq (Add (Mult (Cst fu, Mult (gt, gu)), eo), ad)
-  | minusinf (Eq (Add (Mult (Var fv, fk), eo), ad)) =
-    Eq (Add (Mult (Var fv, fk), eo), ad)
-  | minusinf (Eq (Add (Mult (Neg fw, fk), eo), ad)) =
-    Eq (Add (Mult (Neg fw, fk), eo), ad)
-  | minusinf (Eq (Add (Mult (Add (fx, fy), fk), eo), ad)) =
-    Eq (Add (Mult (Add (fx, fy), fk), eo), ad)
-  | minusinf (Eq (Add (Mult (Sub (fz, ga), fk), eo), ad)) =
-    Eq (Add (Mult (Sub (fz, ga), fk), eo), ad)
-  | minusinf (Eq (Add (Mult (Mult (gb, gc), fk), eo), ad)) =
-    Eq (Add (Mult (Mult (gb, gc), fk), eo), ad)
-  | minusinf (Eq (Sub (ep, eq), ad)) = Eq (Sub (ep, eq), ad)
-  | minusinf (Eq (Mult (er, es), ad)) = Eq (Mult (er, es), ad)
-  | minusinf (Divides (ae, af)) = Divides (ae, af)
-  | minusinf T = T
-  | minusinf F = F
-  | minusinf (NOT (Lt (hg, hh))) = NOT (Lt (hg, hh))
-  | minusinf (NOT (Gt (hi, hj))) = NOT (Gt (hi, hj))
-  | minusinf (NOT (Le (hk, hl))) = NOT (Le (hk, hl))
-  | minusinf (NOT (Ge (hm, hn))) = NOT (Ge (hm, hn))
-  | minusinf (NOT (Eq (Cst ja, hp))) = NOT (Eq (Cst ja, hp))
-  | minusinf (NOT (Eq (Var jb, hp))) = NOT (Eq (Var jb, hp))
-  | minusinf (NOT (Eq (Neg jc, hp))) = NOT (Eq (Neg jc, hp))
-  | minusinf (NOT (Eq (Add (Cst js, je), hp))) = NOT (Eq (Add (Cst js, je), hp))
-  | minusinf (NOT (Eq (Add (Var jt, je), hp))) = NOT (Eq (Add (Var jt, je), hp))
-  | minusinf (NOT (Eq (Add (Neg ju, je), hp))) = NOT (Eq (Add (Neg ju, je), hp))
-  | minusinf (NOT (Eq (Add (Add (jv, jw), je), hp))) =
-    NOT (Eq (Add (Add (jv, jw), je), hp))
-  | minusinf (NOT (Eq (Add (Sub (jx, jy), je), hp))) =
-    NOT (Eq (Add (Sub (jx, jy), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Cst kk, Cst lc), je), hp))) =
-    NOT (Eq (Add (Mult (Cst kk, Cst lc), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Cst kk, Var lu), je), hp))) =
-    (if (lu = 0) then T
-      else NOT (Eq (Add (Mult (Cst kk, Var (op_45_def0 lu id_1_def0 + 1)), je),
-                     hp)))
-  | minusinf (NOT (Eq (Add (Mult (Cst kk, Neg le), je), hp))) =
-    NOT (Eq (Add (Mult (Cst kk, Neg le), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Cst kk, Add (lf, lg)), je), hp))) =
-    NOT (Eq (Add (Mult (Cst kk, Add (lf, lg)), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Cst kk, Sub (lh, li)), je), hp))) =
-    NOT (Eq (Add (Mult (Cst kk, Sub (lh, li)), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Cst kk, Mult (lj, lk)), je), hp))) =
-    NOT (Eq (Add (Mult (Cst kk, Mult (lj, lk)), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Var kl, ka), je), hp))) =
-    NOT (Eq (Add (Mult (Var kl, ka), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Neg km, ka), je), hp))) =
-    NOT (Eq (Add (Mult (Neg km, ka), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Add (kn, ko), ka), je), hp))) =
-    NOT (Eq (Add (Mult (Add (kn, ko), ka), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Sub (kp, kq), ka), je), hp))) =
-    NOT (Eq (Add (Mult (Sub (kp, kq), ka), je), hp))
-  | minusinf (NOT (Eq (Add (Mult (Mult (kr, ks), ka), je), hp))) =
-    NOT (Eq (Add (Mult (Mult (kr, ks), ka), je), hp))
-  | minusinf (NOT (Eq (Sub (jf, jg), hp))) = NOT (Eq (Sub (jf, jg), hp))
-  | minusinf (NOT (Eq (Mult (jh, ji), hp))) = NOT (Eq (Mult (jh, ji), hp))
-  | minusinf (NOT (Divides (hq, hr))) = NOT (Divides (hq, hr))
-  | minusinf (NOT T) = NOT T
-  | minusinf (NOT F) = NOT F
-  | minusinf (NOT (NOT hs)) = NOT (NOT hs)
-  | minusinf (NOT (And (ht, hu))) = NOT (And (ht, hu))
-  | minusinf (NOT (Or (hv, hw))) = NOT (Or (hv, hw))
-  | minusinf (NOT (Imp (hx, hy))) = NOT (Imp (hx, hy))
-  | minusinf (NOT (Equ (hz, ia))) = NOT (Equ (hz, ia))
-  | minusinf (NOT (QAll ib)) = NOT (QAll ib)
-  | minusinf (NOT (QEx ic)) = NOT (QEx ic)
-  | minusinf (Imp (al, am)) = Imp (al, am)
-  | minusinf (Equ (an, ao)) = Equ (an, ao)
-  | minusinf (QAll ap) = QAll ap
-  | minusinf (QEx aq) = QEx aq;
-
-fun abs (i:IntInf.int) = (if (i < 0) then IntInf.~ i else i);
-
-fun op_div_def1 a b = fst (divAlg (a, b));
-
-fun op_mod_def0 m n = nat (op_mod_def1 (m) (n));
-
-fun ngcd (m:IntInf.int, n:IntInf.int) = (if (n = 0) then m else ngcd (n, op_mod_def0 m n));
-
-fun igcd x = split (fn a => fn b => (ngcd (nat (abs a), nat (abs b)))) x;
-
-fun ilcm (a:IntInf.int) (b:IntInf.int) = op_div_def1 (a * b) (igcd (a, b));
-
-fun divlcm (NOT p) = divlcm p
-  | divlcm (And (p, q)) = ilcm (divlcm p) (divlcm q)
-  | divlcm (Or (p, q)) = ilcm (divlcm p) (divlcm q)
-  | divlcm (Lt (u, v)) = 1
-  | divlcm (Gt (w, x)) = 1
-  | divlcm (Le (y, z)) = 1
-  | divlcm (Ge (aa, ab)) = 1
-  | divlcm (Eq (ac, ad)) = 1
-  | divlcm (Divides (Cst bo, Cst cg)) = 1
-  | divlcm (Divides (Cst bo, Var ch)) = 1
-  | divlcm (Divides (Cst bo, Neg ci)) = 1
-  | divlcm (Divides (Cst bo, Add (Cst cy, ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Var cz, ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Neg da, ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Add (db, dc), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Sub (dd, de), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Cst dq, Cst ei), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Cst dq, Var fa), ck))) =
-    (if (fa = 0) then abs bo else 1)
-  | divlcm (Divides (Cst bo, Add (Mult (Cst dq, Neg ek), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Cst dq, Add (el, em)), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Cst dq, Sub (en, eo)), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Cst dq, Mult (ep, eq)), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Var dr, dg), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Neg ds, dg), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Add (dt, du), dg), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Sub (dv, dw), dg), ck))) = 1
-  | divlcm (Divides (Cst bo, Add (Mult (Mult (dx, dy), dg), ck))) = 1
-  | divlcm (Divides (Cst bo, Sub (cl, cm))) = 1
-  | divlcm (Divides (Cst bo, Mult (cn, co))) = 1
-  | divlcm (Divides (Var bp, af)) = 1
-  | divlcm (Divides (Neg bq, af)) = 1
-  | divlcm (Divides (Add (br, bs), af)) = 1
-  | divlcm (Divides (Sub (bt, bu), af)) = 1
-  | divlcm (Divides (Mult (bv, bw), af)) = 1
-  | divlcm T = 1
-  | divlcm F = 1
-  | divlcm (Imp (al, am)) = 1
-  | divlcm (Equ (an, ao)) = 1
-  | divlcm (QAll ap) = 1
-  | divlcm (QEx aq) = 1;
-
-fun explode_minf (q, B) =
-    let val d = divlcm q; val pm = minusinf q;
-        val dj1 = explode_disj (map (fn x => Cst x) (iupto (1, d)), pm)
-    in (case dj1 of
-         Lt (x, xa) =>
-           let val dj2 = explode_disj (all_sums (d, B), q)
-           in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                | QEx x => Or (dj1, dj2))
-           end
-         | Gt (x, xa) =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | Le (x, xa) =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | Ge (x, xa) =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | Eq (x, xa) =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | Divides (x, xa) =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | T => T | F => explode_disj (all_sums (d, B), q)
-         | NOT x =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | And (x, xa) =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | Or (x, xa) =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | Imp (x, xa) =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | Equ (x, xa) =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | QAll x =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end
-         | QEx x =>
-             let val dj2 = explode_disj (all_sums (d, B), q)
-             in (case dj2 of Lt (x, xa) => Or (dj1, dj2)
-                  | Gt (x, xa) => Or (dj1, dj2) | Le (x, xa) => Or (dj1, dj2)
-                  | Ge (x, xa) => Or (dj1, dj2) | Eq (x, xa) => Or (dj1, dj2)
-                  | Divides (x, xa) => Or (dj1, dj2) | T => T | F => dj1
-                  | NOT x => Or (dj1, dj2) | And (x, xa) => Or (dj1, dj2)
-                  | Or (x, xa) => Or (dj1, dj2) | Imp (x, xa) => Or (dj1, dj2)
-                  | Equ (x, xa) => Or (dj1, dj2) | QAll x => Or (dj1, dj2)
-                  | QEx x => Or (dj1, dj2))
-             end)
-    end;
-
-fun mirror (And (p, q)) = And (mirror p, mirror q)
-  | mirror (Or (p, q)) = Or (mirror p, mirror q)
-  | mirror (Lt (u, v)) = Lt (u, v)
-  | mirror (Gt (w, x)) = Gt (w, x)
-  | mirror (Le (Cst bp, aa)) = Le (Cst bp, aa)
-  | mirror (Le (Var bq, aa)) = Le (Var bq, aa)
-  | mirror (Le (Neg br, aa)) = Le (Neg br, aa)
-  | mirror (Le (Add (Cst ch, bt), aa)) = Le (Add (Cst ch, bt), aa)
-  | mirror (Le (Add (Var ci, bt), aa)) = Le (Add (Var ci, bt), aa)
-  | mirror (Le (Add (Neg cj, bt), aa)) = Le (Add (Neg cj, bt), aa)
-  | mirror (Le (Add (Add (ck, cl), bt), aa)) = Le (Add (Add (ck, cl), bt), aa)
-  | mirror (Le (Add (Sub (cm, cn), bt), aa)) = Le (Add (Sub (cm, cn), bt), aa)
-  | mirror (Le (Add (Mult (Cst cz, Cst dr), bt), aa)) =
-    Le (Add (Mult (Cst cz, Cst dr), bt), aa)
-  | mirror (Le (Add (Mult (Cst cz, Var ej), bt), aa)) =
-    (if (ej = 0) then Le (Add (Mult (Cst (~ cz), Var 0), bt), aa)
-      else Le (Add (Mult (Cst cz, Var (op_45_def0 ej id_1_def0 + 1)), bt), aa))
-  | mirror (Le (Add (Mult (Cst cz, Neg dt), bt), aa)) =
-    Le (Add (Mult (Cst cz, Neg dt), bt), aa)
-  | mirror (Le (Add (Mult (Cst cz, Add (du, dv)), bt), aa)) =
-    Le (Add (Mult (Cst cz, Add (du, dv)), bt), aa)
-  | mirror (Le (Add (Mult (Cst cz, Sub (dw, dx)), bt), aa)) =
-    Le (Add (Mult (Cst cz, Sub (dw, dx)), bt), aa)
-  | mirror (Le (Add (Mult (Cst cz, Mult (dy, dz)), bt), aa)) =
-    Le (Add (Mult (Cst cz, Mult (dy, dz)), bt), aa)
-  | mirror (Le (Add (Mult (Var da, cp), bt), aa)) =
-    Le (Add (Mult (Var da, cp), bt), aa)
-  | mirror (Le (Add (Mult (Neg db, cp), bt), aa)) =
-    Le (Add (Mult (Neg db, cp), bt), aa)
-  | mirror (Le (Add (Mult (Add (dc, dd), cp), bt), aa)) =
-    Le (Add (Mult (Add (dc, dd), cp), bt), aa)
-  | mirror (Le (Add (Mult (Sub (de, df), cp), bt), aa)) =
-    Le (Add (Mult (Sub (de, df), cp), bt), aa)
-  | mirror (Le (Add (Mult (Mult (dg, dh), cp), bt), aa)) =
-    Le (Add (Mult (Mult (dg, dh), cp), bt), aa)
-  | mirror (Le (Sub (bu, bv), aa)) = Le (Sub (bu, bv), aa)
-  | mirror (Le (Mult (bw, bx), aa)) = Le (Mult (bw, bx), aa)
-  | mirror (Ge (ab, ac)) = Ge (ab, ac)
-  | mirror (Eq (Cst el, ae)) = Eq (Cst el, ae)
-  | mirror (Eq (Var em, ae)) = Eq (Var em, ae)
-  | mirror (Eq (Neg en, ae)) = Eq (Neg en, ae)
-  | mirror (Eq (Add (Cst fd, ep), ae)) = Eq (Add (Cst fd, ep), ae)
-  | mirror (Eq (Add (Var fe, ep), ae)) = Eq (Add (Var fe, ep), ae)
-  | mirror (Eq (Add (Neg ff, ep), ae)) = Eq (Add (Neg ff, ep), ae)
-  | mirror (Eq (Add (Add (fg, fh), ep), ae)) = Eq (Add (Add (fg, fh), ep), ae)
-  | mirror (Eq (Add (Sub (fi, fj), ep), ae)) = Eq (Add (Sub (fi, fj), ep), ae)
-  | mirror (Eq (Add (Mult (Cst fv, Cst gn), ep), ae)) =
-    Eq (Add (Mult (Cst fv, Cst gn), ep), ae)
-  | mirror (Eq (Add (Mult (Cst fv, Var hf), ep), ae)) =
-    (if (hf = 0) then Eq (Add (Mult (Cst (~ fv), Var 0), ep), ae)
-      else Eq (Add (Mult (Cst fv, Var (op_45_def0 hf id_1_def0 + 1)), ep), ae))
-  | mirror (Eq (Add (Mult (Cst fv, Neg gp), ep), ae)) =
-    Eq (Add (Mult (Cst fv, Neg gp), ep), ae)
-  | mirror (Eq (Add (Mult (Cst fv, Add (gq, gr)), ep), ae)) =
-    Eq (Add (Mult (Cst fv, Add (gq, gr)), ep), ae)
-  | mirror (Eq (Add (Mult (Cst fv, Sub (gs, gt)), ep), ae)) =
-    Eq (Add (Mult (Cst fv, Sub (gs, gt)), ep), ae)
-  | mirror (Eq (Add (Mult (Cst fv, Mult (gu, gv)), ep), ae)) =
-    Eq (Add (Mult (Cst fv, Mult (gu, gv)), ep), ae)
-  | mirror (Eq (Add (Mult (Var fw, fl), ep), ae)) =
-    Eq (Add (Mult (Var fw, fl), ep), ae)
-  | mirror (Eq (Add (Mult (Neg fx, fl), ep), ae)) =
-    Eq (Add (Mult (Neg fx, fl), ep), ae)
-  | mirror (Eq (Add (Mult (Add (fy, fz), fl), ep), ae)) =
-    Eq (Add (Mult (Add (fy, fz), fl), ep), ae)
-  | mirror (Eq (Add (Mult (Sub (ga, gb), fl), ep), ae)) =
-    Eq (Add (Mult (Sub (ga, gb), fl), ep), ae)
-  | mirror (Eq (Add (Mult (Mult (gc, gd), fl), ep), ae)) =
-    Eq (Add (Mult (Mult (gc, gd), fl), ep), ae)
-  | mirror (Eq (Sub (eq, er), ae)) = Eq (Sub (eq, er), ae)
-  | mirror (Eq (Mult (es, et), ae)) = Eq (Mult (es, et), ae)
-  | mirror (Divides (Cst hh, Cst hz)) = Divides (Cst hh, Cst hz)
-  | mirror (Divides (Cst hh, Var ia)) = Divides (Cst hh, Var ia)
-  | mirror (Divides (Cst hh, Neg ib)) = Divides (Cst hh, Neg ib)
-  | mirror (Divides (Cst hh, Add (Cst ir, id))) =
-    Divides (Cst hh, Add (Cst ir, id))
-  | mirror (Divides (Cst hh, Add (Var is, id))) =
-    Divides (Cst hh, Add (Var is, id))
-  | mirror (Divides (Cst hh, Add (Neg it, id))) =
-    Divides (Cst hh, Add (Neg it, id))
-  | mirror (Divides (Cst hh, Add (Add (iu, iv), id))) =
-    Divides (Cst hh, Add (Add (iu, iv), id))
-  | mirror (Divides (Cst hh, Add (Sub (iw, ix), id))) =
-    Divides (Cst hh, Add (Sub (iw, ix), id))
-  | mirror (Divides (Cst hh, Add (Mult (Cst jj, Cst kb), id))) =
-    Divides (Cst hh, Add (Mult (Cst jj, Cst kb), id))
-  | mirror (Divides (Cst hh, Add (Mult (Cst jj, Var kt), id))) =
-    (if (kt = 0) then Divides (Cst hh, Add (Mult (Cst (~ jj), Var 0), id))
-      else Divides
-             (Cst hh,
-               Add (Mult (Cst jj, Var (op_45_def0 kt id_1_def0 + 1)), id)))
-  | mirror (Divides (Cst hh, Add (Mult (Cst jj, Neg kd), id))) =
-    Divides (Cst hh, Add (Mult (Cst jj, Neg kd), id))
-  | mirror (Divides (Cst hh, Add (Mult (Cst jj, Add (ke, kf)), id))) =
-    Divides (Cst hh, Add (Mult (Cst jj, Add (ke, kf)), id))
-  | mirror (Divides (Cst hh, Add (Mult (Cst jj, Sub (kg, kh)), id))) =
-    Divides (Cst hh, Add (Mult (Cst jj, Sub (kg, kh)), id))
-  | mirror (Divides (Cst hh, Add (Mult (Cst jj, Mult (ki, kj)), id))) =
-    Divides (Cst hh, Add (Mult (Cst jj, Mult (ki, kj)), id))
-  | mirror (Divides (Cst hh, Add (Mult (Var jk, iz), id))) =
-    Divides (Cst hh, Add (Mult (Var jk, iz), id))
-  | mirror (Divides (Cst hh, Add (Mult (Neg jl, iz), id))) =
-    Divides (Cst hh, Add (Mult (Neg jl, iz), id))
-  | mirror (Divides (Cst hh, Add (Mult (Add (jm, jn), iz), id))) =
-    Divides (Cst hh, Add (Mult (Add (jm, jn), iz), id))
-  | mirror (Divides (Cst hh, Add (Mult (Sub (jo, jp), iz), id))) =
-    Divides (Cst hh, Add (Mult (Sub (jo, jp), iz), id))
-  | mirror (Divides (Cst hh, Add (Mult (Mult (jq, jr), iz), id))) =
-    Divides (Cst hh, Add (Mult (Mult (jq, jr), iz), id))
-  | mirror (Divides (Cst hh, Sub (ie, if'))) = Divides (Cst hh, Sub (ie, if'))
-  | mirror (Divides (Cst hh, Mult (ig, ih))) = Divides (Cst hh, Mult (ig, ih))
-  | mirror (Divides (Var hi, ag)) = Divides (Var hi, ag)
-  | mirror (Divides (Neg hj, ag)) = Divides (Neg hj, ag)
-  | mirror (Divides (Add (hk, hl), ag)) = Divides (Add (hk, hl), ag)
-  | mirror (Divides (Sub (hm, hn), ag)) = Divides (Sub (hm, hn), ag)
-  | mirror (Divides (Mult (ho, hp), ag)) = Divides (Mult (ho, hp), ag)
-  | mirror T = T
-  | mirror F = F
-  | mirror (NOT (Lt (kv, kw))) = NOT (Lt (kv, kw))
-  | mirror (NOT (Gt (kx, ky))) = NOT (Gt (kx, ky))
-  | mirror (NOT (Le (kz, la))) = NOT (Le (kz, la))
-  | mirror (NOT (Ge (lb, lc))) = NOT (Ge (lb, lc))
-  | mirror (NOT (Eq (Cst mp, le))) = NOT (Eq (Cst mp, le))
-  | mirror (NOT (Eq (Var mq, le))) = NOT (Eq (Var mq, le))
-  | mirror (NOT (Eq (Neg mr, le))) = NOT (Eq (Neg mr, le))
-  | mirror (NOT (Eq (Add (Cst nh, mt), le))) = NOT (Eq (Add (Cst nh, mt), le))
-  | mirror (NOT (Eq (Add (Var ni, mt), le))) = NOT (Eq (Add (Var ni, mt), le))
-  | mirror (NOT (Eq (Add (Neg nj, mt), le))) = NOT (Eq (Add (Neg nj, mt), le))
-  | mirror (NOT (Eq (Add (Add (nk, nl), mt), le))) =
-    NOT (Eq (Add (Add (nk, nl), mt), le))
-  | mirror (NOT (Eq (Add (Sub (nm, nn), mt), le))) =
-    NOT (Eq (Add (Sub (nm, nn), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Cst nz, Cst or), mt), le))) =
-    NOT (Eq (Add (Mult (Cst nz, Cst or), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Cst nz, Var pj), mt), le))) =
-    (if (pj = 0) then NOT (Eq (Add (Mult (Cst (~ nz), Var 0), mt), le))
-      else NOT (Eq (Add (Mult (Cst nz, Var (op_45_def0 pj id_1_def0 + 1)), mt),
-                     le)))
-  | mirror (NOT (Eq (Add (Mult (Cst nz, Neg ot), mt), le))) =
-    NOT (Eq (Add (Mult (Cst nz, Neg ot), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Cst nz, Add (ou, ov)), mt), le))) =
-    NOT (Eq (Add (Mult (Cst nz, Add (ou, ov)), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Cst nz, Sub (ow, ox)), mt), le))) =
-    NOT (Eq (Add (Mult (Cst nz, Sub (ow, ox)), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Cst nz, Mult (oy, oz)), mt), le))) =
-    NOT (Eq (Add (Mult (Cst nz, Mult (oy, oz)), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Var oa, np), mt), le))) =
-    NOT (Eq (Add (Mult (Var oa, np), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Neg ob, np), mt), le))) =
-    NOT (Eq (Add (Mult (Neg ob, np), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Add (oc, od), np), mt), le))) =
-    NOT (Eq (Add (Mult (Add (oc, od), np), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Sub (oe, of'), np), mt), le))) =
-    NOT (Eq (Add (Mult (Sub (oe, of'), np), mt), le))
-  | mirror (NOT (Eq (Add (Mult (Mult (og, oh), np), mt), le))) =
-    NOT (Eq (Add (Mult (Mult (og, oh), np), mt), le))
-  | mirror (NOT (Eq (Sub (mu, mv), le))) = NOT (Eq (Sub (mu, mv), le))
-  | mirror (NOT (Eq (Mult (mw, mx), le))) = NOT (Eq (Mult (mw, mx), le))
-  | mirror (NOT (Divides (Cst pl, Cst qd))) = NOT (Divides (Cst pl, Cst qd))
-  | mirror (NOT (Divides (Cst pl, Var qe))) = NOT (Divides (Cst pl, Var qe))
-  | mirror (NOT (Divides (Cst pl, Neg qf))) = NOT (Divides (Cst pl, Neg qf))
-  | mirror (NOT (Divides (Cst pl, Add (Cst qv, qh)))) =
-    NOT (Divides (Cst pl, Add (Cst qv, qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Var qw, qh)))) =
-    NOT (Divides (Cst pl, Add (Var qw, qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Neg qx, qh)))) =
-    NOT (Divides (Cst pl, Add (Neg qx, qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Add (qy, qz), qh)))) =
-    NOT (Divides (Cst pl, Add (Add (qy, qz), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Sub (ra, rb), qh)))) =
-    NOT (Divides (Cst pl, Add (Sub (ra, rb), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Cst rn, Cst sf), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Cst rn, Cst sf), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Cst rn, Var sx), qh)))) =
-    (if (sx = 0)
-      then NOT (Divides (Cst pl, Add (Mult (Cst (~ rn), Var 0), qh)))
-      else NOT (Divides
-                  (Cst pl,
-                    Add (Mult (Cst rn, Var (op_45_def0 sx id_1_def0 + 1)),
-                          qh))))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Cst rn, Neg sh), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Cst rn, Neg sh), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Cst rn, Add (si, sj)), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Cst rn, Add (si, sj)), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Cst rn, Sub (sk, sl)), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Cst rn, Sub (sk, sl)), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Cst rn, Mult (sm, sn)), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Cst rn, Mult (sm, sn)), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Var ro, rd), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Var ro, rd), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Neg rp, rd), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Neg rp, rd), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Add (rq, rr), rd), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Add (rq, rr), rd), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Sub (rs, rt), rd), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Sub (rs, rt), rd), qh)))
-  | mirror (NOT (Divides (Cst pl, Add (Mult (Mult (ru, rv), rd), qh)))) =
-    NOT (Divides (Cst pl, Add (Mult (Mult (ru, rv), rd), qh)))
-  | mirror (NOT (Divides (Cst pl, Sub (qi, qj)))) =
-    NOT (Divides (Cst pl, Sub (qi, qj)))
-  | mirror (NOT (Divides (Cst pl, Mult (qk, ql)))) =
-    NOT (Divides (Cst pl, Mult (qk, ql)))
-  | mirror (NOT (Divides (Var pm, lg))) = NOT (Divides (Var pm, lg))
-  | mirror (NOT (Divides (Neg pn, lg))) = NOT (Divides (Neg pn, lg))
-  | mirror (NOT (Divides (Add (po, pp), lg))) = NOT (Divides (Add (po, pp), lg))
-  | mirror (NOT (Divides (Sub (pq, pr), lg))) = NOT (Divides (Sub (pq, pr), lg))
-  | mirror (NOT (Divides (Mult (ps, pt), lg))) =
-    NOT (Divides (Mult (ps, pt), lg))
-  | mirror (NOT T) = NOT T
-  | mirror (NOT F) = NOT F
-  | mirror (NOT (NOT lh)) = NOT (NOT lh)
-  | mirror (NOT (And (li, lj))) = NOT (And (li, lj))
-  | mirror (NOT (Or (lk, ll))) = NOT (Or (lk, ll))
-  | mirror (NOT (Imp (lm, ln))) = NOT (Imp (lm, ln))
-  | mirror (NOT (Equ (lo, lp))) = NOT (Equ (lo, lp))
-  | mirror (NOT (QAll lq)) = NOT (QAll lq)
-  | mirror (NOT (QEx lr)) = NOT (QEx lr)
-  | mirror (Imp (am, an)) = Imp (am, an)
-  | mirror (Equ (ao, ap)) = Equ (ao, ap)
-  | mirror (QAll aq) = QAll aq
-  | mirror (QEx ar) = QEx ar;
-
-fun op_43_def0 m n = nat ((m) + (n));
-
-fun size_def1 [] = (0:IntInf.int)
-  | size_def1 (a :: list) = op_43_def0 (size_def1 list) (0 + 1);
-
-fun aset (And (p, q)) = op_64 (aset p) (aset q)
-  | aset (Or (p, q)) = op_64 (aset p) (aset q)
-  | aset (Lt (u, v)) = []
-  | aset (Gt (w, x)) = []
-  | aset (Le (Cst bo, z)) = []
-  | aset (Le (Var bp, z)) = []
-  | aset (Le (Neg bq, z)) = []
-  | aset (Le (Add (Cst cg, bs), z)) = []
-  | aset (Le (Add (Var ch, bs), z)) = []
-  | aset (Le (Add (Neg ci, bs), z)) = []
-  | aset (Le (Add (Add (cj, ck), bs), z)) = []
-  | aset (Le (Add (Sub (cl, cm), bs), z)) = []
-  | aset (Le (Add (Mult (Cst cy, Cst dq), bs), z)) = []
-  | aset (Le (Add (Mult (Cst cy, Var ei), bs), z)) =
-    (if (ei = 0)
-      then (if (cy < 0) then [lin_add (bs, Cst 1)]
-             else [lin_neg bs, lin_add (lin_neg bs, Cst 1)])
-      else [])
-  | aset (Le (Add (Mult (Cst cy, Neg ds), bs), z)) = []
-  | aset (Le (Add (Mult (Cst cy, Add (dt, du)), bs), z)) = []
-  | aset (Le (Add (Mult (Cst cy, Sub (dv, dw)), bs), z)) = []
-  | aset (Le (Add (Mult (Cst cy, Mult (dx, dy)), bs), z)) = []
-  | aset (Le (Add (Mult (Var cz, co), bs), z)) = []
-  | aset (Le (Add (Mult (Neg da, co), bs), z)) = []
-  | aset (Le (Add (Mult (Add (db, dc), co), bs), z)) = []
-  | aset (Le (Add (Mult (Sub (dd, de), co), bs), z)) = []
-  | aset (Le (Add (Mult (Mult (df, dg), co), bs), z)) = []
-  | aset (Le (Sub (bt, bu), z)) = []
-  | aset (Le (Mult (bv, bw), z)) = []
-  | aset (Ge (aa, ab)) = []
-  | aset (Eq (Cst ek, ad)) = []
-  | aset (Eq (Var el, ad)) = []
-  | aset (Eq (Neg em, ad)) = []
-  | aset (Eq (Add (Cst fc, eo), ad)) = []
-  | aset (Eq (Add (Var fd, eo), ad)) = []
-  | aset (Eq (Add (Neg fe, eo), ad)) = []
-  | aset (Eq (Add (Add (ff, fg), eo), ad)) = []
-  | aset (Eq (Add (Sub (fh, fi), eo), ad)) = []
-  | aset (Eq (Add (Mult (Cst fu, Cst gm), eo), ad)) = []
-  | aset (Eq (Add (Mult (Cst fu, Var he), eo), ad)) =
-    (if (he = 0)
-      then (if (fu < 0) then [lin_add (eo, Cst 1)]
-             else [lin_add (lin_neg eo, Cst 1)])
-      else [])
-  | aset (Eq (Add (Mult (Cst fu, Neg go), eo), ad)) = []
-  | aset (Eq (Add (Mult (Cst fu, Add (gp, gq)), eo), ad)) = []
-  | aset (Eq (Add (Mult (Cst fu, Sub (gr, gs)), eo), ad)) = []
-  | aset (Eq (Add (Mult (Cst fu, Mult (gt, gu)), eo), ad)) = []
-  | aset (Eq (Add (Mult (Var fv, fk), eo), ad)) = []
-  | aset (Eq (Add (Mult (Neg fw, fk), eo), ad)) = []
-  | aset (Eq (Add (Mult (Add (fx, fy), fk), eo), ad)) = []
-  | aset (Eq (Add (Mult (Sub (fz, ga), fk), eo), ad)) = []
-  | aset (Eq (Add (Mult (Mult (gb, gc), fk), eo), ad)) = []
-  | aset (Eq (Sub (ep, eq), ad)) = []
-  | aset (Eq (Mult (er, es), ad)) = []
-  | aset (Divides (ae, af)) = []
-  | aset T = []
-  | aset F = []
-  | aset (NOT (Lt (hg, hh))) = []
-  | aset (NOT (Gt (hi, hj))) = []
-  | aset (NOT (Le (hk, hl))) = []
-  | aset (NOT (Ge (hm, hn))) = []
-  | aset (NOT (Eq (Cst ja, hp))) = []
-  | aset (NOT (Eq (Var jb, hp))) = []
-  | aset (NOT (Eq (Neg jc, hp))) = []
-  | aset (NOT (Eq (Add (Cst js, je), hp))) = []
-  | aset (NOT (Eq (Add (Var jt, je), hp))) = []
-  | aset (NOT (Eq (Add (Neg ju, je), hp))) = []
-  | aset (NOT (Eq (Add (Add (jv, jw), je), hp))) = []
-  | aset (NOT (Eq (Add (Sub (jx, jy), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Cst kk, Cst lc), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Cst kk, Var lu), je), hp))) =
-    (if (lu = 0) then (if (kk < 0) then [je] else [lin_neg je]) else [])
-  | aset (NOT (Eq (Add (Mult (Cst kk, Neg le), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Cst kk, Add (lf, lg)), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Cst kk, Sub (lh, li)), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Cst kk, Mult (lj, lk)), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Var kl, ka), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Neg km, ka), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Add (kn, ko), ka), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Sub (kp, kq), ka), je), hp))) = []
-  | aset (NOT (Eq (Add (Mult (Mult (kr, ks), ka), je), hp))) = []
-  | aset (NOT (Eq (Sub (jf, jg), hp))) = []
-  | aset (NOT (Eq (Mult (jh, ji), hp))) = []
-  | aset (NOT (Divides (hq, hr))) = []
-  | aset (NOT T) = []
-  | aset (NOT F) = []
-  | aset (NOT (NOT hs)) = []
-  | aset (NOT (And (ht, hu))) = []
-  | aset (NOT (Or (hv, hw))) = []
-  | aset (NOT (Imp (hx, hy))) = []
-  | aset (NOT (Equ (hz, ia))) = []
-  | aset (NOT (QAll ib)) = []
-  | aset (NOT (QEx ic)) = []
-  | aset (Imp (al, am)) = []
-  | aset (Equ (an, ao)) = []
-  | aset (QAll ap) = []
-  | aset (QEx aq) = [];
-
-fun op_mem x [] = false
-  | op_mem x (y :: ys) = (if (y = x) then true else op_mem x ys);
-
-fun list_insert x xs = (if op_mem x xs then xs else (x :: xs));
-
-fun list_set [] = []
-  | list_set (x :: xs) = list_insert x (list_set xs);
-
-fun bset (And (p, q)) = op_64 (bset p) (bset q)
-  | bset (Or (p, q)) = op_64 (bset p) (bset q)
-  | bset (Lt (u, v)) = []
-  | bset (Gt (w, x)) = []
-  | bset (Le (Cst bo, z)) = []
-  | bset (Le (Var bp, z)) = []
-  | bset (Le (Neg bq, z)) = []
-  | bset (Le (Add (Cst cg, bs), z)) = []
-  | bset (Le (Add (Var ch, bs), z)) = []
-  | bset (Le (Add (Neg ci, bs), z)) = []
-  | bset (Le (Add (Add (cj, ck), bs), z)) = []
-  | bset (Le (Add (Sub (cl, cm), bs), z)) = []
-  | bset (Le (Add (Mult (Cst cy, Cst dq), bs), z)) = []
-  | bset (Le (Add (Mult (Cst cy, Var ei), bs), z)) =
-    (if (ei = 0)
-      then (if (cy < 0) then [lin_add (bs, Cst ~1), bs]
-             else [lin_add (lin_neg bs, Cst ~1)])
-      else [])
-  | bset (Le (Add (Mult (Cst cy, Neg ds), bs), z)) = []
-  | bset (Le (Add (Mult (Cst cy, Add (dt, du)), bs), z)) = []
-  | bset (Le (Add (Mult (Cst cy, Sub (dv, dw)), bs), z)) = []
-  | bset (Le (Add (Mult (Cst cy, Mult (dx, dy)), bs), z)) = []
-  | bset (Le (Add (Mult (Var cz, co), bs), z)) = []
-  | bset (Le (Add (Mult (Neg da, co), bs), z)) = []
-  | bset (Le (Add (Mult (Add (db, dc), co), bs), z)) = []
-  | bset (Le (Add (Mult (Sub (dd, de), co), bs), z)) = []
-  | bset (Le (Add (Mult (Mult (df, dg), co), bs), z)) = []
-  | bset (Le (Sub (bt, bu), z)) = []
-  | bset (Le (Mult (bv, bw), z)) = []
-  | bset (Ge (aa, ab)) = []
-  | bset (Eq (Cst ek, ad)) = []
-  | bset (Eq (Var el, ad)) = []
-  | bset (Eq (Neg em, ad)) = []
-  | bset (Eq (Add (Cst fc, eo), ad)) = []
-  | bset (Eq (Add (Var fd, eo), ad)) = []
-  | bset (Eq (Add (Neg fe, eo), ad)) = []
-  | bset (Eq (Add (Add (ff, fg), eo), ad)) = []
-  | bset (Eq (Add (Sub (fh, fi), eo), ad)) = []
-  | bset (Eq (Add (Mult (Cst fu, Cst gm), eo), ad)) = []
-  | bset (Eq (Add (Mult (Cst fu, Var he), eo), ad)) =
-    (if (he = 0)
-      then (if (fu < 0) then [lin_add (eo, Cst ~1)]
-             else [lin_add (lin_neg eo, Cst ~1)])
-      else [])
-  | bset (Eq (Add (Mult (Cst fu, Neg go), eo), ad)) = []
-  | bset (Eq (Add (Mult (Cst fu, Add (gp, gq)), eo), ad)) = []
-  | bset (Eq (Add (Mult (Cst fu, Sub (gr, gs)), eo), ad)) = []
-  | bset (Eq (Add (Mult (Cst fu, Mult (gt, gu)), eo), ad)) = []
-  | bset (Eq (Add (Mult (Var fv, fk), eo), ad)) = []
-  | bset (Eq (Add (Mult (Neg fw, fk), eo), ad)) = []
-  | bset (Eq (Add (Mult (Add (fx, fy), fk), eo), ad)) = []
-  | bset (Eq (Add (Mult (Sub (fz, ga), fk), eo), ad)) = []
-  | bset (Eq (Add (Mult (Mult (gb, gc), fk), eo), ad)) = []
-  | bset (Eq (Sub (ep, eq), ad)) = []
-  | bset (Eq (Mult (er, es), ad)) = []
-  | bset (Divides (ae, af)) = []
-  | bset T = []
-  | bset F = []
-  | bset (NOT (Lt (hg, hh))) = []
-  | bset (NOT (Gt (hi, hj))) = []
-  | bset (NOT (Le (hk, hl))) = []
-  | bset (NOT (Ge (hm, hn))) = []
-  | bset (NOT (Eq (Cst ja, hp))) = []
-  | bset (NOT (Eq (Var jb, hp))) = []
-  | bset (NOT (Eq (Neg jc, hp))) = []
-  | bset (NOT (Eq (Add (Cst js, je), hp))) = []
-  | bset (NOT (Eq (Add (Var jt, je), hp))) = []
-  | bset (NOT (Eq (Add (Neg ju, je), hp))) = []
-  | bset (NOT (Eq (Add (Add (jv, jw), je), hp))) = []
-  | bset (NOT (Eq (Add (Sub (jx, jy), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Cst kk, Cst lc), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Cst kk, Var lu), je), hp))) =
-    (if (lu = 0) then (if (kk < 0) then [je] else [lin_neg je]) else [])
-  | bset (NOT (Eq (Add (Mult (Cst kk, Neg le), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Cst kk, Add (lf, lg)), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Cst kk, Sub (lh, li)), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Cst kk, Mult (lj, lk)), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Var kl, ka), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Neg km, ka), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Add (kn, ko), ka), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Sub (kp, kq), ka), je), hp))) = []
-  | bset (NOT (Eq (Add (Mult (Mult (kr, ks), ka), je), hp))) = []
-  | bset (NOT (Eq (Sub (jf, jg), hp))) = []
-  | bset (NOT (Eq (Mult (jh, ji), hp))) = []
-  | bset (NOT (Divides (hq, hr))) = []
-  | bset (NOT T) = []
-  | bset (NOT F) = []
-  | bset (NOT (NOT hs)) = []
-  | bset (NOT (And (ht, hu))) = []
-  | bset (NOT (Or (hv, hw))) = []
-  | bset (NOT (Imp (hx, hy))) = []
-  | bset (NOT (Equ (hz, ia))) = []
-  | bset (NOT (QAll ib)) = []
-  | bset (NOT (QEx ic)) = []
-  | bset (Imp (al, am)) = []
-  | bset (Equ (an, ao)) = []
-  | bset (QAll ap) = []
-  | bset (QEx aq) = [];
-
-fun adjustcoeff (l:IntInf.int, Le (Add (Mult (Cst c, Var 0), r), Cst i)) =
-    (if (c <= 0)
-      then Le (Add (Mult (Cst ~1, Var 0), lin_mul (~ (op_div_def1 l c), r)),
-                Cst 0)
-      else Le (Add (Mult (Cst 1, Var 0), lin_mul (op_div_def1 l c, r)), Cst 0))
-  | adjustcoeff (l, Eq (Add (Mult (Cst c, Var 0), r), Cst i)) =
-    Eq (Add (Mult (Cst 1, Var 0), lin_mul (op_div_def1 l c, r)), Cst 0)
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst c, Var 0), r), Cst i))) =
-    NOT (Eq (Add (Mult (Cst 1, Var 0), lin_mul (op_div_def1 l c, r)), Cst 0))
-  | adjustcoeff (l, And (p, q)) = And (adjustcoeff (l, p), adjustcoeff (l, q))
-  | adjustcoeff (l, Or (p, q)) = Or (adjustcoeff (l, p), adjustcoeff (l, q))
-  | adjustcoeff (l, Lt (w, x)) = Lt (w, x)
-  | adjustcoeff (l, Gt (y, z)) = Gt (y, z)
-  | adjustcoeff (l, Le (Cst bq, ab)) = Le (Cst bq, ab)
-  | adjustcoeff (l, Le (Var br, ab)) = Le (Var br, ab)
-  | adjustcoeff (l, Le (Neg bs, ab)) = Le (Neg bs, ab)
-  | adjustcoeff (l, Le (Add (Cst ci, bu), ab)) = Le (Add (Cst ci, bu), ab)
-  | adjustcoeff (l, Le (Add (Var cj, bu), ab)) = Le (Add (Var cj, bu), ab)
-  | adjustcoeff (l, Le (Add (Neg ck, bu), ab)) = Le (Add (Neg ck, bu), ab)
-  | adjustcoeff (l, Le (Add (Add (cl, cm), bu), ab)) =
-    Le (Add (Add (cl, cm), bu), ab)
-  | adjustcoeff (l, Le (Add (Sub (cn, co), bu), ab)) =
-    Le (Add (Sub (cn, co), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Cst ds), bu), ab)) =
-    Le (Add (Mult (Cst da, Cst ds), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Var 0), bu), Var en)) =
-    Le (Add (Mult (Cst da, Var 0), bu), Var en)
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Var 0), bu), Neg eo)) =
-    Le (Add (Mult (Cst da, Var 0), bu), Neg eo)
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Var 0), bu), Add (ep, eq))) =
-    Le (Add (Mult (Cst da, Var 0), bu), Add (ep, eq))
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Var 0), bu), Sub (er, es))) =
-    Le (Add (Mult (Cst da, Var 0), bu), Sub (er, es))
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Var 0), bu), Mult (et, eu))) =
-    Le (Add (Mult (Cst da, Var 0), bu), Mult (et, eu))
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Var ek), bu), ab)) =
-    Le (Add (Mult (Cst da, Var ek), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Neg du), bu), ab)) =
-    Le (Add (Mult (Cst da, Neg du), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Add (dv, dw)), bu), ab)) =
-    Le (Add (Mult (Cst da, Add (dv, dw)), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Sub (dx, dy)), bu), ab)) =
-    Le (Add (Mult (Cst da, Sub (dx, dy)), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Cst da, Mult (dz, ea)), bu), ab)) =
-    Le (Add (Mult (Cst da, Mult (dz, ea)), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Var db, cq), bu), ab)) =
-    Le (Add (Mult (Var db, cq), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Neg dc, cq), bu), ab)) =
-    Le (Add (Mult (Neg dc, cq), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Add (dd, de), cq), bu), ab)) =
-    Le (Add (Mult (Add (dd, de), cq), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Sub (df, dg), cq), bu), ab)) =
-    Le (Add (Mult (Sub (df, dg), cq), bu), ab)
-  | adjustcoeff (l, Le (Add (Mult (Mult (dh, di), cq), bu), ab)) =
-    Le (Add (Mult (Mult (dh, di), cq), bu), ab)
-  | adjustcoeff (l, Le (Sub (bv, bw), ab)) = Le (Sub (bv, bw), ab)
-  | adjustcoeff (l, Le (Mult (bx, by), ab)) = Le (Mult (bx, by), ab)
-  | adjustcoeff (l, Ge (ac, ad)) = Ge (ac, ad)
-  | adjustcoeff (l, Eq (Cst fe, af)) = Eq (Cst fe, af)
-  | adjustcoeff (l, Eq (Var ff, af)) = Eq (Var ff, af)
-  | adjustcoeff (l, Eq (Neg fg, af)) = Eq (Neg fg, af)
-  | adjustcoeff (l, Eq (Add (Cst fw, fi), af)) = Eq (Add (Cst fw, fi), af)
-  | adjustcoeff (l, Eq (Add (Var fx, fi), af)) = Eq (Add (Var fx, fi), af)
-  | adjustcoeff (l, Eq (Add (Neg fy, fi), af)) = Eq (Add (Neg fy, fi), af)
-  | adjustcoeff (l, Eq (Add (Add (fz, ga), fi), af)) =
-    Eq (Add (Add (fz, ga), fi), af)
-  | adjustcoeff (l, Eq (Add (Sub (gb, gc), fi), af)) =
-    Eq (Add (Sub (gb, gc), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Cst hg), fi), af)) =
-    Eq (Add (Mult (Cst go, Cst hg), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Var 0), fi), Var ib)) =
-    Eq (Add (Mult (Cst go, Var 0), fi), Var ib)
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Var 0), fi), Neg ic)) =
-    Eq (Add (Mult (Cst go, Var 0), fi), Neg ic)
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Var 0), fi), Add (id, ie))) =
-    Eq (Add (Mult (Cst go, Var 0), fi), Add (id, ie))
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Var 0), fi), Sub (if', ig))) =
-    Eq (Add (Mult (Cst go, Var 0), fi), Sub (if', ig))
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Var 0), fi), Mult (ih, ii))) =
-    Eq (Add (Mult (Cst go, Var 0), fi), Mult (ih, ii))
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Var hy), fi), af)) =
-    Eq (Add (Mult (Cst go, Var hy), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Neg hi), fi), af)) =
-    Eq (Add (Mult (Cst go, Neg hi), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Add (hj, hk)), fi), af)) =
-    Eq (Add (Mult (Cst go, Add (hj, hk)), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Sub (hl, hm)), fi), af)) =
-    Eq (Add (Mult (Cst go, Sub (hl, hm)), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Cst go, Mult (hn, ho)), fi), af)) =
-    Eq (Add (Mult (Cst go, Mult (hn, ho)), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Var gp, ge), fi), af)) =
-    Eq (Add (Mult (Var gp, ge), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Neg gq, ge), fi), af)) =
-    Eq (Add (Mult (Neg gq, ge), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Add (gr, gs), ge), fi), af)) =
-    Eq (Add (Mult (Add (gr, gs), ge), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Sub (gt, gu), ge), fi), af)) =
-    Eq (Add (Mult (Sub (gt, gu), ge), fi), af)
-  | adjustcoeff (l, Eq (Add (Mult (Mult (gv, gw), ge), fi), af)) =
-    Eq (Add (Mult (Mult (gv, gw), ge), fi), af)
-  | adjustcoeff (l, Eq (Sub (fj, fk), af)) = Eq (Sub (fj, fk), af)
-  | adjustcoeff (l, Eq (Mult (fl, fm), af)) = Eq (Mult (fl, fm), af)
-  | adjustcoeff (l, Divides (Cst is, Cst jk)) = Divides (Cst is, Cst jk)
-  | adjustcoeff (l, Divides (Cst is, Var jl)) = Divides (Cst is, Var jl)
-  | adjustcoeff (l, Divides (Cst is, Neg jm)) = Divides (Cst is, Neg jm)
-  | adjustcoeff (l, Divides (Cst is, Add (Cst kc, jo))) =
-    Divides (Cst is, Add (Cst kc, jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Var kd, jo))) =
-    Divides (Cst is, Add (Var kd, jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Neg ke, jo))) =
-    Divides (Cst is, Add (Neg ke, jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Add (kf, kg), jo))) =
-    Divides (Cst is, Add (Add (kf, kg), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Sub (kh, ki), jo))) =
-    Divides (Cst is, Add (Sub (kh, ki), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Cst ku, Cst lm), jo))) =
-    Divides (Cst is, Add (Mult (Cst ku, Cst lm), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Cst ku, Var me), jo))) =
-    (if (me = 0)
-      then Divides
-             (Cst (op_div_def1 l ku * is),
-               Add (Mult (Cst 1, Var 0), lin_mul (op_div_def1 l ku, jo)))
-      else Divides
-             (Cst is,
-               Add (Mult (Cst ku, Var (op_45_def0 me id_1_def0 + 1)), jo)))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Cst ku, Neg lo), jo))) =
-    Divides (Cst is, Add (Mult (Cst ku, Neg lo), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Cst ku, Add (lp, lq)), jo))) =
-    Divides (Cst is, Add (Mult (Cst ku, Add (lp, lq)), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Cst ku, Sub (lr, ls)), jo))) =
-    Divides (Cst is, Add (Mult (Cst ku, Sub (lr, ls)), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Cst ku, Mult (lt, lu)), jo))) =
-    Divides (Cst is, Add (Mult (Cst ku, Mult (lt, lu)), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Var kv, kk), jo))) =
-    Divides (Cst is, Add (Mult (Var kv, kk), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Neg kw, kk), jo))) =
-    Divides (Cst is, Add (Mult (Neg kw, kk), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Add (kx, ky), kk), jo))) =
-    Divides (Cst is, Add (Mult (Add (kx, ky), kk), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Sub (kz, la), kk), jo))) =
-    Divides (Cst is, Add (Mult (Sub (kz, la), kk), jo))
-  | adjustcoeff (l, Divides (Cst is, Add (Mult (Mult (lb, lc), kk), jo))) =
-    Divides (Cst is, Add (Mult (Mult (lb, lc), kk), jo))
-  | adjustcoeff (l, Divides (Cst is, Sub (jp, jq))) =
-    Divides (Cst is, Sub (jp, jq))
-  | adjustcoeff (l, Divides (Cst is, Mult (jr, js))) =
-    Divides (Cst is, Mult (jr, js))
-  | adjustcoeff (l, Divides (Var it, ah)) = Divides (Var it, ah)
-  | adjustcoeff (l, Divides (Neg iu, ah)) = Divides (Neg iu, ah)
-  | adjustcoeff (l, Divides (Add (iv, iw), ah)) = Divides (Add (iv, iw), ah)
-  | adjustcoeff (l, Divides (Sub (ix, iy), ah)) = Divides (Sub (ix, iy), ah)
-  | adjustcoeff (l, Divides (Mult (iz, ja), ah)) = Divides (Mult (iz, ja), ah)
-  | adjustcoeff (l, T) = T
-  | adjustcoeff (l, F) = F
-  | adjustcoeff (l, NOT (Lt (mg, mh))) = NOT (Lt (mg, mh))
-  | adjustcoeff (l, NOT (Gt (mi, mj))) = NOT (Gt (mi, mj))
-  | adjustcoeff (l, NOT (Le (mk, ml))) = NOT (Le (mk, ml))
-  | adjustcoeff (l, NOT (Ge (mm, mn))) = NOT (Ge (mm, mn))
-  | adjustcoeff (l, NOT (Eq (Cst oa, mp))) = NOT (Eq (Cst oa, mp))
-  | adjustcoeff (l, NOT (Eq (Var ob, mp))) = NOT (Eq (Var ob, mp))
-  | adjustcoeff (l, NOT (Eq (Neg oc, mp))) = NOT (Eq (Neg oc, mp))
-  | adjustcoeff (l, NOT (Eq (Add (Cst os, oe), mp))) =
-    NOT (Eq (Add (Cst os, oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Var ot, oe), mp))) =
-    NOT (Eq (Add (Var ot, oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Neg ou, oe), mp))) =
-    NOT (Eq (Add (Neg ou, oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Add (ov, ow), oe), mp))) =
-    NOT (Eq (Add (Add (ov, ow), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Sub (ox, oy), oe), mp))) =
-    NOT (Eq (Add (Sub (ox, oy), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Cst qc), oe), mp))) =
-    NOT (Eq (Add (Mult (Cst pk, Cst qc), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Var qx))) =
-    NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Var qx))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Neg qy))) =
-    NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Neg qy))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Add (qz, ra)))) =
-    NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Add (qz, ra)))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Sub (rb, rc)))) =
-    NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Sub (rb, rc)))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Mult (rd, re)))) =
-    NOT (Eq (Add (Mult (Cst pk, Var 0), oe), Mult (rd, re)))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Var qu), oe), mp))) =
-    NOT (Eq (Add (Mult (Cst pk, Var qu), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Neg qe), oe), mp))) =
-    NOT (Eq (Add (Mult (Cst pk, Neg qe), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Add (qf, qg)), oe), mp))) =
-    NOT (Eq (Add (Mult (Cst pk, Add (qf, qg)), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Sub (qh, qi)), oe), mp))) =
-    NOT (Eq (Add (Mult (Cst pk, Sub (qh, qi)), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Cst pk, Mult (qj, qk)), oe), mp))) =
-    NOT (Eq (Add (Mult (Cst pk, Mult (qj, qk)), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Var pl, pa), oe), mp))) =
-    NOT (Eq (Add (Mult (Var pl, pa), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Neg pm, pa), oe), mp))) =
-    NOT (Eq (Add (Mult (Neg pm, pa), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Add (pn, po), pa), oe), mp))) =
-    NOT (Eq (Add (Mult (Add (pn, po), pa), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Sub (pp, pq), pa), oe), mp))) =
-    NOT (Eq (Add (Mult (Sub (pp, pq), pa), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Add (Mult (Mult (pr, ps), pa), oe), mp))) =
-    NOT (Eq (Add (Mult (Mult (pr, ps), pa), oe), mp))
-  | adjustcoeff (l, NOT (Eq (Sub (of', og), mp))) = NOT (Eq (Sub (of', og), mp))
-  | adjustcoeff (l, NOT (Eq (Mult (oh, oi), mp))) = NOT (Eq (Mult (oh, oi), mp))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Cst sg))) =
-    NOT (Divides (Cst ro, Cst sg))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Var sh))) =
-    NOT (Divides (Cst ro, Var sh))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Neg si))) =
-    NOT (Divides (Cst ro, Neg si))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Cst sy, sk)))) =
-    NOT (Divides (Cst ro, Add (Cst sy, sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Var sz, sk)))) =
-    NOT (Divides (Cst ro, Add (Var sz, sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Neg ta, sk)))) =
-    NOT (Divides (Cst ro, Add (Neg ta, sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Add (tb, tc), sk)))) =
-    NOT (Divides (Cst ro, Add (Add (tb, tc), sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Sub (td, te), sk)))) =
-    NOT (Divides (Cst ro, Add (Sub (td, te), sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Mult (Cst tq, Cst ui), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Cst tq, Cst ui), sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Mult (Cst tq, Var va), sk)))) =
-    (if (va = 0)
-      then NOT (Divides
-                  (Cst (op_div_def1 l tq * ro),
-                    Add (Mult (Cst 1, Var 0), lin_mul (op_div_def1 l tq, sk))))
-      else NOT (Divides
-                  (Cst ro,
-                    Add (Mult (Cst tq, Var (op_45_def0 va id_1_def0 + 1)),
-                          sk))))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Mult (Cst tq, Neg uk), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Cst tq, Neg uk), sk)))
-  | adjustcoeff
-      (l, NOT (Divides (Cst ro, Add (Mult (Cst tq, Add (ul, um)), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Cst tq, Add (ul, um)), sk)))
-  | adjustcoeff
-      (l, NOT (Divides (Cst ro, Add (Mult (Cst tq, Sub (un, uo)), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Cst tq, Sub (un, uo)), sk)))
-  | adjustcoeff
-      (l, NOT (Divides (Cst ro, Add (Mult (Cst tq, Mult (up, uq)), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Cst tq, Mult (up, uq)), sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Mult (Var tr, tg), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Var tr, tg), sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Mult (Neg ts, tg), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Neg ts, tg), sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Mult (Add (tt, tu), tg), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Add (tt, tu), tg), sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Add (Mult (Sub (tv, tw), tg), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Sub (tv, tw), tg), sk)))
-  | adjustcoeff
-      (l, NOT (Divides (Cst ro, Add (Mult (Mult (tx, ty), tg), sk)))) =
-    NOT (Divides (Cst ro, Add (Mult (Mult (tx, ty), tg), sk)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Sub (sl, sm)))) =
-    NOT (Divides (Cst ro, Sub (sl, sm)))
-  | adjustcoeff (l, NOT (Divides (Cst ro, Mult (sn, so)))) =
-    NOT (Divides (Cst ro, Mult (sn, so)))
-  | adjustcoeff (l, NOT (Divides (Var rp, mr))) = NOT (Divides (Var rp, mr))
-  | adjustcoeff (l, NOT (Divides (Neg rq, mr))) = NOT (Divides (Neg rq, mr))
-  | adjustcoeff (l, NOT (Divides (Add (rr, rs), mr))) =
-    NOT (Divides (Add (rr, rs), mr))
-  | adjustcoeff (l, NOT (Divides (Sub (rt, ru), mr))) =
-    NOT (Divides (Sub (rt, ru), mr))
-  | adjustcoeff (l, NOT (Divides (Mult (rv, rw), mr))) =
-    NOT (Divides (Mult (rv, rw), mr))
-  | adjustcoeff (l, NOT T) = NOT T
-  | adjustcoeff (l, NOT F) = NOT F
-  | adjustcoeff (l, NOT (NOT ms)) = NOT (NOT ms)
-  | adjustcoeff (l, NOT (And (mt, mu))) = NOT (And (mt, mu))
-  | adjustcoeff (l, NOT (Or (mv, mw))) = NOT (Or (mv, mw))
-  | adjustcoeff (l, NOT (Imp (mx, my))) = NOT (Imp (mx, my))
-  | adjustcoeff (l, NOT (Equ (mz, na))) = NOT (Equ (mz, na))
-  | adjustcoeff (l, NOT (QAll nb)) = NOT (QAll nb)
-  | adjustcoeff (l, NOT (QEx nc)) = NOT (QEx nc)
-  | adjustcoeff (l, Imp (an, ao)) = Imp (an, ao)
-  | adjustcoeff (l, Equ (ap, aq)) = Equ (ap, aq)
-  | adjustcoeff (l, QAll ar) = QAll ar
-  | adjustcoeff (l, QEx as') = QEx as';
-
-fun formlcm (Le (Add (Mult (Cst c, Var 0), r), Cst i)) = abs c
-  | formlcm (Eq (Add (Mult (Cst c, Var 0), r), Cst i)) = abs c
-  | formlcm (NOT p) = formlcm p
-  | formlcm (And (p, q)) = ilcm (formlcm p) (formlcm q)
-  | formlcm (Or (p, q)) = ilcm (formlcm p) (formlcm q)
-  | formlcm (Lt (u, v)) = 1
-  | formlcm (Gt (w, x)) = 1
-  | formlcm (Le (Cst bo, z)) = 1
-  | formlcm (Le (Var bp, z)) = 1
-  | formlcm (Le (Neg bq, z)) = 1
-  | formlcm (Le (Add (Cst cg, bs), z)) = 1
-  | formlcm (Le (Add (Var ch, bs), z)) = 1
-  | formlcm (Le (Add (Neg ci, bs), z)) = 1
-  | formlcm (Le (Add (Add (cj, ck), bs), z)) = 1
-  | formlcm (Le (Add (Sub (cl, cm), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Cst dq), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Var 0), bs), Var el)) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Var 0), bs), Neg em)) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Var 0), bs), Add (en, eo))) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Var 0), bs), Sub (ep, eq))) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Var 0), bs), Mult (er, es))) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Var ei ), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Neg ds), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Add (dt, du)), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Sub (dv, dw)), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Cst cy, Mult (dx, dy)), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Var cz, co), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Neg da, co), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Add (db, dc), co), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Sub (dd, de), co), bs), z)) = 1
-  | formlcm (Le (Add (Mult (Mult (df, dg), co), bs), z)) = 1
-  | formlcm (Le (Sub (bt, bu), z)) = 1
-  | formlcm (Le (Mult (bv, bw), z)) = 1
-  | formlcm (Ge (aa, ab)) = 1
-  | formlcm (Eq (Cst fc, ad)) = 1
-  | formlcm (Eq (Var fd, ad)) = 1
-  | formlcm (Eq (Neg fe, ad)) = 1
-  | formlcm (Eq (Add (Cst fu, fg), ad)) = 1
-  | formlcm (Eq (Add (Var fv, fg), ad)) = 1
-  | formlcm (Eq (Add (Neg fw, fg), ad)) = 1
-  | formlcm (Eq (Add (Add (fx, fy), fg), ad)) = 1
-  | formlcm (Eq (Add (Sub (fz, ga), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Cst he), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Var 0), fg), Var hz)) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Var 0), fg), Neg ia)) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Var 0), fg), Add (ib, ic))) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Var 0), fg), Sub (id, ie))) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Var 0), fg), Mult (if', ig))) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Var hw), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Neg hg), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Add (hh, hi)), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Sub (hj, hk)), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Cst gm, Mult (hl, hm)), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Var gn, gc), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Neg go, gc), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Add (gp, gq), gc), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Sub (gr, gs), gc), fg), ad)) = 1
-  | formlcm (Eq (Add (Mult (Mult (gt, gu), gc), fg), ad)) = 1
-  | formlcm (Eq (Sub (fh, fi), ad)) = 1
-  | formlcm (Eq (Mult (fj, fk), ad)) = 1
-  | formlcm (Divides (Cst iq, Cst ji)) = 1
-  | formlcm (Divides (Cst iq, Var jj)) = 1
-  | formlcm (Divides (Cst iq, Neg jk)) = 1
-  | formlcm (Divides (Cst iq, Add (Cst ka, jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Var kb, jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Neg kc, jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Add (kd, ke), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Sub (kf, kg), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Cst ks, Cst lk), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Cst ks, Var mc), jm))) =
-    (if (mc = 0) then abs ks else 1)
-  | formlcm (Divides (Cst iq, Add (Mult (Cst ks, Neg lm), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Cst ks, Add (ln, lo)), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Cst ks, Sub (lp, lq)), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Cst ks, Mult (lr, ls)), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Var kt, ki), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Neg ku, ki), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Add (kv, kw), ki), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Sub (kx, ky), ki), jm))) = 1
-  | formlcm (Divides (Cst iq, Add (Mult (Mult (kz, la), ki), jm))) = 1
-  | formlcm (Divides (Cst iq, Sub (jn, jo))) = 1
-  | formlcm (Divides (Cst iq, Mult (jp, jq))) = 1
-  | formlcm (Divides (Var ir, af)) = 1
-  | formlcm (Divides (Neg is, af)) = 1
-  | formlcm (Divides (Add (it, iu), af)) = 1
-  | formlcm (Divides (Sub (iv, iw), af)) = 1
-  | formlcm (Divides (Mult (ix, iy), af)) = 1
-  | formlcm T = 1
-  | formlcm F = 1
-  | formlcm (Imp (al, am)) = 1
-  | formlcm (Equ (an, ao)) = 1
-  | formlcm (QAll ap) = 1
-  | formlcm (QEx aq) = 1;
-
-fun unitycoeff p =
-  let val l = formlcm p; val p' = adjustcoeff (l, p)
-  in (if (l = 1) then p'
-       else And (Divides (Cst l, Add (Mult (Cst 1, Var 0), Cst 0)), p'))
-  end;
-
-fun unify p =
-  let val q = unitycoeff p; val B = list_set (bset q); val A = list_set (aset q)
-  in (if op_60_61_def0 (size_def1 B) (size_def1 A) then (q, B)
-       else (mirror q, map lin_neg A))
-  end;
-
-fun cooper p =
-  lift_un (fn q => decrvars (explode_minf (unify q))) (linform (nnf p));
-
-fun pa p = lift_un psimpl (qelim (cooper, p));
-
-val test = pa;
-
-end;
--- a/src/HOL/IsaMakefile	Thu May 31 11:00:06 2007 +0200
+++ b/src/HOL/IsaMakefile	Thu May 31 12:06:31 2007 +0200
@@ -62,8 +62,7 @@
 Pure:
 	@cd $(SRC)/Pure; $(ISATOOL) make Pure
 
-$(OUT)/HOL: $(OUT)/Pure $(SRC)/Pure/General/int.ML $(SRC)/Pure/General/rat.ML   \
-  $(SRC)/Provers/Arith/abel_cancel.ML			                        \
+$(OUT)/HOL: $(OUT)/Pure $(SRC)/Provers/Arith/abel_cancel.ML			\
   $(SRC)/Provers/Arith/assoc_fold.ML						\
   $(SRC)/Provers/Arith/cancel_div_mod.ML					\
   $(SRC)/Provers/Arith/cancel_numeral_factor.ML					\
@@ -81,40 +80,42 @@
   $(SRC)/Provers/induct_method.ML $(SRC)/Provers/order.ML			\
   $(SRC)/Provers/project_rule.ML $(SRC)/Provers/quantifier1.ML			\
   $(SRC)/Provers/quasi.ML $(SRC)/Provers/splitter.ML				\
-  $(SRC)/Provers/trancl.ML $(SRC)/TFL/casesplit.ML $(SRC)/TFL/dcterm.ML		\
-  $(SRC)/TFL/post.ML $(SRC)/TFL/rules.ML $(SRC)/TFL/tfl.ML			\
-  $(SRC)/TFL/thms.ML $(SRC)/TFL/thry.ML $(SRC)/TFL/usyntax.ML			\
-  $(SRC)/TFL/utils.ML ATP_Linkup.thy Accessible_Part.thy			\
-  Code_Generator.thy Datatype.thy Divides.thy Equiv_Relations.thy		\
-  Extraction.thy Finite_Set.thy FixedPoint.thy Fun.thy FunDef.thy	\
-  HOL.thy Hilbert_Choice.thy Inductive.thy Integ/IntArith.thy			\
-  Integ/IntDef.thy Integ/IntDiv.thy Integ/NatBin.thy				\
-  Integ/NatSimprocs.thy Integ/Numeral.thy Integ/Presburger.thy			\
-  Integ/cooper_dec.ML Integ/cooper_proof.ML Integ/int_arith1.ML			\
-  Integ/int_factor_simprocs.ML Integ/nat_simprocs.ML Integ/presburger.ML	\
-  Integ/qelim.ML Integ/reflected_cooper.ML Integ/reflected_presburger.ML	\
-  Lattices.thy List.thy Main.thy Map.thy Nat.ML Nat.thy		\
-  OrderedGroup.thy Orderings.thy Power.thy Predicate.thy PreList.thy	\
+  $(SRC)/Provers/trancl.ML $(SRC)/Pure/General/int.ML				\
+  $(SRC)/Pure/General/rat.ML $(SRC)/TFL/casesplit.ML				\
+  $(SRC)/TFL/dcterm.ML $(SRC)/TFL/post.ML $(SRC)/TFL/rules.ML			\
+  $(SRC)/TFL/tfl.ML $(SRC)/TFL/thms.ML $(SRC)/TFL/thry.ML			\
+  $(SRC)/TFL/usyntax.ML $(SRC)/TFL/utils.ML ATP_Linkup.thy			\
+  Accessible_Part.thy Code_Generator.thy Datatype.thy Divides.thy		\
+  Equiv_Relations.thy Extraction.thy Finite_Set.thy FixedPoint.thy		\
+  Fun.thy FunDef.thy HOL.thy Hilbert_Choice.thy Inductive.thy			\
+  Integ/IntArith.thy Integ/IntDef.thy Integ/IntDiv.thy Integ/NatBin.thy		\
+  Integ/NatSimprocs.thy Integ/Numeral.thy Integ/int_arith1.ML			\
+  Integ/int_factor_simprocs.ML Integ/nat_simprocs.ML Lattices.thy		\
+  List.thy Main.thy Map.thy Nat.ML Nat.thy OrderedGroup.thy			\
+  Orderings.thy Power.thy PreList.thy Predicate.thy Presburger.thy		\
   Product_Type.thy ROOT.ML Recdef.thy Record.thy Refute.thy Relation.thy	\
   Relation_Power.thy Ring_and_Field.thy SAT.thy Set.thy SetInterval.thy		\
-  Sum_Type.thy Tools/res_reconstruct.ML Tools/ATP/reduce_axiomsN.ML	\
-  Tools/ATP/watcher.ML Tools/cnf_funcs.ML Tools/datatype_abs_proofs.ML		\
-  Tools/datatype_aux.ML Tools/datatype_case.ML Tools/datatype_codegen.ML	\
+  Sum_Type.thy Tools/ATP/reduce_axiomsN.ML Tools/ATP/watcher.ML			\
+  Tools/Presburger/cooper_dec.ML Tools/Presburger/cooper_proof.ML		\
+  Tools/Presburger/presburger.ML Tools/Presburger/qelim.ML			\
+  Tools/Presburger/reflected_cooper.ML						\
+  Tools/Presburger/reflected_presburger.ML Tools/cnf_funcs.ML			\
+  Tools/datatype_abs_proofs.ML Tools/datatype_aux.ML				\
+  Tools/datatype_case.ML Tools/datatype_codegen.ML				\
   Tools/datatype_hooks.ML Tools/datatype_package.ML				\
   Tools/datatype_prop.ML Tools/datatype_realizer.ML				\
   Tools/datatype_rep_proofs.ML Tools/function_package/auto_term.ML		\
   Tools/function_package/context_tree.ML					\
   Tools/function_package/fundef_common.ML					\
+  Tools/function_package/fundef_core.ML						\
   Tools/function_package/fundef_datatype.ML					\
   Tools/function_package/fundef_lib.ML						\
   Tools/function_package/fundef_package.ML					\
-  Tools/function_package/fundef_core.ML						\
   Tools/function_package/inductive_wrap.ML					\
   Tools/function_package/lexicographic_order.ML					\
   Tools/function_package/mutual.ML						\
   Tools/function_package/pattern_split.ML					\
-  Tools/function_package/sum_tools.ML						\
-  Tools/inductive_codegen.ML		\
+  Tools/function_package/sum_tools.ML Tools/inductive_codegen.ML		\
   Tools/inductive_package.ML Tools/inductive_realizer.ML Tools/meson.ML		\
   Tools/numeral_syntax.ML Tools/old_inductive_package.ML			\
   Tools/polyhash.ML Tools/primrec_package.ML Tools/prop_logic.ML		\
@@ -122,8 +123,9 @@
   Tools/record_package.ML Tools/refute.ML Tools/refute_isar.ML			\
   Tools/res_atp.ML Tools/res_atp_methods.ML Tools/res_atp_provers.ML		\
   Tools/res_atpset.ML Tools/res_axioms.ML Tools/res_clause.ML			\
-  Tools/res_hol_clause.ML Tools/rewrite_hol_proof.ML Tools/sat_funcs.ML		\
-  Tools/sat_solver.ML Tools/specification_package.ML Tools/split_rule.ML	\
+  Tools/res_hol_clause.ML Tools/res_reconstruct.ML				\
+  Tools/rewrite_hol_proof.ML Tools/sat_funcs.ML Tools/sat_solver.ML		\
+  Tools/specification_package.ML Tools/split_rule.ML				\
   Tools/string_syntax.ML Tools/typecopy_package.ML				\
   Tools/typedef_codegen.ML Tools/typedef_package.ML				\
   Transitive_Closure.thy Typedef.thy Wellfounded_Recursion.thy			\
--- a/src/HOL/Presburger.thy	Thu May 31 11:00:06 2007 +0200
+++ b/src/HOL/Presburger.thy	Thu May 31 12:06:31 2007 +0200
@@ -9,10 +9,14 @@
 header {* Presburger Arithmetic: Cooper's Algorithm *}
 
 theory Presburger
-imports NatSimprocs "../SetInterval"
+imports "Integ/NatSimprocs" SetInterval
 uses
-  ("cooper_dec.ML") ("cooper_proof.ML") ("qelim.ML") 
-  ("reflected_presburger.ML") ("reflected_cooper.ML") ("presburger.ML")
+  ("Tools/Presburger/cooper_dec.ML")
+  ("Tools/Presburger/cooper_proof.ML")
+  ("Tools/Presburger/qelim.ML") 
+  ("Tools/Presburger/reflected_presburger.ML")
+  ("Tools/Presburger/reflected_cooper.ML")
+  ("Tools/Presburger/presburger.ML")
 begin
 
 text {* Theorem for unitifying the coeffitients of @{text x} in an existential formula*}
@@ -1047,15 +1051,15 @@
   show ?thesis by (simp add: 1)
 qed
 
-use "cooper_dec.ML"
-use "reflected_presburger.ML" 
-use "reflected_cooper.ML"
+use "Tools/Presburger/cooper_dec.ML"
+use "Tools/Presburger/reflected_presburger.ML" 
+use "Tools/Presburger/reflected_cooper.ML"
 oracle
   presburger_oracle ("term") = ReflectedCooper.presburger_oracle
 
-use "cooper_proof.ML"
-use "qelim.ML"
-use "presburger.ML"
+use "Tools/Presburger/cooper_proof.ML"
+use "Tools/Presburger/qelim.ML"
+use "Tools/Presburger/presburger.ML"
 
 setup "Presburger.setup"
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Bin.thy	Thu May 31 12:06:31 2007 +0200
@@ -0,0 +1,692 @@
+(*  Title:      ZF/Bin.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1994  University of Cambridge
+
+   The sign Pls stands for an infinite string of leading 0's.
+   The sign Min stands for an infinite string of leading 1's.
+
+A number can have multiple representations, namely leading 0's with sign
+Pls and leading 1's with sign Min.  See twos-compl.ML/int_of_binary for
+the numerical interpretation.
+
+The representation expects that (m mod 2) is 0 or 1, even if m is negative;
+For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1
+*)
+
+header{*Arithmetic on Binary Integers*}
+
+theory Bin
+imports Int Datatype
+uses "Tools/numeral_syntax.ML"
+begin
+
+consts  bin :: i
+datatype
+  "bin" = Pls
+        | Min
+        | Bit ("w: bin", "b: bool")	(infixl "BIT" 90)
+
+syntax
+  "_Int"    :: "xnum => i"        ("_")
+
+consts
+  integ_of  :: "i=>i"
+  NCons     :: "[i,i]=>i"
+  bin_succ  :: "i=>i"
+  bin_pred  :: "i=>i"
+  bin_minus :: "i=>i"
+  bin_adder :: "i=>i"
+  bin_mult  :: "[i,i]=>i"
+
+primrec
+  integ_of_Pls:  "integ_of (Pls)     = $# 0"
+  integ_of_Min:  "integ_of (Min)     = $-($#1)"
+  integ_of_BIT:  "integ_of (w BIT b) = $#b $+ integ_of(w) $+ integ_of(w)"
+
+    (** recall that cond(1,b,c)=b and cond(0,b,c)=0 **)
+
+primrec (*NCons adds a bit, suppressing leading 0s and 1s*)
+  NCons_Pls: "NCons (Pls,b)     = cond(b,Pls BIT b,Pls)"
+  NCons_Min: "NCons (Min,b)     = cond(b,Min,Min BIT b)"
+  NCons_BIT: "NCons (w BIT c,b) = w BIT c BIT b"
+
+primrec (*successor.  If a BIT, can change a 0 to a 1 without recursion.*)
+  bin_succ_Pls:  "bin_succ (Pls)     = Pls BIT 1"
+  bin_succ_Min:  "bin_succ (Min)     = Pls"
+  bin_succ_BIT:  "bin_succ (w BIT b) = cond(b, bin_succ(w) BIT 0, NCons(w,1))"
+
+primrec (*predecessor*)
+  bin_pred_Pls:  "bin_pred (Pls)     = Min"
+  bin_pred_Min:  "bin_pred (Min)     = Min BIT 0"
+  bin_pred_BIT:  "bin_pred (w BIT b) = cond(b, NCons(w,0), bin_pred(w) BIT 1)"
+
+primrec (*unary negation*)
+  bin_minus_Pls:
+    "bin_minus (Pls)       = Pls"
+  bin_minus_Min:
+    "bin_minus (Min)       = Pls BIT 1"
+  bin_minus_BIT:
+    "bin_minus (w BIT b) = cond(b, bin_pred(NCons(bin_minus(w),0)),
+				bin_minus(w) BIT 0)"
+
+primrec (*sum*)
+  bin_adder_Pls:
+    "bin_adder (Pls)     = (lam w:bin. w)"
+  bin_adder_Min:
+    "bin_adder (Min)     = (lam w:bin. bin_pred(w))"
+  bin_adder_BIT:
+    "bin_adder (v BIT x) = 
+       (lam w:bin. 
+         bin_case (v BIT x, bin_pred(v BIT x), 
+                   %w y. NCons(bin_adder (v) ` cond(x and y, bin_succ(w), w),  
+                               x xor y),
+                   w))"
+
+(*The bin_case above replaces the following mutually recursive function:
+primrec
+  "adding (v,x,Pls)     = v BIT x"
+  "adding (v,x,Min)     = bin_pred(v BIT x)"
+  "adding (v,x,w BIT y) = NCons(bin_adder (v, cond(x and y, bin_succ(w), w)), 
+				x xor y)"
+*)
+
+constdefs
+  bin_add   :: "[i,i]=>i"
+    "bin_add(v,w) == bin_adder(v)`w"
+
+
+primrec
+  bin_mult_Pls:
+    "bin_mult (Pls,w)     = Pls"
+  bin_mult_Min:
+    "bin_mult (Min,w)     = bin_minus(w)"
+  bin_mult_BIT:
+    "bin_mult (v BIT b,w) = cond(b, bin_add(NCons(bin_mult(v,w),0),w),
+				 NCons(bin_mult(v,w),0))"
+
+setup NumeralSyntax.setup
+
+
+declare bin.intros [simp,TC]
+
+lemma NCons_Pls_0: "NCons(Pls,0) = Pls"
+by simp
+
+lemma NCons_Pls_1: "NCons(Pls,1) = Pls BIT 1"
+by simp
+
+lemma NCons_Min_0: "NCons(Min,0) = Min BIT 0"
+by simp
+
+lemma NCons_Min_1: "NCons(Min,1) = Min"
+by simp
+
+lemma NCons_BIT: "NCons(w BIT x,b) = w BIT x BIT b"
+by (simp add: bin.case_eqns)
+
+lemmas NCons_simps [simp] = 
+    NCons_Pls_0 NCons_Pls_1 NCons_Min_0 NCons_Min_1 NCons_BIT
+
+
+
+(** Type checking **)
+
+lemma integ_of_type [TC]: "w: bin ==> integ_of(w) : int"
+apply (induct_tac "w")
+apply (simp_all add: bool_into_nat)
+done
+
+lemma NCons_type [TC]: "[| w: bin; b: bool |] ==> NCons(w,b) : bin"
+by (induct_tac "w", auto)
+
+lemma bin_succ_type [TC]: "w: bin ==> bin_succ(w) : bin"
+by (induct_tac "w", auto)
+
+lemma bin_pred_type [TC]: "w: bin ==> bin_pred(w) : bin"
+by (induct_tac "w", auto)
+
+lemma bin_minus_type [TC]: "w: bin ==> bin_minus(w) : bin"
+by (induct_tac "w", auto)
+
+(*This proof is complicated by the mutual recursion*)
+lemma bin_add_type [rule_format,TC]:
+     "v: bin ==> ALL w: bin. bin_add(v,w) : bin"
+apply (unfold bin_add_def)
+apply (induct_tac "v")
+apply (rule_tac [3] ballI)
+apply (rename_tac [3] "w'")
+apply (induct_tac [3] "w'")
+apply (simp_all add: NCons_type)
+done
+
+lemma bin_mult_type [TC]: "[| v: bin; w: bin |] ==> bin_mult(v,w) : bin"
+by (induct_tac "v", auto)
+
+
+subsubsection{*The Carry and Borrow Functions, 
+            @{term bin_succ} and @{term bin_pred}*}
+
+(*NCons preserves the integer value of its argument*)
+lemma integ_of_NCons [simp]:
+     "[| w: bin; b: bool |] ==> integ_of(NCons(w,b)) = integ_of(w BIT b)"
+apply (erule bin.cases)
+apply (auto elim!: boolE) 
+done
+
+lemma integ_of_succ [simp]:
+     "w: bin ==> integ_of(bin_succ(w)) = $#1 $+ integ_of(w)"
+apply (erule bin.induct)
+apply (auto simp add: zadd_ac elim!: boolE) 
+done
+
+lemma integ_of_pred [simp]:
+     "w: bin ==> integ_of(bin_pred(w)) = $- ($#1) $+ integ_of(w)"
+apply (erule bin.induct)
+apply (auto simp add: zadd_ac elim!: boolE) 
+done
+
+
+subsubsection{*@{term bin_minus}: Unary Negation of Binary Integers*}
+
+lemma integ_of_minus: "w: bin ==> integ_of(bin_minus(w)) = $- integ_of(w)"
+apply (erule bin.induct)
+apply (auto simp add: zadd_ac zminus_zadd_distrib  elim!: boolE) 
+done
+
+
+subsubsection{*@{term bin_add}: Binary Addition*}
+
+lemma bin_add_Pls [simp]: "w: bin ==> bin_add(Pls,w) = w"
+by (unfold bin_add_def, simp)
+
+lemma bin_add_Pls_right: "w: bin ==> bin_add(w,Pls) = w"
+apply (unfold bin_add_def)
+apply (erule bin.induct, auto)
+done
+
+lemma bin_add_Min [simp]: "w: bin ==> bin_add(Min,w) = bin_pred(w)"
+by (unfold bin_add_def, simp)
+
+lemma bin_add_Min_right: "w: bin ==> bin_add(w,Min) = bin_pred(w)"
+apply (unfold bin_add_def)
+apply (erule bin.induct, auto)
+done
+
+lemma bin_add_BIT_Pls [simp]: "bin_add(v BIT x,Pls) = v BIT x"
+by (unfold bin_add_def, simp)
+
+lemma bin_add_BIT_Min [simp]: "bin_add(v BIT x,Min) = bin_pred(v BIT x)"
+by (unfold bin_add_def, simp)
+
+lemma bin_add_BIT_BIT [simp]:
+     "[| w: bin;  y: bool |]               
+      ==> bin_add(v BIT x, w BIT y) =  
+          NCons(bin_add(v, cond(x and y, bin_succ(w), w)), x xor y)"
+by (unfold bin_add_def, simp)
+
+lemma integ_of_add [rule_format]:
+     "v: bin ==>  
+          ALL w: bin. integ_of(bin_add(v,w)) = integ_of(v) $+ integ_of(w)"
+apply (erule bin.induct, simp, simp)
+apply (rule ballI)
+apply (induct_tac "wa")
+apply (auto simp add: zadd_ac elim!: boolE) 
+done
+
+(*Subtraction*)
+lemma diff_integ_of_eq: 
+     "[| v: bin;  w: bin |]    
+      ==> integ_of(v) $- integ_of(w) = integ_of(bin_add (v, bin_minus(w)))"
+apply (unfold zdiff_def)
+apply (simp add: integ_of_add integ_of_minus)
+done
+
+
+subsubsection{*@{term bin_mult}: Binary Multiplication*}
+
+lemma integ_of_mult:
+     "[| v: bin;  w: bin |]    
+      ==> integ_of(bin_mult(v,w)) = integ_of(v) $* integ_of(w)"
+apply (induct_tac "v", simp)
+apply (simp add: integ_of_minus)
+apply (auto simp add: zadd_ac integ_of_add zadd_zmult_distrib  elim!: boolE) 
+done
+
+
+subsection{*Computations*}
+
+(** extra rules for bin_succ, bin_pred **)
+
+lemma bin_succ_1: "bin_succ(w BIT 1) = bin_succ(w) BIT 0"
+by simp
+
+lemma bin_succ_0: "bin_succ(w BIT 0) = NCons(w,1)"
+by simp
+
+lemma bin_pred_1: "bin_pred(w BIT 1) = NCons(w,0)"
+by simp
+
+lemma bin_pred_0: "bin_pred(w BIT 0) = bin_pred(w) BIT 1"
+by simp
+
+(** extra rules for bin_minus **)
+
+lemma bin_minus_1: "bin_minus(w BIT 1) = bin_pred(NCons(bin_minus(w), 0))"
+by simp
+
+lemma bin_minus_0: "bin_minus(w BIT 0) = bin_minus(w) BIT 0"
+by simp
+
+(** extra rules for bin_add **)
+
+lemma bin_add_BIT_11: "w: bin ==> bin_add(v BIT 1, w BIT 1) =  
+                     NCons(bin_add(v, bin_succ(w)), 0)"
+by simp
+
+lemma bin_add_BIT_10: "w: bin ==> bin_add(v BIT 1, w BIT 0) =   
+                     NCons(bin_add(v,w), 1)"
+by simp
+
+lemma bin_add_BIT_0: "[| w: bin;  y: bool |]  
+      ==> bin_add(v BIT 0, w BIT y) = NCons(bin_add(v,w), y)"
+by simp
+
+(** extra rules for bin_mult **)
+
+lemma bin_mult_1: "bin_mult(v BIT 1, w) = bin_add(NCons(bin_mult(v,w),0), w)"
+by simp
+
+lemma bin_mult_0: "bin_mult(v BIT 0, w) = NCons(bin_mult(v,w),0)"
+by simp
+
+
+(** Simplification rules with integer constants **)
+
+lemma int_of_0: "$#0 = #0"
+by simp
+
+lemma int_of_succ: "$# succ(n) = #1 $+ $#n"
+by (simp add: int_of_add [symmetric] natify_succ)
+
+lemma zminus_0 [simp]: "$- #0 = #0"
+by simp
+
+lemma zadd_0_intify [simp]: "#0 $+ z = intify(z)"
+by simp
+
+lemma zadd_0_right_intify [simp]: "z $+ #0 = intify(z)"
+by simp
+
+lemma zmult_1_intify [simp]: "#1 $* z = intify(z)"
+by simp
+
+lemma zmult_1_right_intify [simp]: "z $* #1 = intify(z)"
+by (subst zmult_commute, simp)
+
+lemma zmult_0 [simp]: "#0 $* z = #0"
+by simp
+
+lemma zmult_0_right [simp]: "z $* #0 = #0"
+by (subst zmult_commute, simp)
+
+lemma zmult_minus1 [simp]: "#-1 $* z = $-z"
+by (simp add: zcompare_rls)
+
+lemma zmult_minus1_right [simp]: "z $* #-1 = $-z"
+apply (subst zmult_commute)
+apply (rule zmult_minus1)
+done
+
+
+subsection{*Simplification Rules for Comparison of Binary Numbers*}
+text{*Thanks to Norbert Voelker*}
+
+(** Equals (=) **)
+
+lemma eq_integ_of_eq: 
+     "[| v: bin;  w: bin |]    
+      ==> ((integ_of(v)) = integ_of(w)) <->  
+          iszero (integ_of (bin_add (v, bin_minus(w))))"
+apply (unfold iszero_def)
+apply (simp add: zcompare_rls integ_of_add integ_of_minus)
+done
+
+lemma iszero_integ_of_Pls: "iszero (integ_of(Pls))"
+by (unfold iszero_def, simp)
+
+
+lemma nonzero_integ_of_Min: "~ iszero (integ_of(Min))"
+apply (unfold iszero_def)
+apply (simp add: zminus_equation)
+done
+
+lemma iszero_integ_of_BIT: 
+     "[| w: bin; x: bool |]  
+      ==> iszero (integ_of (w BIT x)) <-> (x=0 & iszero (integ_of(w)))"
+apply (unfold iszero_def, simp)
+apply (subgoal_tac "integ_of (w) : int")
+apply typecheck
+apply (drule int_cases)
+apply (safe elim!: boolE)
+apply (simp_all (asm_lr) add: zcompare_rls zminus_zadd_distrib [symmetric]
+                     int_of_add [symmetric])
+done
+
+lemma iszero_integ_of_0:
+     "w: bin ==> iszero (integ_of (w BIT 0)) <-> iszero (integ_of(w))"
+by (simp only: iszero_integ_of_BIT, blast) 
+
+lemma iszero_integ_of_1: "w: bin ==> ~ iszero (integ_of (w BIT 1))"
+by (simp only: iszero_integ_of_BIT, blast)
+
+
+
+(** Less-than (<) **)
+
+lemma less_integ_of_eq_neg: 
+     "[| v: bin;  w: bin |]    
+      ==> integ_of(v) $< integ_of(w)  
+          <-> znegative (integ_of (bin_add (v, bin_minus(w))))"
+apply (unfold zless_def zdiff_def)
+apply (simp add: integ_of_minus integ_of_add)
+done
+
+lemma not_neg_integ_of_Pls: "~ znegative (integ_of(Pls))"
+by simp
+
+lemma neg_integ_of_Min: "znegative (integ_of(Min))"
+by simp
+
+lemma neg_integ_of_BIT:
+     "[| w: bin; x: bool |]  
+      ==> znegative (integ_of (w BIT x)) <-> znegative (integ_of(w))"
+apply simp
+apply (subgoal_tac "integ_of (w) : int")
+apply typecheck
+apply (drule int_cases)
+apply (auto elim!: boolE simp add: int_of_add [symmetric]  zcompare_rls)
+apply (simp_all add: zminus_zadd_distrib [symmetric] zdiff_def 
+                     int_of_add [symmetric])
+apply (subgoal_tac "$#1 $- $# succ (succ (n #+ n)) = $- $# succ (n #+ n) ")
+ apply (simp add: zdiff_def)
+apply (simp add: equation_zminus int_of_diff [symmetric])
+done
+
+(** Less-than-or-equals (<=) **)
+
+lemma le_integ_of_eq_not_less:
+     "(integ_of(x) $<= (integ_of(w))) <-> ~ (integ_of(w) $< (integ_of(x)))"
+by (simp add: not_zless_iff_zle [THEN iff_sym])
+
+
+(*Delete the original rewrites, with their clumsy conditional expressions*)
+declare bin_succ_BIT [simp del] 
+        bin_pred_BIT [simp del] 
+        bin_minus_BIT [simp del]
+        NCons_Pls [simp del]
+        NCons_Min [simp del]
+        bin_adder_BIT [simp del]
+        bin_mult_BIT [simp del]
+
+(*Hide the binary representation of integer constants*)
+declare integ_of_Pls [simp del] integ_of_Min [simp del] integ_of_BIT [simp del]
+
+
+lemmas bin_arith_extra_simps =
+     integ_of_add [symmetric]   
+     integ_of_minus [symmetric] 
+     integ_of_mult [symmetric]  
+     bin_succ_1 bin_succ_0 
+     bin_pred_1 bin_pred_0 
+     bin_minus_1 bin_minus_0  
+     bin_add_Pls_right bin_add_Min_right
+     bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11
+     diff_integ_of_eq
+     bin_mult_1 bin_mult_0 NCons_simps
+
+
+(*For making a minimal simpset, one must include these default simprules
+  of thy.  Also include simp_thms, or at least (~False)=True*)
+lemmas bin_arith_simps =
+     bin_pred_Pls bin_pred_Min
+     bin_succ_Pls bin_succ_Min
+     bin_add_Pls bin_add_Min
+     bin_minus_Pls bin_minus_Min
+     bin_mult_Pls bin_mult_Min 
+     bin_arith_extra_simps
+
+(*Simplification of relational operations*)
+lemmas bin_rel_simps =
+     eq_integ_of_eq iszero_integ_of_Pls nonzero_integ_of_Min
+     iszero_integ_of_0 iszero_integ_of_1
+     less_integ_of_eq_neg
+     not_neg_integ_of_Pls neg_integ_of_Min neg_integ_of_BIT
+     le_integ_of_eq_not_less
+
+declare bin_arith_simps [simp]
+declare bin_rel_simps [simp]
+
+
+(** Simplification of arithmetic when nested to the right **)
+
+lemma add_integ_of_left [simp]:
+     "[| v: bin;  w: bin |]    
+      ==> integ_of(v) $+ (integ_of(w) $+ z) = (integ_of(bin_add(v,w)) $+ z)"
+by (simp add: zadd_assoc [symmetric])
+
+lemma mult_integ_of_left [simp]:
+     "[| v: bin;  w: bin |]    
+      ==> integ_of(v) $* (integ_of(w) $* z) = (integ_of(bin_mult(v,w)) $* z)"
+by (simp add: zmult_assoc [symmetric])
+
+lemma add_integ_of_diff1 [simp]: 
+    "[| v: bin;  w: bin |]    
+      ==> integ_of(v) $+ (integ_of(w) $- c) = integ_of(bin_add(v,w)) $- (c)"
+apply (unfold zdiff_def)
+apply (rule add_integ_of_left, auto)
+done
+
+lemma add_integ_of_diff2 [simp]:
+     "[| v: bin;  w: bin |]    
+      ==> integ_of(v) $+ (c $- integ_of(w)) =  
+          integ_of (bin_add (v, bin_minus(w))) $+ (c)"
+apply (subst diff_integ_of_eq [symmetric])
+apply (simp_all add: zdiff_def zadd_ac)
+done
+
+
+(** More for integer constants **)
+
+declare int_of_0 [simp] int_of_succ [simp]
+
+lemma zdiff0 [simp]: "#0 $- x = $-x"
+by (simp add: zdiff_def)
+
+lemma zdiff0_right [simp]: "x $- #0 = intify(x)"
+by (simp add: zdiff_def)
+
+lemma zdiff_self [simp]: "x $- x = #0"
+by (simp add: zdiff_def)
+
+lemma znegative_iff_zless_0: "k: int ==> znegative(k) <-> k $< #0"
+by (simp add: zless_def)
+
+lemma zero_zless_imp_znegative_zminus: "[|#0 $< k; k: int|] ==> znegative($-k)"
+by (simp add: zless_def)
+
+lemma zero_zle_int_of [simp]: "#0 $<= $# n"
+by (simp add: not_zless_iff_zle [THEN iff_sym] znegative_iff_zless_0 [THEN iff_sym])
+
+lemma nat_of_0 [simp]: "nat_of(#0) = 0"
+by (simp only: natify_0 int_of_0 [symmetric] nat_of_int_of)
+
+lemma nat_le_int0_lemma: "[| z $<= $#0; z: int |] ==> nat_of(z) = 0"
+by (auto simp add: znegative_iff_zless_0 [THEN iff_sym] zle_def zneg_nat_of)
+
+lemma nat_le_int0: "z $<= $#0 ==> nat_of(z) = 0"
+apply (subgoal_tac "nat_of (intify (z)) = 0")
+apply (rule_tac [2] nat_le_int0_lemma, auto)
+done
+
+lemma int_of_eq_0_imp_natify_eq_0: "$# n = #0 ==> natify(n) = 0"
+by (rule not_znegative_imp_zero, auto)
+
+lemma nat_of_zminus_int_of: "nat_of($- $# n) = 0"
+by (simp add: nat_of_def int_of_def raw_nat_of zminus image_intrel_int)
+
+lemma int_of_nat_of: "#0 $<= z ==> $# nat_of(z) = intify(z)"
+apply (rule not_zneg_nat_of_intify)
+apply (simp add: znegative_iff_zless_0 not_zless_iff_zle)
+done
+
+declare int_of_nat_of [simp] nat_of_zminus_int_of [simp]
+
+lemma int_of_nat_of_if: "$# nat_of(z) = (if #0 $<= z then intify(z) else #0)"
+by (simp add: int_of_nat_of znegative_iff_zless_0 not_zle_iff_zless)
+
+lemma zless_nat_iff_int_zless: "[| m: nat; z: int |] ==> (m < nat_of(z)) <-> ($#m $< z)"
+apply (case_tac "znegative (z) ")
+apply (erule_tac [2] not_zneg_nat_of [THEN subst])
+apply (auto dest: zless_trans dest!: zero_zle_int_of [THEN zle_zless_trans]
+            simp add: znegative_iff_zless_0)
+done
+
+
+(** nat_of and zless **)
+
+(*An alternative condition is  $#0 <= w  *)
+lemma zless_nat_conj_lemma: "$#0 $< z ==> (nat_of(w) < nat_of(z)) <-> (w $< z)"
+apply (rule iff_trans)
+apply (rule zless_int_of [THEN iff_sym])
+apply (auto simp add: int_of_nat_of_if simp del: zless_int_of)
+apply (auto elim: zless_asym simp add: not_zle_iff_zless)
+apply (blast intro: zless_zle_trans)
+done
+
+lemma zless_nat_conj: "(nat_of(w) < nat_of(z)) <-> ($#0 $< z & w $< z)"
+apply (case_tac "$#0 $< z")
+apply (auto simp add: zless_nat_conj_lemma nat_le_int0 not_zless_iff_zle)
+done
+
+(*This simprule cannot be added unless we can find a way to make eq_integ_of_eq
+  unconditional!
+  [The condition "True" is a hack to prevent looping.
+    Conditional rewrite rules are tried after unconditional ones, so a rule
+    like eq_nat_number_of will be tried first to eliminate #mm=#nn.]
+  lemma integ_of_reorient [simp]:
+       "True ==> (integ_of(w) = x) <-> (x = integ_of(w))"
+  by auto
+*)
+
+lemma integ_of_minus_reorient [simp]:
+     "(integ_of(w) = $- x) <-> ($- x = integ_of(w))"
+by auto
+
+lemma integ_of_add_reorient [simp]:
+     "(integ_of(w) = x $+ y) <-> (x $+ y = integ_of(w))"
+by auto
+
+lemma integ_of_diff_reorient [simp]:
+     "(integ_of(w) = x $- y) <-> (x $- y = integ_of(w))"
+by auto
+
+lemma integ_of_mult_reorient [simp]:
+     "(integ_of(w) = x $* y) <-> (x $* y = integ_of(w))"
+by auto
+
+ML
+{*
+val bin_pred_Pls = thm "bin_pred_Pls";
+val bin_pred_Min = thm "bin_pred_Min";
+val bin_minus_Pls = thm "bin_minus_Pls";
+val bin_minus_Min = thm "bin_minus_Min";
+
+val NCons_Pls_0 = thm "NCons_Pls_0";
+val NCons_Pls_1 = thm "NCons_Pls_1";
+val NCons_Min_0 = thm "NCons_Min_0";
+val NCons_Min_1 = thm "NCons_Min_1";
+val NCons_BIT = thm "NCons_BIT";
+val NCons_simps = thms "NCons_simps";
+val integ_of_type = thm "integ_of_type";
+val NCons_type = thm "NCons_type";
+val bin_succ_type = thm "bin_succ_type";
+val bin_pred_type = thm "bin_pred_type";
+val bin_minus_type = thm "bin_minus_type";
+val bin_add_type = thm "bin_add_type";
+val bin_mult_type = thm "bin_mult_type";
+val integ_of_NCons = thm "integ_of_NCons";
+val integ_of_succ = thm "integ_of_succ";
+val integ_of_pred = thm "integ_of_pred";
+val integ_of_minus = thm "integ_of_minus";
+val bin_add_Pls = thm "bin_add_Pls";
+val bin_add_Pls_right = thm "bin_add_Pls_right";
+val bin_add_Min = thm "bin_add_Min";
+val bin_add_Min_right = thm "bin_add_Min_right";
+val bin_add_BIT_Pls = thm "bin_add_BIT_Pls";
+val bin_add_BIT_Min = thm "bin_add_BIT_Min";
+val bin_add_BIT_BIT = thm "bin_add_BIT_BIT";
+val integ_of_add = thm "integ_of_add";
+val diff_integ_of_eq = thm "diff_integ_of_eq";
+val integ_of_mult = thm "integ_of_mult";
+val bin_succ_1 = thm "bin_succ_1";
+val bin_succ_0 = thm "bin_succ_0";
+val bin_pred_1 = thm "bin_pred_1";
+val bin_pred_0 = thm "bin_pred_0";
+val bin_minus_1 = thm "bin_minus_1";
+val bin_minus_0 = thm "bin_minus_0";
+val bin_add_BIT_11 = thm "bin_add_BIT_11";
+val bin_add_BIT_10 = thm "bin_add_BIT_10";
+val bin_add_BIT_0 = thm "bin_add_BIT_0";
+val bin_mult_1 = thm "bin_mult_1";
+val bin_mult_0 = thm "bin_mult_0";
+val int_of_0 = thm "int_of_0";
+val int_of_succ = thm "int_of_succ";
+val zminus_0 = thm "zminus_0";
+val zadd_0_intify = thm "zadd_0_intify";
+val zadd_0_right_intify = thm "zadd_0_right_intify";
+val zmult_1_intify = thm "zmult_1_intify";
+val zmult_1_right_intify = thm "zmult_1_right_intify";
+val zmult_0 = thm "zmult_0";
+val zmult_0_right = thm "zmult_0_right";
+val zmult_minus1 = thm "zmult_minus1";
+val zmult_minus1_right = thm "zmult_minus1_right";
+val eq_integ_of_eq = thm "eq_integ_of_eq";
+val iszero_integ_of_Pls = thm "iszero_integ_of_Pls";
+val nonzero_integ_of_Min = thm "nonzero_integ_of_Min";
+val iszero_integ_of_BIT = thm "iszero_integ_of_BIT";
+val iszero_integ_of_0 = thm "iszero_integ_of_0";
+val iszero_integ_of_1 = thm "iszero_integ_of_1";
+val less_integ_of_eq_neg = thm "less_integ_of_eq_neg";
+val not_neg_integ_of_Pls = thm "not_neg_integ_of_Pls";
+val neg_integ_of_Min = thm "neg_integ_of_Min";
+val neg_integ_of_BIT = thm "neg_integ_of_BIT";
+val le_integ_of_eq_not_less = thm "le_integ_of_eq_not_less";
+val bin_arith_extra_simps = thms "bin_arith_extra_simps";
+val bin_arith_simps = thms "bin_arith_simps";
+val bin_rel_simps = thms "bin_rel_simps";
+val add_integ_of_left = thm "add_integ_of_left";
+val mult_integ_of_left = thm "mult_integ_of_left";
+val add_integ_of_diff1 = thm "add_integ_of_diff1";
+val add_integ_of_diff2 = thm "add_integ_of_diff2";
+val zdiff0 = thm "zdiff0";
+val zdiff0_right = thm "zdiff0_right";
+val zdiff_self = thm "zdiff_self";
+val znegative_iff_zless_0 = thm "znegative_iff_zless_0";
+val zero_zless_imp_znegative_zminus = thm "zero_zless_imp_znegative_zminus";
+val zero_zle_int_of = thm "zero_zle_int_of";
+val nat_of_0 = thm "nat_of_0";
+val nat_le_int0 = thm "nat_le_int0";
+val int_of_eq_0_imp_natify_eq_0 = thm "int_of_eq_0_imp_natify_eq_0";
+val nat_of_zminus_int_of = thm "nat_of_zminus_int_of";
+val int_of_nat_of = thm "int_of_nat_of";
+val int_of_nat_of_if = thm "int_of_nat_of_if";
+val zless_nat_iff_int_zless = thm "zless_nat_iff_int_zless";
+val zless_nat_conj = thm "zless_nat_conj";
+val integ_of_minus_reorient = thm "integ_of_minus_reorient";
+val integ_of_add_reorient = thm "integ_of_add_reorient";
+val integ_of_diff_reorient = thm "integ_of_diff_reorient";
+val integ_of_mult_reorient = thm "integ_of_mult_reorient";
+*}
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/EquivClass.thy	Thu May 31 12:06:31 2007 +0200
@@ -0,0 +1,265 @@
+(*  Title:      ZF/EquivClass.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1994  University of Cambridge
+
+*)
+
+header{*Equivalence Relations*}
+
+theory EquivClass imports Trancl Perm begin
+
+constdefs
+
+  quotient   :: "[i,i]=>i"    (infixl "'/'/" 90)  (*set of equiv classes*)
+      "A//r == {r``{x} . x:A}"
+
+  congruent  :: "[i,i=>i]=>o"
+      "congruent(r,b) == ALL y z. <y,z>:r --> b(y)=b(z)"
+
+  congruent2 :: "[i,i,[i,i]=>i]=>o"
+      "congruent2(r1,r2,b) == ALL y1 z1 y2 z2.
+           <y1,z1>:r1 --> <y2,z2>:r2 --> b(y1,y2) = b(z1,z2)"
+
+syntax
+  RESPECTS ::"[i=>i, i] => o"  (infixr "respects" 80)
+  RESPECTS2 ::"[i=>i, i] => o"  (infixr "respects2 " 80)
+    --{*Abbreviation for the common case where the relations are identical*}
+
+translations
+  "f respects r" == "congruent(r,f)"
+  "f respects2 r" => "congruent2(r,r,f)"
+
+subsection{*Suppes, Theorem 70:
+    @{term r} is an equiv relation iff @{term "converse(r) O r = r"}*}
+
+(** first half: equiv(A,r) ==> converse(r) O r = r **)
+
+lemma sym_trans_comp_subset:
+    "[| sym(r); trans(r) |] ==> converse(r) O r <= r"
+by (unfold trans_def sym_def, blast)
+
+lemma refl_comp_subset:
+    "[| refl(A,r); r <= A*A |] ==> r <= converse(r) O r"
+by (unfold refl_def, blast)
+
+lemma equiv_comp_eq:
+    "equiv(A,r) ==> converse(r) O r = r"
+apply (unfold equiv_def)
+apply (blast del: subsetI intro!: sym_trans_comp_subset refl_comp_subset)
+done
+
+(*second half*)
+lemma comp_equivI:
+    "[| converse(r) O r = r;  domain(r) = A |] ==> equiv(A,r)"
+apply (unfold equiv_def refl_def sym_def trans_def)
+apply (erule equalityE)
+apply (subgoal_tac "ALL x y. <x,y> : r --> <y,x> : r", blast+)
+done
+
+(** Equivalence classes **)
+
+(*Lemma for the next result*)
+lemma equiv_class_subset:
+    "[| sym(r);  trans(r);  <a,b>: r |] ==> r``{a} <= r``{b}"
+by (unfold trans_def sym_def, blast)
+
+lemma equiv_class_eq:
+    "[| equiv(A,r);  <a,b>: r |] ==> r``{a} = r``{b}"
+apply (unfold equiv_def)
+apply (safe del: subsetI intro!: equalityI equiv_class_subset)
+apply (unfold sym_def, blast)
+done
+
+lemma equiv_class_self:
+    "[| equiv(A,r);  a: A |] ==> a: r``{a}"
+by (unfold equiv_def refl_def, blast)
+
+(*Lemma for the next result*)
+lemma subset_equiv_class:
+    "[| equiv(A,r);  r``{b} <= r``{a};  b: A |] ==> <a,b>: r"
+by (unfold equiv_def refl_def, blast)
+
+lemma eq_equiv_class: "[| r``{a} = r``{b};  equiv(A,r);  b: A |] ==> <a,b>: r"
+by (assumption | rule equalityD2 subset_equiv_class)+
+
+(*thus r``{a} = r``{b} as well*)
+lemma equiv_class_nondisjoint:
+    "[| equiv(A,r);  x: (r``{a} Int r``{b}) |] ==> <a,b>: r"
+by (unfold equiv_def trans_def sym_def, blast)
+
+lemma equiv_type: "equiv(A,r) ==> r <= A*A"
+by (unfold equiv_def, blast)
+
+lemma equiv_class_eq_iff:
+     "equiv(A,r) ==> <x,y>: r <-> r``{x} = r``{y} & x:A & y:A"
+by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type)
+
+lemma eq_equiv_class_iff:
+     "[| equiv(A,r);  x: A;  y: A |] ==> r``{x} = r``{y} <-> <x,y>: r"
+by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type)
+
+(*** Quotients ***)
+
+(** Introduction/elimination rules -- needed? **)
+
+lemma quotientI [TC]: "x:A ==> r``{x}: A//r"
+apply (unfold quotient_def)
+apply (erule RepFunI)
+done
+
+lemma quotientE:
+    "[| X: A//r;  !!x. [| X = r``{x};  x:A |] ==> P |] ==> P"
+by (unfold quotient_def, blast)
+
+lemma Union_quotient:
+    "equiv(A,r) ==> Union(A//r) = A"
+by (unfold equiv_def refl_def quotient_def, blast)
+
+lemma quotient_disj:
+    "[| equiv(A,r);  X: A//r;  Y: A//r |] ==> X=Y | (X Int Y <= 0)"
+apply (unfold quotient_def)
+apply (safe intro!: equiv_class_eq, assumption)
+apply (unfold equiv_def trans_def sym_def, blast)
+done
+
+subsection{*Defining Unary Operations upon Equivalence Classes*}
+
+(** Could have a locale with the premises equiv(A,r)  and  congruent(r,b)
+**)
+
+(*Conversion rule*)
+lemma UN_equiv_class:
+    "[| equiv(A,r);  b respects r;  a: A |] ==> (UN x:r``{a}. b(x)) = b(a)"
+apply (subgoal_tac "\<forall>x \<in> r``{a}. b(x) = b(a)") 
+ apply simp
+ apply (blast intro: equiv_class_self)  
+apply (unfold equiv_def sym_def congruent_def, blast)
+done
+
+(*type checking of  UN x:r``{a}. b(x) *)
+lemma UN_equiv_class_type:
+    "[| equiv(A,r);  b respects r;  X: A//r;  !!x.  x : A ==> b(x) : B |]
+     ==> (UN x:X. b(x)) : B"
+apply (unfold quotient_def, safe)
+apply (simp (no_asm_simp) add: UN_equiv_class)
+done
+
+(*Sufficient conditions for injectiveness.  Could weaken premises!
+  major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B
+*)
+lemma UN_equiv_class_inject:
+    "[| equiv(A,r);   b respects r;
+        (UN x:X. b(x))=(UN y:Y. b(y));  X: A//r;  Y: A//r;
+        !!x y. [| x:A; y:A; b(x)=b(y) |] ==> <x,y>:r |]
+     ==> X=Y"
+apply (unfold quotient_def, safe)
+apply (rule equiv_class_eq, assumption)
+apply (simp add: UN_equiv_class [of A r b])  
+done
+
+
+subsection{*Defining Binary Operations upon Equivalence Classes*}
+
+lemma congruent2_implies_congruent:
+    "[| equiv(A,r1);  congruent2(r1,r2,b);  a: A |] ==> congruent(r2,b(a))"
+by (unfold congruent_def congruent2_def equiv_def refl_def, blast)
+
+lemma congruent2_implies_congruent_UN:
+    "[| equiv(A1,r1);  equiv(A2,r2);  congruent2(r1,r2,b);  a: A2 |] ==>
+     congruent(r1, %x1. \<Union>x2 \<in> r2``{a}. b(x1,x2))"
+apply (unfold congruent_def, safe)
+apply (frule equiv_type [THEN subsetD], assumption)
+apply clarify 
+apply (simp add: UN_equiv_class congruent2_implies_congruent)
+apply (unfold congruent2_def equiv_def refl_def, blast)
+done
+
+lemma UN_equiv_class2:
+    "[| equiv(A1,r1);  equiv(A2,r2);  congruent2(r1,r2,b);  a1: A1;  a2: A2 |]
+     ==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. b(x1,x2)) = b(a1,a2)"
+by (simp add: UN_equiv_class congruent2_implies_congruent
+              congruent2_implies_congruent_UN)
+
+(*type checking*)
+lemma UN_equiv_class_type2:
+    "[| equiv(A,r);  b respects2 r;
+        X1: A//r;  X2: A//r;
+        !!x1 x2.  [| x1: A; x2: A |] ==> b(x1,x2) : B
+     |] ==> (UN x1:X1. UN x2:X2. b(x1,x2)) : B"
+apply (unfold quotient_def, safe)
+apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN 
+                    congruent2_implies_congruent quotientI)
+done
+
+
+(*Suggested by John Harrison -- the two subproofs may be MUCH simpler
+  than the direct proof*)
+lemma congruent2I:
+    "[|  equiv(A1,r1);  equiv(A2,r2);  
+        !! y z w. [| w \<in> A2;  <y,z> \<in> r1 |] ==> b(y,w) = b(z,w);
+        !! y z w. [| w \<in> A1;  <y,z> \<in> r2 |] ==> b(w,y) = b(w,z)
+     |] ==> congruent2(r1,r2,b)"
+apply (unfold congruent2_def equiv_def refl_def, safe)
+apply (blast intro: trans) 
+done
+
+lemma congruent2_commuteI:
+ assumes equivA: "equiv(A,r)"
+     and commute: "!! y z. [| y: A;  z: A |] ==> b(y,z) = b(z,y)"
+     and congt:   "!! y z w. [| w: A;  <y,z>: r |] ==> b(w,y) = b(w,z)"
+ shows "b respects2 r"
+apply (insert equivA [THEN equiv_type, THEN subsetD]) 
+apply (rule congruent2I [OF equivA equivA])
+apply (rule commute [THEN trans])
+apply (rule_tac [3] commute [THEN trans, symmetric])
+apply (rule_tac [5] sym) 
+apply (blast intro: congt)+
+done
+
+(*Obsolete?*)
+lemma congruent_commuteI:
+    "[| equiv(A,r);  Z: A//r;
+        !!w. [| w: A |] ==> congruent(r, %z. b(w,z));
+        !!x y. [| x: A;  y: A |] ==> b(y,x) = b(x,y)
+     |] ==> congruent(r, %w. UN z: Z. b(w,z))"
+apply (simp (no_asm) add: congruent_def)
+apply (safe elim!: quotientE)
+apply (frule equiv_type [THEN subsetD], assumption)
+apply (simp add: UN_equiv_class [of A r]) 
+apply (simp add: congruent_def) 
+done
+
+ML
+{*
+val sym_trans_comp_subset = thm "sym_trans_comp_subset";
+val refl_comp_subset = thm "refl_comp_subset";
+val equiv_comp_eq = thm "equiv_comp_eq";
+val comp_equivI = thm "comp_equivI";
+val equiv_class_subset = thm "equiv_class_subset";
+val equiv_class_eq = thm "equiv_class_eq";
+val equiv_class_self = thm "equiv_class_self";
+val subset_equiv_class = thm "subset_equiv_class";
+val eq_equiv_class = thm "eq_equiv_class";
+val equiv_class_nondisjoint = thm "equiv_class_nondisjoint";
+val equiv_type = thm "equiv_type";
+val equiv_class_eq_iff = thm "equiv_class_eq_iff";
+val eq_equiv_class_iff = thm "eq_equiv_class_iff";
+val quotientI = thm "quotientI";
+val quotientE = thm "quotientE";
+val Union_quotient = thm "Union_quotient";
+val quotient_disj = thm "quotient_disj";
+val UN_equiv_class = thm "UN_equiv_class";
+val UN_equiv_class_type = thm "UN_equiv_class_type";
+val UN_equiv_class_inject = thm "UN_equiv_class_inject";
+val congruent2_implies_congruent = thm "congruent2_implies_congruent";
+val congruent2_implies_congruent_UN = thm "congruent2_implies_congruent_UN";
+val congruent_commuteI = thm "congruent_commuteI";
+val UN_equiv_class2 = thm "UN_equiv_class2";
+val UN_equiv_class_type2 = thm "UN_equiv_class_type2";
+val congruent2I = thm "congruent2I";
+val congruent2_commuteI = thm "congruent2_commuteI";
+val congruent_commuteI = thm "congruent_commuteI";
+*}
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Int.thy	Thu May 31 12:06:31 2007 +0200
@@ -0,0 +1,1057 @@
+(*  Title:      ZF/Int.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+*)
+
+header{*The Integers as Equivalence Classes Over Pairs of Natural Numbers*}
+
+theory Int imports EquivClass ArithSimp begin
+
+constdefs
+  intrel :: i
+    "intrel == {p : (nat*nat)*(nat*nat).                 
+                \<exists>x1 y1 x2 y2. p=<<x1,y1>,<x2,y2>> & x1#+y2 = x2#+y1}"
+
+  int :: i
+    "int == (nat*nat)//intrel"  
+
+  int_of :: "i=>i" --{*coercion from nat to int*}    ("$# _" [80] 80)
+    "$# m == intrel `` {<natify(m), 0>}"
+
+  intify :: "i=>i" --{*coercion from ANYTHING to int*}
+    "intify(m) == if m : int then m else $#0"
+
+  raw_zminus :: "i=>i"
+    "raw_zminus(z) == \<Union><x,y>\<in>z. intrel``{<y,x>}"
+
+  zminus :: "i=>i"                                 ("$- _" [80] 80)
+    "$- z == raw_zminus (intify(z))"
+
+  znegative   ::      "i=>o"
+    "znegative(z) == \<exists>x y. x<y & y\<in>nat & <x,y>\<in>z"
+
+  iszero      ::      "i=>o"
+    "iszero(z) == z = $# 0"
+    
+  raw_nat_of  :: "i=>i"
+  "raw_nat_of(z) == natify (\<Union><x,y>\<in>z. x#-y)"
+
+  nat_of  :: "i=>i"
+  "nat_of(z) == raw_nat_of (intify(z))"
+
+  zmagnitude  ::      "i=>i"
+  --{*could be replaced by an absolute value function from int to int?*}
+    "zmagnitude(z) ==
+     THE m. m\<in>nat & ((~ znegative(z) & z = $# m) |
+		       (znegative(z) & $- z = $# m))"
+
+  raw_zmult   ::      "[i,i]=>i"
+    (*Cannot use UN<x1,y2> here or in zadd because of the form of congruent2.
+      Perhaps a "curried" or even polymorphic congruent predicate would be
+      better.*)
+     "raw_zmult(z1,z2) == 
+       \<Union>p1\<in>z1. \<Union>p2\<in>z2.  split(%x1 y1. split(%x2 y2.        
+                   intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1)"
+
+  zmult       ::      "[i,i]=>i"      (infixl "$*" 70)
+     "z1 $* z2 == raw_zmult (intify(z1),intify(z2))"
+
+  raw_zadd    ::      "[i,i]=>i"
+     "raw_zadd (z1, z2) == 
+       \<Union>z1\<in>z1. \<Union>z2\<in>z2. let <x1,y1>=z1; <x2,y2>=z2                 
+                           in intrel``{<x1#+x2, y1#+y2>}"
+
+  zadd        ::      "[i,i]=>i"      (infixl "$+" 65)
+     "z1 $+ z2 == raw_zadd (intify(z1),intify(z2))"
+
+  zdiff        ::      "[i,i]=>i"      (infixl "$-" 65)
+     "z1 $- z2 == z1 $+ zminus(z2)"
+
+  zless        ::      "[i,i]=>o"      (infixl "$<" 50)
+     "z1 $< z2 == znegative(z1 $- z2)"
+  
+  zle          ::      "[i,i]=>o"      (infixl "$<=" 50)
+     "z1 $<= z2 == z1 $< z2 | intify(z1)=intify(z2)"
+  
+
+syntax (xsymbols)
+  zmult :: "[i,i]=>i"          (infixl "$\<times>" 70)
+  zle   :: "[i,i]=>o"          (infixl "$\<le>" 50)  --{*less than or equals*}
+
+syntax (HTML output)
+  zmult :: "[i,i]=>i"          (infixl "$\<times>" 70)
+  zle   :: "[i,i]=>o"          (infixl "$\<le>" 50)
+
+
+declare quotientE [elim!]
+
+subsection{*Proving that @{term intrel} is an equivalence relation*}
+
+(** Natural deduction for intrel **)
+
+lemma intrel_iff [simp]: 
+    "<<x1,y1>,<x2,y2>>: intrel <->  
+     x1\<in>nat & y1\<in>nat & x2\<in>nat & y2\<in>nat & x1#+y2 = x2#+y1"
+by (simp add: intrel_def)
+
+lemma intrelI [intro!]: 
+    "[| x1#+y2 = x2#+y1; x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |]   
+     ==> <<x1,y1>,<x2,y2>>: intrel"
+by (simp add: intrel_def)
+
+lemma intrelE [elim!]:
+  "[| p: intrel;   
+      !!x1 y1 x2 y2. [| p = <<x1,y1>,<x2,y2>>;  x1#+y2 = x2#+y1;  
+                        x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |] ==> Q |]  
+   ==> Q"
+by (simp add: intrel_def, blast) 
+
+lemma int_trans_lemma:
+     "[| x1 #+ y2 = x2 #+ y1; x2 #+ y3 = x3 #+ y2 |] ==> x1 #+ y3 = x3 #+ y1"
+apply (rule sym)
+apply (erule add_left_cancel)+
+apply (simp_all (no_asm_simp))
+done
+
+lemma equiv_intrel: "equiv(nat*nat, intrel)"
+apply (simp add: equiv_def refl_def sym_def trans_def)
+apply (fast elim!: sym int_trans_lemma)
+done
+
+lemma image_intrel_int: "[| m\<in>nat; n\<in>nat |] ==> intrel `` {<m,n>} : int"
+by (simp add: int_def)
+
+declare equiv_intrel [THEN eq_equiv_class_iff, simp]
+declare conj_cong [cong]
+
+lemmas eq_intrelD = eq_equiv_class [OF _ equiv_intrel]
+
+(** int_of: the injection from nat to int **)
+
+lemma int_of_type [simp,TC]: "$#m : int"
+by (simp add: int_def quotient_def int_of_def, auto)
+
+lemma int_of_eq [iff]: "($# m = $# n) <-> natify(m)=natify(n)"
+by (simp add: int_of_def)
+
+lemma int_of_inject: "[| $#m = $#n;  m\<in>nat;  n\<in>nat |] ==> m=n"
+by (drule int_of_eq [THEN iffD1], auto)
+
+
+(** intify: coercion from anything to int **)
+
+lemma intify_in_int [iff,TC]: "intify(x) : int"
+by (simp add: intify_def)
+
+lemma intify_ident [simp]: "n : int ==> intify(n) = n"
+by (simp add: intify_def)
+
+
+subsection{*Collapsing rules: to remove @{term intify}
+            from arithmetic expressions*}
+
+lemma intify_idem [simp]: "intify(intify(x)) = intify(x)"
+by simp
+
+lemma int_of_natify [simp]: "$# (natify(m)) = $# m"
+by (simp add: int_of_def)
+
+lemma zminus_intify [simp]: "$- (intify(m)) = $- m"
+by (simp add: zminus_def)
+
+(** Addition **)
+
+lemma zadd_intify1 [simp]: "intify(x) $+ y = x $+ y"
+by (simp add: zadd_def)
+
+lemma zadd_intify2 [simp]: "x $+ intify(y) = x $+ y"
+by (simp add: zadd_def)
+
+(** Subtraction **)
+
+lemma zdiff_intify1 [simp]:"intify(x) $- y = x $- y"
+by (simp add: zdiff_def)
+
+lemma zdiff_intify2 [simp]:"x $- intify(y) = x $- y"
+by (simp add: zdiff_def)
+
+(** Multiplication **)
+
+lemma zmult_intify1 [simp]:"intify(x) $* y = x $* y"
+by (simp add: zmult_def)
+
+lemma zmult_intify2 [simp]:"x $* intify(y) = x $* y"
+by (simp add: zmult_def)
+
+(** Orderings **)
+
+lemma zless_intify1 [simp]:"intify(x) $< y <-> x $< y"
+by (simp add: zless_def)
+
+lemma zless_intify2 [simp]:"x $< intify(y) <-> x $< y"
+by (simp add: zless_def)
+
+lemma zle_intify1 [simp]:"intify(x) $<= y <-> x $<= y"
+by (simp add: zle_def)
+
+lemma zle_intify2 [simp]:"x $<= intify(y) <-> x $<= y"
+by (simp add: zle_def)
+
+
+subsection{*@{term zminus}: unary negation on @{term int}*}
+
+lemma zminus_congruent: "(%<x,y>. intrel``{<y,x>}) respects intrel"
+by (auto simp add: congruent_def add_ac)
+
+lemma raw_zminus_type: "z : int ==> raw_zminus(z) : int"
+apply (simp add: int_def raw_zminus_def)
+apply (typecheck add: UN_equiv_class_type [OF equiv_intrel zminus_congruent])
+done
+
+lemma zminus_type [TC,iff]: "$-z : int"
+by (simp add: zminus_def raw_zminus_type)
+
+lemma raw_zminus_inject: 
+     "[| raw_zminus(z) = raw_zminus(w);  z: int;  w: int |] ==> z=w"
+apply (simp add: int_def raw_zminus_def)
+apply (erule UN_equiv_class_inject [OF equiv_intrel zminus_congruent], safe)
+apply (auto dest: eq_intrelD simp add: add_ac)
+done
+
+lemma zminus_inject_intify [dest!]: "$-z = $-w ==> intify(z) = intify(w)"
+apply (simp add: zminus_def)
+apply (blast dest!: raw_zminus_inject)
+done
+
+lemma zminus_inject: "[| $-z = $-w;  z: int;  w: int |] ==> z=w"
+by auto
+
+lemma raw_zminus: 
+    "[| x\<in>nat;  y\<in>nat |] ==> raw_zminus(intrel``{<x,y>}) = intrel `` {<y,x>}"
+apply (simp add: raw_zminus_def UN_equiv_class [OF equiv_intrel zminus_congruent])
+done
+
+lemma zminus: 
+    "[| x\<in>nat;  y\<in>nat |]  
+     ==> $- (intrel``{<x,y>}) = intrel `` {<y,x>}"
+by (simp add: zminus_def raw_zminus image_intrel_int)
+
+lemma raw_zminus_zminus: "z : int ==> raw_zminus (raw_zminus(z)) = z"
+by (auto simp add: int_def raw_zminus)
+
+lemma zminus_zminus_intify [simp]: "$- ($- z) = intify(z)"
+by (simp add: zminus_def raw_zminus_type raw_zminus_zminus)
+
+lemma zminus_int0 [simp]: "$- ($#0) = $#0"
+by (simp add: int_of_def zminus)
+
+lemma zminus_zminus: "z : int ==> $- ($- z) = z"
+by simp
+
+
+subsection{*@{term znegative}: the test for negative integers*}
+
+lemma znegative: "[| x\<in>nat; y\<in>nat |] ==> znegative(intrel``{<x,y>}) <-> x<y"
+apply (cases "x<y") 
+apply (auto simp add: znegative_def not_lt_iff_le)
+apply (subgoal_tac "y #+ x2 < x #+ y2", force) 
+apply (rule add_le_lt_mono, auto) 
+done
+
+(*No natural number is negative!*)
+lemma not_znegative_int_of [iff]: "~ znegative($# n)"
+by (simp add: znegative int_of_def) 
+
+lemma znegative_zminus_int_of [simp]: "znegative($- $# succ(n))"
+by (simp add: znegative int_of_def zminus natify_succ)
+
+lemma not_znegative_imp_zero: "~ znegative($- $# n) ==> natify(n)=0"
+by (simp add: znegative int_of_def zminus Ord_0_lt_iff [THEN iff_sym])
+
+
+subsection{*@{term nat_of}: Coercion of an Integer to a Natural Number*}
+
+lemma nat_of_intify [simp]: "nat_of(intify(z)) = nat_of(z)"
+by (simp add: nat_of_def)
+
+lemma nat_of_congruent: "(\<lambda>x. (\<lambda>\<langle>x,y\<rangle>. x #- y)(x)) respects intrel"
+by (auto simp add: congruent_def split add: nat_diff_split)
+
+lemma raw_nat_of: 
+    "[| x\<in>nat;  y\<in>nat |] ==> raw_nat_of(intrel``{<x,y>}) = x#-y"
+by (simp add: raw_nat_of_def UN_equiv_class [OF equiv_intrel nat_of_congruent])
+
+lemma raw_nat_of_int_of: "raw_nat_of($# n) = natify(n)"
+by (simp add: int_of_def raw_nat_of)
+
+lemma nat_of_int_of [simp]: "nat_of($# n) = natify(n)"
+by (simp add: raw_nat_of_int_of nat_of_def)
+
+lemma raw_nat_of_type: "raw_nat_of(z) \<in> nat"
+by (simp add: raw_nat_of_def)
+
+lemma nat_of_type [iff,TC]: "nat_of(z) \<in> nat"
+by (simp add: nat_of_def raw_nat_of_type)
+
+subsection{*zmagnitude: magnitide of an integer, as a natural number*}
+
+lemma zmagnitude_int_of [simp]: "zmagnitude($# n) = natify(n)"
+by (auto simp add: zmagnitude_def int_of_eq)
+
+lemma natify_int_of_eq: "natify(x)=n ==> $#x = $# n"
+apply (drule sym)
+apply (simp (no_asm_simp) add: int_of_eq)
+done
+
+lemma zmagnitude_zminus_int_of [simp]: "zmagnitude($- $# n) = natify(n)"
+apply (simp add: zmagnitude_def)
+apply (rule the_equality)
+apply (auto dest!: not_znegative_imp_zero natify_int_of_eq
+            iff del: int_of_eq, auto)
+done
+
+lemma zmagnitude_type [iff,TC]: "zmagnitude(z)\<in>nat"
+apply (simp add: zmagnitude_def)
+apply (rule theI2, auto)
+done
+
+lemma not_zneg_int_of: 
+     "[| z: int; ~ znegative(z) |] ==> \<exists>n\<in>nat. z = $# n"
+apply (auto simp add: int_def znegative int_of_def not_lt_iff_le)
+apply (rename_tac x y) 
+apply (rule_tac x="x#-y" in bexI) 
+apply (auto simp add: add_diff_inverse2) 
+done
+
+lemma not_zneg_mag [simp]:
+     "[| z: int; ~ znegative(z) |] ==> $# (zmagnitude(z)) = z"
+by (drule not_zneg_int_of, auto)
+
+lemma zneg_int_of: 
+     "[| znegative(z); z: int |] ==> \<exists>n\<in>nat. z = $- ($# succ(n))"
+by (auto simp add: int_def znegative zminus int_of_def dest!: less_imp_succ_add)
+
+lemma zneg_mag [simp]:
+     "[| znegative(z); z: int |] ==> $# (zmagnitude(z)) = $- z"
+by (drule zneg_int_of, auto)
+
+lemma int_cases: "z : int ==> \<exists>n\<in>nat. z = $# n | z = $- ($# succ(n))"
+apply (case_tac "znegative (z) ")
+prefer 2 apply (blast dest: not_zneg_mag sym)
+apply (blast dest: zneg_int_of)
+done
+
+lemma not_zneg_raw_nat_of:
+     "[| ~ znegative(z); z: int |] ==> $# (raw_nat_of(z)) = z"
+apply (drule not_zneg_int_of)
+apply (auto simp add: raw_nat_of_type raw_nat_of_int_of)
+done
+
+lemma not_zneg_nat_of_intify:
+     "~ znegative(intify(z)) ==> $# (nat_of(z)) = intify(z)"
+by (simp (no_asm_simp) add: nat_of_def not_zneg_raw_nat_of)
+
+lemma not_zneg_nat_of: "[| ~ znegative(z); z: int |] ==> $# (nat_of(z)) = z"
+apply (simp (no_asm_simp) add: not_zneg_nat_of_intify)
+done
+
+lemma zneg_nat_of [simp]: "znegative(intify(z)) ==> nat_of(z) = 0"
+apply (subgoal_tac "intify(z) \<in> int")
+apply (simp add: int_def) 
+apply (auto simp add: znegative nat_of_def raw_nat_of 
+            split add: nat_diff_split) 
+done
+
+
+subsection{*@{term zadd}: addition on int*}
+
+text{*Congruence Property for Addition*}
+lemma zadd_congruent2: 
+    "(%z1 z2. let <x1,y1>=z1; <x2,y2>=z2                  
+                            in intrel``{<x1#+x2, y1#+y2>})
+     respects2 intrel"
+apply (simp add: congruent2_def)
+(*Proof via congruent2_commuteI seems longer*)
+apply safe
+apply (simp (no_asm_simp) add: add_assoc Let_def)
+(*The rest should be trivial, but rearranging terms is hard
+  add_ac does not help rewriting with the assumptions.*)
+apply (rule_tac m1 = x1a in add_left_commute [THEN ssubst])
+apply (rule_tac m1 = x2a in add_left_commute [THEN ssubst])
+apply (simp (no_asm_simp) add: add_assoc [symmetric])
+done
+
+lemma raw_zadd_type: "[| z: int;  w: int |] ==> raw_zadd(z,w) : int"
+apply (simp add: int_def raw_zadd_def)
+apply (rule UN_equiv_class_type2 [OF equiv_intrel zadd_congruent2], assumption+)
+apply (simp add: Let_def)
+done
+
+lemma zadd_type [iff,TC]: "z $+ w : int"
+by (simp add: zadd_def raw_zadd_type)
+
+lemma raw_zadd: 
+  "[| x1\<in>nat; y1\<in>nat;  x2\<in>nat; y2\<in>nat |]               
+   ==> raw_zadd (intrel``{<x1,y1>}, intrel``{<x2,y2>}) =   
+       intrel `` {<x1#+x2, y1#+y2>}"
+apply (simp add: raw_zadd_def 
+             UN_equiv_class2 [OF equiv_intrel equiv_intrel zadd_congruent2])
+apply (simp add: Let_def)
+done
+
+lemma zadd: 
+  "[| x1\<in>nat; y1\<in>nat;  x2\<in>nat; y2\<in>nat |]          
+   ==> (intrel``{<x1,y1>}) $+ (intrel``{<x2,y2>}) =   
+       intrel `` {<x1#+x2, y1#+y2>}"
+by (simp add: zadd_def raw_zadd image_intrel_int)
+
+lemma raw_zadd_int0: "z : int ==> raw_zadd ($#0,z) = z"
+by (auto simp add: int_def int_of_def raw_zadd)
+
+lemma zadd_int0_intify [simp]: "$#0 $+ z = intify(z)"
+by (simp add: zadd_def raw_zadd_int0)
+
+lemma zadd_int0: "z: int ==> $#0 $+ z = z"
+by simp
+
+lemma raw_zminus_zadd_distrib: 
+     "[| z: int;  w: int |] ==> $- raw_zadd(z,w) = raw_zadd($- z, $- w)"
+by (auto simp add: zminus raw_zadd int_def)
+
+lemma zminus_zadd_distrib [simp]: "$- (z $+ w) = $- z $+ $- w"
+by (simp add: zadd_def raw_zminus_zadd_distrib)
+
+lemma raw_zadd_commute:
+     "[| z: int;  w: int |] ==> raw_zadd(z,w) = raw_zadd(w,z)"
+by (auto simp add: raw_zadd add_ac int_def)
+
+lemma zadd_commute: "z $+ w = w $+ z"
+by (simp add: zadd_def raw_zadd_commute)
+
+lemma raw_zadd_assoc: 
+    "[| z1: int;  z2: int;  z3: int |]    
+     ==> raw_zadd (raw_zadd(z1,z2),z3) = raw_zadd(z1,raw_zadd(z2,z3))"
+by (auto simp add: int_def raw_zadd add_assoc)
+
+lemma zadd_assoc: "(z1 $+ z2) $+ z3 = z1 $+ (z2 $+ z3)"
+by (simp add: zadd_def raw_zadd_type raw_zadd_assoc)
+
+(*For AC rewriting*)
+lemma zadd_left_commute: "z1$+(z2$+z3) = z2$+(z1$+z3)"
+apply (simp add: zadd_assoc [symmetric])
+apply (simp add: zadd_commute)
+done
+
+(*Integer addition is an AC operator*)
+lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute
+
+lemma int_of_add: "$# (m #+ n) = ($#m) $+ ($#n)"
+by (simp add: int_of_def zadd)
+
+lemma int_succ_int_1: "$# succ(m) = $# 1 $+ ($# m)"
+by (simp add: int_of_add [symmetric] natify_succ)
+
+lemma int_of_diff: 
+     "[| m\<in>nat;  n le m |] ==> $# (m #- n) = ($#m) $- ($#n)"
+apply (simp add: int_of_def zdiff_def)
+apply (frule lt_nat_in_nat)
+apply (simp_all add: zadd zminus add_diff_inverse2)
+done
+
+lemma raw_zadd_zminus_inverse: "z : int ==> raw_zadd (z, $- z) = $#0"
+by (auto simp add: int_def int_of_def zminus raw_zadd add_commute)
+
+lemma zadd_zminus_inverse [simp]: "z $+ ($- z) = $#0"
+apply (simp add: zadd_def)
+apply (subst zminus_intify [symmetric])
+apply (rule intify_in_int [THEN raw_zadd_zminus_inverse])
+done
+
+lemma zadd_zminus_inverse2 [simp]: "($- z) $+ z = $#0"
+by (simp add: zadd_commute zadd_zminus_inverse)
+
+lemma zadd_int0_right_intify [simp]: "z $+ $#0 = intify(z)"
+by (rule trans [OF zadd_commute zadd_int0_intify])
+
+lemma zadd_int0_right: "z:int ==> z $+ $#0 = z"
+by simp
+
+
+subsection{*@{term zmult}: Integer Multiplication*}
+
+text{*Congruence property for multiplication*}
+lemma zmult_congruent2:
+    "(%p1 p2. split(%x1 y1. split(%x2 y2.      
+                    intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1))
+     respects2 intrel"
+apply (rule equiv_intrel [THEN congruent2_commuteI], auto)
+(*Proof that zmult is congruent in one argument*)
+apply (rename_tac x y)
+apply (frule_tac t = "%u. x#*u" in sym [THEN subst_context])
+apply (drule_tac t = "%u. y#*u" in subst_context)
+apply (erule add_left_cancel)+
+apply (simp_all add: add_mult_distrib_left)
+done
+
+
+lemma raw_zmult_type: "[| z: int;  w: int |] ==> raw_zmult(z,w) : int"
+apply (simp add: int_def raw_zmult_def)
+apply (rule UN_equiv_class_type2 [OF equiv_intrel zmult_congruent2], assumption+)
+apply (simp add: Let_def)
+done
+
+lemma zmult_type [iff,TC]: "z $* w : int"
+by (simp add: zmult_def raw_zmult_type)
+
+lemma raw_zmult: 
+     "[| x1\<in>nat; y1\<in>nat;  x2\<in>nat; y2\<in>nat |]     
+      ==> raw_zmult(intrel``{<x1,y1>}, intrel``{<x2,y2>}) =      
+          intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
+by (simp add: raw_zmult_def 
+           UN_equiv_class2 [OF equiv_intrel equiv_intrel zmult_congruent2])
+
+lemma zmult: 
+     "[| x1\<in>nat; y1\<in>nat;  x2\<in>nat; y2\<in>nat |]     
+      ==> (intrel``{<x1,y1>}) $* (intrel``{<x2,y2>}) =      
+          intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
+by (simp add: zmult_def raw_zmult image_intrel_int)
+
+lemma raw_zmult_int0: "z : int ==> raw_zmult ($#0,z) = $#0"
+by (auto simp add: int_def int_of_def raw_zmult)
+
+lemma zmult_int0 [simp]: "$#0 $* z = $#0"
+by (simp add: zmult_def raw_zmult_int0)
+
+lemma raw_zmult_int1: "z : int ==> raw_zmult ($#1,z) = z"
+by (auto simp add: int_def int_of_def raw_zmult)
+
+lemma zmult_int1_intify [simp]: "$#1 $* z = intify(z)"
+by (simp add: zmult_def raw_zmult_int1)
+
+lemma zmult_int1: "z : int ==> $#1 $* z = z"
+by simp
+
+lemma raw_zmult_commute:
+     "[| z: int;  w: int |] ==> raw_zmult(z,w) = raw_zmult(w,z)"
+by (auto simp add: int_def raw_zmult add_ac mult_ac)
+
+lemma zmult_commute: "z $* w = w $* z"
+by (simp add: zmult_def raw_zmult_commute)
+
+lemma raw_zmult_zminus: 
+     "[| z: int;  w: int |] ==> raw_zmult($- z, w) = $- raw_zmult(z, w)"
+by (auto simp add: int_def zminus raw_zmult add_ac)
+
+lemma zmult_zminus [simp]: "($- z) $* w = $- (z $* w)"
+apply (simp add: zmult_def raw_zmult_zminus)
+apply (subst zminus_intify [symmetric], rule raw_zmult_zminus, auto)
+done
+
+lemma zmult_zminus_right [simp]: "w $* ($- z) = $- (w $* z)"
+by (simp add: zmult_commute [of w])
+
+lemma raw_zmult_assoc: 
+    "[| z1: int;  z2: int;  z3: int |]    
+     ==> raw_zmult (raw_zmult(z1,z2),z3) = raw_zmult(z1,raw_zmult(z2,z3))"
+by (auto simp add: int_def raw_zmult add_mult_distrib_left add_ac mult_ac)
+
+lemma zmult_assoc: "(z1 $* z2) $* z3 = z1 $* (z2 $* z3)"
+by (simp add: zmult_def raw_zmult_type raw_zmult_assoc)
+
+(*For AC rewriting*)
+lemma zmult_left_commute: "z1$*(z2$*z3) = z2$*(z1$*z3)"
+apply (simp add: zmult_assoc [symmetric])
+apply (simp add: zmult_commute)
+done
+
+(*Integer multiplication is an AC operator*)
+lemmas zmult_ac = zmult_assoc zmult_commute zmult_left_commute
+
+lemma raw_zadd_zmult_distrib: 
+    "[| z1: int;  z2: int;  w: int |]   
+     ==> raw_zmult(raw_zadd(z1,z2), w) =  
+         raw_zadd (raw_zmult(z1,w), raw_zmult(z2,w))"
+by (auto simp add: int_def raw_zadd raw_zmult add_mult_distrib_left add_ac mult_ac)
+
+lemma zadd_zmult_distrib: "(z1 $+ z2) $* w = (z1 $* w) $+ (z2 $* w)"
+by (simp add: zmult_def zadd_def raw_zadd_type raw_zmult_type 
+              raw_zadd_zmult_distrib)
+
+lemma zadd_zmult_distrib2: "w $* (z1 $+ z2) = (w $* z1) $+ (w $* z2)"
+by (simp add: zmult_commute [of w] zadd_zmult_distrib)
+
+lemmas int_typechecks = 
+  int_of_type zminus_type zmagnitude_type zadd_type zmult_type
+
+
+(*** Subtraction laws ***)
+
+lemma zdiff_type [iff,TC]: "z $- w : int"
+by (simp add: zdiff_def)
+
+lemma zminus_zdiff_eq [simp]: "$- (z $- y) = y $- z"
+by (simp add: zdiff_def zadd_commute)
+
+lemma zdiff_zmult_distrib: "(z1 $- z2) $* w = (z1 $* w) $- (z2 $* w)"
+apply (simp add: zdiff_def)
+apply (subst zadd_zmult_distrib)
+apply (simp add: zmult_zminus)
+done
+
+lemma zdiff_zmult_distrib2: "w $* (z1 $- z2) = (w $* z1) $- (w $* z2)"
+by (simp add: zmult_commute [of w] zdiff_zmult_distrib)
+
+lemma zadd_zdiff_eq: "x $+ (y $- z) = (x $+ y) $- z"
+by (simp add: zdiff_def zadd_ac)
+
+lemma zdiff_zadd_eq: "(x $- y) $+ z = (x $+ z) $- y"
+by (simp add: zdiff_def zadd_ac)
+
+
+subsection{*The "Less Than" Relation*}
+
+(*"Less than" is a linear ordering*)
+lemma zless_linear_lemma: 
+     "[| z: int; w: int |] ==> z$<w | z=w | w$<z"
+apply (simp add: int_def zless_def znegative_def zdiff_def, auto)
+apply (simp add: zadd zminus image_iff Bex_def)
+apply (rule_tac i = "xb#+ya" and j = "xc #+ y" in Ord_linear_lt)
+apply (force dest!: spec simp add: add_ac)+
+done
+
+lemma zless_linear: "z$<w | intify(z)=intify(w) | w$<z"
+apply (cut_tac z = " intify (z) " and w = " intify (w) " in zless_linear_lemma)
+apply auto
+done
+
+lemma zless_not_refl [iff]: "~ (z$<z)"
+by (auto simp add: zless_def znegative_def int_of_def zdiff_def)
+
+lemma neq_iff_zless: "[| x: int; y: int |] ==> (x ~= y) <-> (x $< y | y $< x)"
+by (cut_tac z = x and w = y in zless_linear, auto)
+
+lemma zless_imp_intify_neq: "w $< z ==> intify(w) ~= intify(z)"
+apply auto
+apply (subgoal_tac "~ (intify (w) $< intify (z))")
+apply (erule_tac [2] ssubst)
+apply (simp (no_asm_use))
+apply auto
+done
+
+(*This lemma allows direct proofs of other <-properties*)
+lemma zless_imp_succ_zadd_lemma: 
+    "[| w $< z; w: int; z: int |] ==> (\<exists>n\<in>nat. z = w $+ $#(succ(n)))"
+apply (simp add: zless_def znegative_def zdiff_def int_def)
+apply (auto dest!: less_imp_succ_add simp add: zadd zminus int_of_def)
+apply (rule_tac x = k in bexI)
+apply (erule add_left_cancel, auto)
+done
+
+lemma zless_imp_succ_zadd:
+     "w $< z ==> (\<exists>n\<in>nat. w $+ $#(succ(n)) = intify(z))"
+apply (subgoal_tac "intify (w) $< intify (z) ")
+apply (drule_tac w = "intify (w) " in zless_imp_succ_zadd_lemma)
+apply auto
+done
+
+lemma zless_succ_zadd_lemma: 
+    "w : int ==> w $< w $+ $# succ(n)"
+apply (simp add: zless_def znegative_def zdiff_def int_def)
+apply (auto simp add: zadd zminus int_of_def image_iff)
+apply (rule_tac x = 0 in exI, auto)
+done
+
+lemma zless_succ_zadd: "w $< w $+ $# succ(n)"
+by (cut_tac intify_in_int [THEN zless_succ_zadd_lemma], auto)
+
+lemma zless_iff_succ_zadd:
+     "w $< z <-> (\<exists>n\<in>nat. w $+ $#(succ(n)) = intify(z))"
+apply (rule iffI)
+apply (erule zless_imp_succ_zadd, auto)
+apply (rename_tac "n")
+apply (cut_tac w = w and n = n in zless_succ_zadd, auto)
+done
+
+lemma zless_int_of [simp]: "[| m\<in>nat; n\<in>nat |] ==> ($#m $< $#n) <-> (m<n)"
+apply (simp add: less_iff_succ_add zless_iff_succ_zadd int_of_add [symmetric])
+apply (blast intro: sym)
+done
+
+lemma zless_trans_lemma: 
+    "[| x $< y; y $< z; x: int; y : int; z: int |] ==> x $< z"
+apply (simp add: zless_def znegative_def zdiff_def int_def)
+apply (auto simp add: zadd zminus image_iff)
+apply (rename_tac x1 x2 y1 y2)
+apply (rule_tac x = "x1#+x2" in exI)
+apply (rule_tac x = "y1#+y2" in exI)
+apply (auto simp add: add_lt_mono)
+apply (rule sym)
+apply (erule add_left_cancel)+
+apply auto
+done
+
+lemma zless_trans: "[| x $< y; y $< z |] ==> x $< z"
+apply (subgoal_tac "intify (x) $< intify (z) ")
+apply (rule_tac [2] y = "intify (y) " in zless_trans_lemma)
+apply auto
+done
+
+lemma zless_not_sym: "z $< w ==> ~ (w $< z)"
+by (blast dest: zless_trans)
+
+(* [| z $< w; ~ P ==> w $< z |] ==> P *)
+lemmas zless_asym = zless_not_sym [THEN swap, standard]
+
+lemma zless_imp_zle: "z $< w ==> z $<= w"
+by (simp add: zle_def)
+
+lemma zle_linear: "z $<= w | w $<= z"
+apply (simp add: zle_def)
+apply (cut_tac zless_linear, blast)
+done
+
+
+subsection{*Less Than or Equals*}
+
+lemma zle_refl: "z $<= z"
+by (simp add: zle_def)
+
+lemma zle_eq_refl: "x=y ==> x $<= y"
+by (simp add: zle_refl)
+
+lemma zle_anti_sym_intify: "[| x $<= y; y $<= x |] ==> intify(x) = intify(y)"
+apply (simp add: zle_def, auto)
+apply (blast dest: zless_trans)
+done
+
+lemma zle_anti_sym: "[| x $<= y; y $<= x; x: int; y: int |] ==> x=y"
+by (drule zle_anti_sym_intify, auto)
+
+lemma zle_trans_lemma:
+     "[| x: int; y: int; z: int; x $<= y; y $<= z |] ==> x $<= z"
+apply (simp add: zle_def, auto)
+apply (blast intro: zless_trans)
+done
+
+lemma zle_trans: "[| x $<= y; y $<= z |] ==> x $<= z"
+apply (subgoal_tac "intify (x) $<= intify (z) ")
+apply (rule_tac [2] y = "intify (y) " in zle_trans_lemma)
+apply auto
+done
+
+lemma zle_zless_trans: "[| i $<= j; j $< k |] ==> i $< k"
+apply (auto simp add: zle_def)
+apply (blast intro: zless_trans)
+apply (simp add: zless_def zdiff_def zadd_def)
+done
+
+lemma zless_zle_trans: "[| i $< j; j $<= k |] ==> i $< k"
+apply (auto simp add: zle_def)
+apply (blast intro: zless_trans)
+apply (simp add: zless_def zdiff_def zminus_def)
+done
+
+lemma not_zless_iff_zle: "~ (z $< w) <-> (w $<= z)"
+apply (cut_tac z = z and w = w in zless_linear)
+apply (auto dest: zless_trans simp add: zle_def)
+apply (auto dest!: zless_imp_intify_neq)
+done
+
+lemma not_zle_iff_zless: "~ (z $<= w) <-> (w $< z)"
+by (simp add: not_zless_iff_zle [THEN iff_sym])
+
+
+subsection{*More subtraction laws (for @{text zcompare_rls})*}
+
+lemma zdiff_zdiff_eq: "(x $- y) $- z = x $- (y $+ z)"
+by (simp add: zdiff_def zadd_ac)
+
+lemma zdiff_zdiff_eq2: "x $- (y $- z) = (x $+ z) $- y"
+by (simp add: zdiff_def zadd_ac)
+
+lemma zdiff_zless_iff: "(x$-y $< z) <-> (x $< z $+ y)"
+by (simp add: zless_def zdiff_def zadd_ac)
+
+lemma zless_zdiff_iff: "(x $< z$-y) <-> (x $+ y $< z)"
+by (simp add: zless_def zdiff_def zadd_ac)
+
+lemma zdiff_eq_iff: "[| x: int; z: int |] ==> (x$-y = z) <-> (x = z $+ y)"
+by (auto simp add: zdiff_def zadd_assoc)
+
+lemma eq_zdiff_iff: "[| x: int; z: int |] ==> (x = z$-y) <-> (x $+ y = z)"
+by (auto simp add: zdiff_def zadd_assoc)
+
+lemma zdiff_zle_iff_lemma:
+     "[| x: int; z: int |] ==> (x$-y $<= z) <-> (x $<= z $+ y)"
+by (auto simp add: zle_def zdiff_eq_iff zdiff_zless_iff)
+
+lemma zdiff_zle_iff: "(x$-y $<= z) <-> (x $<= z $+ y)"
+by (cut_tac zdiff_zle_iff_lemma [OF intify_in_int intify_in_int], simp)
+
+lemma zle_zdiff_iff_lemma:
+     "[| x: int; z: int |] ==>(x $<= z$-y) <-> (x $+ y $<= z)"
+apply (auto simp add: zle_def zdiff_eq_iff zless_zdiff_iff)
+apply (auto simp add: zdiff_def zadd_assoc)
+done
+
+lemma zle_zdiff_iff: "(x $<= z$-y) <-> (x $+ y $<= z)"
+by (cut_tac zle_zdiff_iff_lemma [ OF intify_in_int intify_in_int], simp)
+
+text{*This list of rewrites simplifies (in)equalities by bringing subtractions
+  to the top and then moving negative terms to the other side.  
+  Use with @{text zadd_ac}*}
+lemmas zcompare_rls =
+     zdiff_def [symmetric]
+     zadd_zdiff_eq zdiff_zadd_eq zdiff_zdiff_eq zdiff_zdiff_eq2 
+     zdiff_zless_iff zless_zdiff_iff zdiff_zle_iff zle_zdiff_iff 
+     zdiff_eq_iff eq_zdiff_iff
+
+
+subsection{*Monotonicity and Cancellation Results for Instantiation
+     of the CancelNumerals Simprocs*}
+
+lemma zadd_left_cancel:
+     "[| w: int; w': int |] ==> (z $+ w' = z $+ w) <-> (w' = w)"
+apply safe
+apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
+apply (simp add: zadd_ac)
+done
+
+lemma zadd_left_cancel_intify [simp]:
+     "(z $+ w' = z $+ w) <-> intify(w') = intify(w)"
+apply (rule iff_trans)
+apply (rule_tac [2] zadd_left_cancel, auto)
+done
+
+lemma zadd_right_cancel:
+     "[| w: int; w': int |] ==> (w' $+ z = w $+ z) <-> (w' = w)"
+apply safe
+apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
+apply (simp add: zadd_ac)
+done
+
+lemma zadd_right_cancel_intify [simp]:
+     "(w' $+ z = w $+ z) <-> intify(w') = intify(w)"
+apply (rule iff_trans)
+apply (rule_tac [2] zadd_right_cancel, auto)
+done
+
+lemma zadd_right_cancel_zless [simp]: "(w' $+ z $< w $+ z) <-> (w' $< w)"
+by (simp add: zdiff_zless_iff [THEN iff_sym] zdiff_def zadd_assoc)
+
+lemma zadd_left_cancel_zless [simp]: "(z $+ w' $< z $+ w) <-> (w' $< w)"
+by (simp add: zadd_commute [of z] zadd_right_cancel_zless)
+
+lemma zadd_right_cancel_zle [simp]: "(w' $+ z $<= w $+ z) <-> w' $<= w"
+by (simp add: zle_def)
+
+lemma zadd_left_cancel_zle [simp]: "(z $+ w' $<= z $+ w) <->  w' $<= w"
+by (simp add: zadd_commute [of z]  zadd_right_cancel_zle)
+
+
+(*"v $<= w ==> v$+z $<= w$+z"*)
+lemmas zadd_zless_mono1 = zadd_right_cancel_zless [THEN iffD2, standard]
+
+(*"v $<= w ==> z$+v $<= z$+w"*)
+lemmas zadd_zless_mono2 = zadd_left_cancel_zless [THEN iffD2, standard]
+
+(*"v $<= w ==> v$+z $<= w$+z"*)
+lemmas zadd_zle_mono1 = zadd_right_cancel_zle [THEN iffD2, standard]
+
+(*"v $<= w ==> z$+v $<= z$+w"*)
+lemmas zadd_zle_mono2 = zadd_left_cancel_zle [THEN iffD2, standard]
+
+lemma zadd_zle_mono: "[| w' $<= w; z' $<= z |] ==> w' $+ z' $<= w $+ z"
+by (erule zadd_zle_mono1 [THEN zle_trans], simp)
+
+lemma zadd_zless_mono: "[| w' $< w; z' $<= z |] ==> w' $+ z' $< w $+ z"
+by (erule zadd_zless_mono1 [THEN zless_zle_trans], simp)
+
+
+subsection{*Comparison laws*}
+
+lemma zminus_zless_zminus [simp]: "($- x $< $- y) <-> (y $< x)"
+by (simp add: zless_def zdiff_def zadd_ac)
+
+lemma zminus_zle_zminus [simp]: "($- x $<= $- y) <-> (y $<= x)"
+by (simp add: not_zless_iff_zle [THEN iff_sym])
+
+subsubsection{*More inequality lemmas*}
+
+lemma equation_zminus: "[| x: int;  y: int |] ==> (x = $- y) <-> (y = $- x)"
+by auto
+
+lemma zminus_equation: "[| x: int;  y: int |] ==> ($- x = y) <-> ($- y = x)"
+by auto
+
+lemma equation_zminus_intify: "(intify(x) = $- y) <-> (intify(y) = $- x)"
+apply (cut_tac x = "intify (x) " and y = "intify (y) " in equation_zminus)
+apply auto
+done
+
+lemma zminus_equation_intify: "($- x = intify(y)) <-> ($- y = intify(x))"
+apply (cut_tac x = "intify (x) " and y = "intify (y) " in zminus_equation)
+apply auto
+done
+
+
+subsubsection{*The next several equations are permutative: watch out!*}
+
+lemma zless_zminus: "(x $< $- y) <-> (y $< $- x)"
+by (simp add: zless_def zdiff_def zadd_ac)
+
+lemma zminus_zless: "($- x $< y) <-> ($- y $< x)"
+by (simp add: zless_def zdiff_def zadd_ac)
+
+lemma zle_zminus: "(x $<= $- y) <-> (y $<= $- x)"
+by (simp add: not_zless_iff_zle [THEN iff_sym] zminus_zless)
+
+lemma zminus_zle: "($- x $<= y) <-> ($- y $<= x)"
+by (simp add: not_zless_iff_zle [THEN iff_sym] zless_zminus)
+
+ML
+{*
+val zdiff_def = thm "zdiff_def";
+val int_of_type = thm "int_of_type";
+val int_of_eq = thm "int_of_eq";
+val int_of_inject = thm "int_of_inject";
+val intify_in_int = thm "intify_in_int";
+val intify_ident = thm "intify_ident";
+val intify_idem = thm "intify_idem";
+val int_of_natify = thm "int_of_natify";
+val zminus_intify = thm "zminus_intify";
+val zadd_intify1 = thm "zadd_intify1";
+val zadd_intify2 = thm "zadd_intify2";
+val zdiff_intify1 = thm "zdiff_intify1";
+val zdiff_intify2 = thm "zdiff_intify2";
+val zmult_intify1 = thm "zmult_intify1";
+val zmult_intify2 = thm "zmult_intify2";
+val zless_intify1 = thm "zless_intify1";
+val zless_intify2 = thm "zless_intify2";
+val zle_intify1 = thm "zle_intify1";
+val zle_intify2 = thm "zle_intify2";
+val zminus_congruent = thm "zminus_congruent";
+val zminus_type = thm "zminus_type";
+val zminus_inject_intify = thm "zminus_inject_intify";
+val zminus_inject = thm "zminus_inject";
+val zminus = thm "zminus";
+val zminus_zminus_intify = thm "zminus_zminus_intify";
+val zminus_int0 = thm "zminus_int0";
+val zminus_zminus = thm "zminus_zminus";
+val not_znegative_int_of = thm "not_znegative_int_of";
+val znegative_zminus_int_of = thm "znegative_zminus_int_of";
+val not_znegative_imp_zero = thm "not_znegative_imp_zero";
+val nat_of_intify = thm "nat_of_intify";
+val nat_of_int_of = thm "nat_of_int_of";
+val nat_of_type = thm "nat_of_type";
+val zmagnitude_int_of = thm "zmagnitude_int_of";
+val natify_int_of_eq = thm "natify_int_of_eq";
+val zmagnitude_zminus_int_of = thm "zmagnitude_zminus_int_of";
+val zmagnitude_type = thm "zmagnitude_type";
+val not_zneg_int_of = thm "not_zneg_int_of";
+val not_zneg_mag = thm "not_zneg_mag";
+val zneg_int_of = thm "zneg_int_of";
+val zneg_mag = thm "zneg_mag";
+val int_cases = thm "int_cases";
+val not_zneg_nat_of_intify = thm "not_zneg_nat_of_intify";
+val not_zneg_nat_of = thm "not_zneg_nat_of";
+val zneg_nat_of = thm "zneg_nat_of";
+val zadd_congruent2 = thm "zadd_congruent2";
+val zadd_type = thm "zadd_type";
+val zadd = thm "zadd";
+val zadd_int0_intify = thm "zadd_int0_intify";
+val zadd_int0 = thm "zadd_int0";
+val zminus_zadd_distrib = thm "zminus_zadd_distrib";
+val zadd_commute = thm "zadd_commute";
+val zadd_assoc = thm "zadd_assoc";
+val zadd_left_commute = thm "zadd_left_commute";
+val zadd_ac = thms "zadd_ac";
+val int_of_add = thm "int_of_add";
+val int_succ_int_1 = thm "int_succ_int_1";
+val int_of_diff = thm "int_of_diff";
+val zadd_zminus_inverse = thm "zadd_zminus_inverse";
+val zadd_zminus_inverse2 = thm "zadd_zminus_inverse2";
+val zadd_int0_right_intify = thm "zadd_int0_right_intify";
+val zadd_int0_right = thm "zadd_int0_right";
+val zmult_congruent2 = thm "zmult_congruent2";
+val zmult_type = thm "zmult_type";
+val zmult = thm "zmult";
+val zmult_int0 = thm "zmult_int0";
+val zmult_int1_intify = thm "zmult_int1_intify";
+val zmult_int1 = thm "zmult_int1";
+val zmult_commute = thm "zmult_commute";
+val zmult_zminus = thm "zmult_zminus";
+val zmult_zminus_right = thm "zmult_zminus_right";
+val zmult_assoc = thm "zmult_assoc";
+val zmult_left_commute = thm "zmult_left_commute";
+val zmult_ac = thms "zmult_ac";
+val zadd_zmult_distrib = thm "zadd_zmult_distrib";
+val zadd_zmult_distrib2 = thm "zadd_zmult_distrib2";
+val int_typechecks = thms "int_typechecks";
+val zdiff_type = thm "zdiff_type";
+val zminus_zdiff_eq = thm "zminus_zdiff_eq";
+val zdiff_zmult_distrib = thm "zdiff_zmult_distrib";
+val zdiff_zmult_distrib2 = thm "zdiff_zmult_distrib2";
+val zadd_zdiff_eq = thm "zadd_zdiff_eq";
+val zdiff_zadd_eq = thm "zdiff_zadd_eq";
+val zless_linear = thm "zless_linear";
+val zless_not_refl = thm "zless_not_refl";
+val neq_iff_zless = thm "neq_iff_zless";
+val zless_imp_intify_neq = thm "zless_imp_intify_neq";
+val zless_imp_succ_zadd = thm "zless_imp_succ_zadd";
+val zless_succ_zadd = thm "zless_succ_zadd";
+val zless_iff_succ_zadd = thm "zless_iff_succ_zadd";
+val zless_int_of = thm "zless_int_of";
+val zless_trans = thm "zless_trans";
+val zless_not_sym = thm "zless_not_sym";
+val zless_asym = thm "zless_asym";
+val zless_imp_zle = thm "zless_imp_zle";
+val zle_linear = thm "zle_linear";
+val zle_refl = thm "zle_refl";
+val zle_eq_refl = thm "zle_eq_refl";
+val zle_anti_sym_intify = thm "zle_anti_sym_intify";
+val zle_anti_sym = thm "zle_anti_sym";
+val zle_trans = thm "zle_trans";
+val zle_zless_trans = thm "zle_zless_trans";
+val zless_zle_trans = thm "zless_zle_trans";
+val not_zless_iff_zle = thm "not_zless_iff_zle";
+val not_zle_iff_zless = thm "not_zle_iff_zless";
+val zdiff_zdiff_eq = thm "zdiff_zdiff_eq";
+val zdiff_zdiff_eq2 = thm "zdiff_zdiff_eq2";
+val zdiff_zless_iff = thm "zdiff_zless_iff";
+val zless_zdiff_iff = thm "zless_zdiff_iff";
+val zdiff_eq_iff = thm "zdiff_eq_iff";
+val eq_zdiff_iff = thm "eq_zdiff_iff";
+val zdiff_zle_iff = thm "zdiff_zle_iff";
+val zle_zdiff_iff = thm "zle_zdiff_iff";
+val zcompare_rls = thms "zcompare_rls";
+val zadd_left_cancel = thm "zadd_left_cancel";
+val zadd_left_cancel_intify = thm "zadd_left_cancel_intify";
+val zadd_right_cancel = thm "zadd_right_cancel";
+val zadd_right_cancel_intify = thm "zadd_right_cancel_intify";
+val zadd_right_cancel_zless = thm "zadd_right_cancel_zless";
+val zadd_left_cancel_zless = thm "zadd_left_cancel_zless";
+val zadd_right_cancel_zle = thm "zadd_right_cancel_zle";
+val zadd_left_cancel_zle = thm "zadd_left_cancel_zle";
+val zadd_zless_mono1 = thm "zadd_zless_mono1";
+val zadd_zless_mono2 = thm "zadd_zless_mono2";
+val zadd_zle_mono1 = thm "zadd_zle_mono1";
+val zadd_zle_mono2 = thm "zadd_zle_mono2";
+val zadd_zle_mono = thm "zadd_zle_mono";
+val zadd_zless_mono = thm "zadd_zless_mono";
+val zminus_zless_zminus = thm "zminus_zless_zminus";
+val zminus_zle_zminus = thm "zminus_zle_zminus";
+val equation_zminus = thm "equation_zminus";
+val zminus_equation = thm "zminus_equation";
+val equation_zminus_intify = thm "equation_zminus_intify";
+val zminus_equation_intify = thm "zminus_equation_intify";
+val zless_zminus = thm "zless_zminus";
+val zminus_zless = thm "zminus_zless";
+val zle_zminus = thm "zle_zminus";
+val zminus_zle = thm "zminus_zle";
+*}
+
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/IntArith.thy	Thu May 31 12:06:31 2007 +0200
@@ -0,0 +1,5 @@
+
+theory IntArith imports Bin
+uses "int_arith.ML" begin
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/IntDiv.thy	Thu May 31 12:06:31 2007 +0200
@@ -0,0 +1,1925 @@
+(*  Title:      ZF/IntDiv.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1999  University of Cambridge
+
+Here is the division algorithm in ML:
+
+    fun posDivAlg (a,b) =
+      if a<b then (0,a)
+      else let val (q,r) = posDivAlg(a, 2*b)
+	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
+	   end
+
+    fun negDivAlg (a,b) =
+      if 0<=a+b then (~1,a+b)
+      else let val (q,r) = negDivAlg(a, 2*b)
+	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
+	   end;
+
+    fun negateSnd (q,r:int) = (q,~r);
+
+    fun divAlg (a,b) = if 0<=a then 
+			  if b>0 then posDivAlg (a,b) 
+			   else if a=0 then (0,0)
+				else negateSnd (negDivAlg (~a,~b))
+		       else 
+			  if 0<b then negDivAlg (a,b)
+			  else        negateSnd (posDivAlg (~a,~b));
+
+*)
+
+header{*The Division Operators Div and Mod*}
+
+theory IntDiv imports IntArith OrderArith begin
+
+constdefs
+  quorem :: "[i,i] => o"
+    "quorem == %<a,b> <q,r>.
+                      a = b$*q $+ r &
+                      (#0$<b & #0$<=r & r$<b | ~(#0$<b) & b$<r & r $<= #0)"
+
+  adjust :: "[i,i] => i"
+    "adjust(b) == %<q,r>. if #0 $<= r$-b then <#2$*q $+ #1,r$-b>
+                          else <#2$*q,r>"
+
+
+(** the division algorithm **)
+
+constdefs posDivAlg :: "i => i"
+(*for the case a>=0, b>0*)
+(*recdef posDivAlg "inv_image less_than (%(a,b). nat_of(a $- b $+ #1))"*)
+    "posDivAlg(ab) ==
+       wfrec(measure(int*int, %<a,b>. nat_of (a $- b $+ #1)),
+	     ab,
+	     %<a,b> f. if (a$<b | b$<=#0) then <#0,a>
+                       else adjust(b, f ` <a,#2$*b>))"
+
+
+(*for the case a<0, b>0*)
+constdefs negDivAlg :: "i => i"
+(*recdef negDivAlg "inv_image less_than (%(a,b). nat_of(- a $- b))"*)
+    "negDivAlg(ab) ==
+       wfrec(measure(int*int, %<a,b>. nat_of ($- a $- b)),
+	     ab,
+	     %<a,b> f. if (#0 $<= a$+b | b$<=#0) then <#-1,a$+b>
+                       else adjust(b, f ` <a,#2$*b>))"
+
+(*for the general case b\<noteq>0*)
+
+constdefs
+  negateSnd :: "i => i"
+    "negateSnd == %<q,r>. <q, $-r>"
+
+  (*The full division algorithm considers all possible signs for a, b
+    including the special case a=0, b<0, because negDivAlg requires a<0*)
+  divAlg :: "i => i"
+    "divAlg ==
+       %<a,b>. if #0 $<= a then
+                  if #0 $<= b then posDivAlg (<a,b>)
+                  else if a=#0 then <#0,#0>
+                       else negateSnd (negDivAlg (<$-a,$-b>))
+               else 
+                  if #0$<b then negDivAlg (<a,b>)
+                  else         negateSnd (posDivAlg (<$-a,$-b>))"
+
+  zdiv  :: "[i,i]=>i"                    (infixl "zdiv" 70) 
+    "a zdiv b == fst (divAlg (<intify(a), intify(b)>))"
+
+  zmod  :: "[i,i]=>i"                    (infixl "zmod" 70)
+    "a zmod b == snd (divAlg (<intify(a), intify(b)>))"
+
+
+(** Some basic laws by Sidi Ehmety (need linear arithmetic!) **)
+
+lemma zspos_add_zspos_imp_zspos: "[| #0 $< x;  #0 $< y |] ==> #0 $< x $+ y"
+apply (rule_tac y = "y" in zless_trans)
+apply (rule_tac [2] zdiff_zless_iff [THEN iffD1])
+apply auto
+done
+
+lemma zpos_add_zpos_imp_zpos: "[| #0 $<= x;  #0 $<= y |] ==> #0 $<= x $+ y"
+apply (rule_tac y = "y" in zle_trans)
+apply (rule_tac [2] zdiff_zle_iff [THEN iffD1])
+apply auto
+done
+
+lemma zneg_add_zneg_imp_zneg: "[| x $< #0;  y $< #0 |] ==> x $+ y $< #0"
+apply (rule_tac y = "y" in zless_trans)
+apply (rule zless_zdiff_iff [THEN iffD1])
+apply auto
+done
+
+(* this theorem is used below *)
+lemma zneg_or_0_add_zneg_or_0_imp_zneg_or_0:
+     "[| x $<= #0;  y $<= #0 |] ==> x $+ y $<= #0"
+apply (rule_tac y = "y" in zle_trans)
+apply (rule zle_zdiff_iff [THEN iffD1])
+apply auto
+done
+
+lemma zero_lt_zmagnitude: "[| #0 $< k; k \<in> int |] ==> 0 < zmagnitude(k)"
+apply (drule zero_zless_imp_znegative_zminus)
+apply (drule_tac [2] zneg_int_of)
+apply (auto simp add: zminus_equation [of k])
+apply (subgoal_tac "0 < zmagnitude ($# succ (n))")
+ apply simp
+apply (simp only: zmagnitude_int_of)
+apply simp
+done
+
+
+(*** Inequality lemmas involving $#succ(m) ***)
+
+lemma zless_add_succ_iff:
+     "(w $< z $+ $# succ(m)) <-> (w $< z $+ $#m | intify(w) = z $+ $#m)"
+apply (auto simp add: zless_iff_succ_zadd zadd_assoc int_of_add [symmetric])
+apply (rule_tac [3] x = "0" in bexI)
+apply (cut_tac m = "m" in int_succ_int_1)
+apply (cut_tac m = "n" in int_succ_int_1)
+apply simp
+apply (erule natE)
+apply auto
+apply (rule_tac x = "succ (n) " in bexI)
+apply auto
+done
+
+lemma zadd_succ_lemma:
+     "z \<in> int ==> (w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)"
+apply (simp only: not_zless_iff_zle [THEN iff_sym] zless_add_succ_iff)
+apply (auto intro: zle_anti_sym elim: zless_asym
+            simp add: zless_imp_zle not_zless_iff_zle)
+done
+
+lemma zadd_succ_zle_iff: "(w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)"
+apply (cut_tac z = "intify (z)" in zadd_succ_lemma)
+apply auto
+done
+
+(** Inequality reasoning **)
+
+lemma zless_add1_iff_zle: "(w $< z $+ #1) <-> (w$<=z)"
+apply (subgoal_tac "#1 = $# 1")
+apply (simp only: zless_add_succ_iff zle_def)
+apply auto
+done
+
+lemma add1_zle_iff: "(w $+ #1 $<= z) <-> (w $< z)"
+apply (subgoal_tac "#1 = $# 1")
+apply (simp only: zadd_succ_zle_iff)
+apply auto
+done
+
+lemma add1_left_zle_iff: "(#1 $+ w $<= z) <-> (w $< z)"
+apply (subst zadd_commute)
+apply (rule add1_zle_iff)
+done
+
+
+(*** Monotonicity of Multiplication ***)
+
+lemma zmult_mono_lemma: "k \<in> nat ==> i $<= j ==> i $* $#k $<= j $* $#k"
+apply (induct_tac "k")
+ prefer 2 apply (subst int_succ_int_1)
+apply (simp_all (no_asm_simp) add: zadd_zmult_distrib2 zadd_zle_mono)
+done
+
+lemma zmult_zle_mono1: "[| i $<= j;  #0 $<= k |] ==> i$*k $<= j$*k"
+apply (subgoal_tac "i $* intify (k) $<= j $* intify (k) ")
+apply (simp (no_asm_use))
+apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst])
+apply (rule_tac [3] zmult_mono_lemma)
+apply auto
+apply (simp add: znegative_iff_zless_0 not_zless_iff_zle [THEN iff_sym])
+done
+
+lemma zmult_zle_mono1_neg: "[| i $<= j;  k $<= #0 |] ==> j$*k $<= i$*k"
+apply (rule zminus_zle_zminus [THEN iffD1])
+apply (simp del: zmult_zminus_right
+            add: zmult_zminus_right [symmetric] zmult_zle_mono1 zle_zminus)
+done
+
+lemma zmult_zle_mono2: "[| i $<= j;  #0 $<= k |] ==> k$*i $<= k$*j"
+apply (drule zmult_zle_mono1)
+apply (simp_all add: zmult_commute)
+done
+
+lemma zmult_zle_mono2_neg: "[| i $<= j;  k $<= #0 |] ==> k$*j $<= k$*i"
+apply (drule zmult_zle_mono1_neg)
+apply (simp_all add: zmult_commute)
+done
+
+(* $<= monotonicity, BOTH arguments*)
+lemma zmult_zle_mono:
+     "[| i $<= j;  k $<= l;  #0 $<= j;  #0 $<= k |] ==> i$*k $<= j$*l"
+apply (erule zmult_zle_mono1 [THEN zle_trans])
+apply assumption
+apply (erule zmult_zle_mono2)
+apply assumption
+done
+
+
+(** strict, in 1st argument; proof is by induction on k>0 **)
+
+lemma zmult_zless_mono2_lemma [rule_format]:
+     "[| i$<j; k \<in> nat |] ==> 0<k --> $#k $* i $< $#k $* j"
+apply (induct_tac "k")
+ prefer 2
+ apply (subst int_succ_int_1)
+ apply (erule natE)
+apply (simp_all add: zadd_zmult_distrib zadd_zless_mono zle_def)
+apply (frule nat_0_le)
+apply (subgoal_tac "i $+ (i $+ $# xa $* i) $< j $+ (j $+ $# xa $* j) ")
+apply (simp (no_asm_use))
+apply (rule zadd_zless_mono)
+apply (simp_all (no_asm_simp) add: zle_def)
+done
+
+lemma zmult_zless_mono2: "[| i$<j;  #0 $< k |] ==> k$*i $< k$*j"
+apply (subgoal_tac "intify (k) $* i $< intify (k) $* j")
+apply (simp (no_asm_use))
+apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst])
+apply (rule_tac [3] zmult_zless_mono2_lemma)
+apply auto
+apply (simp add: znegative_iff_zless_0)
+apply (drule zless_trans, assumption)
+apply (auto simp add: zero_lt_zmagnitude)
+done
+
+lemma zmult_zless_mono1: "[| i$<j;  #0 $< k |] ==> i$*k $< j$*k"
+apply (drule zmult_zless_mono2)
+apply (simp_all add: zmult_commute)
+done
+
+(* < monotonicity, BOTH arguments*)
+lemma zmult_zless_mono:
+     "[| i $< j;  k $< l;  #0 $< j;  #0 $< k |] ==> i$*k $< j$*l"
+apply (erule zmult_zless_mono1 [THEN zless_trans])
+apply assumption
+apply (erule zmult_zless_mono2)
+apply assumption
+done
+
+lemma zmult_zless_mono1_neg: "[| i $< j;  k $< #0 |] ==> j$*k $< i$*k"
+apply (rule zminus_zless_zminus [THEN iffD1])
+apply (simp del: zmult_zminus_right 
+            add: zmult_zminus_right [symmetric] zmult_zless_mono1 zless_zminus)
+done
+
+lemma zmult_zless_mono2_neg: "[| i $< j;  k $< #0 |] ==> k$*j $< k$*i"
+apply (rule zminus_zless_zminus [THEN iffD1])
+apply (simp del: zmult_zminus 
+            add: zmult_zminus [symmetric] zmult_zless_mono2 zless_zminus)
+done
+
+
+(** Products of zeroes **)
+
+lemma zmult_eq_lemma:
+     "[| m \<in> int; n \<in> int |] ==> (m = #0 | n = #0) <-> (m$*n = #0)"
+apply (case_tac "m $< #0")
+apply (auto simp add: not_zless_iff_zle zle_def neq_iff_zless)
+apply (force dest: zmult_zless_mono1_neg zmult_zless_mono1)+
+done
+
+lemma zmult_eq_0_iff [iff]: "(m$*n = #0) <-> (intify(m) = #0 | intify(n) = #0)"
+apply (simp add: zmult_eq_lemma)
+done
+
+
+(** Cancellation laws for k*m < k*n and m*k < n*k, also for <= and =,
+    but not (yet?) for k*m < n*k. **)
+
+lemma zmult_zless_lemma:
+     "[| k \<in> int; m \<in> int; n \<in> int |]  
+      ==> (m$*k $< n$*k) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))"
+apply (case_tac "k = #0")
+apply (auto simp add: neq_iff_zless zmult_zless_mono1 zmult_zless_mono1_neg)
+apply (auto simp add: not_zless_iff_zle 
+                      not_zle_iff_zless [THEN iff_sym, of "m$*k"] 
+                      not_zle_iff_zless [THEN iff_sym, of m])
+apply (auto elim: notE
+            simp add: zless_imp_zle zmult_zle_mono1 zmult_zle_mono1_neg)
+done
+
+lemma zmult_zless_cancel2:
+     "(m$*k $< n$*k) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))"
+apply (cut_tac k = "intify (k)" and m = "intify (m)" and n = "intify (n)" 
+       in zmult_zless_lemma)
+apply auto
+done
+
+lemma zmult_zless_cancel1:
+     "(k$*m $< k$*n) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))"
+by (simp add: zmult_commute [of k] zmult_zless_cancel2)
+
+lemma zmult_zle_cancel2:
+     "(m$*k $<= n$*k) <-> ((#0 $< k --> m$<=n) & (k $< #0 --> n$<=m))"
+by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel2)
+
+lemma zmult_zle_cancel1:
+     "(k$*m $<= k$*n) <-> ((#0 $< k --> m$<=n) & (k $< #0 --> n$<=m))"
+by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel1)
+
+lemma int_eq_iff_zle: "[| m \<in> int; n \<in> int |] ==> m=n <-> (m $<= n & n $<= m)"
+apply (blast intro: zle_refl zle_anti_sym)
+done
+
+lemma zmult_cancel2_lemma:
+     "[| k \<in> int; m \<in> int; n \<in> int |] ==> (m$*k = n$*k) <-> (k=#0 | m=n)"
+apply (simp add: int_eq_iff_zle [of "m$*k"] int_eq_iff_zle [of m])
+apply (auto simp add: zmult_zle_cancel2 neq_iff_zless)
+done
+
+lemma zmult_cancel2 [simp]:
+     "(m$*k = n$*k) <-> (intify(k) = #0 | intify(m) = intify(n))"
+apply (rule iff_trans)
+apply (rule_tac [2] zmult_cancel2_lemma)
+apply auto
+done
+
+lemma zmult_cancel1 [simp]:
+     "(k$*m = k$*n) <-> (intify(k) = #0 | intify(m) = intify(n))"
+by (simp add: zmult_commute [of k] zmult_cancel2)
+
+
+subsection{* Uniqueness and monotonicity of quotients and remainders *}
+
+lemma unique_quotient_lemma:
+     "[| b$*q' $+ r' $<= b$*q $+ r;  #0 $<= r';  #0 $< b;  r $< b |]  
+      ==> q' $<= q"
+apply (subgoal_tac "r' $+ b $* (q'$-q) $<= r")
+ prefer 2 apply (simp add: zdiff_zmult_distrib2 zadd_ac zcompare_rls)
+apply (subgoal_tac "#0 $< b $* (#1 $+ q $- q') ")
+ prefer 2
+ apply (erule zle_zless_trans)
+ apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls)
+ apply (erule zle_zless_trans)
+ apply (simp add: ); 
+apply (subgoal_tac "b $* q' $< b $* (#1 $+ q)")
+ prefer 2 
+ apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls)
+apply (auto elim: zless_asym
+        simp add: zmult_zless_cancel1 zless_add1_iff_zle zadd_ac zcompare_rls)
+done
+
+lemma unique_quotient_lemma_neg:
+     "[| b$*q' $+ r' $<= b$*q $+ r;  r $<= #0;  b $< #0;  b $< r' |]  
+      ==> q $<= q'"
+apply (rule_tac b = "$-b" and r = "$-r'" and r' = "$-r" 
+       in unique_quotient_lemma)
+apply (auto simp del: zminus_zadd_distrib
+            simp add: zminus_zadd_distrib [symmetric] zle_zminus zless_zminus)
+done
+
+
+lemma unique_quotient:
+     "[| quorem (<a,b>, <q,r>);  quorem (<a,b>, <q',r'>);  b \<in> int; b ~= #0;  
+         q \<in> int; q' \<in> int |] ==> q = q'"
+apply (simp add: split_ifs quorem_def neq_iff_zless)
+apply safe
+apply simp_all
+apply (blast intro: zle_anti_sym
+             dest: zle_eq_refl [THEN unique_quotient_lemma] 
+                   zle_eq_refl [THEN unique_quotient_lemma_neg] sym)+
+done
+
+lemma unique_remainder:
+     "[| quorem (<a,b>, <q,r>);  quorem (<a,b>, <q',r'>);  b \<in> int; b ~= #0;  
+         q \<in> int; q' \<in> int;  
+         r \<in> int; r' \<in> int |] ==> r = r'"
+apply (subgoal_tac "q = q'")
+ prefer 2 apply (blast intro: unique_quotient)
+apply (simp add: quorem_def)
+done
+
+
+subsection{*Correctness of posDivAlg, 
+           the Division Algorithm for @{text "a\<ge>0"} and @{text "b>0"} *}
+
+lemma adjust_eq [simp]:
+     "adjust(b, <q,r>) = (let diff = r$-b in  
+                          if #0 $<= diff then <#2$*q $+ #1,diff>   
+                                         else <#2$*q,r>)"
+by (simp add: Let_def adjust_def)
+
+
+lemma posDivAlg_termination:
+     "[| #0 $< b; ~ a $< b |]    
+      ==> nat_of(a $- #2 $\<times> b $+ #1) < nat_of(a $- b $+ #1)"
+apply (simp (no_asm) add: zless_nat_conj)
+apply (simp add: not_zless_iff_zle zless_add1_iff_zle zcompare_rls)
+done
+
+lemmas posDivAlg_unfold = def_wfrec [OF posDivAlg_def wf_measure]
+
+lemma posDivAlg_eqn:
+     "[| #0 $< b; a \<in> int; b \<in> int |] ==>  
+      posDivAlg(<a,b>) =       
+       (if a$<b then <#0,a> else adjust(b, posDivAlg (<a, #2$*b>)))"
+apply (rule posDivAlg_unfold [THEN trans])
+apply (simp add: vimage_iff not_zless_iff_zle [THEN iff_sym])
+apply (blast intro: posDivAlg_termination)
+done
+
+lemma posDivAlg_induct_lemma [rule_format]:
+  assumes prem:
+        "!!a b. [| a \<in> int; b \<in> int;  
+                   ~ (a $< b | b $<= #0) --> P(<a, #2 $* b>) |] ==> P(<a,b>)"
+  shows "<u,v> \<in> int*int --> P(<u,v>)"
+apply (rule_tac a = "<u,v>" in wf_induct)
+apply (rule_tac A = "int*int" and f = "%<a,b>.nat_of (a $- b $+ #1)" 
+       in wf_measure)
+apply clarify
+apply (rule prem)
+apply (drule_tac [3] x = "<xa, #2 $\<times> y>" in spec)
+apply auto
+apply (simp add: not_zle_iff_zless posDivAlg_termination)
+done
+
+
+lemma posDivAlg_induct [consumes 2]:
+  assumes u_int: "u \<in> int"
+      and v_int: "v \<in> int"
+      and ih: "!!a b. [| a \<in> int; b \<in> int;
+                     ~ (a $< b | b $<= #0) --> P(a, #2 $* b) |] ==> P(a,b)"
+  shows "P(u,v)"
+apply (subgoal_tac "(%<x,y>. P (x,y)) (<u,v>)")
+apply simp
+apply (rule posDivAlg_induct_lemma)
+apply (simp (no_asm_use))
+apply (rule ih)
+apply (auto simp add: u_int v_int)
+done
+
+(*FIXME: use intify in integ_of so that we always have integ_of w \<in> int.
+    then this rewrite can work for ALL constants!!*)
+lemma intify_eq_0_iff_zle: "intify(m) = #0 <-> (m $<= #0 & #0 $<= m)"
+apply (simp (no_asm) add: int_eq_iff_zle)
+done
+
+
+subsection{* Some convenient biconditionals for products of signs *}
+
+lemma zmult_pos: "[| #0 $< i; #0 $< j |] ==> #0 $< i $* j"
+apply (drule zmult_zless_mono1)
+apply auto
+done
+
+lemma zmult_neg: "[| i $< #0; j $< #0 |] ==> #0 $< i $* j"
+apply (drule zmult_zless_mono1_neg)
+apply auto
+done
+
+lemma zmult_pos_neg: "[| #0 $< i; j $< #0 |] ==> i $* j $< #0"
+apply (drule zmult_zless_mono1_neg)
+apply auto
+done
+
+(** Inequality reasoning **)
+
+lemma int_0_less_lemma:
+     "[| x \<in> int; y \<in> int |]  
+      ==> (#0 $< x $* y) <-> (#0 $< x & #0 $< y | x $< #0 & y $< #0)"
+apply (auto simp add: zle_def not_zless_iff_zle zmult_pos zmult_neg)
+apply (rule ccontr) 
+apply (rule_tac [2] ccontr) 
+apply (auto simp add: zle_def not_zless_iff_zle)
+apply (erule_tac P = "#0$< x$* y" in rev_mp)
+apply (erule_tac [2] P = "#0$< x$* y" in rev_mp)
+apply (drule zmult_pos_neg, assumption) 
+ prefer 2
+ apply (drule zmult_pos_neg, assumption) 
+apply (auto dest: zless_not_sym simp add: zmult_commute)
+done
+
+lemma int_0_less_mult_iff:
+     "(#0 $< x $* y) <-> (#0 $< x & #0 $< y | x $< #0 & y $< #0)"
+apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_less_lemma)
+apply auto
+done
+
+lemma int_0_le_lemma:
+     "[| x \<in> int; y \<in> int |]  
+      ==> (#0 $<= x $* y) <-> (#0 $<= x & #0 $<= y | x $<= #0 & y $<= #0)"
+by (auto simp add: zle_def not_zless_iff_zle int_0_less_mult_iff)
+
+lemma int_0_le_mult_iff:
+     "(#0 $<= x $* y) <-> ((#0 $<= x & #0 $<= y) | (x $<= #0 & y $<= #0))"
+apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_le_lemma)
+apply auto
+done
+
+lemma zmult_less_0_iff:
+     "(x $* y $< #0) <-> (#0 $< x & y $< #0 | x $< #0 & #0 $< y)"
+apply (auto simp add: int_0_le_mult_iff not_zle_iff_zless [THEN iff_sym])
+apply (auto dest: zless_not_sym simp add: not_zle_iff_zless)
+done
+
+lemma zmult_le_0_iff:
+     "(x $* y $<= #0) <-> (#0 $<= x & y $<= #0 | x $<= #0 & #0 $<= y)"
+by (auto dest: zless_not_sym
+         simp add: int_0_less_mult_iff not_zless_iff_zle [THEN iff_sym])
+
+
+(*Typechecking for posDivAlg*)
+lemma posDivAlg_type [rule_format]:
+     "[| a \<in> int; b \<in> int |] ==> posDivAlg(<a,b>) \<in> int * int"
+apply (rule_tac u = "a" and v = "b" in posDivAlg_induct)
+apply assumption+
+apply (case_tac "#0 $< ba")
+ apply (simp add: posDivAlg_eqn adjust_def integ_of_type 
+             split add: split_if_asm)
+ apply clarify
+ apply (simp add: int_0_less_mult_iff not_zle_iff_zless)
+apply (simp add: not_zless_iff_zle)
+apply (subst posDivAlg_unfold)
+apply simp
+done
+
+(*Correctness of posDivAlg: it computes quotients correctly*)
+lemma posDivAlg_correct [rule_format]:
+     "[| a \<in> int; b \<in> int |]  
+      ==> #0 $<= a --> #0 $< b --> quorem (<a,b>, posDivAlg(<a,b>))"
+apply (rule_tac u = "a" and v = "b" in posDivAlg_induct)
+apply auto
+   apply (simp_all add: quorem_def)
+   txt{*base case: a<b*}
+   apply (simp add: posDivAlg_eqn)
+  apply (simp add: not_zless_iff_zle [THEN iff_sym])
+ apply (simp add: int_0_less_mult_iff)
+txt{*main argument*}
+apply (subst posDivAlg_eqn)
+apply (simp_all (no_asm_simp))
+apply (erule splitE)
+apply (rule posDivAlg_type)
+apply (simp_all add: int_0_less_mult_iff)
+apply (auto simp add: zadd_zmult_distrib2 Let_def)
+txt{*now just linear arithmetic*}
+apply (simp add: not_zle_iff_zless zdiff_zless_iff)
+done
+
+
+subsection{*Correctness of negDivAlg, the division algorithm for a<0 and b>0*}
+
+lemma negDivAlg_termination:
+     "[| #0 $< b; a $+ b $< #0 |] 
+      ==> nat_of($- a $- #2 $* b) < nat_of($- a $- b)"
+apply (simp (no_asm) add: zless_nat_conj)
+apply (simp add: zcompare_rls not_zle_iff_zless zless_zdiff_iff [THEN iff_sym]
+                 zless_zminus)
+done
+
+lemmas negDivAlg_unfold = def_wfrec [OF negDivAlg_def wf_measure]
+
+lemma negDivAlg_eqn:
+     "[| #0 $< b; a : int; b : int |] ==>  
+      negDivAlg(<a,b>) =       
+       (if #0 $<= a$+b then <#-1,a$+b>  
+                       else adjust(b, negDivAlg (<a, #2$*b>)))"
+apply (rule negDivAlg_unfold [THEN trans])
+apply (simp (no_asm_simp) add: vimage_iff not_zless_iff_zle [THEN iff_sym])
+apply (blast intro: negDivAlg_termination)
+done
+
+lemma negDivAlg_induct_lemma [rule_format]:
+  assumes prem:
+        "!!a b. [| a \<in> int; b \<in> int;  
+                   ~ (#0 $<= a $+ b | b $<= #0) --> P(<a, #2 $* b>) |]  
+                ==> P(<a,b>)"
+  shows "<u,v> \<in> int*int --> P(<u,v>)"
+apply (rule_tac a = "<u,v>" in wf_induct)
+apply (rule_tac A = "int*int" and f = "%<a,b>.nat_of ($- a $- b)" 
+       in wf_measure)
+apply clarify
+apply (rule prem)
+apply (drule_tac [3] x = "<xa, #2 $\<times> y>" in spec)
+apply auto
+apply (simp add: not_zle_iff_zless negDivAlg_termination)
+done
+
+lemma negDivAlg_induct [consumes 2]:
+  assumes u_int: "u \<in> int"
+      and v_int: "v \<in> int"
+      and ih: "!!a b. [| a \<in> int; b \<in> int;  
+                         ~ (#0 $<= a $+ b | b $<= #0) --> P(a, #2 $* b) |]  
+                      ==> P(a,b)"
+  shows "P(u,v)"
+apply (subgoal_tac " (%<x,y>. P (x,y)) (<u,v>)")
+apply simp
+apply (rule negDivAlg_induct_lemma)
+apply (simp (no_asm_use))
+apply (rule ih)
+apply (auto simp add: u_int v_int)
+done
+
+
+(*Typechecking for negDivAlg*)
+lemma negDivAlg_type:
+     "[| a \<in> int; b \<in> int |] ==> negDivAlg(<a,b>) \<in> int * int"
+apply (rule_tac u = "a" and v = "b" in negDivAlg_induct)
+apply assumption+
+apply (case_tac "#0 $< ba")
+ apply (simp add: negDivAlg_eqn adjust_def integ_of_type 
+             split add: split_if_asm)
+ apply clarify
+ apply (simp add: int_0_less_mult_iff not_zle_iff_zless)
+apply (simp add: not_zless_iff_zle)
+apply (subst negDivAlg_unfold)
+apply simp
+done
+
+
+(*Correctness of negDivAlg: it computes quotients correctly
+  It doesn't work if a=0 because the 0/b=0 rather than -1*)
+lemma negDivAlg_correct [rule_format]:
+     "[| a \<in> int; b \<in> int |]  
+      ==> a $< #0 --> #0 $< b --> quorem (<a,b>, negDivAlg(<a,b>))"
+apply (rule_tac u = "a" and v = "b" in negDivAlg_induct)
+  apply auto
+   apply (simp_all add: quorem_def)
+   txt{*base case: @{term "0$<=a$+b"}*}
+   apply (simp add: negDivAlg_eqn)
+  apply (simp add: not_zless_iff_zle [THEN iff_sym])
+ apply (simp add: int_0_less_mult_iff)
+txt{*main argument*}
+apply (subst negDivAlg_eqn)
+apply (simp_all (no_asm_simp))
+apply (erule splitE)
+apply (rule negDivAlg_type)
+apply (simp_all add: int_0_less_mult_iff)
+apply (auto simp add: zadd_zmult_distrib2 Let_def)
+txt{*now just linear arithmetic*}
+apply (simp add: not_zle_iff_zless zdiff_zless_iff)
+done
+
+
+subsection{* Existence shown by proving the division algorithm to be correct *}
+
+(*the case a=0*)
+lemma quorem_0: "[|b \<noteq> #0;  b \<in> int|] ==> quorem (<#0,b>, <#0,#0>)"
+by (force simp add: quorem_def neq_iff_zless)
+
+lemma posDivAlg_zero_divisor: "posDivAlg(<a,#0>) = <#0,a>"
+apply (subst posDivAlg_unfold)
+apply simp
+done
+
+lemma posDivAlg_0 [simp]: "posDivAlg (<#0,b>) = <#0,#0>"
+apply (subst posDivAlg_unfold)
+apply (simp add: not_zle_iff_zless)
+done
+
+
+(*Needed below.  Actually it's an equivalence.*)
+lemma linear_arith_lemma: "~ (#0 $<= #-1 $+ b) ==> (b $<= #0)"
+apply (simp add: not_zle_iff_zless)
+apply (drule zminus_zless_zminus [THEN iffD2])
+apply (simp add: zadd_commute zless_add1_iff_zle zle_zminus)
+done
+
+lemma negDivAlg_minus1 [simp]: "negDivAlg (<#-1,b>) = <#-1, b$-#1>"
+apply (subst negDivAlg_unfold)
+apply (simp add: linear_arith_lemma integ_of_type vimage_iff)
+done
+
+lemma negateSnd_eq [simp]: "negateSnd (<q,r>) = <q, $-r>"
+apply (unfold negateSnd_def)
+apply auto
+done
+
+lemma negateSnd_type: "qr \<in> int * int ==> negateSnd (qr) \<in> int * int"
+apply (unfold negateSnd_def)
+apply auto
+done
+
+lemma quorem_neg:
+     "[|quorem (<$-a,$-b>, qr);  a \<in> int;  b \<in> int;  qr \<in> int * int|]   
+      ==> quorem (<a,b>, negateSnd(qr))"
+apply clarify
+apply (auto elim: zless_asym simp add: quorem_def zless_zminus)
+txt{*linear arithmetic from here on*}
+apply (simp_all add: zminus_equation [of a] zminus_zless)
+apply (cut_tac [2] z = "b" and w = "#0" in zless_linear)
+apply (cut_tac [1] z = "b" and w = "#0" in zless_linear)
+apply auto
+apply (blast dest: zle_zless_trans)+
+done
+
+lemma divAlg_correct:
+     "[|b \<noteq> #0;  a \<in> int;  b \<in> int|] ==> quorem (<a,b>, divAlg(<a,b>))"
+apply (auto simp add: quorem_0 divAlg_def)
+apply (safe intro!: quorem_neg posDivAlg_correct negDivAlg_correct
+                    posDivAlg_type negDivAlg_type) 
+apply (auto simp add: quorem_def neq_iff_zless)
+txt{*linear arithmetic from here on*}
+apply (auto simp add: zle_def)
+done
+
+lemma divAlg_type: "[|a \<in> int;  b \<in> int|] ==> divAlg(<a,b>) \<in> int * int"
+apply (auto simp add: divAlg_def)
+apply (auto simp add: posDivAlg_type negDivAlg_type negateSnd_type)
+done
+
+
+(** intify cancellation **)
+
+lemma zdiv_intify1 [simp]: "intify(x) zdiv y = x zdiv y"
+apply (simp (no_asm) add: zdiv_def)
+done
+
+lemma zdiv_intify2 [simp]: "x zdiv intify(y) = x zdiv y"
+apply (simp (no_asm) add: zdiv_def)
+done
+
+lemma zdiv_type [iff,TC]: "z zdiv w \<in> int"
+apply (unfold zdiv_def)
+apply (blast intro: fst_type divAlg_type)
+done
+
+lemma zmod_intify1 [simp]: "intify(x) zmod y = x zmod y"
+apply (simp (no_asm) add: zmod_def)
+done
+
+lemma zmod_intify2 [simp]: "x zmod intify(y) = x zmod y"
+apply (simp (no_asm) add: zmod_def)
+done
+
+lemma zmod_type [iff,TC]: "z zmod w \<in> int"
+apply (unfold zmod_def)
+apply (rule snd_type)
+apply (blast intro: divAlg_type)
+done
+
+
+(** Arbitrary definitions for division by zero.  Useful to simplify 
+    certain equations **)
+
+lemma DIVISION_BY_ZERO_ZDIV: "a zdiv #0 = #0"
+apply (simp (no_asm) add: zdiv_def divAlg_def posDivAlg_zero_divisor)
+done  (*NOT for adding to default simpset*)
+
+lemma DIVISION_BY_ZERO_ZMOD: "a zmod #0 = intify(a)"
+apply (simp (no_asm) add: zmod_def divAlg_def posDivAlg_zero_divisor)
+done  (*NOT for adding to default simpset*)
+
+
+
+(** Basic laws about division and remainder **)
+
+lemma raw_zmod_zdiv_equality:
+     "[| a \<in> int; b \<in> int |] ==> a = b $* (a zdiv b) $+ (a zmod b)"
+apply (case_tac "b = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (cut_tac a = "a" and b = "b" in divAlg_correct)
+apply (auto simp add: quorem_def zdiv_def zmod_def split_def)
+done
+
+lemma zmod_zdiv_equality: "intify(a) = b $* (a zdiv b) $+ (a zmod b)"
+apply (rule trans)
+apply (rule_tac b = "intify (b)" in raw_zmod_zdiv_equality)
+apply auto
+done
+
+lemma pos_mod: "#0 $< b ==> #0 $<= a zmod b & a zmod b $< b"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct)
+apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def)
+apply (blast dest: zle_zless_trans)+
+done
+
+lemmas pos_mod_sign = pos_mod [THEN conjunct1, standard]
+and    pos_mod_bound = pos_mod [THEN conjunct2, standard]
+
+lemma neg_mod: "b $< #0 ==> a zmod b $<= #0 & b $< a zmod b"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct)
+apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def)
+apply (blast dest: zle_zless_trans)
+apply (blast dest: zless_trans)+
+done
+
+lemmas neg_mod_sign = neg_mod [THEN conjunct1, standard]
+and    neg_mod_bound = neg_mod [THEN conjunct2, standard]
+
+
+(** proving general properties of zdiv and zmod **)
+
+lemma quorem_div_mod:
+     "[|b \<noteq> #0;  a \<in> int;  b \<in> int |]  
+      ==> quorem (<a,b>, <a zdiv b, a zmod b>)"
+apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
+apply (auto simp add: quorem_def neq_iff_zless pos_mod_sign pos_mod_bound 
+                      neg_mod_sign neg_mod_bound)
+done
+
+(*Surely quorem(<a,b>,<q,r>) implies a \<in> int, but it doesn't matter*)
+lemma quorem_div:
+     "[| quorem(<a,b>,<q,r>);  b \<noteq> #0;  a \<in> int;  b \<in> int;  q \<in> int |]  
+      ==> a zdiv b = q"
+by (blast intro: quorem_div_mod [THEN unique_quotient])
+
+lemma quorem_mod:
+     "[| quorem(<a,b>,<q,r>); b \<noteq> #0; a \<in> int; b \<in> int; q \<in> int; r \<in> int |] 
+      ==> a zmod b = r"
+by (blast intro: quorem_div_mod [THEN unique_remainder])
+
+lemma zdiv_pos_pos_trivial_raw:
+     "[| a \<in> int;  b \<in> int;  #0 $<= a;  a $< b |] ==> a zdiv b = #0"
+apply (rule quorem_div)
+apply (auto simp add: quorem_def)
+(*linear arithmetic*)
+apply (blast dest: zle_zless_trans)+
+done
+
+lemma zdiv_pos_pos_trivial: "[| #0 $<= a;  a $< b |] ==> a zdiv b = #0"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" 
+       in zdiv_pos_pos_trivial_raw)
+apply auto
+done
+
+lemma zdiv_neg_neg_trivial_raw:
+     "[| a \<in> int;  b \<in> int;  a $<= #0;  b $< a |] ==> a zdiv b = #0"
+apply (rule_tac r = "a" in quorem_div)
+apply (auto simp add: quorem_def)
+(*linear arithmetic*)
+apply (blast dest: zle_zless_trans zless_trans)+
+done
+
+lemma zdiv_neg_neg_trivial: "[| a $<= #0;  b $< a |] ==> a zdiv b = #0"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" 
+       in zdiv_neg_neg_trivial_raw)
+apply auto
+done
+
+lemma zadd_le_0_lemma: "[| a$+b $<= #0;  #0 $< a;  #0 $< b |] ==> False"
+apply (drule_tac z' = "#0" and z = "b" in zadd_zless_mono)
+apply (auto simp add: zle_def)
+apply (blast dest: zless_trans)
+done
+
+lemma zdiv_pos_neg_trivial_raw:
+     "[| a \<in> int;  b \<in> int;  #0 $< a;  a$+b $<= #0 |] ==> a zdiv b = #-1"
+apply (rule_tac r = "a $+ b" in quorem_div)
+apply (auto simp add: quorem_def)
+(*linear arithmetic*)
+apply (blast dest: zadd_le_0_lemma zle_zless_trans)+
+done
+
+lemma zdiv_pos_neg_trivial: "[| #0 $< a;  a$+b $<= #0 |] ==> a zdiv b = #-1"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" 
+       in zdiv_pos_neg_trivial_raw)
+apply auto
+done
+
+(*There is no zdiv_neg_pos_trivial because  #0 zdiv b = #0 would supersede it*)
+
+
+lemma zmod_pos_pos_trivial_raw:
+     "[| a \<in> int;  b \<in> int;  #0 $<= a;  a $< b |] ==> a zmod b = a"
+apply (rule_tac q = "#0" in quorem_mod)
+apply (auto simp add: quorem_def)
+(*linear arithmetic*)
+apply (blast dest: zle_zless_trans)+
+done
+
+lemma zmod_pos_pos_trivial: "[| #0 $<= a;  a $< b |] ==> a zmod b = intify(a)"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" 
+       in zmod_pos_pos_trivial_raw)
+apply auto
+done
+
+lemma zmod_neg_neg_trivial_raw:
+     "[| a \<in> int;  b \<in> int;  a $<= #0;  b $< a |] ==> a zmod b = a"
+apply (rule_tac q = "#0" in quorem_mod)
+apply (auto simp add: quorem_def)
+(*linear arithmetic*)
+apply (blast dest: zle_zless_trans zless_trans)+
+done
+
+lemma zmod_neg_neg_trivial: "[| a $<= #0;  b $< a |] ==> a zmod b = intify(a)"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" 
+       in zmod_neg_neg_trivial_raw)
+apply auto
+done
+
+lemma zmod_pos_neg_trivial_raw:
+     "[| a \<in> int;  b \<in> int;  #0 $< a;  a$+b $<= #0 |] ==> a zmod b = a$+b"
+apply (rule_tac q = "#-1" in quorem_mod)
+apply (auto simp add: quorem_def)
+(*linear arithmetic*)
+apply (blast dest: zadd_le_0_lemma zle_zless_trans)+
+done
+
+lemma zmod_pos_neg_trivial: "[| #0 $< a;  a$+b $<= #0 |] ==> a zmod b = a$+b"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" 
+       in zmod_pos_neg_trivial_raw)
+apply auto
+done
+
+(*There is no zmod_neg_pos_trivial...*)
+
+
+(*Simpler laws such as -a zdiv b = -(a zdiv b) FAIL*)
+
+lemma zdiv_zminus_zminus_raw:
+     "[|a \<in> int;  b \<in> int|] ==> ($-a) zdiv ($-b) = a zdiv b"
+apply (case_tac "b = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_div])
+apply auto
+done
+
+lemma zdiv_zminus_zminus [simp]: "($-a) zdiv ($-b) = a zdiv b"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zminus_zminus_raw)
+apply auto
+done
+
+(*Simpler laws such as -a zmod b = -(a zmod b) FAIL*)
+lemma zmod_zminus_zminus_raw:
+     "[|a \<in> int;  b \<in> int|] ==> ($-a) zmod ($-b) = $- (a zmod b)"
+apply (case_tac "b = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod])
+apply auto
+done
+
+lemma zmod_zminus_zminus [simp]: "($-a) zmod ($-b) = $- (a zmod b)"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zminus_zminus_raw)
+apply auto
+done
+
+
+subsection{* division of a number by itself *}
+
+lemma self_quotient_aux1: "[| #0 $< a; a = r $+ a$*q; r $< a |] ==> #1 $<= q"
+apply (subgoal_tac "#0 $< a$*q")
+apply (cut_tac w = "#0" and z = "q" in add1_zle_iff)
+apply (simp add: int_0_less_mult_iff)
+apply (blast dest: zless_trans)
+(*linear arithmetic...*)
+apply (drule_tac t = "%x. x $- r" in subst_context)
+apply (drule sym)
+apply (simp add: zcompare_rls)
+done
+
+lemma self_quotient_aux2: "[| #0 $< a; a = r $+ a$*q; #0 $<= r |] ==> q $<= #1"
+apply (subgoal_tac "#0 $<= a$* (#1$-q)")
+ apply (simp add: int_0_le_mult_iff zcompare_rls)
+ apply (blast dest: zle_zless_trans)
+apply (simp add: zdiff_zmult_distrib2)
+apply (drule_tac t = "%x. x $- a $* q" in subst_context)
+apply (simp add: zcompare_rls)
+done
+
+lemma self_quotient:
+     "[| quorem(<a,a>,<q,r>);  a \<in> int;  q \<in> int;  a \<noteq> #0|] ==> q = #1"
+apply (simp add: split_ifs quorem_def neq_iff_zless)
+apply (rule zle_anti_sym)
+apply safe
+apply auto
+prefer 4 apply (blast dest: zless_trans)
+apply (blast dest: zless_trans)
+apply (rule_tac [3] a = "$-a" and r = "$-r" in self_quotient_aux1)
+apply (rule_tac a = "$-a" and r = "$-r" in self_quotient_aux2)
+apply (rule_tac [6] zminus_equation [THEN iffD1])
+apply (rule_tac [2] zminus_equation [THEN iffD1])
+apply (force intro: self_quotient_aux1 self_quotient_aux2
+  simp add: zadd_commute zmult_zminus)+
+done
+
+lemma self_remainder:
+     "[|quorem(<a,a>,<q,r>); a \<in> int; q \<in> int; r \<in> int; a \<noteq> #0|] ==> r = #0"
+apply (frule self_quotient)
+apply (auto simp add: quorem_def)
+done
+
+lemma zdiv_self_raw: "[|a \<noteq> #0; a \<in> int|] ==> a zdiv a = #1"
+apply (blast intro: quorem_div_mod [THEN self_quotient])
+done
+
+lemma zdiv_self [simp]: "intify(a) \<noteq> #0 ==> a zdiv a = #1"
+apply (drule zdiv_self_raw)
+apply auto
+done
+
+(*Here we have 0 zmod 0 = 0, also assumed by Knuth (who puts m zmod 0 = 0) *)
+lemma zmod_self_raw: "a \<in> int ==> a zmod a = #0"
+apply (case_tac "a = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (blast intro: quorem_div_mod [THEN self_remainder])
+done
+
+lemma zmod_self [simp]: "a zmod a = #0"
+apply (cut_tac a = "intify (a)" in zmod_self_raw)
+apply auto
+done
+
+
+subsection{* Computation of division and remainder *}
+
+lemma zdiv_zero [simp]: "#0 zdiv b = #0"
+apply (simp (no_asm) add: zdiv_def divAlg_def)
+done
+
+lemma zdiv_eq_minus1: "#0 $< b ==> #-1 zdiv b = #-1"
+apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
+done
+
+lemma zmod_zero [simp]: "#0 zmod b = #0"
+apply (simp (no_asm) add: zmod_def divAlg_def)
+done
+
+lemma zdiv_minus1: "#0 $< b ==> #-1 zdiv b = #-1"
+apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
+done
+
+lemma zmod_minus1: "#0 $< b ==> #-1 zmod b = b $- #1"
+apply (simp (no_asm_simp) add: zmod_def divAlg_def)
+done
+
+(** a positive, b positive **)
+
+lemma zdiv_pos_pos: "[| #0 $< a;  #0 $<= b |]  
+      ==> a zdiv b = fst (posDivAlg(<intify(a), intify(b)>))"
+apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
+apply (auto simp add: zle_def)
+done
+
+lemma zmod_pos_pos:
+     "[| #0 $< a;  #0 $<= b |]  
+      ==> a zmod b = snd (posDivAlg(<intify(a), intify(b)>))"
+apply (simp (no_asm_simp) add: zmod_def divAlg_def)
+apply (auto simp add: zle_def)
+done
+
+(** a negative, b positive **)
+
+lemma zdiv_neg_pos:
+     "[| a $< #0;  #0 $< b |]  
+      ==> a zdiv b = fst (negDivAlg(<intify(a), intify(b)>))"
+apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
+apply (blast dest: zle_zless_trans)
+done
+
+lemma zmod_neg_pos:
+     "[| a $< #0;  #0 $< b |]  
+      ==> a zmod b = snd (negDivAlg(<intify(a), intify(b)>))"
+apply (simp (no_asm_simp) add: zmod_def divAlg_def)
+apply (blast dest: zle_zless_trans)
+done
+
+(** a positive, b negative **)
+
+lemma zdiv_pos_neg:
+     "[| #0 $< a;  b $< #0 |]  
+      ==> a zdiv b = fst (negateSnd(negDivAlg (<$-a, $-b>)))"
+apply (simp (no_asm_simp) add: zdiv_def divAlg_def intify_eq_0_iff_zle)
+apply auto
+apply (blast dest: zle_zless_trans)+
+apply (blast dest: zless_trans)
+apply (blast intro: zless_imp_zle)
+done
+
+lemma zmod_pos_neg:
+     "[| #0 $< a;  b $< #0 |]  
+      ==> a zmod b = snd (negateSnd(negDivAlg (<$-a, $-b>)))"
+apply (simp (no_asm_simp) add: zmod_def divAlg_def intify_eq_0_iff_zle)
+apply auto
+apply (blast dest: zle_zless_trans)+
+apply (blast dest: zless_trans)
+apply (blast intro: zless_imp_zle)
+done
+
+(** a negative, b negative **)
+
+lemma zdiv_neg_neg:
+     "[| a $< #0;  b $<= #0 |]  
+      ==> a zdiv b = fst (negateSnd(posDivAlg(<$-a, $-b>)))"
+apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
+apply auto
+apply (blast dest!: zle_zless_trans)+
+done
+
+lemma zmod_neg_neg:
+     "[| a $< #0;  b $<= #0 |]  
+      ==> a zmod b = snd (negateSnd(posDivAlg(<$-a, $-b>)))"
+apply (simp (no_asm_simp) add: zmod_def divAlg_def)
+apply auto
+apply (blast dest!: zle_zless_trans)+
+done
+
+declare zdiv_pos_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
+declare zdiv_neg_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
+declare zdiv_pos_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
+declare zdiv_neg_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
+declare zmod_pos_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
+declare zmod_neg_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
+declare zmod_pos_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
+declare zmod_neg_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
+declare posDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", standard, simp]
+declare negDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", standard, simp]
+
+
+(** Special-case simplification **)
+
+lemma zmod_1 [simp]: "a zmod #1 = #0"
+apply (cut_tac a = "a" and b = "#1" in pos_mod_sign)
+apply (cut_tac [2] a = "a" and b = "#1" in pos_mod_bound)
+apply auto
+(*arithmetic*)
+apply (drule add1_zle_iff [THEN iffD2])
+apply (rule zle_anti_sym)
+apply auto
+done
+
+lemma zdiv_1 [simp]: "a zdiv #1 = intify(a)"
+apply (cut_tac a = "a" and b = "#1" in zmod_zdiv_equality)
+apply auto
+done
+
+lemma zmod_minus1_right [simp]: "a zmod #-1 = #0"
+apply (cut_tac a = "a" and b = "#-1" in neg_mod_sign)
+apply (cut_tac [2] a = "a" and b = "#-1" in neg_mod_bound)
+apply auto
+(*arithmetic*)
+apply (drule add1_zle_iff [THEN iffD2])
+apply (rule zle_anti_sym)
+apply auto
+done
+
+lemma zdiv_minus1_right_raw: "a \<in> int ==> a zdiv #-1 = $-a"
+apply (cut_tac a = "a" and b = "#-1" in zmod_zdiv_equality)
+apply auto
+apply (rule equation_zminus [THEN iffD2])
+apply auto
+done
+
+lemma zdiv_minus1_right: "a zdiv #-1 = $-a"
+apply (cut_tac a = "intify (a)" in zdiv_minus1_right_raw)
+apply auto
+done
+declare zdiv_minus1_right [simp]
+
+
+subsection{* Monotonicity in the first argument (divisor) *}
+
+lemma zdiv_mono1: "[| a $<= a';  #0 $< b |] ==> a zdiv b $<= a' zdiv b"
+apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
+apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality)
+apply (rule unique_quotient_lemma)
+apply (erule subst)
+apply (erule subst)
+apply (simp_all (no_asm_simp) add: pos_mod_sign pos_mod_bound)
+done
+
+lemma zdiv_mono1_neg: "[| a $<= a';  b $< #0 |] ==> a' zdiv b $<= a zdiv b"
+apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
+apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality)
+apply (rule unique_quotient_lemma_neg)
+apply (erule subst)
+apply (erule subst)
+apply (simp_all (no_asm_simp) add: neg_mod_sign neg_mod_bound)
+done
+
+
+subsection{* Monotonicity in the second argument (dividend) *}
+
+lemma q_pos_lemma:
+     "[| #0 $<= b'$*q' $+ r'; r' $< b';  #0 $< b' |] ==> #0 $<= q'"
+apply (subgoal_tac "#0 $< b'$* (q' $+ #1)")
+ apply (simp add: int_0_less_mult_iff)
+ apply (blast dest: zless_trans intro: zless_add1_iff_zle [THEN iffD1])
+apply (simp add: zadd_zmult_distrib2)
+apply (erule zle_zless_trans)
+apply (erule zadd_zless_mono2)
+done
+
+lemma zdiv_mono2_lemma:
+     "[| b$*q $+ r = b'$*q' $+ r';  #0 $<= b'$*q' $+ r';   
+         r' $< b';  #0 $<= r;  #0 $< b';  b' $<= b |]   
+      ==> q $<= q'"
+apply (frule q_pos_lemma, assumption+) 
+apply (subgoal_tac "b$*q $< b$* (q' $+ #1)")
+ apply (simp add: zmult_zless_cancel1)
+ apply (force dest: zless_add1_iff_zle [THEN iffD1] zless_trans zless_zle_trans)
+apply (subgoal_tac "b$*q = r' $- r $+ b'$*q'")
+ prefer 2 apply (simp add: zcompare_rls)
+apply (simp (no_asm_simp) add: zadd_zmult_distrib2)
+apply (subst zadd_commute [of "b $\<times> q'"], rule zadd_zless_mono)
+ prefer 2 apply (blast intro: zmult_zle_mono1)
+apply (subgoal_tac "r' $+ #0 $< b $+ r")
+ apply (simp add: zcompare_rls)
+apply (rule zadd_zless_mono)
+ apply auto
+apply (blast dest: zless_zle_trans)
+done
+
+
+lemma zdiv_mono2_raw:
+     "[| #0 $<= a;  #0 $< b';  b' $<= b;  a \<in> int |]   
+      ==> a zdiv b $<= a zdiv b'"
+apply (subgoal_tac "#0 $< b")
+ prefer 2 apply (blast dest: zless_zle_trans)
+apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
+apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality)
+apply (rule zdiv_mono2_lemma)
+apply (erule subst)
+apply (erule subst)
+apply (simp_all add: pos_mod_sign pos_mod_bound)
+done
+
+lemma zdiv_mono2:
+     "[| #0 $<= a;  #0 $< b';  b' $<= b |]   
+      ==> a zdiv b $<= a zdiv b'"
+apply (cut_tac a = "intify (a)" in zdiv_mono2_raw)
+apply auto
+done
+
+lemma q_neg_lemma:
+     "[| b'$*q' $+ r' $< #0;  #0 $<= r';  #0 $< b' |] ==> q' $< #0"
+apply (subgoal_tac "b'$*q' $< #0")
+ prefer 2 apply (force intro: zle_zless_trans)
+apply (simp add: zmult_less_0_iff)
+apply (blast dest: zless_trans)
+done
+
+
+
+lemma zdiv_mono2_neg_lemma:
+     "[| b$*q $+ r = b'$*q' $+ r';  b'$*q' $+ r' $< #0;   
+         r $< b;  #0 $<= r';  #0 $< b';  b' $<= b |]   
+      ==> q' $<= q"
+apply (subgoal_tac "#0 $< b")
+ prefer 2 apply (blast dest: zless_zle_trans)
+apply (frule q_neg_lemma, assumption+) 
+apply (subgoal_tac "b$*q' $< b$* (q $+ #1)")
+ apply (simp add: zmult_zless_cancel1)
+ apply (blast dest: zless_trans zless_add1_iff_zle [THEN iffD1])
+apply (simp (no_asm_simp) add: zadd_zmult_distrib2)
+apply (subgoal_tac "b$*q' $<= b'$*q'")
+ prefer 2
+ apply (simp add: zmult_zle_cancel2)
+ apply (blast dest: zless_trans)
+apply (subgoal_tac "b'$*q' $+ r $< b $+ (b$*q $+ r)")
+ prefer 2
+ apply (erule ssubst)
+ apply simp
+ apply (drule_tac w' = "r" and z' = "#0" in zadd_zless_mono)
+  apply (assumption)
+ apply simp
+apply (simp (no_asm_use) add: zadd_commute)
+apply (rule zle_zless_trans)
+ prefer 2 apply (assumption)
+apply (simp (no_asm_simp) add: zmult_zle_cancel2)
+apply (blast dest: zless_trans)
+done
+
+lemma zdiv_mono2_neg_raw:
+     "[| a $< #0;  #0 $< b';  b' $<= b;  a \<in> int |]   
+      ==> a zdiv b' $<= a zdiv b"
+apply (subgoal_tac "#0 $< b")
+ prefer 2 apply (blast dest: zless_zle_trans)
+apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
+apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality)
+apply (rule zdiv_mono2_neg_lemma)
+apply (erule subst)
+apply (erule subst)
+apply (simp_all add: pos_mod_sign pos_mod_bound)
+done
+
+lemma zdiv_mono2_neg: "[| a $< #0;  #0 $< b';  b' $<= b |]   
+      ==> a zdiv b' $<= a zdiv b"
+apply (cut_tac a = "intify (a)" in zdiv_mono2_neg_raw)
+apply auto
+done
+
+
+
+subsection{* More algebraic laws for zdiv and zmod *}
+
+(** proving (a*b) zdiv c = a $* (b zdiv c) $+ a * (b zmod c) **)
+
+lemma zmult1_lemma:
+     "[| quorem(<b,c>, <q,r>);  c \<in> int;  c \<noteq> #0 |]  
+      ==> quorem (<a$*b, c>, <a$*q $+ (a$*r) zdiv c, (a$*r) zmod c>)"
+apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2
+                      pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
+apply (auto intro: raw_zmod_zdiv_equality) 
+done
+
+lemma zdiv_zmult1_eq_raw:
+     "[|b \<in> int;  c \<in> int|]  
+      ==> (a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c"
+apply (case_tac "c = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_div])
+apply auto
+done
+
+lemma zdiv_zmult1_eq: "(a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c"
+apply (cut_tac b = "intify (b)" and c = "intify (c)" in zdiv_zmult1_eq_raw)
+apply auto
+done
+
+lemma zmod_zmult1_eq_raw:
+     "[|b \<in> int;  c \<in> int|] ==> (a$*b) zmod c = a$*(b zmod c) zmod c"
+apply (case_tac "c = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod])
+apply auto
+done
+
+lemma zmod_zmult1_eq: "(a$*b) zmod c = a$*(b zmod c) zmod c"
+apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult1_eq_raw)
+apply auto
+done
+
+lemma zmod_zmult1_eq': "(a$*b) zmod c = ((a zmod c) $* b) zmod c"
+apply (rule trans)
+apply (rule_tac b = " (b $* a) zmod c" in trans)
+apply (rule_tac [2] zmod_zmult1_eq)
+apply (simp_all (no_asm) add: zmult_commute)
+done
+
+lemma zmod_zmult_distrib: "(a$*b) zmod c = ((a zmod c) $* (b zmod c)) zmod c"
+apply (rule zmod_zmult1_eq' [THEN trans])
+apply (rule zmod_zmult1_eq)
+done
+
+lemma zdiv_zmult_self1 [simp]: "intify(b) \<noteq> #0 ==> (a$*b) zdiv b = intify(a)"
+apply (simp (no_asm_simp) add: zdiv_zmult1_eq)
+done
+
+lemma zdiv_zmult_self2 [simp]: "intify(b) \<noteq> #0 ==> (b$*a) zdiv b = intify(a)"
+apply (subst zmult_commute , erule zdiv_zmult_self1)
+done
+
+lemma zmod_zmult_self1 [simp]: "(a$*b) zmod b = #0"
+apply (simp (no_asm) add: zmod_zmult1_eq)
+done
+
+lemma zmod_zmult_self2 [simp]: "(b$*a) zmod b = #0"
+apply (simp (no_asm) add: zmult_commute zmod_zmult1_eq)
+done
+
+
+(** proving (a$+b) zdiv c = 
+            a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c) **)
+
+lemma zadd1_lemma:
+     "[| quorem(<a,c>, <aq,ar>);  quorem(<b,c>, <bq,br>);   
+         c \<in> int;  c \<noteq> #0 |]  
+      ==> quorem (<a$+b, c>, <aq $+ bq $+ (ar$+br) zdiv c, (ar$+br) zmod c>)"
+apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2
+                      pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
+apply (auto intro: raw_zmod_zdiv_equality)
+done
+
+(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
+lemma zdiv_zadd1_eq_raw:
+     "[|a \<in> int; b \<in> int; c \<in> int|] ==>  
+      (a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)"
+apply (case_tac "c = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod,
+                                 THEN quorem_div])
+done
+
+lemma zdiv_zadd1_eq:
+     "(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)" 
+       in zdiv_zadd1_eq_raw)
+apply auto
+done
+
+lemma zmod_zadd1_eq_raw:
+     "[|a \<in> int; b \<in> int; c \<in> int|]   
+      ==> (a$+b) zmod c = (a zmod c $+ b zmod c) zmod c"
+apply (case_tac "c = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod, 
+                                 THEN quorem_mod])
+done
+
+lemma zmod_zadd1_eq: "(a$+b) zmod c = (a zmod c $+ b zmod c) zmod c"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)" 
+       in zmod_zadd1_eq_raw)
+apply auto
+done
+
+lemma zmod_div_trivial_raw:
+     "[|a \<in> int; b \<in> int|] ==> (a zmod b) zdiv b = #0"
+apply (case_tac "b = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound
+         zdiv_pos_pos_trivial neg_mod_sign neg_mod_bound zdiv_neg_neg_trivial)
+done
+
+lemma zmod_div_trivial [simp]: "(a zmod b) zdiv b = #0"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_div_trivial_raw)
+apply auto
+done
+
+lemma zmod_mod_trivial_raw:
+     "[|a \<in> int; b \<in> int|] ==> (a zmod b) zmod b = a zmod b"
+apply (case_tac "b = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound 
+       zmod_pos_pos_trivial neg_mod_sign neg_mod_bound zmod_neg_neg_trivial)
+done
+
+lemma zmod_mod_trivial [simp]: "(a zmod b) zmod b = a zmod b"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_mod_trivial_raw)
+apply auto
+done
+
+lemma zmod_zadd_left_eq: "(a$+b) zmod c = ((a zmod c) $+ b) zmod c"
+apply (rule trans [symmetric])
+apply (rule zmod_zadd1_eq)
+apply (simp (no_asm))
+apply (rule zmod_zadd1_eq [symmetric])
+done
+
+lemma zmod_zadd_right_eq: "(a$+b) zmod c = (a $+ (b zmod c)) zmod c"
+apply (rule trans [symmetric])
+apply (rule zmod_zadd1_eq)
+apply (simp (no_asm))
+apply (rule zmod_zadd1_eq [symmetric])
+done
+
+
+lemma zdiv_zadd_self1 [simp]:
+     "intify(a) \<noteq> #0 ==> (a$+b) zdiv a = b zdiv a $+ #1"
+by (simp (no_asm_simp) add: zdiv_zadd1_eq)
+
+lemma zdiv_zadd_self2 [simp]:
+     "intify(a) \<noteq> #0 ==> (b$+a) zdiv a = b zdiv a $+ #1"
+by (simp (no_asm_simp) add: zdiv_zadd1_eq)
+
+lemma zmod_zadd_self1 [simp]: "(a$+b) zmod a = b zmod a"
+apply (case_tac "a = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (simp (no_asm_simp) add: zmod_zadd1_eq)
+done
+
+lemma zmod_zadd_self2 [simp]: "(b$+a) zmod a = b zmod a"
+apply (case_tac "a = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (simp (no_asm_simp) add: zmod_zadd1_eq)
+done
+
+
+subsection{* proving  a zdiv (b*c) = (a zdiv b) zdiv c *}
+
+(*The condition c>0 seems necessary.  Consider that 7 zdiv ~6 = ~2 but
+  7 zdiv 2 zdiv ~3 = 3 zdiv ~3 = ~1.  The subcase (a zdiv b) zmod c = 0 seems
+  to cause particular problems.*)
+
+(** first, four lemmas to bound the remainder for the cases b<0 and b>0 **)
+
+lemma zdiv_zmult2_aux1:
+     "[| #0 $< c;  b $< r;  r $<= #0 |] ==> b$*c $< b$*(q zmod c) $+ r"
+apply (subgoal_tac "b $* (c $- q zmod c) $< r $* #1")
+apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls)
+apply (rule zle_zless_trans)
+apply (erule_tac [2] zmult_zless_mono1)
+apply (rule zmult_zle_mono2_neg)
+apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound)
+apply (blast intro: zless_imp_zle dest: zless_zle_trans)
+done
+
+lemma zdiv_zmult2_aux2:
+     "[| #0 $< c;   b $< r;  r $<= #0 |] ==> b $* (q zmod c) $+ r $<= #0"
+apply (subgoal_tac "b $* (q zmod c) $<= #0")
+ prefer 2
+ apply (simp add: zmult_le_0_iff pos_mod_sign) 
+ apply (blast intro: zless_imp_zle dest: zless_zle_trans)
+(*arithmetic*)
+apply (drule zadd_zle_mono)
+apply assumption
+apply (simp add: zadd_commute)
+done
+
+lemma zdiv_zmult2_aux3:
+     "[| #0 $< c;  #0 $<= r;  r $< b |] ==> #0 $<= b $* (q zmod c) $+ r"
+apply (subgoal_tac "#0 $<= b $* (q zmod c)")
+ prefer 2
+ apply (simp add: int_0_le_mult_iff pos_mod_sign) 
+ apply (blast intro: zless_imp_zle dest: zle_zless_trans)
+(*arithmetic*)
+apply (drule zadd_zle_mono)
+apply assumption
+apply (simp add: zadd_commute)
+done
+
+lemma zdiv_zmult2_aux4:
+     "[| #0 $< c; #0 $<= r; r $< b |] ==> b $* (q zmod c) $+ r $< b $* c"
+apply (subgoal_tac "r $* #1 $< b $* (c $- q zmod c)")
+apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls)
+apply (rule zless_zle_trans)
+apply (erule zmult_zless_mono1)
+apply (rule_tac [2] zmult_zle_mono2)
+apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound)
+apply (blast intro: zless_imp_zle dest: zle_zless_trans)
+done
+
+lemma zdiv_zmult2_lemma:
+     "[| quorem (<a,b>, <q,r>);  a \<in> int;  b \<in> int;  b \<noteq> #0;  #0 $< c |]  
+      ==> quorem (<a,b$*c>, <q zdiv c, b$*(q zmod c) $+ r>)"
+apply (auto simp add: zmult_ac zmod_zdiv_equality [symmetric] quorem_def
+               neq_iff_zless int_0_less_mult_iff 
+               zadd_zmult_distrib2 [symmetric] zdiv_zmult2_aux1 zdiv_zmult2_aux2
+               zdiv_zmult2_aux3 zdiv_zmult2_aux4)
+apply (blast dest: zless_trans)+
+done
+
+lemma zdiv_zmult2_eq_raw:
+     "[|#0 $< c;  a \<in> int;  b \<in> int|] ==> a zdiv (b$*c) = (a zdiv b) zdiv c"
+apply (case_tac "b = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_div])
+apply (auto simp add: intify_eq_0_iff_zle)
+apply (blast dest: zle_zless_trans)
+done
+
+lemma zdiv_zmult2_eq: "#0 $< c ==> a zdiv (b$*c) = (a zdiv b) zdiv c"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zmult2_eq_raw)
+apply auto
+done
+
+lemma zmod_zmult2_eq_raw:
+     "[|#0 $< c;  a \<in> int;  b \<in> int|]  
+      ==> a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b"
+apply (case_tac "b = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_mod])
+apply (auto simp add: intify_eq_0_iff_zle)
+apply (blast dest: zle_zless_trans)
+done
+
+lemma zmod_zmult2_eq:
+     "#0 $< c ==> a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b"
+apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zmult2_eq_raw)
+apply auto
+done
+
+subsection{* Cancellation of common factors in "zdiv" *}
+
+lemma zdiv_zmult_zmult1_aux1:
+     "[| #0 $< b;  intify(c) \<noteq> #0 |] ==> (c$*a) zdiv (c$*b) = a zdiv b"
+apply (subst zdiv_zmult2_eq)
+apply auto
+done
+
+lemma zdiv_zmult_zmult1_aux2:
+     "[| b $< #0;  intify(c) \<noteq> #0 |] ==> (c$*a) zdiv (c$*b) = a zdiv b"
+apply (subgoal_tac " (c $* ($-a)) zdiv (c $* ($-b)) = ($-a) zdiv ($-b)")
+apply (rule_tac [2] zdiv_zmult_zmult1_aux1)
+apply auto
+done
+
+lemma zdiv_zmult_zmult1_raw:
+     "[|intify(c) \<noteq> #0; b \<in> int|] ==> (c$*a) zdiv (c$*b) = a zdiv b"
+apply (case_tac "b = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (auto simp add: neq_iff_zless [of b]
+  zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2)
+done
+
+lemma zdiv_zmult_zmult1: "intify(c) \<noteq> #0 ==> (c$*a) zdiv (c$*b) = a zdiv b"
+apply (cut_tac b = "intify (b)" in zdiv_zmult_zmult1_raw)
+apply auto
+done
+
+lemma zdiv_zmult_zmult2: "intify(c) \<noteq> #0 ==> (a$*c) zdiv (b$*c) = a zdiv b"
+apply (drule zdiv_zmult_zmult1)
+apply (auto simp add: zmult_commute)
+done
+
+
+subsection{* Distribution of factors over "zmod" *}
+
+lemma zmod_zmult_zmult1_aux1:
+     "[| #0 $< b;  intify(c) \<noteq> #0 |]  
+      ==> (c$*a) zmod (c$*b) = c $* (a zmod b)"
+apply (subst zmod_zmult2_eq)
+apply auto
+done
+
+lemma zmod_zmult_zmult1_aux2:
+     "[| b $< #0;  intify(c) \<noteq> #0 |]  
+      ==> (c$*a) zmod (c$*b) = c $* (a zmod b)"
+apply (subgoal_tac " (c $* ($-a)) zmod (c $* ($-b)) = c $* (($-a) zmod ($-b))")
+apply (rule_tac [2] zmod_zmult_zmult1_aux1)
+apply auto
+done
+
+lemma zmod_zmult_zmult1_raw:
+     "[|b \<in> int; c \<in> int|] ==> (c$*a) zmod (c$*b) = c $* (a zmod b)"
+apply (case_tac "b = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (case_tac "c = #0")
+ apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
+apply (auto simp add: neq_iff_zless [of b]
+  zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2)
+done
+
+lemma zmod_zmult_zmult1: "(c$*a) zmod (c$*b) = c $* (a zmod b)"
+apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult_zmult1_raw)
+apply auto
+done
+
+lemma zmod_zmult_zmult2: "(a$*c) zmod (b$*c) = (a zmod b) $* c"
+apply (cut_tac c = "c" in zmod_zmult_zmult1)
+apply (auto simp add: zmult_commute)
+done
+
+
+(** Quotients of signs **)
+
+lemma zdiv_neg_pos_less0: "[| a $< #0;  #0 $< b |] ==> a zdiv b $< #0"
+apply (subgoal_tac "a zdiv b $<= #-1")
+apply (erule zle_zless_trans)
+apply (simp (no_asm))
+apply (rule zle_trans)
+apply (rule_tac a' = "#-1" in zdiv_mono1)
+apply (rule zless_add1_iff_zle [THEN iffD1])
+apply (simp (no_asm))
+apply (auto simp add: zdiv_minus1)
+done
+
+lemma zdiv_nonneg_neg_le0: "[| #0 $<= a;  b $< #0 |] ==> a zdiv b $<= #0"
+apply (drule zdiv_mono1_neg)
+apply auto
+done
+
+lemma pos_imp_zdiv_nonneg_iff: "#0 $< b ==> (#0 $<= a zdiv b) <-> (#0 $<= a)"
+apply auto
+apply (drule_tac [2] zdiv_mono1)
+apply (auto simp add: neq_iff_zless)
+apply (simp (no_asm_use) add: not_zless_iff_zle [THEN iff_sym])
+apply (blast intro: zdiv_neg_pos_less0)
+done
+
+lemma neg_imp_zdiv_nonneg_iff: "b $< #0 ==> (#0 $<= a zdiv b) <-> (a $<= #0)"
+apply (subst zdiv_zminus_zminus [symmetric])
+apply (rule iff_trans)
+apply (rule pos_imp_zdiv_nonneg_iff)
+apply auto
+done
+
+(*But not (a zdiv b $<= 0 iff a$<=0); consider a=1, b=2 when a zdiv b = 0.*)
+lemma pos_imp_zdiv_neg_iff: "#0 $< b ==> (a zdiv b $< #0) <-> (a $< #0)"
+apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym])
+apply (erule pos_imp_zdiv_nonneg_iff)
+done
+
+(*Again the law fails for $<=: consider a = -1, b = -2 when a zdiv b = 0*)
+lemma neg_imp_zdiv_neg_iff: "b $< #0 ==> (a zdiv b $< #0) <-> (#0 $< a)"
+apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym])
+apply (erule neg_imp_zdiv_nonneg_iff)
+done
+
+(*
+ THESE REMAIN TO BE CONVERTED -- but aren't that useful!
+
+ subsection{* Speeding up the division algorithm with shifting *}
+
+ (** computing "zdiv" by shifting **)
+
+ lemma pos_zdiv_mult_2: "#0 $<= a ==> (#1 $+ #2$*b) zdiv (#2$*a) = b zdiv a"
+ apply (case_tac "a = #0")
+ apply (subgoal_tac "#1 $<= a")
+  apply (arith_tac 2)
+ apply (subgoal_tac "#1 $< a $* #2")
+  apply (arith_tac 2)
+ apply (subgoal_tac "#2$* (#1 $+ b zmod a) $<= #2$*a")
+  apply (rule_tac [2] zmult_zle_mono2)
+ apply (auto simp add: zadd_commute zmult_commute add1_zle_iff pos_mod_bound)
+ apply (subst zdiv_zadd1_eq)
+ apply (simp (no_asm_simp) add: zdiv_zmult_zmult2 zmod_zmult_zmult2 zdiv_pos_pos_trivial)
+ apply (subst zdiv_pos_pos_trivial)
+ apply (simp (no_asm_simp) add: [zmod_pos_pos_trivial pos_mod_sign [THEN zadd_zle_mono1] RSN (2,zle_trans) ])
+ apply (auto simp add: zmod_pos_pos_trivial)
+ apply (subgoal_tac "#0 $<= b zmod a")
+  apply (asm_simp_tac (simpset () add: pos_mod_sign) 2)
+ apply arith
+ done
+
+
+ lemma neg_zdiv_mult_2: "a $<= #0 ==> (#1 $+ #2$*b) zdiv (#2$*a) <-> (b$+#1) zdiv a"
+ apply (subgoal_tac " (#1 $+ #2$* ($-b-#1)) zdiv (#2 $* ($-a)) <-> ($-b-#1) zdiv ($-a)")
+ apply (rule_tac [2] pos_zdiv_mult_2)
+ apply (auto simp add: zmult_zminus_right)
+ apply (subgoal_tac " (#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))")
+ apply (Simp_tac 2)
+ apply (asm_full_simp_tac (HOL_ss add: zdiv_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric])
+ done
+
+
+ (*Not clear why this must be proved separately; probably integ_of causes
+   simplification problems*)
+ lemma lemma: "~ #0 $<= x ==> x $<= #0"
+ apply auto
+ done
+
+ lemma zdiv_integ_of_BIT: "integ_of (v BIT b) zdiv integ_of (w BIT False) =  
+           (if ~b | #0 $<= integ_of w                    
+            then integ_of v zdiv (integ_of w)     
+            else (integ_of v $+ #1) zdiv (integ_of w))"
+ apply (simp_tac (simpset_of Int.thy add: zadd_assoc integ_of_BIT)
+ apply (simp (no_asm_simp) del: bin_arith_extra_simps@bin_rel_simps add: zdiv_zmult_zmult1 pos_zdiv_mult_2 lemma neg_zdiv_mult_2)
+ done
+
+ declare zdiv_integ_of_BIT [simp]
+
+
+ (** computing "zmod" by shifting (proofs resemble those for "zdiv") **)
+
+ lemma pos_zmod_mult_2: "#0 $<= a ==> (#1 $+ #2$*b) zmod (#2$*a) = #1 $+ #2 $* (b zmod a)"
+ apply (case_tac "a = #0")
+ apply (subgoal_tac "#1 $<= a")
+  apply (arith_tac 2)
+ apply (subgoal_tac "#1 $< a $* #2")
+  apply (arith_tac 2)
+ apply (subgoal_tac "#2$* (#1 $+ b zmod a) $<= #2$*a")
+  apply (rule_tac [2] zmult_zle_mono2)
+ apply (auto simp add: zadd_commute zmult_commute add1_zle_iff pos_mod_bound)
+ apply (subst zmod_zadd1_eq)
+ apply (simp (no_asm_simp) add: zmod_zmult_zmult2 zmod_pos_pos_trivial)
+ apply (rule zmod_pos_pos_trivial)
+ apply (simp (no_asm_simp) # add: [zmod_pos_pos_trivial pos_mod_sign [THEN zadd_zle_mono1] RSN (2,zle_trans) ])
+ apply (auto simp add: zmod_pos_pos_trivial)
+ apply (subgoal_tac "#0 $<= b zmod a")
+  apply (asm_simp_tac (simpset () add: pos_mod_sign) 2)
+ apply arith
+ done
+
+
+ lemma neg_zmod_mult_2: "a $<= #0 ==> (#1 $+ #2$*b) zmod (#2$*a) = #2 $* ((b$+#1) zmod a) - #1"
+ apply (subgoal_tac " (#1 $+ #2$* ($-b-#1)) zmod (#2$* ($-a)) = #1 $+ #2$* (($-b-#1) zmod ($-a))")
+ apply (rule_tac [2] pos_zmod_mult_2)
+ apply (auto simp add: zmult_zminus_right)
+ apply (subgoal_tac " (#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))")
+ apply (Simp_tac 2)
+ apply (asm_full_simp_tac (HOL_ss add: zmod_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric])
+ apply (dtac (zminus_equation [THEN iffD1, symmetric])
+ apply auto
+ done
+
+ lemma zmod_integ_of_BIT: "integ_of (v BIT b) zmod integ_of (w BIT False) =  
+           (if b then  
+                 if #0 $<= integ_of w  
+                 then #2 $* (integ_of v zmod integ_of w) $+ #1     
+                 else #2 $* ((integ_of v $+ #1) zmod integ_of w) - #1   
+            else #2 $* (integ_of v zmod integ_of w))"
+ apply (simp_tac (simpset_of Int.thy add: zadd_assoc integ_of_BIT)
+ apply (simp (no_asm_simp) del: bin_arith_extra_simps@bin_rel_simps add: zmod_zmult_zmult1 pos_zmod_mult_2 lemma neg_zmod_mult_2)
+ done
+
+ declare zmod_integ_of_BIT [simp]
+*)
+
+ML{*
+val zspos_add_zspos_imp_zspos = thm "zspos_add_zspos_imp_zspos";
+val zpos_add_zpos_imp_zpos = thm "zpos_add_zpos_imp_zpos";
+val zneg_add_zneg_imp_zneg = thm "zneg_add_zneg_imp_zneg";
+val zneg_or_0_add_zneg_or_0_imp_zneg_or_0 = thm "zneg_or_0_add_zneg_or_0_imp_zneg_or_0";
+val zero_lt_zmagnitude = thm "zero_lt_zmagnitude";
+val zless_add_succ_iff = thm "zless_add_succ_iff";
+val zadd_succ_zle_iff = thm "zadd_succ_zle_iff";
+val zless_add1_iff_zle = thm "zless_add1_iff_zle";
+val add1_zle_iff = thm "add1_zle_iff";
+val add1_left_zle_iff = thm "add1_left_zle_iff";
+val zmult_zle_mono1 = thm "zmult_zle_mono1";
+val zmult_zle_mono1_neg = thm "zmult_zle_mono1_neg";
+val zmult_zle_mono2 = thm "zmult_zle_mono2";
+val zmult_zle_mono2_neg = thm "zmult_zle_mono2_neg";
+val zmult_zle_mono = thm "zmult_zle_mono";
+val zmult_zless_mono2 = thm "zmult_zless_mono2";
+val zmult_zless_mono1 = thm "zmult_zless_mono1";
+val zmult_zless_mono = thm "zmult_zless_mono";
+val zmult_zless_mono1_neg = thm "zmult_zless_mono1_neg";
+val zmult_zless_mono2_neg = thm "zmult_zless_mono2_neg";
+val zmult_eq_0_iff = thm "zmult_eq_0_iff";
+val zmult_zless_cancel2 = thm "zmult_zless_cancel2";
+val zmult_zless_cancel1 = thm "zmult_zless_cancel1";
+val zmult_zle_cancel2 = thm "zmult_zle_cancel2";
+val zmult_zle_cancel1 = thm "zmult_zle_cancel1";
+val int_eq_iff_zle = thm "int_eq_iff_zle";
+val zmult_cancel2 = thm "zmult_cancel2";
+val zmult_cancel1 = thm "zmult_cancel1";
+val unique_quotient = thm "unique_quotient";
+val unique_remainder = thm "unique_remainder";
+val adjust_eq = thm "adjust_eq";
+val posDivAlg_termination = thm "posDivAlg_termination";
+val posDivAlg_unfold = thm "posDivAlg_unfold";
+val posDivAlg_eqn = thm "posDivAlg_eqn";
+val posDivAlg_induct = thm "posDivAlg_induct";
+val intify_eq_0_iff_zle = thm "intify_eq_0_iff_zle";
+val zmult_pos = thm "zmult_pos";
+val zmult_neg = thm "zmult_neg";
+val zmult_pos_neg = thm "zmult_pos_neg";
+val int_0_less_mult_iff = thm "int_0_less_mult_iff";
+val int_0_le_mult_iff = thm "int_0_le_mult_iff";
+val zmult_less_0_iff = thm "zmult_less_0_iff";
+val zmult_le_0_iff = thm "zmult_le_0_iff";
+val posDivAlg_type = thm "posDivAlg_type";
+val posDivAlg_correct = thm "posDivAlg_correct";
+val negDivAlg_termination = thm "negDivAlg_termination";
+val negDivAlg_unfold = thm "negDivAlg_unfold";
+val negDivAlg_eqn = thm "negDivAlg_eqn";
+val negDivAlg_induct = thm "negDivAlg_induct";
+val negDivAlg_type = thm "negDivAlg_type";
+val negDivAlg_correct = thm "negDivAlg_correct";
+val quorem_0 = thm "quorem_0";
+val posDivAlg_zero_divisor = thm "posDivAlg_zero_divisor";
+val posDivAlg_0 = thm "posDivAlg_0";
+val negDivAlg_minus1 = thm "negDivAlg_minus1";
+val negateSnd_eq = thm "negateSnd_eq";
+val negateSnd_type = thm "negateSnd_type";
+val quorem_neg = thm "quorem_neg";
+val divAlg_correct = thm "divAlg_correct";
+val divAlg_type = thm "divAlg_type";
+val zdiv_intify1 = thm "zdiv_intify1";
+val zdiv_intify2 = thm "zdiv_intify2";
+val zdiv_type = thm "zdiv_type";
+val zmod_intify1 = thm "zmod_intify1";
+val zmod_intify2 = thm "zmod_intify2";
+val zmod_type = thm "zmod_type";
+val DIVISION_BY_ZERO_ZDIV = thm "DIVISION_BY_ZERO_ZDIV";
+val DIVISION_BY_ZERO_ZMOD = thm "DIVISION_BY_ZERO_ZMOD";
+val zmod_zdiv_equality = thm "zmod_zdiv_equality";
+val pos_mod = thm "pos_mod";
+val pos_mod_sign = thm "pos_mod_sign";
+val neg_mod = thm "neg_mod";
+val neg_mod_sign = thm "neg_mod_sign";
+val quorem_div_mod = thm "quorem_div_mod";
+val quorem_div = thm "quorem_div";
+val quorem_mod = thm "quorem_mod";
+val zdiv_pos_pos_trivial = thm "zdiv_pos_pos_trivial";
+val zdiv_neg_neg_trivial = thm "zdiv_neg_neg_trivial";
+val zdiv_pos_neg_trivial = thm "zdiv_pos_neg_trivial";
+val zmod_pos_pos_trivial = thm "zmod_pos_pos_trivial";
+val zmod_neg_neg_trivial = thm "zmod_neg_neg_trivial";
+val zmod_pos_neg_trivial = thm "zmod_pos_neg_trivial";
+val zdiv_zminus_zminus = thm "zdiv_zminus_zminus";
+val zmod_zminus_zminus = thm "zmod_zminus_zminus";
+val self_quotient = thm "self_quotient";
+val self_remainder = thm "self_remainder";
+val zdiv_self = thm "zdiv_self";
+val zmod_self = thm "zmod_self";
+val zdiv_zero = thm "zdiv_zero";
+val zdiv_eq_minus1 = thm "zdiv_eq_minus1";
+val zmod_zero = thm "zmod_zero";
+val zdiv_minus1 = thm "zdiv_minus1";
+val zmod_minus1 = thm "zmod_minus1";
+val zdiv_pos_pos = thm "zdiv_pos_pos";
+val zmod_pos_pos = thm "zmod_pos_pos";
+val zdiv_neg_pos = thm "zdiv_neg_pos";
+val zmod_neg_pos = thm "zmod_neg_pos";
+val zdiv_pos_neg = thm "zdiv_pos_neg";
+val zmod_pos_neg = thm "zmod_pos_neg";
+val zdiv_neg_neg = thm "zdiv_neg_neg";
+val zmod_neg_neg = thm "zmod_neg_neg";
+val zmod_1 = thm "zmod_1";
+val zdiv_1 = thm "zdiv_1";
+val zmod_minus1_right = thm "zmod_minus1_right";
+val zdiv_minus1_right = thm "zdiv_minus1_right";
+val zdiv_mono1 = thm "zdiv_mono1";
+val zdiv_mono1_neg = thm "zdiv_mono1_neg";
+val zdiv_mono2 = thm "zdiv_mono2";
+val zdiv_mono2_neg = thm "zdiv_mono2_neg";
+val zdiv_zmult1_eq = thm "zdiv_zmult1_eq";
+val zmod_zmult1_eq = thm "zmod_zmult1_eq";
+val zmod_zmult1_eq' = thm "zmod_zmult1_eq'";
+val zmod_zmult_distrib = thm "zmod_zmult_distrib";
+val zdiv_zmult_self1 = thm "zdiv_zmult_self1";
+val zdiv_zmult_self2 = thm "zdiv_zmult_self2";
+val zmod_zmult_self1 = thm "zmod_zmult_self1";
+val zmod_zmult_self2 = thm "zmod_zmult_self2";
+val zdiv_zadd1_eq = thm "zdiv_zadd1_eq";
+val zmod_zadd1_eq = thm "zmod_zadd1_eq";
+val zmod_div_trivial = thm "zmod_div_trivial";
+val zmod_mod_trivial = thm "zmod_mod_trivial";
+val zmod_zadd_left_eq = thm "zmod_zadd_left_eq";
+val zmod_zadd_right_eq = thm "zmod_zadd_right_eq";
+val zdiv_zadd_self1 = thm "zdiv_zadd_self1";
+val zdiv_zadd_self2 = thm "zdiv_zadd_self2";
+val zmod_zadd_self1 = thm "zmod_zadd_self1";
+val zmod_zadd_self2 = thm "zmod_zadd_self2";
+val zdiv_zmult2_eq = thm "zdiv_zmult2_eq";
+val zmod_zmult2_eq = thm "zmod_zmult2_eq";
+val zdiv_zmult_zmult1 = thm "zdiv_zmult_zmult1";
+val zdiv_zmult_zmult2 = thm "zdiv_zmult_zmult2";
+val zmod_zmult_zmult1 = thm "zmod_zmult_zmult1";
+val zmod_zmult_zmult2 = thm "zmod_zmult_zmult2";
+val zdiv_neg_pos_less0 = thm "zdiv_neg_pos_less0";
+val zdiv_nonneg_neg_le0 = thm "zdiv_nonneg_neg_le0";
+val pos_imp_zdiv_nonneg_iff = thm "pos_imp_zdiv_nonneg_iff";
+val neg_imp_zdiv_nonneg_iff = thm "neg_imp_zdiv_nonneg_iff";
+val pos_imp_zdiv_neg_iff = thm "pos_imp_zdiv_neg_iff";
+val neg_imp_zdiv_neg_iff = thm "neg_imp_zdiv_neg_iff";
+*}
+
+end
+
--- a/src/ZF/Integ/Bin.thy	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,692 +0,0 @@
-(*  Title:      ZF/ex/Bin.thy
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-   The sign Pls stands for an infinite string of leading 0's.
-   The sign Min stands for an infinite string of leading 1's.
-
-A number can have multiple representations, namely leading 0's with sign
-Pls and leading 1's with sign Min.  See twos-compl.ML/int_of_binary for
-the numerical interpretation.
-
-The representation expects that (m mod 2) is 0 or 1, even if m is negative;
-For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1
-*)
-
-header{*Arithmetic on Binary Integers*}
-
-theory Bin
-imports Int Datatype
-uses "Tools/numeral_syntax.ML"
-begin
-
-consts  bin :: i
-datatype
-  "bin" = Pls
-        | Min
-        | Bit ("w: bin", "b: bool")	(infixl "BIT" 90)
-
-syntax
-  "_Int"    :: "xnum => i"        ("_")
-
-consts
-  integ_of  :: "i=>i"
-  NCons     :: "[i,i]=>i"
-  bin_succ  :: "i=>i"
-  bin_pred  :: "i=>i"
-  bin_minus :: "i=>i"
-  bin_adder :: "i=>i"
-  bin_mult  :: "[i,i]=>i"
-
-primrec
-  integ_of_Pls:  "integ_of (Pls)     = $# 0"
-  integ_of_Min:  "integ_of (Min)     = $-($#1)"
-  integ_of_BIT:  "integ_of (w BIT b) = $#b $+ integ_of(w) $+ integ_of(w)"
-
-    (** recall that cond(1,b,c)=b and cond(0,b,c)=0 **)
-
-primrec (*NCons adds a bit, suppressing leading 0s and 1s*)
-  NCons_Pls: "NCons (Pls,b)     = cond(b,Pls BIT b,Pls)"
-  NCons_Min: "NCons (Min,b)     = cond(b,Min,Min BIT b)"
-  NCons_BIT: "NCons (w BIT c,b) = w BIT c BIT b"
-
-primrec (*successor.  If a BIT, can change a 0 to a 1 without recursion.*)
-  bin_succ_Pls:  "bin_succ (Pls)     = Pls BIT 1"
-  bin_succ_Min:  "bin_succ (Min)     = Pls"
-  bin_succ_BIT:  "bin_succ (w BIT b) = cond(b, bin_succ(w) BIT 0, NCons(w,1))"
-
-primrec (*predecessor*)
-  bin_pred_Pls:  "bin_pred (Pls)     = Min"
-  bin_pred_Min:  "bin_pred (Min)     = Min BIT 0"
-  bin_pred_BIT:  "bin_pred (w BIT b) = cond(b, NCons(w,0), bin_pred(w) BIT 1)"
-
-primrec (*unary negation*)
-  bin_minus_Pls:
-    "bin_minus (Pls)       = Pls"
-  bin_minus_Min:
-    "bin_minus (Min)       = Pls BIT 1"
-  bin_minus_BIT:
-    "bin_minus (w BIT b) = cond(b, bin_pred(NCons(bin_minus(w),0)),
-				bin_minus(w) BIT 0)"
-
-primrec (*sum*)
-  bin_adder_Pls:
-    "bin_adder (Pls)     = (lam w:bin. w)"
-  bin_adder_Min:
-    "bin_adder (Min)     = (lam w:bin. bin_pred(w))"
-  bin_adder_BIT:
-    "bin_adder (v BIT x) = 
-       (lam w:bin. 
-         bin_case (v BIT x, bin_pred(v BIT x), 
-                   %w y. NCons(bin_adder (v) ` cond(x and y, bin_succ(w), w),  
-                               x xor y),
-                   w))"
-
-(*The bin_case above replaces the following mutually recursive function:
-primrec
-  "adding (v,x,Pls)     = v BIT x"
-  "adding (v,x,Min)     = bin_pred(v BIT x)"
-  "adding (v,x,w BIT y) = NCons(bin_adder (v, cond(x and y, bin_succ(w), w)), 
-				x xor y)"
-*)
-
-constdefs
-  bin_add   :: "[i,i]=>i"
-    "bin_add(v,w) == bin_adder(v)`w"
-
-
-primrec
-  bin_mult_Pls:
-    "bin_mult (Pls,w)     = Pls"
-  bin_mult_Min:
-    "bin_mult (Min,w)     = bin_minus(w)"
-  bin_mult_BIT:
-    "bin_mult (v BIT b,w) = cond(b, bin_add(NCons(bin_mult(v,w),0),w),
-				 NCons(bin_mult(v,w),0))"
-
-setup NumeralSyntax.setup
-
-
-declare bin.intros [simp,TC]
-
-lemma NCons_Pls_0: "NCons(Pls,0) = Pls"
-by simp
-
-lemma NCons_Pls_1: "NCons(Pls,1) = Pls BIT 1"
-by simp
-
-lemma NCons_Min_0: "NCons(Min,0) = Min BIT 0"
-by simp
-
-lemma NCons_Min_1: "NCons(Min,1) = Min"
-by simp
-
-lemma NCons_BIT: "NCons(w BIT x,b) = w BIT x BIT b"
-by (simp add: bin.case_eqns)
-
-lemmas NCons_simps [simp] = 
-    NCons_Pls_0 NCons_Pls_1 NCons_Min_0 NCons_Min_1 NCons_BIT
-
-
-
-(** Type checking **)
-
-lemma integ_of_type [TC]: "w: bin ==> integ_of(w) : int"
-apply (induct_tac "w")
-apply (simp_all add: bool_into_nat)
-done
-
-lemma NCons_type [TC]: "[| w: bin; b: bool |] ==> NCons(w,b) : bin"
-by (induct_tac "w", auto)
-
-lemma bin_succ_type [TC]: "w: bin ==> bin_succ(w) : bin"
-by (induct_tac "w", auto)
-
-lemma bin_pred_type [TC]: "w: bin ==> bin_pred(w) : bin"
-by (induct_tac "w", auto)
-
-lemma bin_minus_type [TC]: "w: bin ==> bin_minus(w) : bin"
-by (induct_tac "w", auto)
-
-(*This proof is complicated by the mutual recursion*)
-lemma bin_add_type [rule_format,TC]:
-     "v: bin ==> ALL w: bin. bin_add(v,w) : bin"
-apply (unfold bin_add_def)
-apply (induct_tac "v")
-apply (rule_tac [3] ballI)
-apply (rename_tac [3] "w'")
-apply (induct_tac [3] "w'")
-apply (simp_all add: NCons_type)
-done
-
-lemma bin_mult_type [TC]: "[| v: bin; w: bin |] ==> bin_mult(v,w) : bin"
-by (induct_tac "v", auto)
-
-
-subsubsection{*The Carry and Borrow Functions, 
-            @{term bin_succ} and @{term bin_pred}*}
-
-(*NCons preserves the integer value of its argument*)
-lemma integ_of_NCons [simp]:
-     "[| w: bin; b: bool |] ==> integ_of(NCons(w,b)) = integ_of(w BIT b)"
-apply (erule bin.cases)
-apply (auto elim!: boolE) 
-done
-
-lemma integ_of_succ [simp]:
-     "w: bin ==> integ_of(bin_succ(w)) = $#1 $+ integ_of(w)"
-apply (erule bin.induct)
-apply (auto simp add: zadd_ac elim!: boolE) 
-done
-
-lemma integ_of_pred [simp]:
-     "w: bin ==> integ_of(bin_pred(w)) = $- ($#1) $+ integ_of(w)"
-apply (erule bin.induct)
-apply (auto simp add: zadd_ac elim!: boolE) 
-done
-
-
-subsubsection{*@{term bin_minus}: Unary Negation of Binary Integers*}
-
-lemma integ_of_minus: "w: bin ==> integ_of(bin_minus(w)) = $- integ_of(w)"
-apply (erule bin.induct)
-apply (auto simp add: zadd_ac zminus_zadd_distrib  elim!: boolE) 
-done
-
-
-subsubsection{*@{term bin_add}: Binary Addition*}
-
-lemma bin_add_Pls [simp]: "w: bin ==> bin_add(Pls,w) = w"
-by (unfold bin_add_def, simp)
-
-lemma bin_add_Pls_right: "w: bin ==> bin_add(w,Pls) = w"
-apply (unfold bin_add_def)
-apply (erule bin.induct, auto)
-done
-
-lemma bin_add_Min [simp]: "w: bin ==> bin_add(Min,w) = bin_pred(w)"
-by (unfold bin_add_def, simp)
-
-lemma bin_add_Min_right: "w: bin ==> bin_add(w,Min) = bin_pred(w)"
-apply (unfold bin_add_def)
-apply (erule bin.induct, auto)
-done
-
-lemma bin_add_BIT_Pls [simp]: "bin_add(v BIT x,Pls) = v BIT x"
-by (unfold bin_add_def, simp)
-
-lemma bin_add_BIT_Min [simp]: "bin_add(v BIT x,Min) = bin_pred(v BIT x)"
-by (unfold bin_add_def, simp)
-
-lemma bin_add_BIT_BIT [simp]:
-     "[| w: bin;  y: bool |]               
-      ==> bin_add(v BIT x, w BIT y) =  
-          NCons(bin_add(v, cond(x and y, bin_succ(w), w)), x xor y)"
-by (unfold bin_add_def, simp)
-
-lemma integ_of_add [rule_format]:
-     "v: bin ==>  
-          ALL w: bin. integ_of(bin_add(v,w)) = integ_of(v) $+ integ_of(w)"
-apply (erule bin.induct, simp, simp)
-apply (rule ballI)
-apply (induct_tac "wa")
-apply (auto simp add: zadd_ac elim!: boolE) 
-done
-
-(*Subtraction*)
-lemma diff_integ_of_eq: 
-     "[| v: bin;  w: bin |]    
-      ==> integ_of(v) $- integ_of(w) = integ_of(bin_add (v, bin_minus(w)))"
-apply (unfold zdiff_def)
-apply (simp add: integ_of_add integ_of_minus)
-done
-
-
-subsubsection{*@{term bin_mult}: Binary Multiplication*}
-
-lemma integ_of_mult:
-     "[| v: bin;  w: bin |]    
-      ==> integ_of(bin_mult(v,w)) = integ_of(v) $* integ_of(w)"
-apply (induct_tac "v", simp)
-apply (simp add: integ_of_minus)
-apply (auto simp add: zadd_ac integ_of_add zadd_zmult_distrib  elim!: boolE) 
-done
-
-
-subsection{*Computations*}
-
-(** extra rules for bin_succ, bin_pred **)
-
-lemma bin_succ_1: "bin_succ(w BIT 1) = bin_succ(w) BIT 0"
-by simp
-
-lemma bin_succ_0: "bin_succ(w BIT 0) = NCons(w,1)"
-by simp
-
-lemma bin_pred_1: "bin_pred(w BIT 1) = NCons(w,0)"
-by simp
-
-lemma bin_pred_0: "bin_pred(w BIT 0) = bin_pred(w) BIT 1"
-by simp
-
-(** extra rules for bin_minus **)
-
-lemma bin_minus_1: "bin_minus(w BIT 1) = bin_pred(NCons(bin_minus(w), 0))"
-by simp
-
-lemma bin_minus_0: "bin_minus(w BIT 0) = bin_minus(w) BIT 0"
-by simp
-
-(** extra rules for bin_add **)
-
-lemma bin_add_BIT_11: "w: bin ==> bin_add(v BIT 1, w BIT 1) =  
-                     NCons(bin_add(v, bin_succ(w)), 0)"
-by simp
-
-lemma bin_add_BIT_10: "w: bin ==> bin_add(v BIT 1, w BIT 0) =   
-                     NCons(bin_add(v,w), 1)"
-by simp
-
-lemma bin_add_BIT_0: "[| w: bin;  y: bool |]  
-      ==> bin_add(v BIT 0, w BIT y) = NCons(bin_add(v,w), y)"
-by simp
-
-(** extra rules for bin_mult **)
-
-lemma bin_mult_1: "bin_mult(v BIT 1, w) = bin_add(NCons(bin_mult(v,w),0), w)"
-by simp
-
-lemma bin_mult_0: "bin_mult(v BIT 0, w) = NCons(bin_mult(v,w),0)"
-by simp
-
-
-(** Simplification rules with integer constants **)
-
-lemma int_of_0: "$#0 = #0"
-by simp
-
-lemma int_of_succ: "$# succ(n) = #1 $+ $#n"
-by (simp add: int_of_add [symmetric] natify_succ)
-
-lemma zminus_0 [simp]: "$- #0 = #0"
-by simp
-
-lemma zadd_0_intify [simp]: "#0 $+ z = intify(z)"
-by simp
-
-lemma zadd_0_right_intify [simp]: "z $+ #0 = intify(z)"
-by simp
-
-lemma zmult_1_intify [simp]: "#1 $* z = intify(z)"
-by simp
-
-lemma zmult_1_right_intify [simp]: "z $* #1 = intify(z)"
-by (subst zmult_commute, simp)
-
-lemma zmult_0 [simp]: "#0 $* z = #0"
-by simp
-
-lemma zmult_0_right [simp]: "z $* #0 = #0"
-by (subst zmult_commute, simp)
-
-lemma zmult_minus1 [simp]: "#-1 $* z = $-z"
-by (simp add: zcompare_rls)
-
-lemma zmult_minus1_right [simp]: "z $* #-1 = $-z"
-apply (subst zmult_commute)
-apply (rule zmult_minus1)
-done
-
-
-subsection{*Simplification Rules for Comparison of Binary Numbers*}
-text{*Thanks to Norbert Voelker*}
-
-(** Equals (=) **)
-
-lemma eq_integ_of_eq: 
-     "[| v: bin;  w: bin |]    
-      ==> ((integ_of(v)) = integ_of(w)) <->  
-          iszero (integ_of (bin_add (v, bin_minus(w))))"
-apply (unfold iszero_def)
-apply (simp add: zcompare_rls integ_of_add integ_of_minus)
-done
-
-lemma iszero_integ_of_Pls: "iszero (integ_of(Pls))"
-by (unfold iszero_def, simp)
-
-
-lemma nonzero_integ_of_Min: "~ iszero (integ_of(Min))"
-apply (unfold iszero_def)
-apply (simp add: zminus_equation)
-done
-
-lemma iszero_integ_of_BIT: 
-     "[| w: bin; x: bool |]  
-      ==> iszero (integ_of (w BIT x)) <-> (x=0 & iszero (integ_of(w)))"
-apply (unfold iszero_def, simp)
-apply (subgoal_tac "integ_of (w) : int")
-apply typecheck
-apply (drule int_cases)
-apply (safe elim!: boolE)
-apply (simp_all (asm_lr) add: zcompare_rls zminus_zadd_distrib [symmetric]
-                     int_of_add [symmetric])
-done
-
-lemma iszero_integ_of_0:
-     "w: bin ==> iszero (integ_of (w BIT 0)) <-> iszero (integ_of(w))"
-by (simp only: iszero_integ_of_BIT, blast) 
-
-lemma iszero_integ_of_1: "w: bin ==> ~ iszero (integ_of (w BIT 1))"
-by (simp only: iszero_integ_of_BIT, blast)
-
-
-
-(** Less-than (<) **)
-
-lemma less_integ_of_eq_neg: 
-     "[| v: bin;  w: bin |]    
-      ==> integ_of(v) $< integ_of(w)  
-          <-> znegative (integ_of (bin_add (v, bin_minus(w))))"
-apply (unfold zless_def zdiff_def)
-apply (simp add: integ_of_minus integ_of_add)
-done
-
-lemma not_neg_integ_of_Pls: "~ znegative (integ_of(Pls))"
-by simp
-
-lemma neg_integ_of_Min: "znegative (integ_of(Min))"
-by simp
-
-lemma neg_integ_of_BIT:
-     "[| w: bin; x: bool |]  
-      ==> znegative (integ_of (w BIT x)) <-> znegative (integ_of(w))"
-apply simp
-apply (subgoal_tac "integ_of (w) : int")
-apply typecheck
-apply (drule int_cases)
-apply (auto elim!: boolE simp add: int_of_add [symmetric]  zcompare_rls)
-apply (simp_all add: zminus_zadd_distrib [symmetric] zdiff_def 
-                     int_of_add [symmetric])
-apply (subgoal_tac "$#1 $- $# succ (succ (n #+ n)) = $- $# succ (n #+ n) ")
- apply (simp add: zdiff_def)
-apply (simp add: equation_zminus int_of_diff [symmetric])
-done
-
-(** Less-than-or-equals (<=) **)
-
-lemma le_integ_of_eq_not_less:
-     "(integ_of(x) $<= (integ_of(w))) <-> ~ (integ_of(w) $< (integ_of(x)))"
-by (simp add: not_zless_iff_zle [THEN iff_sym])
-
-
-(*Delete the original rewrites, with their clumsy conditional expressions*)
-declare bin_succ_BIT [simp del] 
-        bin_pred_BIT [simp del] 
-        bin_minus_BIT [simp del]
-        NCons_Pls [simp del]
-        NCons_Min [simp del]
-        bin_adder_BIT [simp del]
-        bin_mult_BIT [simp del]
-
-(*Hide the binary representation of integer constants*)
-declare integ_of_Pls [simp del] integ_of_Min [simp del] integ_of_BIT [simp del]
-
-
-lemmas bin_arith_extra_simps =
-     integ_of_add [symmetric]   
-     integ_of_minus [symmetric] 
-     integ_of_mult [symmetric]  
-     bin_succ_1 bin_succ_0 
-     bin_pred_1 bin_pred_0 
-     bin_minus_1 bin_minus_0  
-     bin_add_Pls_right bin_add_Min_right
-     bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11
-     diff_integ_of_eq
-     bin_mult_1 bin_mult_0 NCons_simps
-
-
-(*For making a minimal simpset, one must include these default simprules
-  of thy.  Also include simp_thms, or at least (~False)=True*)
-lemmas bin_arith_simps =
-     bin_pred_Pls bin_pred_Min
-     bin_succ_Pls bin_succ_Min
-     bin_add_Pls bin_add_Min
-     bin_minus_Pls bin_minus_Min
-     bin_mult_Pls bin_mult_Min 
-     bin_arith_extra_simps
-
-(*Simplification of relational operations*)
-lemmas bin_rel_simps =
-     eq_integ_of_eq iszero_integ_of_Pls nonzero_integ_of_Min
-     iszero_integ_of_0 iszero_integ_of_1
-     less_integ_of_eq_neg
-     not_neg_integ_of_Pls neg_integ_of_Min neg_integ_of_BIT
-     le_integ_of_eq_not_less
-
-declare bin_arith_simps [simp]
-declare bin_rel_simps [simp]
-
-
-(** Simplification of arithmetic when nested to the right **)
-
-lemma add_integ_of_left [simp]:
-     "[| v: bin;  w: bin |]    
-      ==> integ_of(v) $+ (integ_of(w) $+ z) = (integ_of(bin_add(v,w)) $+ z)"
-by (simp add: zadd_assoc [symmetric])
-
-lemma mult_integ_of_left [simp]:
-     "[| v: bin;  w: bin |]    
-      ==> integ_of(v) $* (integ_of(w) $* z) = (integ_of(bin_mult(v,w)) $* z)"
-by (simp add: zmult_assoc [symmetric])
-
-lemma add_integ_of_diff1 [simp]: 
-    "[| v: bin;  w: bin |]    
-      ==> integ_of(v) $+ (integ_of(w) $- c) = integ_of(bin_add(v,w)) $- (c)"
-apply (unfold zdiff_def)
-apply (rule add_integ_of_left, auto)
-done
-
-lemma add_integ_of_diff2 [simp]:
-     "[| v: bin;  w: bin |]    
-      ==> integ_of(v) $+ (c $- integ_of(w)) =  
-          integ_of (bin_add (v, bin_minus(w))) $+ (c)"
-apply (subst diff_integ_of_eq [symmetric])
-apply (simp_all add: zdiff_def zadd_ac)
-done
-
-
-(** More for integer constants **)
-
-declare int_of_0 [simp] int_of_succ [simp]
-
-lemma zdiff0 [simp]: "#0 $- x = $-x"
-by (simp add: zdiff_def)
-
-lemma zdiff0_right [simp]: "x $- #0 = intify(x)"
-by (simp add: zdiff_def)
-
-lemma zdiff_self [simp]: "x $- x = #0"
-by (simp add: zdiff_def)
-
-lemma znegative_iff_zless_0: "k: int ==> znegative(k) <-> k $< #0"
-by (simp add: zless_def)
-
-lemma zero_zless_imp_znegative_zminus: "[|#0 $< k; k: int|] ==> znegative($-k)"
-by (simp add: zless_def)
-
-lemma zero_zle_int_of [simp]: "#0 $<= $# n"
-by (simp add: not_zless_iff_zle [THEN iff_sym] znegative_iff_zless_0 [THEN iff_sym])
-
-lemma nat_of_0 [simp]: "nat_of(#0) = 0"
-by (simp only: natify_0 int_of_0 [symmetric] nat_of_int_of)
-
-lemma nat_le_int0_lemma: "[| z $<= $#0; z: int |] ==> nat_of(z) = 0"
-by (auto simp add: znegative_iff_zless_0 [THEN iff_sym] zle_def zneg_nat_of)
-
-lemma nat_le_int0: "z $<= $#0 ==> nat_of(z) = 0"
-apply (subgoal_tac "nat_of (intify (z)) = 0")
-apply (rule_tac [2] nat_le_int0_lemma, auto)
-done
-
-lemma int_of_eq_0_imp_natify_eq_0: "$# n = #0 ==> natify(n) = 0"
-by (rule not_znegative_imp_zero, auto)
-
-lemma nat_of_zminus_int_of: "nat_of($- $# n) = 0"
-by (simp add: nat_of_def int_of_def raw_nat_of zminus image_intrel_int)
-
-lemma int_of_nat_of: "#0 $<= z ==> $# nat_of(z) = intify(z)"
-apply (rule not_zneg_nat_of_intify)
-apply (simp add: znegative_iff_zless_0 not_zless_iff_zle)
-done
-
-declare int_of_nat_of [simp] nat_of_zminus_int_of [simp]
-
-lemma int_of_nat_of_if: "$# nat_of(z) = (if #0 $<= z then intify(z) else #0)"
-by (simp add: int_of_nat_of znegative_iff_zless_0 not_zle_iff_zless)
-
-lemma zless_nat_iff_int_zless: "[| m: nat; z: int |] ==> (m < nat_of(z)) <-> ($#m $< z)"
-apply (case_tac "znegative (z) ")
-apply (erule_tac [2] not_zneg_nat_of [THEN subst])
-apply (auto dest: zless_trans dest!: zero_zle_int_of [THEN zle_zless_trans]
-            simp add: znegative_iff_zless_0)
-done
-
-
-(** nat_of and zless **)
-
-(*An alternative condition is  $#0 <= w  *)
-lemma zless_nat_conj_lemma: "$#0 $< z ==> (nat_of(w) < nat_of(z)) <-> (w $< z)"
-apply (rule iff_trans)
-apply (rule zless_int_of [THEN iff_sym])
-apply (auto simp add: int_of_nat_of_if simp del: zless_int_of)
-apply (auto elim: zless_asym simp add: not_zle_iff_zless)
-apply (blast intro: zless_zle_trans)
-done
-
-lemma zless_nat_conj: "(nat_of(w) < nat_of(z)) <-> ($#0 $< z & w $< z)"
-apply (case_tac "$#0 $< z")
-apply (auto simp add: zless_nat_conj_lemma nat_le_int0 not_zless_iff_zle)
-done
-
-(*This simprule cannot be added unless we can find a way to make eq_integ_of_eq
-  unconditional!
-  [The condition "True" is a hack to prevent looping.
-    Conditional rewrite rules are tried after unconditional ones, so a rule
-    like eq_nat_number_of will be tried first to eliminate #mm=#nn.]
-  lemma integ_of_reorient [simp]:
-       "True ==> (integ_of(w) = x) <-> (x = integ_of(w))"
-  by auto
-*)
-
-lemma integ_of_minus_reorient [simp]:
-     "(integ_of(w) = $- x) <-> ($- x = integ_of(w))"
-by auto
-
-lemma integ_of_add_reorient [simp]:
-     "(integ_of(w) = x $+ y) <-> (x $+ y = integ_of(w))"
-by auto
-
-lemma integ_of_diff_reorient [simp]:
-     "(integ_of(w) = x $- y) <-> (x $- y = integ_of(w))"
-by auto
-
-lemma integ_of_mult_reorient [simp]:
-     "(integ_of(w) = x $* y) <-> (x $* y = integ_of(w))"
-by auto
-
-ML
-{*
-val bin_pred_Pls = thm "bin_pred_Pls";
-val bin_pred_Min = thm "bin_pred_Min";
-val bin_minus_Pls = thm "bin_minus_Pls";
-val bin_minus_Min = thm "bin_minus_Min";
-
-val NCons_Pls_0 = thm "NCons_Pls_0";
-val NCons_Pls_1 = thm "NCons_Pls_1";
-val NCons_Min_0 = thm "NCons_Min_0";
-val NCons_Min_1 = thm "NCons_Min_1";
-val NCons_BIT = thm "NCons_BIT";
-val NCons_simps = thms "NCons_simps";
-val integ_of_type = thm "integ_of_type";
-val NCons_type = thm "NCons_type";
-val bin_succ_type = thm "bin_succ_type";
-val bin_pred_type = thm "bin_pred_type";
-val bin_minus_type = thm "bin_minus_type";
-val bin_add_type = thm "bin_add_type";
-val bin_mult_type = thm "bin_mult_type";
-val integ_of_NCons = thm "integ_of_NCons";
-val integ_of_succ = thm "integ_of_succ";
-val integ_of_pred = thm "integ_of_pred";
-val integ_of_minus = thm "integ_of_minus";
-val bin_add_Pls = thm "bin_add_Pls";
-val bin_add_Pls_right = thm "bin_add_Pls_right";
-val bin_add_Min = thm "bin_add_Min";
-val bin_add_Min_right = thm "bin_add_Min_right";
-val bin_add_BIT_Pls = thm "bin_add_BIT_Pls";
-val bin_add_BIT_Min = thm "bin_add_BIT_Min";
-val bin_add_BIT_BIT = thm "bin_add_BIT_BIT";
-val integ_of_add = thm "integ_of_add";
-val diff_integ_of_eq = thm "diff_integ_of_eq";
-val integ_of_mult = thm "integ_of_mult";
-val bin_succ_1 = thm "bin_succ_1";
-val bin_succ_0 = thm "bin_succ_0";
-val bin_pred_1 = thm "bin_pred_1";
-val bin_pred_0 = thm "bin_pred_0";
-val bin_minus_1 = thm "bin_minus_1";
-val bin_minus_0 = thm "bin_minus_0";
-val bin_add_BIT_11 = thm "bin_add_BIT_11";
-val bin_add_BIT_10 = thm "bin_add_BIT_10";
-val bin_add_BIT_0 = thm "bin_add_BIT_0";
-val bin_mult_1 = thm "bin_mult_1";
-val bin_mult_0 = thm "bin_mult_0";
-val int_of_0 = thm "int_of_0";
-val int_of_succ = thm "int_of_succ";
-val zminus_0 = thm "zminus_0";
-val zadd_0_intify = thm "zadd_0_intify";
-val zadd_0_right_intify = thm "zadd_0_right_intify";
-val zmult_1_intify = thm "zmult_1_intify";
-val zmult_1_right_intify = thm "zmult_1_right_intify";
-val zmult_0 = thm "zmult_0";
-val zmult_0_right = thm "zmult_0_right";
-val zmult_minus1 = thm "zmult_minus1";
-val zmult_minus1_right = thm "zmult_minus1_right";
-val eq_integ_of_eq = thm "eq_integ_of_eq";
-val iszero_integ_of_Pls = thm "iszero_integ_of_Pls";
-val nonzero_integ_of_Min = thm "nonzero_integ_of_Min";
-val iszero_integ_of_BIT = thm "iszero_integ_of_BIT";
-val iszero_integ_of_0 = thm "iszero_integ_of_0";
-val iszero_integ_of_1 = thm "iszero_integ_of_1";
-val less_integ_of_eq_neg = thm "less_integ_of_eq_neg";
-val not_neg_integ_of_Pls = thm "not_neg_integ_of_Pls";
-val neg_integ_of_Min = thm "neg_integ_of_Min";
-val neg_integ_of_BIT = thm "neg_integ_of_BIT";
-val le_integ_of_eq_not_less = thm "le_integ_of_eq_not_less";
-val bin_arith_extra_simps = thms "bin_arith_extra_simps";
-val bin_arith_simps = thms "bin_arith_simps";
-val bin_rel_simps = thms "bin_rel_simps";
-val add_integ_of_left = thm "add_integ_of_left";
-val mult_integ_of_left = thm "mult_integ_of_left";
-val add_integ_of_diff1 = thm "add_integ_of_diff1";
-val add_integ_of_diff2 = thm "add_integ_of_diff2";
-val zdiff0 = thm "zdiff0";
-val zdiff0_right = thm "zdiff0_right";
-val zdiff_self = thm "zdiff_self";
-val znegative_iff_zless_0 = thm "znegative_iff_zless_0";
-val zero_zless_imp_znegative_zminus = thm "zero_zless_imp_znegative_zminus";
-val zero_zle_int_of = thm "zero_zle_int_of";
-val nat_of_0 = thm "nat_of_0";
-val nat_le_int0 = thm "nat_le_int0";
-val int_of_eq_0_imp_natify_eq_0 = thm "int_of_eq_0_imp_natify_eq_0";
-val nat_of_zminus_int_of = thm "nat_of_zminus_int_of";
-val int_of_nat_of = thm "int_of_nat_of";
-val int_of_nat_of_if = thm "int_of_nat_of_if";
-val zless_nat_iff_int_zless = thm "zless_nat_iff_int_zless";
-val zless_nat_conj = thm "zless_nat_conj";
-val integ_of_minus_reorient = thm "integ_of_minus_reorient";
-val integ_of_add_reorient = thm "integ_of_add_reorient";
-val integ_of_diff_reorient = thm "integ_of_diff_reorient";
-val integ_of_mult_reorient = thm "integ_of_mult_reorient";
-*}
-
-end
--- a/src/ZF/Integ/EquivClass.thy	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,265 +0,0 @@
-(*  Title:      ZF/EquivClass.thy
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-*)
-
-header{*Equivalence Relations*}
-
-theory EquivClass imports Trancl Perm begin
-
-constdefs
-
-  quotient   :: "[i,i]=>i"    (infixl "'/'/" 90)  (*set of equiv classes*)
-      "A//r == {r``{x} . x:A}"
-
-  congruent  :: "[i,i=>i]=>o"
-      "congruent(r,b) == ALL y z. <y,z>:r --> b(y)=b(z)"
-
-  congruent2 :: "[i,i,[i,i]=>i]=>o"
-      "congruent2(r1,r2,b) == ALL y1 z1 y2 z2.
-           <y1,z1>:r1 --> <y2,z2>:r2 --> b(y1,y2) = b(z1,z2)"
-
-syntax
-  RESPECTS ::"[i=>i, i] => o"  (infixr "respects" 80)
-  RESPECTS2 ::"[i=>i, i] => o"  (infixr "respects2 " 80)
-    --{*Abbreviation for the common case where the relations are identical*}
-
-translations
-  "f respects r" == "congruent(r,f)"
-  "f respects2 r" => "congruent2(r,r,f)"
-
-subsection{*Suppes, Theorem 70:
-    @{term r} is an equiv relation iff @{term "converse(r) O r = r"}*}
-
-(** first half: equiv(A,r) ==> converse(r) O r = r **)
-
-lemma sym_trans_comp_subset:
-    "[| sym(r); trans(r) |] ==> converse(r) O r <= r"
-by (unfold trans_def sym_def, blast)
-
-lemma refl_comp_subset:
-    "[| refl(A,r); r <= A*A |] ==> r <= converse(r) O r"
-by (unfold refl_def, blast)
-
-lemma equiv_comp_eq:
-    "equiv(A,r) ==> converse(r) O r = r"
-apply (unfold equiv_def)
-apply (blast del: subsetI intro!: sym_trans_comp_subset refl_comp_subset)
-done
-
-(*second half*)
-lemma comp_equivI:
-    "[| converse(r) O r = r;  domain(r) = A |] ==> equiv(A,r)"
-apply (unfold equiv_def refl_def sym_def trans_def)
-apply (erule equalityE)
-apply (subgoal_tac "ALL x y. <x,y> : r --> <y,x> : r", blast+)
-done
-
-(** Equivalence classes **)
-
-(*Lemma for the next result*)
-lemma equiv_class_subset:
-    "[| sym(r);  trans(r);  <a,b>: r |] ==> r``{a} <= r``{b}"
-by (unfold trans_def sym_def, blast)
-
-lemma equiv_class_eq:
-    "[| equiv(A,r);  <a,b>: r |] ==> r``{a} = r``{b}"
-apply (unfold equiv_def)
-apply (safe del: subsetI intro!: equalityI equiv_class_subset)
-apply (unfold sym_def, blast)
-done
-
-lemma equiv_class_self:
-    "[| equiv(A,r);  a: A |] ==> a: r``{a}"
-by (unfold equiv_def refl_def, blast)
-
-(*Lemma for the next result*)
-lemma subset_equiv_class:
-    "[| equiv(A,r);  r``{b} <= r``{a};  b: A |] ==> <a,b>: r"
-by (unfold equiv_def refl_def, blast)
-
-lemma eq_equiv_class: "[| r``{a} = r``{b};  equiv(A,r);  b: A |] ==> <a,b>: r"
-by (assumption | rule equalityD2 subset_equiv_class)+
-
-(*thus r``{a} = r``{b} as well*)
-lemma equiv_class_nondisjoint:
-    "[| equiv(A,r);  x: (r``{a} Int r``{b}) |] ==> <a,b>: r"
-by (unfold equiv_def trans_def sym_def, blast)
-
-lemma equiv_type: "equiv(A,r) ==> r <= A*A"
-by (unfold equiv_def, blast)
-
-lemma equiv_class_eq_iff:
-     "equiv(A,r) ==> <x,y>: r <-> r``{x} = r``{y} & x:A & y:A"
-by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type)
-
-lemma eq_equiv_class_iff:
-     "[| equiv(A,r);  x: A;  y: A |] ==> r``{x} = r``{y} <-> <x,y>: r"
-by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type)
-
-(*** Quotients ***)
-
-(** Introduction/elimination rules -- needed? **)
-
-lemma quotientI [TC]: "x:A ==> r``{x}: A//r"
-apply (unfold quotient_def)
-apply (erule RepFunI)
-done
-
-lemma quotientE:
-    "[| X: A//r;  !!x. [| X = r``{x};  x:A |] ==> P |] ==> P"
-by (unfold quotient_def, blast)
-
-lemma Union_quotient:
-    "equiv(A,r) ==> Union(A//r) = A"
-by (unfold equiv_def refl_def quotient_def, blast)
-
-lemma quotient_disj:
-    "[| equiv(A,r);  X: A//r;  Y: A//r |] ==> X=Y | (X Int Y <= 0)"
-apply (unfold quotient_def)
-apply (safe intro!: equiv_class_eq, assumption)
-apply (unfold equiv_def trans_def sym_def, blast)
-done
-
-subsection{*Defining Unary Operations upon Equivalence Classes*}
-
-(** Could have a locale with the premises equiv(A,r)  and  congruent(r,b)
-**)
-
-(*Conversion rule*)
-lemma UN_equiv_class:
-    "[| equiv(A,r);  b respects r;  a: A |] ==> (UN x:r``{a}. b(x)) = b(a)"
-apply (subgoal_tac "\<forall>x \<in> r``{a}. b(x) = b(a)") 
- apply simp
- apply (blast intro: equiv_class_self)  
-apply (unfold equiv_def sym_def congruent_def, blast)
-done
-
-(*type checking of  UN x:r``{a}. b(x) *)
-lemma UN_equiv_class_type:
-    "[| equiv(A,r);  b respects r;  X: A//r;  !!x.  x : A ==> b(x) : B |]
-     ==> (UN x:X. b(x)) : B"
-apply (unfold quotient_def, safe)
-apply (simp (no_asm_simp) add: UN_equiv_class)
-done
-
-(*Sufficient conditions for injectiveness.  Could weaken premises!
-  major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B
-*)
-lemma UN_equiv_class_inject:
-    "[| equiv(A,r);   b respects r;
-        (UN x:X. b(x))=(UN y:Y. b(y));  X: A//r;  Y: A//r;
-        !!x y. [| x:A; y:A; b(x)=b(y) |] ==> <x,y>:r |]
-     ==> X=Y"
-apply (unfold quotient_def, safe)
-apply (rule equiv_class_eq, assumption)
-apply (simp add: UN_equiv_class [of A r b])  
-done
-
-
-subsection{*Defining Binary Operations upon Equivalence Classes*}
-
-lemma congruent2_implies_congruent:
-    "[| equiv(A,r1);  congruent2(r1,r2,b);  a: A |] ==> congruent(r2,b(a))"
-by (unfold congruent_def congruent2_def equiv_def refl_def, blast)
-
-lemma congruent2_implies_congruent_UN:
-    "[| equiv(A1,r1);  equiv(A2,r2);  congruent2(r1,r2,b);  a: A2 |] ==>
-     congruent(r1, %x1. \<Union>x2 \<in> r2``{a}. b(x1,x2))"
-apply (unfold congruent_def, safe)
-apply (frule equiv_type [THEN subsetD], assumption)
-apply clarify 
-apply (simp add: UN_equiv_class congruent2_implies_congruent)
-apply (unfold congruent2_def equiv_def refl_def, blast)
-done
-
-lemma UN_equiv_class2:
-    "[| equiv(A1,r1);  equiv(A2,r2);  congruent2(r1,r2,b);  a1: A1;  a2: A2 |]
-     ==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. b(x1,x2)) = b(a1,a2)"
-by (simp add: UN_equiv_class congruent2_implies_congruent
-              congruent2_implies_congruent_UN)
-
-(*type checking*)
-lemma UN_equiv_class_type2:
-    "[| equiv(A,r);  b respects2 r;
-        X1: A//r;  X2: A//r;
-        !!x1 x2.  [| x1: A; x2: A |] ==> b(x1,x2) : B
-     |] ==> (UN x1:X1. UN x2:X2. b(x1,x2)) : B"
-apply (unfold quotient_def, safe)
-apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN 
-                    congruent2_implies_congruent quotientI)
-done
-
-
-(*Suggested by John Harrison -- the two subproofs may be MUCH simpler
-  than the direct proof*)
-lemma congruent2I:
-    "[|  equiv(A1,r1);  equiv(A2,r2);  
-        !! y z w. [| w \<in> A2;  <y,z> \<in> r1 |] ==> b(y,w) = b(z,w);
-        !! y z w. [| w \<in> A1;  <y,z> \<in> r2 |] ==> b(w,y) = b(w,z)
-     |] ==> congruent2(r1,r2,b)"
-apply (unfold congruent2_def equiv_def refl_def, safe)
-apply (blast intro: trans) 
-done
-
-lemma congruent2_commuteI:
- assumes equivA: "equiv(A,r)"
-     and commute: "!! y z. [| y: A;  z: A |] ==> b(y,z) = b(z,y)"
-     and congt:   "!! y z w. [| w: A;  <y,z>: r |] ==> b(w,y) = b(w,z)"
- shows "b respects2 r"
-apply (insert equivA [THEN equiv_type, THEN subsetD]) 
-apply (rule congruent2I [OF equivA equivA])
-apply (rule commute [THEN trans])
-apply (rule_tac [3] commute [THEN trans, symmetric])
-apply (rule_tac [5] sym) 
-apply (blast intro: congt)+
-done
-
-(*Obsolete?*)
-lemma congruent_commuteI:
-    "[| equiv(A,r);  Z: A//r;
-        !!w. [| w: A |] ==> congruent(r, %z. b(w,z));
-        !!x y. [| x: A;  y: A |] ==> b(y,x) = b(x,y)
-     |] ==> congruent(r, %w. UN z: Z. b(w,z))"
-apply (simp (no_asm) add: congruent_def)
-apply (safe elim!: quotientE)
-apply (frule equiv_type [THEN subsetD], assumption)
-apply (simp add: UN_equiv_class [of A r]) 
-apply (simp add: congruent_def) 
-done
-
-ML
-{*
-val sym_trans_comp_subset = thm "sym_trans_comp_subset";
-val refl_comp_subset = thm "refl_comp_subset";
-val equiv_comp_eq = thm "equiv_comp_eq";
-val comp_equivI = thm "comp_equivI";
-val equiv_class_subset = thm "equiv_class_subset";
-val equiv_class_eq = thm "equiv_class_eq";
-val equiv_class_self = thm "equiv_class_self";
-val subset_equiv_class = thm "subset_equiv_class";
-val eq_equiv_class = thm "eq_equiv_class";
-val equiv_class_nondisjoint = thm "equiv_class_nondisjoint";
-val equiv_type = thm "equiv_type";
-val equiv_class_eq_iff = thm "equiv_class_eq_iff";
-val eq_equiv_class_iff = thm "eq_equiv_class_iff";
-val quotientI = thm "quotientI";
-val quotientE = thm "quotientE";
-val Union_quotient = thm "Union_quotient";
-val quotient_disj = thm "quotient_disj";
-val UN_equiv_class = thm "UN_equiv_class";
-val UN_equiv_class_type = thm "UN_equiv_class_type";
-val UN_equiv_class_inject = thm "UN_equiv_class_inject";
-val congruent2_implies_congruent = thm "congruent2_implies_congruent";
-val congruent2_implies_congruent_UN = thm "congruent2_implies_congruent_UN";
-val congruent_commuteI = thm "congruent_commuteI";
-val UN_equiv_class2 = thm "UN_equiv_class2";
-val UN_equiv_class_type2 = thm "UN_equiv_class_type2";
-val congruent2I = thm "congruent2I";
-val congruent2_commuteI = thm "congruent2_commuteI";
-val congruent_commuteI = thm "congruent_commuteI";
-*}
-
-end
--- a/src/ZF/Integ/Int.thy	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1057 +0,0 @@
-(*  Title:      ZF/Integ/Int.thy
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-*)
-
-header{*The Integers as Equivalence Classes Over Pairs of Natural Numbers*}
-
-theory Int imports EquivClass ArithSimp begin
-
-constdefs
-  intrel :: i
-    "intrel == {p : (nat*nat)*(nat*nat).                 
-                \<exists>x1 y1 x2 y2. p=<<x1,y1>,<x2,y2>> & x1#+y2 = x2#+y1}"
-
-  int :: i
-    "int == (nat*nat)//intrel"  
-
-  int_of :: "i=>i" --{*coercion from nat to int*}    ("$# _" [80] 80)
-    "$# m == intrel `` {<natify(m), 0>}"
-
-  intify :: "i=>i" --{*coercion from ANYTHING to int*}
-    "intify(m) == if m : int then m else $#0"
-
-  raw_zminus :: "i=>i"
-    "raw_zminus(z) == \<Union><x,y>\<in>z. intrel``{<y,x>}"
-
-  zminus :: "i=>i"                                 ("$- _" [80] 80)
-    "$- z == raw_zminus (intify(z))"
-
-  znegative   ::      "i=>o"
-    "znegative(z) == \<exists>x y. x<y & y\<in>nat & <x,y>\<in>z"
-
-  iszero      ::      "i=>o"
-    "iszero(z) == z = $# 0"
-    
-  raw_nat_of  :: "i=>i"
-  "raw_nat_of(z) == natify (\<Union><x,y>\<in>z. x#-y)"
-
-  nat_of  :: "i=>i"
-  "nat_of(z) == raw_nat_of (intify(z))"
-
-  zmagnitude  ::      "i=>i"
-  --{*could be replaced by an absolute value function from int to int?*}
-    "zmagnitude(z) ==
-     THE m. m\<in>nat & ((~ znegative(z) & z = $# m) |
-		       (znegative(z) & $- z = $# m))"
-
-  raw_zmult   ::      "[i,i]=>i"
-    (*Cannot use UN<x1,y2> here or in zadd because of the form of congruent2.
-      Perhaps a "curried" or even polymorphic congruent predicate would be
-      better.*)
-     "raw_zmult(z1,z2) == 
-       \<Union>p1\<in>z1. \<Union>p2\<in>z2.  split(%x1 y1. split(%x2 y2.        
-                   intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1)"
-
-  zmult       ::      "[i,i]=>i"      (infixl "$*" 70)
-     "z1 $* z2 == raw_zmult (intify(z1),intify(z2))"
-
-  raw_zadd    ::      "[i,i]=>i"
-     "raw_zadd (z1, z2) == 
-       \<Union>z1\<in>z1. \<Union>z2\<in>z2. let <x1,y1>=z1; <x2,y2>=z2                 
-                           in intrel``{<x1#+x2, y1#+y2>}"
-
-  zadd        ::      "[i,i]=>i"      (infixl "$+" 65)
-     "z1 $+ z2 == raw_zadd (intify(z1),intify(z2))"
-
-  zdiff        ::      "[i,i]=>i"      (infixl "$-" 65)
-     "z1 $- z2 == z1 $+ zminus(z2)"
-
-  zless        ::      "[i,i]=>o"      (infixl "$<" 50)
-     "z1 $< z2 == znegative(z1 $- z2)"
-  
-  zle          ::      "[i,i]=>o"      (infixl "$<=" 50)
-     "z1 $<= z2 == z1 $< z2 | intify(z1)=intify(z2)"
-  
-
-syntax (xsymbols)
-  zmult :: "[i,i]=>i"          (infixl "$\<times>" 70)
-  zle   :: "[i,i]=>o"          (infixl "$\<le>" 50)  --{*less than or equals*}
-
-syntax (HTML output)
-  zmult :: "[i,i]=>i"          (infixl "$\<times>" 70)
-  zle   :: "[i,i]=>o"          (infixl "$\<le>" 50)
-
-
-declare quotientE [elim!]
-
-subsection{*Proving that @{term intrel} is an equivalence relation*}
-
-(** Natural deduction for intrel **)
-
-lemma intrel_iff [simp]: 
-    "<<x1,y1>,<x2,y2>>: intrel <->  
-     x1\<in>nat & y1\<in>nat & x2\<in>nat & y2\<in>nat & x1#+y2 = x2#+y1"
-by (simp add: intrel_def)
-
-lemma intrelI [intro!]: 
-    "[| x1#+y2 = x2#+y1; x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |]   
-     ==> <<x1,y1>,<x2,y2>>: intrel"
-by (simp add: intrel_def)
-
-lemma intrelE [elim!]:
-  "[| p: intrel;   
-      !!x1 y1 x2 y2. [| p = <<x1,y1>,<x2,y2>>;  x1#+y2 = x2#+y1;  
-                        x1\<in>nat; y1\<in>nat; x2\<in>nat; y2\<in>nat |] ==> Q |]  
-   ==> Q"
-by (simp add: intrel_def, blast) 
-
-lemma int_trans_lemma:
-     "[| x1 #+ y2 = x2 #+ y1; x2 #+ y3 = x3 #+ y2 |] ==> x1 #+ y3 = x3 #+ y1"
-apply (rule sym)
-apply (erule add_left_cancel)+
-apply (simp_all (no_asm_simp))
-done
-
-lemma equiv_intrel: "equiv(nat*nat, intrel)"
-apply (simp add: equiv_def refl_def sym_def trans_def)
-apply (fast elim!: sym int_trans_lemma)
-done
-
-lemma image_intrel_int: "[| m\<in>nat; n\<in>nat |] ==> intrel `` {<m,n>} : int"
-by (simp add: int_def)
-
-declare equiv_intrel [THEN eq_equiv_class_iff, simp]
-declare conj_cong [cong]
-
-lemmas eq_intrelD = eq_equiv_class [OF _ equiv_intrel]
-
-(** int_of: the injection from nat to int **)
-
-lemma int_of_type [simp,TC]: "$#m : int"
-by (simp add: int_def quotient_def int_of_def, auto)
-
-lemma int_of_eq [iff]: "($# m = $# n) <-> natify(m)=natify(n)"
-by (simp add: int_of_def)
-
-lemma int_of_inject: "[| $#m = $#n;  m\<in>nat;  n\<in>nat |] ==> m=n"
-by (drule int_of_eq [THEN iffD1], auto)
-
-
-(** intify: coercion from anything to int **)
-
-lemma intify_in_int [iff,TC]: "intify(x) : int"
-by (simp add: intify_def)
-
-lemma intify_ident [simp]: "n : int ==> intify(n) = n"
-by (simp add: intify_def)
-
-
-subsection{*Collapsing rules: to remove @{term intify}
-            from arithmetic expressions*}
-
-lemma intify_idem [simp]: "intify(intify(x)) = intify(x)"
-by simp
-
-lemma int_of_natify [simp]: "$# (natify(m)) = $# m"
-by (simp add: int_of_def)
-
-lemma zminus_intify [simp]: "$- (intify(m)) = $- m"
-by (simp add: zminus_def)
-
-(** Addition **)
-
-lemma zadd_intify1 [simp]: "intify(x) $+ y = x $+ y"
-by (simp add: zadd_def)
-
-lemma zadd_intify2 [simp]: "x $+ intify(y) = x $+ y"
-by (simp add: zadd_def)
-
-(** Subtraction **)
-
-lemma zdiff_intify1 [simp]:"intify(x) $- y = x $- y"
-by (simp add: zdiff_def)
-
-lemma zdiff_intify2 [simp]:"x $- intify(y) = x $- y"
-by (simp add: zdiff_def)
-
-(** Multiplication **)
-
-lemma zmult_intify1 [simp]:"intify(x) $* y = x $* y"
-by (simp add: zmult_def)
-
-lemma zmult_intify2 [simp]:"x $* intify(y) = x $* y"
-by (simp add: zmult_def)
-
-(** Orderings **)
-
-lemma zless_intify1 [simp]:"intify(x) $< y <-> x $< y"
-by (simp add: zless_def)
-
-lemma zless_intify2 [simp]:"x $< intify(y) <-> x $< y"
-by (simp add: zless_def)
-
-lemma zle_intify1 [simp]:"intify(x) $<= y <-> x $<= y"
-by (simp add: zle_def)
-
-lemma zle_intify2 [simp]:"x $<= intify(y) <-> x $<= y"
-by (simp add: zle_def)
-
-
-subsection{*@{term zminus}: unary negation on @{term int}*}
-
-lemma zminus_congruent: "(%<x,y>. intrel``{<y,x>}) respects intrel"
-by (auto simp add: congruent_def add_ac)
-
-lemma raw_zminus_type: "z : int ==> raw_zminus(z) : int"
-apply (simp add: int_def raw_zminus_def)
-apply (typecheck add: UN_equiv_class_type [OF equiv_intrel zminus_congruent])
-done
-
-lemma zminus_type [TC,iff]: "$-z : int"
-by (simp add: zminus_def raw_zminus_type)
-
-lemma raw_zminus_inject: 
-     "[| raw_zminus(z) = raw_zminus(w);  z: int;  w: int |] ==> z=w"
-apply (simp add: int_def raw_zminus_def)
-apply (erule UN_equiv_class_inject [OF equiv_intrel zminus_congruent], safe)
-apply (auto dest: eq_intrelD simp add: add_ac)
-done
-
-lemma zminus_inject_intify [dest!]: "$-z = $-w ==> intify(z) = intify(w)"
-apply (simp add: zminus_def)
-apply (blast dest!: raw_zminus_inject)
-done
-
-lemma zminus_inject: "[| $-z = $-w;  z: int;  w: int |] ==> z=w"
-by auto
-
-lemma raw_zminus: 
-    "[| x\<in>nat;  y\<in>nat |] ==> raw_zminus(intrel``{<x,y>}) = intrel `` {<y,x>}"
-apply (simp add: raw_zminus_def UN_equiv_class [OF equiv_intrel zminus_congruent])
-done
-
-lemma zminus: 
-    "[| x\<in>nat;  y\<in>nat |]  
-     ==> $- (intrel``{<x,y>}) = intrel `` {<y,x>}"
-by (simp add: zminus_def raw_zminus image_intrel_int)
-
-lemma raw_zminus_zminus: "z : int ==> raw_zminus (raw_zminus(z)) = z"
-by (auto simp add: int_def raw_zminus)
-
-lemma zminus_zminus_intify [simp]: "$- ($- z) = intify(z)"
-by (simp add: zminus_def raw_zminus_type raw_zminus_zminus)
-
-lemma zminus_int0 [simp]: "$- ($#0) = $#0"
-by (simp add: int_of_def zminus)
-
-lemma zminus_zminus: "z : int ==> $- ($- z) = z"
-by simp
-
-
-subsection{*@{term znegative}: the test for negative integers*}
-
-lemma znegative: "[| x\<in>nat; y\<in>nat |] ==> znegative(intrel``{<x,y>}) <-> x<y"
-apply (cases "x<y") 
-apply (auto simp add: znegative_def not_lt_iff_le)
-apply (subgoal_tac "y #+ x2 < x #+ y2", force) 
-apply (rule add_le_lt_mono, auto) 
-done
-
-(*No natural number is negative!*)
-lemma not_znegative_int_of [iff]: "~ znegative($# n)"
-by (simp add: znegative int_of_def) 
-
-lemma znegative_zminus_int_of [simp]: "znegative($- $# succ(n))"
-by (simp add: znegative int_of_def zminus natify_succ)
-
-lemma not_znegative_imp_zero: "~ znegative($- $# n) ==> natify(n)=0"
-by (simp add: znegative int_of_def zminus Ord_0_lt_iff [THEN iff_sym])
-
-
-subsection{*@{term nat_of}: Coercion of an Integer to a Natural Number*}
-
-lemma nat_of_intify [simp]: "nat_of(intify(z)) = nat_of(z)"
-by (simp add: nat_of_def)
-
-lemma nat_of_congruent: "(\<lambda>x. (\<lambda>\<langle>x,y\<rangle>. x #- y)(x)) respects intrel"
-by (auto simp add: congruent_def split add: nat_diff_split)
-
-lemma raw_nat_of: 
-    "[| x\<in>nat;  y\<in>nat |] ==> raw_nat_of(intrel``{<x,y>}) = x#-y"
-by (simp add: raw_nat_of_def UN_equiv_class [OF equiv_intrel nat_of_congruent])
-
-lemma raw_nat_of_int_of: "raw_nat_of($# n) = natify(n)"
-by (simp add: int_of_def raw_nat_of)
-
-lemma nat_of_int_of [simp]: "nat_of($# n) = natify(n)"
-by (simp add: raw_nat_of_int_of nat_of_def)
-
-lemma raw_nat_of_type: "raw_nat_of(z) \<in> nat"
-by (simp add: raw_nat_of_def)
-
-lemma nat_of_type [iff,TC]: "nat_of(z) \<in> nat"
-by (simp add: nat_of_def raw_nat_of_type)
-
-subsection{*zmagnitude: magnitide of an integer, as a natural number*}
-
-lemma zmagnitude_int_of [simp]: "zmagnitude($# n) = natify(n)"
-by (auto simp add: zmagnitude_def int_of_eq)
-
-lemma natify_int_of_eq: "natify(x)=n ==> $#x = $# n"
-apply (drule sym)
-apply (simp (no_asm_simp) add: int_of_eq)
-done
-
-lemma zmagnitude_zminus_int_of [simp]: "zmagnitude($- $# n) = natify(n)"
-apply (simp add: zmagnitude_def)
-apply (rule the_equality)
-apply (auto dest!: not_znegative_imp_zero natify_int_of_eq
-            iff del: int_of_eq, auto)
-done
-
-lemma zmagnitude_type [iff,TC]: "zmagnitude(z)\<in>nat"
-apply (simp add: zmagnitude_def)
-apply (rule theI2, auto)
-done
-
-lemma not_zneg_int_of: 
-     "[| z: int; ~ znegative(z) |] ==> \<exists>n\<in>nat. z = $# n"
-apply (auto simp add: int_def znegative int_of_def not_lt_iff_le)
-apply (rename_tac x y) 
-apply (rule_tac x="x#-y" in bexI) 
-apply (auto simp add: add_diff_inverse2) 
-done
-
-lemma not_zneg_mag [simp]:
-     "[| z: int; ~ znegative(z) |] ==> $# (zmagnitude(z)) = z"
-by (drule not_zneg_int_of, auto)
-
-lemma zneg_int_of: 
-     "[| znegative(z); z: int |] ==> \<exists>n\<in>nat. z = $- ($# succ(n))"
-by (auto simp add: int_def znegative zminus int_of_def dest!: less_imp_succ_add)
-
-lemma zneg_mag [simp]:
-     "[| znegative(z); z: int |] ==> $# (zmagnitude(z)) = $- z"
-by (drule zneg_int_of, auto)
-
-lemma int_cases: "z : int ==> \<exists>n\<in>nat. z = $# n | z = $- ($# succ(n))"
-apply (case_tac "znegative (z) ")
-prefer 2 apply (blast dest: not_zneg_mag sym)
-apply (blast dest: zneg_int_of)
-done
-
-lemma not_zneg_raw_nat_of:
-     "[| ~ znegative(z); z: int |] ==> $# (raw_nat_of(z)) = z"
-apply (drule not_zneg_int_of)
-apply (auto simp add: raw_nat_of_type raw_nat_of_int_of)
-done
-
-lemma not_zneg_nat_of_intify:
-     "~ znegative(intify(z)) ==> $# (nat_of(z)) = intify(z)"
-by (simp (no_asm_simp) add: nat_of_def not_zneg_raw_nat_of)
-
-lemma not_zneg_nat_of: "[| ~ znegative(z); z: int |] ==> $# (nat_of(z)) = z"
-apply (simp (no_asm_simp) add: not_zneg_nat_of_intify)
-done
-
-lemma zneg_nat_of [simp]: "znegative(intify(z)) ==> nat_of(z) = 0"
-apply (subgoal_tac "intify(z) \<in> int")
-apply (simp add: int_def) 
-apply (auto simp add: znegative nat_of_def raw_nat_of 
-            split add: nat_diff_split) 
-done
-
-
-subsection{*@{term zadd}: addition on int*}
-
-text{*Congruence Property for Addition*}
-lemma zadd_congruent2: 
-    "(%z1 z2. let <x1,y1>=z1; <x2,y2>=z2                  
-                            in intrel``{<x1#+x2, y1#+y2>})
-     respects2 intrel"
-apply (simp add: congruent2_def)
-(*Proof via congruent2_commuteI seems longer*)
-apply safe
-apply (simp (no_asm_simp) add: add_assoc Let_def)
-(*The rest should be trivial, but rearranging terms is hard
-  add_ac does not help rewriting with the assumptions.*)
-apply (rule_tac m1 = x1a in add_left_commute [THEN ssubst])
-apply (rule_tac m1 = x2a in add_left_commute [THEN ssubst])
-apply (simp (no_asm_simp) add: add_assoc [symmetric])
-done
-
-lemma raw_zadd_type: "[| z: int;  w: int |] ==> raw_zadd(z,w) : int"
-apply (simp add: int_def raw_zadd_def)
-apply (rule UN_equiv_class_type2 [OF equiv_intrel zadd_congruent2], assumption+)
-apply (simp add: Let_def)
-done
-
-lemma zadd_type [iff,TC]: "z $+ w : int"
-by (simp add: zadd_def raw_zadd_type)
-
-lemma raw_zadd: 
-  "[| x1\<in>nat; y1\<in>nat;  x2\<in>nat; y2\<in>nat |]               
-   ==> raw_zadd (intrel``{<x1,y1>}, intrel``{<x2,y2>}) =   
-       intrel `` {<x1#+x2, y1#+y2>}"
-apply (simp add: raw_zadd_def 
-             UN_equiv_class2 [OF equiv_intrel equiv_intrel zadd_congruent2])
-apply (simp add: Let_def)
-done
-
-lemma zadd: 
-  "[| x1\<in>nat; y1\<in>nat;  x2\<in>nat; y2\<in>nat |]          
-   ==> (intrel``{<x1,y1>}) $+ (intrel``{<x2,y2>}) =   
-       intrel `` {<x1#+x2, y1#+y2>}"
-by (simp add: zadd_def raw_zadd image_intrel_int)
-
-lemma raw_zadd_int0: "z : int ==> raw_zadd ($#0,z) = z"
-by (auto simp add: int_def int_of_def raw_zadd)
-
-lemma zadd_int0_intify [simp]: "$#0 $+ z = intify(z)"
-by (simp add: zadd_def raw_zadd_int0)
-
-lemma zadd_int0: "z: int ==> $#0 $+ z = z"
-by simp
-
-lemma raw_zminus_zadd_distrib: 
-     "[| z: int;  w: int |] ==> $- raw_zadd(z,w) = raw_zadd($- z, $- w)"
-by (auto simp add: zminus raw_zadd int_def)
-
-lemma zminus_zadd_distrib [simp]: "$- (z $+ w) = $- z $+ $- w"
-by (simp add: zadd_def raw_zminus_zadd_distrib)
-
-lemma raw_zadd_commute:
-     "[| z: int;  w: int |] ==> raw_zadd(z,w) = raw_zadd(w,z)"
-by (auto simp add: raw_zadd add_ac int_def)
-
-lemma zadd_commute: "z $+ w = w $+ z"
-by (simp add: zadd_def raw_zadd_commute)
-
-lemma raw_zadd_assoc: 
-    "[| z1: int;  z2: int;  z3: int |]    
-     ==> raw_zadd (raw_zadd(z1,z2),z3) = raw_zadd(z1,raw_zadd(z2,z3))"
-by (auto simp add: int_def raw_zadd add_assoc)
-
-lemma zadd_assoc: "(z1 $+ z2) $+ z3 = z1 $+ (z2 $+ z3)"
-by (simp add: zadd_def raw_zadd_type raw_zadd_assoc)
-
-(*For AC rewriting*)
-lemma zadd_left_commute: "z1$+(z2$+z3) = z2$+(z1$+z3)"
-apply (simp add: zadd_assoc [symmetric])
-apply (simp add: zadd_commute)
-done
-
-(*Integer addition is an AC operator*)
-lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute
-
-lemma int_of_add: "$# (m #+ n) = ($#m) $+ ($#n)"
-by (simp add: int_of_def zadd)
-
-lemma int_succ_int_1: "$# succ(m) = $# 1 $+ ($# m)"
-by (simp add: int_of_add [symmetric] natify_succ)
-
-lemma int_of_diff: 
-     "[| m\<in>nat;  n le m |] ==> $# (m #- n) = ($#m) $- ($#n)"
-apply (simp add: int_of_def zdiff_def)
-apply (frule lt_nat_in_nat)
-apply (simp_all add: zadd zminus add_diff_inverse2)
-done
-
-lemma raw_zadd_zminus_inverse: "z : int ==> raw_zadd (z, $- z) = $#0"
-by (auto simp add: int_def int_of_def zminus raw_zadd add_commute)
-
-lemma zadd_zminus_inverse [simp]: "z $+ ($- z) = $#0"
-apply (simp add: zadd_def)
-apply (subst zminus_intify [symmetric])
-apply (rule intify_in_int [THEN raw_zadd_zminus_inverse])
-done
-
-lemma zadd_zminus_inverse2 [simp]: "($- z) $+ z = $#0"
-by (simp add: zadd_commute zadd_zminus_inverse)
-
-lemma zadd_int0_right_intify [simp]: "z $+ $#0 = intify(z)"
-by (rule trans [OF zadd_commute zadd_int0_intify])
-
-lemma zadd_int0_right: "z:int ==> z $+ $#0 = z"
-by simp
-
-
-subsection{*@{term zmult}: Integer Multiplication*}
-
-text{*Congruence property for multiplication*}
-lemma zmult_congruent2:
-    "(%p1 p2. split(%x1 y1. split(%x2 y2.      
-                    intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1))
-     respects2 intrel"
-apply (rule equiv_intrel [THEN congruent2_commuteI], auto)
-(*Proof that zmult is congruent in one argument*)
-apply (rename_tac x y)
-apply (frule_tac t = "%u. x#*u" in sym [THEN subst_context])
-apply (drule_tac t = "%u. y#*u" in subst_context)
-apply (erule add_left_cancel)+
-apply (simp_all add: add_mult_distrib_left)
-done
-
-
-lemma raw_zmult_type: "[| z: int;  w: int |] ==> raw_zmult(z,w) : int"
-apply (simp add: int_def raw_zmult_def)
-apply (rule UN_equiv_class_type2 [OF equiv_intrel zmult_congruent2], assumption+)
-apply (simp add: Let_def)
-done
-
-lemma zmult_type [iff,TC]: "z $* w : int"
-by (simp add: zmult_def raw_zmult_type)
-
-lemma raw_zmult: 
-     "[| x1\<in>nat; y1\<in>nat;  x2\<in>nat; y2\<in>nat |]     
-      ==> raw_zmult(intrel``{<x1,y1>}, intrel``{<x2,y2>}) =      
-          intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
-by (simp add: raw_zmult_def 
-           UN_equiv_class2 [OF equiv_intrel equiv_intrel zmult_congruent2])
-
-lemma zmult: 
-     "[| x1\<in>nat; y1\<in>nat;  x2\<in>nat; y2\<in>nat |]     
-      ==> (intrel``{<x1,y1>}) $* (intrel``{<x2,y2>}) =      
-          intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
-by (simp add: zmult_def raw_zmult image_intrel_int)
-
-lemma raw_zmult_int0: "z : int ==> raw_zmult ($#0,z) = $#0"
-by (auto simp add: int_def int_of_def raw_zmult)
-
-lemma zmult_int0 [simp]: "$#0 $* z = $#0"
-by (simp add: zmult_def raw_zmult_int0)
-
-lemma raw_zmult_int1: "z : int ==> raw_zmult ($#1,z) = z"
-by (auto simp add: int_def int_of_def raw_zmult)
-
-lemma zmult_int1_intify [simp]: "$#1 $* z = intify(z)"
-by (simp add: zmult_def raw_zmult_int1)
-
-lemma zmult_int1: "z : int ==> $#1 $* z = z"
-by simp
-
-lemma raw_zmult_commute:
-     "[| z: int;  w: int |] ==> raw_zmult(z,w) = raw_zmult(w,z)"
-by (auto simp add: int_def raw_zmult add_ac mult_ac)
-
-lemma zmult_commute: "z $* w = w $* z"
-by (simp add: zmult_def raw_zmult_commute)
-
-lemma raw_zmult_zminus: 
-     "[| z: int;  w: int |] ==> raw_zmult($- z, w) = $- raw_zmult(z, w)"
-by (auto simp add: int_def zminus raw_zmult add_ac)
-
-lemma zmult_zminus [simp]: "($- z) $* w = $- (z $* w)"
-apply (simp add: zmult_def raw_zmult_zminus)
-apply (subst zminus_intify [symmetric], rule raw_zmult_zminus, auto)
-done
-
-lemma zmult_zminus_right [simp]: "w $* ($- z) = $- (w $* z)"
-by (simp add: zmult_commute [of w])
-
-lemma raw_zmult_assoc: 
-    "[| z1: int;  z2: int;  z3: int |]    
-     ==> raw_zmult (raw_zmult(z1,z2),z3) = raw_zmult(z1,raw_zmult(z2,z3))"
-by (auto simp add: int_def raw_zmult add_mult_distrib_left add_ac mult_ac)
-
-lemma zmult_assoc: "(z1 $* z2) $* z3 = z1 $* (z2 $* z3)"
-by (simp add: zmult_def raw_zmult_type raw_zmult_assoc)
-
-(*For AC rewriting*)
-lemma zmult_left_commute: "z1$*(z2$*z3) = z2$*(z1$*z3)"
-apply (simp add: zmult_assoc [symmetric])
-apply (simp add: zmult_commute)
-done
-
-(*Integer multiplication is an AC operator*)
-lemmas zmult_ac = zmult_assoc zmult_commute zmult_left_commute
-
-lemma raw_zadd_zmult_distrib: 
-    "[| z1: int;  z2: int;  w: int |]   
-     ==> raw_zmult(raw_zadd(z1,z2), w) =  
-         raw_zadd (raw_zmult(z1,w), raw_zmult(z2,w))"
-by (auto simp add: int_def raw_zadd raw_zmult add_mult_distrib_left add_ac mult_ac)
-
-lemma zadd_zmult_distrib: "(z1 $+ z2) $* w = (z1 $* w) $+ (z2 $* w)"
-by (simp add: zmult_def zadd_def raw_zadd_type raw_zmult_type 
-              raw_zadd_zmult_distrib)
-
-lemma zadd_zmult_distrib2: "w $* (z1 $+ z2) = (w $* z1) $+ (w $* z2)"
-by (simp add: zmult_commute [of w] zadd_zmult_distrib)
-
-lemmas int_typechecks = 
-  int_of_type zminus_type zmagnitude_type zadd_type zmult_type
-
-
-(*** Subtraction laws ***)
-
-lemma zdiff_type [iff,TC]: "z $- w : int"
-by (simp add: zdiff_def)
-
-lemma zminus_zdiff_eq [simp]: "$- (z $- y) = y $- z"
-by (simp add: zdiff_def zadd_commute)
-
-lemma zdiff_zmult_distrib: "(z1 $- z2) $* w = (z1 $* w) $- (z2 $* w)"
-apply (simp add: zdiff_def)
-apply (subst zadd_zmult_distrib)
-apply (simp add: zmult_zminus)
-done
-
-lemma zdiff_zmult_distrib2: "w $* (z1 $- z2) = (w $* z1) $- (w $* z2)"
-by (simp add: zmult_commute [of w] zdiff_zmult_distrib)
-
-lemma zadd_zdiff_eq: "x $+ (y $- z) = (x $+ y) $- z"
-by (simp add: zdiff_def zadd_ac)
-
-lemma zdiff_zadd_eq: "(x $- y) $+ z = (x $+ z) $- y"
-by (simp add: zdiff_def zadd_ac)
-
-
-subsection{*The "Less Than" Relation*}
-
-(*"Less than" is a linear ordering*)
-lemma zless_linear_lemma: 
-     "[| z: int; w: int |] ==> z$<w | z=w | w$<z"
-apply (simp add: int_def zless_def znegative_def zdiff_def, auto)
-apply (simp add: zadd zminus image_iff Bex_def)
-apply (rule_tac i = "xb#+ya" and j = "xc #+ y" in Ord_linear_lt)
-apply (force dest!: spec simp add: add_ac)+
-done
-
-lemma zless_linear: "z$<w | intify(z)=intify(w) | w$<z"
-apply (cut_tac z = " intify (z) " and w = " intify (w) " in zless_linear_lemma)
-apply auto
-done
-
-lemma zless_not_refl [iff]: "~ (z$<z)"
-by (auto simp add: zless_def znegative_def int_of_def zdiff_def)
-
-lemma neq_iff_zless: "[| x: int; y: int |] ==> (x ~= y) <-> (x $< y | y $< x)"
-by (cut_tac z = x and w = y in zless_linear, auto)
-
-lemma zless_imp_intify_neq: "w $< z ==> intify(w) ~= intify(z)"
-apply auto
-apply (subgoal_tac "~ (intify (w) $< intify (z))")
-apply (erule_tac [2] ssubst)
-apply (simp (no_asm_use))
-apply auto
-done
-
-(*This lemma allows direct proofs of other <-properties*)
-lemma zless_imp_succ_zadd_lemma: 
-    "[| w $< z; w: int; z: int |] ==> (\<exists>n\<in>nat. z = w $+ $#(succ(n)))"
-apply (simp add: zless_def znegative_def zdiff_def int_def)
-apply (auto dest!: less_imp_succ_add simp add: zadd zminus int_of_def)
-apply (rule_tac x = k in bexI)
-apply (erule add_left_cancel, auto)
-done
-
-lemma zless_imp_succ_zadd:
-     "w $< z ==> (\<exists>n\<in>nat. w $+ $#(succ(n)) = intify(z))"
-apply (subgoal_tac "intify (w) $< intify (z) ")
-apply (drule_tac w = "intify (w) " in zless_imp_succ_zadd_lemma)
-apply auto
-done
-
-lemma zless_succ_zadd_lemma: 
-    "w : int ==> w $< w $+ $# succ(n)"
-apply (simp add: zless_def znegative_def zdiff_def int_def)
-apply (auto simp add: zadd zminus int_of_def image_iff)
-apply (rule_tac x = 0 in exI, auto)
-done
-
-lemma zless_succ_zadd: "w $< w $+ $# succ(n)"
-by (cut_tac intify_in_int [THEN zless_succ_zadd_lemma], auto)
-
-lemma zless_iff_succ_zadd:
-     "w $< z <-> (\<exists>n\<in>nat. w $+ $#(succ(n)) = intify(z))"
-apply (rule iffI)
-apply (erule zless_imp_succ_zadd, auto)
-apply (rename_tac "n")
-apply (cut_tac w = w and n = n in zless_succ_zadd, auto)
-done
-
-lemma zless_int_of [simp]: "[| m\<in>nat; n\<in>nat |] ==> ($#m $< $#n) <-> (m<n)"
-apply (simp add: less_iff_succ_add zless_iff_succ_zadd int_of_add [symmetric])
-apply (blast intro: sym)
-done
-
-lemma zless_trans_lemma: 
-    "[| x $< y; y $< z; x: int; y : int; z: int |] ==> x $< z"
-apply (simp add: zless_def znegative_def zdiff_def int_def)
-apply (auto simp add: zadd zminus image_iff)
-apply (rename_tac x1 x2 y1 y2)
-apply (rule_tac x = "x1#+x2" in exI)
-apply (rule_tac x = "y1#+y2" in exI)
-apply (auto simp add: add_lt_mono)
-apply (rule sym)
-apply (erule add_left_cancel)+
-apply auto
-done
-
-lemma zless_trans: "[| x $< y; y $< z |] ==> x $< z"
-apply (subgoal_tac "intify (x) $< intify (z) ")
-apply (rule_tac [2] y = "intify (y) " in zless_trans_lemma)
-apply auto
-done
-
-lemma zless_not_sym: "z $< w ==> ~ (w $< z)"
-by (blast dest: zless_trans)
-
-(* [| z $< w; ~ P ==> w $< z |] ==> P *)
-lemmas zless_asym = zless_not_sym [THEN swap, standard]
-
-lemma zless_imp_zle: "z $< w ==> z $<= w"
-by (simp add: zle_def)
-
-lemma zle_linear: "z $<= w | w $<= z"
-apply (simp add: zle_def)
-apply (cut_tac zless_linear, blast)
-done
-
-
-subsection{*Less Than or Equals*}
-
-lemma zle_refl: "z $<= z"
-by (simp add: zle_def)
-
-lemma zle_eq_refl: "x=y ==> x $<= y"
-by (simp add: zle_refl)
-
-lemma zle_anti_sym_intify: "[| x $<= y; y $<= x |] ==> intify(x) = intify(y)"
-apply (simp add: zle_def, auto)
-apply (blast dest: zless_trans)
-done
-
-lemma zle_anti_sym: "[| x $<= y; y $<= x; x: int; y: int |] ==> x=y"
-by (drule zle_anti_sym_intify, auto)
-
-lemma zle_trans_lemma:
-     "[| x: int; y: int; z: int; x $<= y; y $<= z |] ==> x $<= z"
-apply (simp add: zle_def, auto)
-apply (blast intro: zless_trans)
-done
-
-lemma zle_trans: "[| x $<= y; y $<= z |] ==> x $<= z"
-apply (subgoal_tac "intify (x) $<= intify (z) ")
-apply (rule_tac [2] y = "intify (y) " in zle_trans_lemma)
-apply auto
-done
-
-lemma zle_zless_trans: "[| i $<= j; j $< k |] ==> i $< k"
-apply (auto simp add: zle_def)
-apply (blast intro: zless_trans)
-apply (simp add: zless_def zdiff_def zadd_def)
-done
-
-lemma zless_zle_trans: "[| i $< j; j $<= k |] ==> i $< k"
-apply (auto simp add: zle_def)
-apply (blast intro: zless_trans)
-apply (simp add: zless_def zdiff_def zminus_def)
-done
-
-lemma not_zless_iff_zle: "~ (z $< w) <-> (w $<= z)"
-apply (cut_tac z = z and w = w in zless_linear)
-apply (auto dest: zless_trans simp add: zle_def)
-apply (auto dest!: zless_imp_intify_neq)
-done
-
-lemma not_zle_iff_zless: "~ (z $<= w) <-> (w $< z)"
-by (simp add: not_zless_iff_zle [THEN iff_sym])
-
-
-subsection{*More subtraction laws (for @{text zcompare_rls})*}
-
-lemma zdiff_zdiff_eq: "(x $- y) $- z = x $- (y $+ z)"
-by (simp add: zdiff_def zadd_ac)
-
-lemma zdiff_zdiff_eq2: "x $- (y $- z) = (x $+ z) $- y"
-by (simp add: zdiff_def zadd_ac)
-
-lemma zdiff_zless_iff: "(x$-y $< z) <-> (x $< z $+ y)"
-by (simp add: zless_def zdiff_def zadd_ac)
-
-lemma zless_zdiff_iff: "(x $< z$-y) <-> (x $+ y $< z)"
-by (simp add: zless_def zdiff_def zadd_ac)
-
-lemma zdiff_eq_iff: "[| x: int; z: int |] ==> (x$-y = z) <-> (x = z $+ y)"
-by (auto simp add: zdiff_def zadd_assoc)
-
-lemma eq_zdiff_iff: "[| x: int; z: int |] ==> (x = z$-y) <-> (x $+ y = z)"
-by (auto simp add: zdiff_def zadd_assoc)
-
-lemma zdiff_zle_iff_lemma:
-     "[| x: int; z: int |] ==> (x$-y $<= z) <-> (x $<= z $+ y)"
-by (auto simp add: zle_def zdiff_eq_iff zdiff_zless_iff)
-
-lemma zdiff_zle_iff: "(x$-y $<= z) <-> (x $<= z $+ y)"
-by (cut_tac zdiff_zle_iff_lemma [OF intify_in_int intify_in_int], simp)
-
-lemma zle_zdiff_iff_lemma:
-     "[| x: int; z: int |] ==>(x $<= z$-y) <-> (x $+ y $<= z)"
-apply (auto simp add: zle_def zdiff_eq_iff zless_zdiff_iff)
-apply (auto simp add: zdiff_def zadd_assoc)
-done
-
-lemma zle_zdiff_iff: "(x $<= z$-y) <-> (x $+ y $<= z)"
-by (cut_tac zle_zdiff_iff_lemma [ OF intify_in_int intify_in_int], simp)
-
-text{*This list of rewrites simplifies (in)equalities by bringing subtractions
-  to the top and then moving negative terms to the other side.  
-  Use with @{text zadd_ac}*}
-lemmas zcompare_rls =
-     zdiff_def [symmetric]
-     zadd_zdiff_eq zdiff_zadd_eq zdiff_zdiff_eq zdiff_zdiff_eq2 
-     zdiff_zless_iff zless_zdiff_iff zdiff_zle_iff zle_zdiff_iff 
-     zdiff_eq_iff eq_zdiff_iff
-
-
-subsection{*Monotonicity and Cancellation Results for Instantiation
-     of the CancelNumerals Simprocs*}
-
-lemma zadd_left_cancel:
-     "[| w: int; w': int |] ==> (z $+ w' = z $+ w) <-> (w' = w)"
-apply safe
-apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
-apply (simp add: zadd_ac)
-done
-
-lemma zadd_left_cancel_intify [simp]:
-     "(z $+ w' = z $+ w) <-> intify(w') = intify(w)"
-apply (rule iff_trans)
-apply (rule_tac [2] zadd_left_cancel, auto)
-done
-
-lemma zadd_right_cancel:
-     "[| w: int; w': int |] ==> (w' $+ z = w $+ z) <-> (w' = w)"
-apply safe
-apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
-apply (simp add: zadd_ac)
-done
-
-lemma zadd_right_cancel_intify [simp]:
-     "(w' $+ z = w $+ z) <-> intify(w') = intify(w)"
-apply (rule iff_trans)
-apply (rule_tac [2] zadd_right_cancel, auto)
-done
-
-lemma zadd_right_cancel_zless [simp]: "(w' $+ z $< w $+ z) <-> (w' $< w)"
-by (simp add: zdiff_zless_iff [THEN iff_sym] zdiff_def zadd_assoc)
-
-lemma zadd_left_cancel_zless [simp]: "(z $+ w' $< z $+ w) <-> (w' $< w)"
-by (simp add: zadd_commute [of z] zadd_right_cancel_zless)
-
-lemma zadd_right_cancel_zle [simp]: "(w' $+ z $<= w $+ z) <-> w' $<= w"
-by (simp add: zle_def)
-
-lemma zadd_left_cancel_zle [simp]: "(z $+ w' $<= z $+ w) <->  w' $<= w"
-by (simp add: zadd_commute [of z]  zadd_right_cancel_zle)
-
-
-(*"v $<= w ==> v$+z $<= w$+z"*)
-lemmas zadd_zless_mono1 = zadd_right_cancel_zless [THEN iffD2, standard]
-
-(*"v $<= w ==> z$+v $<= z$+w"*)
-lemmas zadd_zless_mono2 = zadd_left_cancel_zless [THEN iffD2, standard]
-
-(*"v $<= w ==> v$+z $<= w$+z"*)
-lemmas zadd_zle_mono1 = zadd_right_cancel_zle [THEN iffD2, standard]
-
-(*"v $<= w ==> z$+v $<= z$+w"*)
-lemmas zadd_zle_mono2 = zadd_left_cancel_zle [THEN iffD2, standard]
-
-lemma zadd_zle_mono: "[| w' $<= w; z' $<= z |] ==> w' $+ z' $<= w $+ z"
-by (erule zadd_zle_mono1 [THEN zle_trans], simp)
-
-lemma zadd_zless_mono: "[| w' $< w; z' $<= z |] ==> w' $+ z' $< w $+ z"
-by (erule zadd_zless_mono1 [THEN zless_zle_trans], simp)
-
-
-subsection{*Comparison laws*}
-
-lemma zminus_zless_zminus [simp]: "($- x $< $- y) <-> (y $< x)"
-by (simp add: zless_def zdiff_def zadd_ac)
-
-lemma zminus_zle_zminus [simp]: "($- x $<= $- y) <-> (y $<= x)"
-by (simp add: not_zless_iff_zle [THEN iff_sym])
-
-subsubsection{*More inequality lemmas*}
-
-lemma equation_zminus: "[| x: int;  y: int |] ==> (x = $- y) <-> (y = $- x)"
-by auto
-
-lemma zminus_equation: "[| x: int;  y: int |] ==> ($- x = y) <-> ($- y = x)"
-by auto
-
-lemma equation_zminus_intify: "(intify(x) = $- y) <-> (intify(y) = $- x)"
-apply (cut_tac x = "intify (x) " and y = "intify (y) " in equation_zminus)
-apply auto
-done
-
-lemma zminus_equation_intify: "($- x = intify(y)) <-> ($- y = intify(x))"
-apply (cut_tac x = "intify (x) " and y = "intify (y) " in zminus_equation)
-apply auto
-done
-
-
-subsubsection{*The next several equations are permutative: watch out!*}
-
-lemma zless_zminus: "(x $< $- y) <-> (y $< $- x)"
-by (simp add: zless_def zdiff_def zadd_ac)
-
-lemma zminus_zless: "($- x $< y) <-> ($- y $< x)"
-by (simp add: zless_def zdiff_def zadd_ac)
-
-lemma zle_zminus: "(x $<= $- y) <-> (y $<= $- x)"
-by (simp add: not_zless_iff_zle [THEN iff_sym] zminus_zless)
-
-lemma zminus_zle: "($- x $<= y) <-> ($- y $<= x)"
-by (simp add: not_zless_iff_zle [THEN iff_sym] zless_zminus)
-
-ML
-{*
-val zdiff_def = thm "zdiff_def";
-val int_of_type = thm "int_of_type";
-val int_of_eq = thm "int_of_eq";
-val int_of_inject = thm "int_of_inject";
-val intify_in_int = thm "intify_in_int";
-val intify_ident = thm "intify_ident";
-val intify_idem = thm "intify_idem";
-val int_of_natify = thm "int_of_natify";
-val zminus_intify = thm "zminus_intify";
-val zadd_intify1 = thm "zadd_intify1";
-val zadd_intify2 = thm "zadd_intify2";
-val zdiff_intify1 = thm "zdiff_intify1";
-val zdiff_intify2 = thm "zdiff_intify2";
-val zmult_intify1 = thm "zmult_intify1";
-val zmult_intify2 = thm "zmult_intify2";
-val zless_intify1 = thm "zless_intify1";
-val zless_intify2 = thm "zless_intify2";
-val zle_intify1 = thm "zle_intify1";
-val zle_intify2 = thm "zle_intify2";
-val zminus_congruent = thm "zminus_congruent";
-val zminus_type = thm "zminus_type";
-val zminus_inject_intify = thm "zminus_inject_intify";
-val zminus_inject = thm "zminus_inject";
-val zminus = thm "zminus";
-val zminus_zminus_intify = thm "zminus_zminus_intify";
-val zminus_int0 = thm "zminus_int0";
-val zminus_zminus = thm "zminus_zminus";
-val not_znegative_int_of = thm "not_znegative_int_of";
-val znegative_zminus_int_of = thm "znegative_zminus_int_of";
-val not_znegative_imp_zero = thm "not_znegative_imp_zero";
-val nat_of_intify = thm "nat_of_intify";
-val nat_of_int_of = thm "nat_of_int_of";
-val nat_of_type = thm "nat_of_type";
-val zmagnitude_int_of = thm "zmagnitude_int_of";
-val natify_int_of_eq = thm "natify_int_of_eq";
-val zmagnitude_zminus_int_of = thm "zmagnitude_zminus_int_of";
-val zmagnitude_type = thm "zmagnitude_type";
-val not_zneg_int_of = thm "not_zneg_int_of";
-val not_zneg_mag = thm "not_zneg_mag";
-val zneg_int_of = thm "zneg_int_of";
-val zneg_mag = thm "zneg_mag";
-val int_cases = thm "int_cases";
-val not_zneg_nat_of_intify = thm "not_zneg_nat_of_intify";
-val not_zneg_nat_of = thm "not_zneg_nat_of";
-val zneg_nat_of = thm "zneg_nat_of";
-val zadd_congruent2 = thm "zadd_congruent2";
-val zadd_type = thm "zadd_type";
-val zadd = thm "zadd";
-val zadd_int0_intify = thm "zadd_int0_intify";
-val zadd_int0 = thm "zadd_int0";
-val zminus_zadd_distrib = thm "zminus_zadd_distrib";
-val zadd_commute = thm "zadd_commute";
-val zadd_assoc = thm "zadd_assoc";
-val zadd_left_commute = thm "zadd_left_commute";
-val zadd_ac = thms "zadd_ac";
-val int_of_add = thm "int_of_add";
-val int_succ_int_1 = thm "int_succ_int_1";
-val int_of_diff = thm "int_of_diff";
-val zadd_zminus_inverse = thm "zadd_zminus_inverse";
-val zadd_zminus_inverse2 = thm "zadd_zminus_inverse2";
-val zadd_int0_right_intify = thm "zadd_int0_right_intify";
-val zadd_int0_right = thm "zadd_int0_right";
-val zmult_congruent2 = thm "zmult_congruent2";
-val zmult_type = thm "zmult_type";
-val zmult = thm "zmult";
-val zmult_int0 = thm "zmult_int0";
-val zmult_int1_intify = thm "zmult_int1_intify";
-val zmult_int1 = thm "zmult_int1";
-val zmult_commute = thm "zmult_commute";
-val zmult_zminus = thm "zmult_zminus";
-val zmult_zminus_right = thm "zmult_zminus_right";
-val zmult_assoc = thm "zmult_assoc";
-val zmult_left_commute = thm "zmult_left_commute";
-val zmult_ac = thms "zmult_ac";
-val zadd_zmult_distrib = thm "zadd_zmult_distrib";
-val zadd_zmult_distrib2 = thm "zadd_zmult_distrib2";
-val int_typechecks = thms "int_typechecks";
-val zdiff_type = thm "zdiff_type";
-val zminus_zdiff_eq = thm "zminus_zdiff_eq";
-val zdiff_zmult_distrib = thm "zdiff_zmult_distrib";
-val zdiff_zmult_distrib2 = thm "zdiff_zmult_distrib2";
-val zadd_zdiff_eq = thm "zadd_zdiff_eq";
-val zdiff_zadd_eq = thm "zdiff_zadd_eq";
-val zless_linear = thm "zless_linear";
-val zless_not_refl = thm "zless_not_refl";
-val neq_iff_zless = thm "neq_iff_zless";
-val zless_imp_intify_neq = thm "zless_imp_intify_neq";
-val zless_imp_succ_zadd = thm "zless_imp_succ_zadd";
-val zless_succ_zadd = thm "zless_succ_zadd";
-val zless_iff_succ_zadd = thm "zless_iff_succ_zadd";
-val zless_int_of = thm "zless_int_of";
-val zless_trans = thm "zless_trans";
-val zless_not_sym = thm "zless_not_sym";
-val zless_asym = thm "zless_asym";
-val zless_imp_zle = thm "zless_imp_zle";
-val zle_linear = thm "zle_linear";
-val zle_refl = thm "zle_refl";
-val zle_eq_refl = thm "zle_eq_refl";
-val zle_anti_sym_intify = thm "zle_anti_sym_intify";
-val zle_anti_sym = thm "zle_anti_sym";
-val zle_trans = thm "zle_trans";
-val zle_zless_trans = thm "zle_zless_trans";
-val zless_zle_trans = thm "zless_zle_trans";
-val not_zless_iff_zle = thm "not_zless_iff_zle";
-val not_zle_iff_zless = thm "not_zle_iff_zless";
-val zdiff_zdiff_eq = thm "zdiff_zdiff_eq";
-val zdiff_zdiff_eq2 = thm "zdiff_zdiff_eq2";
-val zdiff_zless_iff = thm "zdiff_zless_iff";
-val zless_zdiff_iff = thm "zless_zdiff_iff";
-val zdiff_eq_iff = thm "zdiff_eq_iff";
-val eq_zdiff_iff = thm "eq_zdiff_iff";
-val zdiff_zle_iff = thm "zdiff_zle_iff";
-val zle_zdiff_iff = thm "zle_zdiff_iff";
-val zcompare_rls = thms "zcompare_rls";
-val zadd_left_cancel = thm "zadd_left_cancel";
-val zadd_left_cancel_intify = thm "zadd_left_cancel_intify";
-val zadd_right_cancel = thm "zadd_right_cancel";
-val zadd_right_cancel_intify = thm "zadd_right_cancel_intify";
-val zadd_right_cancel_zless = thm "zadd_right_cancel_zless";
-val zadd_left_cancel_zless = thm "zadd_left_cancel_zless";
-val zadd_right_cancel_zle = thm "zadd_right_cancel_zle";
-val zadd_left_cancel_zle = thm "zadd_left_cancel_zle";
-val zadd_zless_mono1 = thm "zadd_zless_mono1";
-val zadd_zless_mono2 = thm "zadd_zless_mono2";
-val zadd_zle_mono1 = thm "zadd_zle_mono1";
-val zadd_zle_mono2 = thm "zadd_zle_mono2";
-val zadd_zle_mono = thm "zadd_zle_mono";
-val zadd_zless_mono = thm "zadd_zless_mono";
-val zminus_zless_zminus = thm "zminus_zless_zminus";
-val zminus_zle_zminus = thm "zminus_zle_zminus";
-val equation_zminus = thm "equation_zminus";
-val zminus_equation = thm "zminus_equation";
-val equation_zminus_intify = thm "equation_zminus_intify";
-val zminus_equation_intify = thm "zminus_equation_intify";
-val zless_zminus = thm "zless_zminus";
-val zminus_zless = thm "zminus_zless";
-val zle_zminus = thm "zle_zminus";
-val zminus_zle = thm "zminus_zle";
-*}
-
-
-end
--- a/src/ZF/Integ/IntArith.thy	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,5 +0,0 @@
-
-theory IntArith imports Bin
-uses "int_arith.ML" begin
-
-end
--- a/src/ZF/Integ/IntDiv.thy	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1925 +0,0 @@
-(*  Title:      ZF/IntDiv.thy
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1999  University of Cambridge
-
-Here is the division algorithm in ML:
-
-    fun posDivAlg (a,b) =
-      if a<b then (0,a)
-      else let val (q,r) = posDivAlg(a, 2*b)
-	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
-	   end
-
-    fun negDivAlg (a,b) =
-      if 0<=a+b then (~1,a+b)
-      else let val (q,r) = negDivAlg(a, 2*b)
-	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
-	   end;
-
-    fun negateSnd (q,r:int) = (q,~r);
-
-    fun divAlg (a,b) = if 0<=a then 
-			  if b>0 then posDivAlg (a,b) 
-			   else if a=0 then (0,0)
-				else negateSnd (negDivAlg (~a,~b))
-		       else 
-			  if 0<b then negDivAlg (a,b)
-			  else        negateSnd (posDivAlg (~a,~b));
-
-*)
-
-header{*The Division Operators Div and Mod*}
-
-theory IntDiv imports IntArith OrderArith begin
-
-constdefs
-  quorem :: "[i,i] => o"
-    "quorem == %<a,b> <q,r>.
-                      a = b$*q $+ r &
-                      (#0$<b & #0$<=r & r$<b | ~(#0$<b) & b$<r & r $<= #0)"
-
-  adjust :: "[i,i] => i"
-    "adjust(b) == %<q,r>. if #0 $<= r$-b then <#2$*q $+ #1,r$-b>
-                          else <#2$*q,r>"
-
-
-(** the division algorithm **)
-
-constdefs posDivAlg :: "i => i"
-(*for the case a>=0, b>0*)
-(*recdef posDivAlg "inv_image less_than (%(a,b). nat_of(a $- b $+ #1))"*)
-    "posDivAlg(ab) ==
-       wfrec(measure(int*int, %<a,b>. nat_of (a $- b $+ #1)),
-	     ab,
-	     %<a,b> f. if (a$<b | b$<=#0) then <#0,a>
-                       else adjust(b, f ` <a,#2$*b>))"
-
-
-(*for the case a<0, b>0*)
-constdefs negDivAlg :: "i => i"
-(*recdef negDivAlg "inv_image less_than (%(a,b). nat_of(- a $- b))"*)
-    "negDivAlg(ab) ==
-       wfrec(measure(int*int, %<a,b>. nat_of ($- a $- b)),
-	     ab,
-	     %<a,b> f. if (#0 $<= a$+b | b$<=#0) then <#-1,a$+b>
-                       else adjust(b, f ` <a,#2$*b>))"
-
-(*for the general case b\<noteq>0*)
-
-constdefs
-  negateSnd :: "i => i"
-    "negateSnd == %<q,r>. <q, $-r>"
-
-  (*The full division algorithm considers all possible signs for a, b
-    including the special case a=0, b<0, because negDivAlg requires a<0*)
-  divAlg :: "i => i"
-    "divAlg ==
-       %<a,b>. if #0 $<= a then
-                  if #0 $<= b then posDivAlg (<a,b>)
-                  else if a=#0 then <#0,#0>
-                       else negateSnd (negDivAlg (<$-a,$-b>))
-               else 
-                  if #0$<b then negDivAlg (<a,b>)
-                  else         negateSnd (posDivAlg (<$-a,$-b>))"
-
-  zdiv  :: "[i,i]=>i"                    (infixl "zdiv" 70) 
-    "a zdiv b == fst (divAlg (<intify(a), intify(b)>))"
-
-  zmod  :: "[i,i]=>i"                    (infixl "zmod" 70)
-    "a zmod b == snd (divAlg (<intify(a), intify(b)>))"
-
-
-(** Some basic laws by Sidi Ehmety (need linear arithmetic!) **)
-
-lemma zspos_add_zspos_imp_zspos: "[| #0 $< x;  #0 $< y |] ==> #0 $< x $+ y"
-apply (rule_tac y = "y" in zless_trans)
-apply (rule_tac [2] zdiff_zless_iff [THEN iffD1])
-apply auto
-done
-
-lemma zpos_add_zpos_imp_zpos: "[| #0 $<= x;  #0 $<= y |] ==> #0 $<= x $+ y"
-apply (rule_tac y = "y" in zle_trans)
-apply (rule_tac [2] zdiff_zle_iff [THEN iffD1])
-apply auto
-done
-
-lemma zneg_add_zneg_imp_zneg: "[| x $< #0;  y $< #0 |] ==> x $+ y $< #0"
-apply (rule_tac y = "y" in zless_trans)
-apply (rule zless_zdiff_iff [THEN iffD1])
-apply auto
-done
-
-(* this theorem is used below *)
-lemma zneg_or_0_add_zneg_or_0_imp_zneg_or_0:
-     "[| x $<= #0;  y $<= #0 |] ==> x $+ y $<= #0"
-apply (rule_tac y = "y" in zle_trans)
-apply (rule zle_zdiff_iff [THEN iffD1])
-apply auto
-done
-
-lemma zero_lt_zmagnitude: "[| #0 $< k; k \<in> int |] ==> 0 < zmagnitude(k)"
-apply (drule zero_zless_imp_znegative_zminus)
-apply (drule_tac [2] zneg_int_of)
-apply (auto simp add: zminus_equation [of k])
-apply (subgoal_tac "0 < zmagnitude ($# succ (n))")
- apply simp
-apply (simp only: zmagnitude_int_of)
-apply simp
-done
-
-
-(*** Inequality lemmas involving $#succ(m) ***)
-
-lemma zless_add_succ_iff:
-     "(w $< z $+ $# succ(m)) <-> (w $< z $+ $#m | intify(w) = z $+ $#m)"
-apply (auto simp add: zless_iff_succ_zadd zadd_assoc int_of_add [symmetric])
-apply (rule_tac [3] x = "0" in bexI)
-apply (cut_tac m = "m" in int_succ_int_1)
-apply (cut_tac m = "n" in int_succ_int_1)
-apply simp
-apply (erule natE)
-apply auto
-apply (rule_tac x = "succ (n) " in bexI)
-apply auto
-done
-
-lemma zadd_succ_lemma:
-     "z \<in> int ==> (w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)"
-apply (simp only: not_zless_iff_zle [THEN iff_sym] zless_add_succ_iff)
-apply (auto intro: zle_anti_sym elim: zless_asym
-            simp add: zless_imp_zle not_zless_iff_zle)
-done
-
-lemma zadd_succ_zle_iff: "(w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)"
-apply (cut_tac z = "intify (z)" in zadd_succ_lemma)
-apply auto
-done
-
-(** Inequality reasoning **)
-
-lemma zless_add1_iff_zle: "(w $< z $+ #1) <-> (w$<=z)"
-apply (subgoal_tac "#1 = $# 1")
-apply (simp only: zless_add_succ_iff zle_def)
-apply auto
-done
-
-lemma add1_zle_iff: "(w $+ #1 $<= z) <-> (w $< z)"
-apply (subgoal_tac "#1 = $# 1")
-apply (simp only: zadd_succ_zle_iff)
-apply auto
-done
-
-lemma add1_left_zle_iff: "(#1 $+ w $<= z) <-> (w $< z)"
-apply (subst zadd_commute)
-apply (rule add1_zle_iff)
-done
-
-
-(*** Monotonicity of Multiplication ***)
-
-lemma zmult_mono_lemma: "k \<in> nat ==> i $<= j ==> i $* $#k $<= j $* $#k"
-apply (induct_tac "k")
- prefer 2 apply (subst int_succ_int_1)
-apply (simp_all (no_asm_simp) add: zadd_zmult_distrib2 zadd_zle_mono)
-done
-
-lemma zmult_zle_mono1: "[| i $<= j;  #0 $<= k |] ==> i$*k $<= j$*k"
-apply (subgoal_tac "i $* intify (k) $<= j $* intify (k) ")
-apply (simp (no_asm_use))
-apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst])
-apply (rule_tac [3] zmult_mono_lemma)
-apply auto
-apply (simp add: znegative_iff_zless_0 not_zless_iff_zle [THEN iff_sym])
-done
-
-lemma zmult_zle_mono1_neg: "[| i $<= j;  k $<= #0 |] ==> j$*k $<= i$*k"
-apply (rule zminus_zle_zminus [THEN iffD1])
-apply (simp del: zmult_zminus_right
-            add: zmult_zminus_right [symmetric] zmult_zle_mono1 zle_zminus)
-done
-
-lemma zmult_zle_mono2: "[| i $<= j;  #0 $<= k |] ==> k$*i $<= k$*j"
-apply (drule zmult_zle_mono1)
-apply (simp_all add: zmult_commute)
-done
-
-lemma zmult_zle_mono2_neg: "[| i $<= j;  k $<= #0 |] ==> k$*j $<= k$*i"
-apply (drule zmult_zle_mono1_neg)
-apply (simp_all add: zmult_commute)
-done
-
-(* $<= monotonicity, BOTH arguments*)
-lemma zmult_zle_mono:
-     "[| i $<= j;  k $<= l;  #0 $<= j;  #0 $<= k |] ==> i$*k $<= j$*l"
-apply (erule zmult_zle_mono1 [THEN zle_trans])
-apply assumption
-apply (erule zmult_zle_mono2)
-apply assumption
-done
-
-
-(** strict, in 1st argument; proof is by induction on k>0 **)
-
-lemma zmult_zless_mono2_lemma [rule_format]:
-     "[| i$<j; k \<in> nat |] ==> 0<k --> $#k $* i $< $#k $* j"
-apply (induct_tac "k")
- prefer 2
- apply (subst int_succ_int_1)
- apply (erule natE)
-apply (simp_all add: zadd_zmult_distrib zadd_zless_mono zle_def)
-apply (frule nat_0_le)
-apply (subgoal_tac "i $+ (i $+ $# xa $* i) $< j $+ (j $+ $# xa $* j) ")
-apply (simp (no_asm_use))
-apply (rule zadd_zless_mono)
-apply (simp_all (no_asm_simp) add: zle_def)
-done
-
-lemma zmult_zless_mono2: "[| i$<j;  #0 $< k |] ==> k$*i $< k$*j"
-apply (subgoal_tac "intify (k) $* i $< intify (k) $* j")
-apply (simp (no_asm_use))
-apply (rule_tac b = "intify (k)" in not_zneg_mag [THEN subst])
-apply (rule_tac [3] zmult_zless_mono2_lemma)
-apply auto
-apply (simp add: znegative_iff_zless_0)
-apply (drule zless_trans, assumption)
-apply (auto simp add: zero_lt_zmagnitude)
-done
-
-lemma zmult_zless_mono1: "[| i$<j;  #0 $< k |] ==> i$*k $< j$*k"
-apply (drule zmult_zless_mono2)
-apply (simp_all add: zmult_commute)
-done
-
-(* < monotonicity, BOTH arguments*)
-lemma zmult_zless_mono:
-     "[| i $< j;  k $< l;  #0 $< j;  #0 $< k |] ==> i$*k $< j$*l"
-apply (erule zmult_zless_mono1 [THEN zless_trans])
-apply assumption
-apply (erule zmult_zless_mono2)
-apply assumption
-done
-
-lemma zmult_zless_mono1_neg: "[| i $< j;  k $< #0 |] ==> j$*k $< i$*k"
-apply (rule zminus_zless_zminus [THEN iffD1])
-apply (simp del: zmult_zminus_right 
-            add: zmult_zminus_right [symmetric] zmult_zless_mono1 zless_zminus)
-done
-
-lemma zmult_zless_mono2_neg: "[| i $< j;  k $< #0 |] ==> k$*j $< k$*i"
-apply (rule zminus_zless_zminus [THEN iffD1])
-apply (simp del: zmult_zminus 
-            add: zmult_zminus [symmetric] zmult_zless_mono2 zless_zminus)
-done
-
-
-(** Products of zeroes **)
-
-lemma zmult_eq_lemma:
-     "[| m \<in> int; n \<in> int |] ==> (m = #0 | n = #0) <-> (m$*n = #0)"
-apply (case_tac "m $< #0")
-apply (auto simp add: not_zless_iff_zle zle_def neq_iff_zless)
-apply (force dest: zmult_zless_mono1_neg zmult_zless_mono1)+
-done
-
-lemma zmult_eq_0_iff [iff]: "(m$*n = #0) <-> (intify(m) = #0 | intify(n) = #0)"
-apply (simp add: zmult_eq_lemma)
-done
-
-
-(** Cancellation laws for k*m < k*n and m*k < n*k, also for <= and =,
-    but not (yet?) for k*m < n*k. **)
-
-lemma zmult_zless_lemma:
-     "[| k \<in> int; m \<in> int; n \<in> int |]  
-      ==> (m$*k $< n$*k) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))"
-apply (case_tac "k = #0")
-apply (auto simp add: neq_iff_zless zmult_zless_mono1 zmult_zless_mono1_neg)
-apply (auto simp add: not_zless_iff_zle 
-                      not_zle_iff_zless [THEN iff_sym, of "m$*k"] 
-                      not_zle_iff_zless [THEN iff_sym, of m])
-apply (auto elim: notE
-            simp add: zless_imp_zle zmult_zle_mono1 zmult_zle_mono1_neg)
-done
-
-lemma zmult_zless_cancel2:
-     "(m$*k $< n$*k) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))"
-apply (cut_tac k = "intify (k)" and m = "intify (m)" and n = "intify (n)" 
-       in zmult_zless_lemma)
-apply auto
-done
-
-lemma zmult_zless_cancel1:
-     "(k$*m $< k$*n) <-> ((#0 $< k & m$<n) | (k $< #0 & n$<m))"
-by (simp add: zmult_commute [of k] zmult_zless_cancel2)
-
-lemma zmult_zle_cancel2:
-     "(m$*k $<= n$*k) <-> ((#0 $< k --> m$<=n) & (k $< #0 --> n$<=m))"
-by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel2)
-
-lemma zmult_zle_cancel1:
-     "(k$*m $<= k$*n) <-> ((#0 $< k --> m$<=n) & (k $< #0 --> n$<=m))"
-by (auto simp add: not_zless_iff_zle [THEN iff_sym] zmult_zless_cancel1)
-
-lemma int_eq_iff_zle: "[| m \<in> int; n \<in> int |] ==> m=n <-> (m $<= n & n $<= m)"
-apply (blast intro: zle_refl zle_anti_sym)
-done
-
-lemma zmult_cancel2_lemma:
-     "[| k \<in> int; m \<in> int; n \<in> int |] ==> (m$*k = n$*k) <-> (k=#0 | m=n)"
-apply (simp add: int_eq_iff_zle [of "m$*k"] int_eq_iff_zle [of m])
-apply (auto simp add: zmult_zle_cancel2 neq_iff_zless)
-done
-
-lemma zmult_cancel2 [simp]:
-     "(m$*k = n$*k) <-> (intify(k) = #0 | intify(m) = intify(n))"
-apply (rule iff_trans)
-apply (rule_tac [2] zmult_cancel2_lemma)
-apply auto
-done
-
-lemma zmult_cancel1 [simp]:
-     "(k$*m = k$*n) <-> (intify(k) = #0 | intify(m) = intify(n))"
-by (simp add: zmult_commute [of k] zmult_cancel2)
-
-
-subsection{* Uniqueness and monotonicity of quotients and remainders *}
-
-lemma unique_quotient_lemma:
-     "[| b$*q' $+ r' $<= b$*q $+ r;  #0 $<= r';  #0 $< b;  r $< b |]  
-      ==> q' $<= q"
-apply (subgoal_tac "r' $+ b $* (q'$-q) $<= r")
- prefer 2 apply (simp add: zdiff_zmult_distrib2 zadd_ac zcompare_rls)
-apply (subgoal_tac "#0 $< b $* (#1 $+ q $- q') ")
- prefer 2
- apply (erule zle_zless_trans)
- apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls)
- apply (erule zle_zless_trans)
- apply (simp add: ); 
-apply (subgoal_tac "b $* q' $< b $* (#1 $+ q)")
- prefer 2 
- apply (simp add: zdiff_zmult_distrib2 zadd_zmult_distrib2 zadd_ac zcompare_rls)
-apply (auto elim: zless_asym
-        simp add: zmult_zless_cancel1 zless_add1_iff_zle zadd_ac zcompare_rls)
-done
-
-lemma unique_quotient_lemma_neg:
-     "[| b$*q' $+ r' $<= b$*q $+ r;  r $<= #0;  b $< #0;  b $< r' |]  
-      ==> q $<= q'"
-apply (rule_tac b = "$-b" and r = "$-r'" and r' = "$-r" 
-       in unique_quotient_lemma)
-apply (auto simp del: zminus_zadd_distrib
-            simp add: zminus_zadd_distrib [symmetric] zle_zminus zless_zminus)
-done
-
-
-lemma unique_quotient:
-     "[| quorem (<a,b>, <q,r>);  quorem (<a,b>, <q',r'>);  b \<in> int; b ~= #0;  
-         q \<in> int; q' \<in> int |] ==> q = q'"
-apply (simp add: split_ifs quorem_def neq_iff_zless)
-apply safe
-apply simp_all
-apply (blast intro: zle_anti_sym
-             dest: zle_eq_refl [THEN unique_quotient_lemma] 
-                   zle_eq_refl [THEN unique_quotient_lemma_neg] sym)+
-done
-
-lemma unique_remainder:
-     "[| quorem (<a,b>, <q,r>);  quorem (<a,b>, <q',r'>);  b \<in> int; b ~= #0;  
-         q \<in> int; q' \<in> int;  
-         r \<in> int; r' \<in> int |] ==> r = r'"
-apply (subgoal_tac "q = q'")
- prefer 2 apply (blast intro: unique_quotient)
-apply (simp add: quorem_def)
-done
-
-
-subsection{*Correctness of posDivAlg, 
-           the Division Algorithm for @{text "a\<ge>0"} and @{text "b>0"} *}
-
-lemma adjust_eq [simp]:
-     "adjust(b, <q,r>) = (let diff = r$-b in  
-                          if #0 $<= diff then <#2$*q $+ #1,diff>   
-                                         else <#2$*q,r>)"
-by (simp add: Let_def adjust_def)
-
-
-lemma posDivAlg_termination:
-     "[| #0 $< b; ~ a $< b |]    
-      ==> nat_of(a $- #2 $\<times> b $+ #1) < nat_of(a $- b $+ #1)"
-apply (simp (no_asm) add: zless_nat_conj)
-apply (simp add: not_zless_iff_zle zless_add1_iff_zle zcompare_rls)
-done
-
-lemmas posDivAlg_unfold = def_wfrec [OF posDivAlg_def wf_measure]
-
-lemma posDivAlg_eqn:
-     "[| #0 $< b; a \<in> int; b \<in> int |] ==>  
-      posDivAlg(<a,b>) =       
-       (if a$<b then <#0,a> else adjust(b, posDivAlg (<a, #2$*b>)))"
-apply (rule posDivAlg_unfold [THEN trans])
-apply (simp add: vimage_iff not_zless_iff_zle [THEN iff_sym])
-apply (blast intro: posDivAlg_termination)
-done
-
-lemma posDivAlg_induct_lemma [rule_format]:
-  assumes prem:
-        "!!a b. [| a \<in> int; b \<in> int;  
-                   ~ (a $< b | b $<= #0) --> P(<a, #2 $* b>) |] ==> P(<a,b>)"
-  shows "<u,v> \<in> int*int --> P(<u,v>)"
-apply (rule_tac a = "<u,v>" in wf_induct)
-apply (rule_tac A = "int*int" and f = "%<a,b>.nat_of (a $- b $+ #1)" 
-       in wf_measure)
-apply clarify
-apply (rule prem)
-apply (drule_tac [3] x = "<xa, #2 $\<times> y>" in spec)
-apply auto
-apply (simp add: not_zle_iff_zless posDivAlg_termination)
-done
-
-
-lemma posDivAlg_induct [consumes 2]:
-  assumes u_int: "u \<in> int"
-      and v_int: "v \<in> int"
-      and ih: "!!a b. [| a \<in> int; b \<in> int;
-                     ~ (a $< b | b $<= #0) --> P(a, #2 $* b) |] ==> P(a,b)"
-  shows "P(u,v)"
-apply (subgoal_tac "(%<x,y>. P (x,y)) (<u,v>)")
-apply simp
-apply (rule posDivAlg_induct_lemma)
-apply (simp (no_asm_use))
-apply (rule ih)
-apply (auto simp add: u_int v_int)
-done
-
-(*FIXME: use intify in integ_of so that we always have integ_of w \<in> int.
-    then this rewrite can work for ALL constants!!*)
-lemma intify_eq_0_iff_zle: "intify(m) = #0 <-> (m $<= #0 & #0 $<= m)"
-apply (simp (no_asm) add: int_eq_iff_zle)
-done
-
-
-subsection{* Some convenient biconditionals for products of signs *}
-
-lemma zmult_pos: "[| #0 $< i; #0 $< j |] ==> #0 $< i $* j"
-apply (drule zmult_zless_mono1)
-apply auto
-done
-
-lemma zmult_neg: "[| i $< #0; j $< #0 |] ==> #0 $< i $* j"
-apply (drule zmult_zless_mono1_neg)
-apply auto
-done
-
-lemma zmult_pos_neg: "[| #0 $< i; j $< #0 |] ==> i $* j $< #0"
-apply (drule zmult_zless_mono1_neg)
-apply auto
-done
-
-(** Inequality reasoning **)
-
-lemma int_0_less_lemma:
-     "[| x \<in> int; y \<in> int |]  
-      ==> (#0 $< x $* y) <-> (#0 $< x & #0 $< y | x $< #0 & y $< #0)"
-apply (auto simp add: zle_def not_zless_iff_zle zmult_pos zmult_neg)
-apply (rule ccontr) 
-apply (rule_tac [2] ccontr) 
-apply (auto simp add: zle_def not_zless_iff_zle)
-apply (erule_tac P = "#0$< x$* y" in rev_mp)
-apply (erule_tac [2] P = "#0$< x$* y" in rev_mp)
-apply (drule zmult_pos_neg, assumption) 
- prefer 2
- apply (drule zmult_pos_neg, assumption) 
-apply (auto dest: zless_not_sym simp add: zmult_commute)
-done
-
-lemma int_0_less_mult_iff:
-     "(#0 $< x $* y) <-> (#0 $< x & #0 $< y | x $< #0 & y $< #0)"
-apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_less_lemma)
-apply auto
-done
-
-lemma int_0_le_lemma:
-     "[| x \<in> int; y \<in> int |]  
-      ==> (#0 $<= x $* y) <-> (#0 $<= x & #0 $<= y | x $<= #0 & y $<= #0)"
-by (auto simp add: zle_def not_zless_iff_zle int_0_less_mult_iff)
-
-lemma int_0_le_mult_iff:
-     "(#0 $<= x $* y) <-> ((#0 $<= x & #0 $<= y) | (x $<= #0 & y $<= #0))"
-apply (cut_tac x = "intify (x)" and y = "intify (y)" in int_0_le_lemma)
-apply auto
-done
-
-lemma zmult_less_0_iff:
-     "(x $* y $< #0) <-> (#0 $< x & y $< #0 | x $< #0 & #0 $< y)"
-apply (auto simp add: int_0_le_mult_iff not_zle_iff_zless [THEN iff_sym])
-apply (auto dest: zless_not_sym simp add: not_zle_iff_zless)
-done
-
-lemma zmult_le_0_iff:
-     "(x $* y $<= #0) <-> (#0 $<= x & y $<= #0 | x $<= #0 & #0 $<= y)"
-by (auto dest: zless_not_sym
-         simp add: int_0_less_mult_iff not_zless_iff_zle [THEN iff_sym])
-
-
-(*Typechecking for posDivAlg*)
-lemma posDivAlg_type [rule_format]:
-     "[| a \<in> int; b \<in> int |] ==> posDivAlg(<a,b>) \<in> int * int"
-apply (rule_tac u = "a" and v = "b" in posDivAlg_induct)
-apply assumption+
-apply (case_tac "#0 $< ba")
- apply (simp add: posDivAlg_eqn adjust_def integ_of_type 
-             split add: split_if_asm)
- apply clarify
- apply (simp add: int_0_less_mult_iff not_zle_iff_zless)
-apply (simp add: not_zless_iff_zle)
-apply (subst posDivAlg_unfold)
-apply simp
-done
-
-(*Correctness of posDivAlg: it computes quotients correctly*)
-lemma posDivAlg_correct [rule_format]:
-     "[| a \<in> int; b \<in> int |]  
-      ==> #0 $<= a --> #0 $< b --> quorem (<a,b>, posDivAlg(<a,b>))"
-apply (rule_tac u = "a" and v = "b" in posDivAlg_induct)
-apply auto
-   apply (simp_all add: quorem_def)
-   txt{*base case: a<b*}
-   apply (simp add: posDivAlg_eqn)
-  apply (simp add: not_zless_iff_zle [THEN iff_sym])
- apply (simp add: int_0_less_mult_iff)
-txt{*main argument*}
-apply (subst posDivAlg_eqn)
-apply (simp_all (no_asm_simp))
-apply (erule splitE)
-apply (rule posDivAlg_type)
-apply (simp_all add: int_0_less_mult_iff)
-apply (auto simp add: zadd_zmult_distrib2 Let_def)
-txt{*now just linear arithmetic*}
-apply (simp add: not_zle_iff_zless zdiff_zless_iff)
-done
-
-
-subsection{*Correctness of negDivAlg, the division algorithm for a<0 and b>0*}
-
-lemma negDivAlg_termination:
-     "[| #0 $< b; a $+ b $< #0 |] 
-      ==> nat_of($- a $- #2 $* b) < nat_of($- a $- b)"
-apply (simp (no_asm) add: zless_nat_conj)
-apply (simp add: zcompare_rls not_zle_iff_zless zless_zdiff_iff [THEN iff_sym]
-                 zless_zminus)
-done
-
-lemmas negDivAlg_unfold = def_wfrec [OF negDivAlg_def wf_measure]
-
-lemma negDivAlg_eqn:
-     "[| #0 $< b; a : int; b : int |] ==>  
-      negDivAlg(<a,b>) =       
-       (if #0 $<= a$+b then <#-1,a$+b>  
-                       else adjust(b, negDivAlg (<a, #2$*b>)))"
-apply (rule negDivAlg_unfold [THEN trans])
-apply (simp (no_asm_simp) add: vimage_iff not_zless_iff_zle [THEN iff_sym])
-apply (blast intro: negDivAlg_termination)
-done
-
-lemma negDivAlg_induct_lemma [rule_format]:
-  assumes prem:
-        "!!a b. [| a \<in> int; b \<in> int;  
-                   ~ (#0 $<= a $+ b | b $<= #0) --> P(<a, #2 $* b>) |]  
-                ==> P(<a,b>)"
-  shows "<u,v> \<in> int*int --> P(<u,v>)"
-apply (rule_tac a = "<u,v>" in wf_induct)
-apply (rule_tac A = "int*int" and f = "%<a,b>.nat_of ($- a $- b)" 
-       in wf_measure)
-apply clarify
-apply (rule prem)
-apply (drule_tac [3] x = "<xa, #2 $\<times> y>" in spec)
-apply auto
-apply (simp add: not_zle_iff_zless negDivAlg_termination)
-done
-
-lemma negDivAlg_induct [consumes 2]:
-  assumes u_int: "u \<in> int"
-      and v_int: "v \<in> int"
-      and ih: "!!a b. [| a \<in> int; b \<in> int;  
-                         ~ (#0 $<= a $+ b | b $<= #0) --> P(a, #2 $* b) |]  
-                      ==> P(a,b)"
-  shows "P(u,v)"
-apply (subgoal_tac " (%<x,y>. P (x,y)) (<u,v>)")
-apply simp
-apply (rule negDivAlg_induct_lemma)
-apply (simp (no_asm_use))
-apply (rule ih)
-apply (auto simp add: u_int v_int)
-done
-
-
-(*Typechecking for negDivAlg*)
-lemma negDivAlg_type:
-     "[| a \<in> int; b \<in> int |] ==> negDivAlg(<a,b>) \<in> int * int"
-apply (rule_tac u = "a" and v = "b" in negDivAlg_induct)
-apply assumption+
-apply (case_tac "#0 $< ba")
- apply (simp add: negDivAlg_eqn adjust_def integ_of_type 
-             split add: split_if_asm)
- apply clarify
- apply (simp add: int_0_less_mult_iff not_zle_iff_zless)
-apply (simp add: not_zless_iff_zle)
-apply (subst negDivAlg_unfold)
-apply simp
-done
-
-
-(*Correctness of negDivAlg: it computes quotients correctly
-  It doesn't work if a=0 because the 0/b=0 rather than -1*)
-lemma negDivAlg_correct [rule_format]:
-     "[| a \<in> int; b \<in> int |]  
-      ==> a $< #0 --> #0 $< b --> quorem (<a,b>, negDivAlg(<a,b>))"
-apply (rule_tac u = "a" and v = "b" in negDivAlg_induct)
-  apply auto
-   apply (simp_all add: quorem_def)
-   txt{*base case: @{term "0$<=a$+b"}*}
-   apply (simp add: negDivAlg_eqn)
-  apply (simp add: not_zless_iff_zle [THEN iff_sym])
- apply (simp add: int_0_less_mult_iff)
-txt{*main argument*}
-apply (subst negDivAlg_eqn)
-apply (simp_all (no_asm_simp))
-apply (erule splitE)
-apply (rule negDivAlg_type)
-apply (simp_all add: int_0_less_mult_iff)
-apply (auto simp add: zadd_zmult_distrib2 Let_def)
-txt{*now just linear arithmetic*}
-apply (simp add: not_zle_iff_zless zdiff_zless_iff)
-done
-
-
-subsection{* Existence shown by proving the division algorithm to be correct *}
-
-(*the case a=0*)
-lemma quorem_0: "[|b \<noteq> #0;  b \<in> int|] ==> quorem (<#0,b>, <#0,#0>)"
-by (force simp add: quorem_def neq_iff_zless)
-
-lemma posDivAlg_zero_divisor: "posDivAlg(<a,#0>) = <#0,a>"
-apply (subst posDivAlg_unfold)
-apply simp
-done
-
-lemma posDivAlg_0 [simp]: "posDivAlg (<#0,b>) = <#0,#0>"
-apply (subst posDivAlg_unfold)
-apply (simp add: not_zle_iff_zless)
-done
-
-
-(*Needed below.  Actually it's an equivalence.*)
-lemma linear_arith_lemma: "~ (#0 $<= #-1 $+ b) ==> (b $<= #0)"
-apply (simp add: not_zle_iff_zless)
-apply (drule zminus_zless_zminus [THEN iffD2])
-apply (simp add: zadd_commute zless_add1_iff_zle zle_zminus)
-done
-
-lemma negDivAlg_minus1 [simp]: "negDivAlg (<#-1,b>) = <#-1, b$-#1>"
-apply (subst negDivAlg_unfold)
-apply (simp add: linear_arith_lemma integ_of_type vimage_iff)
-done
-
-lemma negateSnd_eq [simp]: "negateSnd (<q,r>) = <q, $-r>"
-apply (unfold negateSnd_def)
-apply auto
-done
-
-lemma negateSnd_type: "qr \<in> int * int ==> negateSnd (qr) \<in> int * int"
-apply (unfold negateSnd_def)
-apply auto
-done
-
-lemma quorem_neg:
-     "[|quorem (<$-a,$-b>, qr);  a \<in> int;  b \<in> int;  qr \<in> int * int|]   
-      ==> quorem (<a,b>, negateSnd(qr))"
-apply clarify
-apply (auto elim: zless_asym simp add: quorem_def zless_zminus)
-txt{*linear arithmetic from here on*}
-apply (simp_all add: zminus_equation [of a] zminus_zless)
-apply (cut_tac [2] z = "b" and w = "#0" in zless_linear)
-apply (cut_tac [1] z = "b" and w = "#0" in zless_linear)
-apply auto
-apply (blast dest: zle_zless_trans)+
-done
-
-lemma divAlg_correct:
-     "[|b \<noteq> #0;  a \<in> int;  b \<in> int|] ==> quorem (<a,b>, divAlg(<a,b>))"
-apply (auto simp add: quorem_0 divAlg_def)
-apply (safe intro!: quorem_neg posDivAlg_correct negDivAlg_correct
-                    posDivAlg_type negDivAlg_type) 
-apply (auto simp add: quorem_def neq_iff_zless)
-txt{*linear arithmetic from here on*}
-apply (auto simp add: zle_def)
-done
-
-lemma divAlg_type: "[|a \<in> int;  b \<in> int|] ==> divAlg(<a,b>) \<in> int * int"
-apply (auto simp add: divAlg_def)
-apply (auto simp add: posDivAlg_type negDivAlg_type negateSnd_type)
-done
-
-
-(** intify cancellation **)
-
-lemma zdiv_intify1 [simp]: "intify(x) zdiv y = x zdiv y"
-apply (simp (no_asm) add: zdiv_def)
-done
-
-lemma zdiv_intify2 [simp]: "x zdiv intify(y) = x zdiv y"
-apply (simp (no_asm) add: zdiv_def)
-done
-
-lemma zdiv_type [iff,TC]: "z zdiv w \<in> int"
-apply (unfold zdiv_def)
-apply (blast intro: fst_type divAlg_type)
-done
-
-lemma zmod_intify1 [simp]: "intify(x) zmod y = x zmod y"
-apply (simp (no_asm) add: zmod_def)
-done
-
-lemma zmod_intify2 [simp]: "x zmod intify(y) = x zmod y"
-apply (simp (no_asm) add: zmod_def)
-done
-
-lemma zmod_type [iff,TC]: "z zmod w \<in> int"
-apply (unfold zmod_def)
-apply (rule snd_type)
-apply (blast intro: divAlg_type)
-done
-
-
-(** Arbitrary definitions for division by zero.  Useful to simplify 
-    certain equations **)
-
-lemma DIVISION_BY_ZERO_ZDIV: "a zdiv #0 = #0"
-apply (simp (no_asm) add: zdiv_def divAlg_def posDivAlg_zero_divisor)
-done  (*NOT for adding to default simpset*)
-
-lemma DIVISION_BY_ZERO_ZMOD: "a zmod #0 = intify(a)"
-apply (simp (no_asm) add: zmod_def divAlg_def posDivAlg_zero_divisor)
-done  (*NOT for adding to default simpset*)
-
-
-
-(** Basic laws about division and remainder **)
-
-lemma raw_zmod_zdiv_equality:
-     "[| a \<in> int; b \<in> int |] ==> a = b $* (a zdiv b) $+ (a zmod b)"
-apply (case_tac "b = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (cut_tac a = "a" and b = "b" in divAlg_correct)
-apply (auto simp add: quorem_def zdiv_def zmod_def split_def)
-done
-
-lemma zmod_zdiv_equality: "intify(a) = b $* (a zdiv b) $+ (a zmod b)"
-apply (rule trans)
-apply (rule_tac b = "intify (b)" in raw_zmod_zdiv_equality)
-apply auto
-done
-
-lemma pos_mod: "#0 $< b ==> #0 $<= a zmod b & a zmod b $< b"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct)
-apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def)
-apply (blast dest: zle_zless_trans)+
-done
-
-lemmas pos_mod_sign = pos_mod [THEN conjunct1, standard]
-and    pos_mod_bound = pos_mod [THEN conjunct2, standard]
-
-lemma neg_mod: "b $< #0 ==> a zmod b $<= #0 & b $< a zmod b"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" in divAlg_correct)
-apply (auto simp add: intify_eq_0_iff_zle quorem_def zmod_def split_def)
-apply (blast dest: zle_zless_trans)
-apply (blast dest: zless_trans)+
-done
-
-lemmas neg_mod_sign = neg_mod [THEN conjunct1, standard]
-and    neg_mod_bound = neg_mod [THEN conjunct2, standard]
-
-
-(** proving general properties of zdiv and zmod **)
-
-lemma quorem_div_mod:
-     "[|b \<noteq> #0;  a \<in> int;  b \<in> int |]  
-      ==> quorem (<a,b>, <a zdiv b, a zmod b>)"
-apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
-apply (auto simp add: quorem_def neq_iff_zless pos_mod_sign pos_mod_bound 
-                      neg_mod_sign neg_mod_bound)
-done
-
-(*Surely quorem(<a,b>,<q,r>) implies a \<in> int, but it doesn't matter*)
-lemma quorem_div:
-     "[| quorem(<a,b>,<q,r>);  b \<noteq> #0;  a \<in> int;  b \<in> int;  q \<in> int |]  
-      ==> a zdiv b = q"
-by (blast intro: quorem_div_mod [THEN unique_quotient])
-
-lemma quorem_mod:
-     "[| quorem(<a,b>,<q,r>); b \<noteq> #0; a \<in> int; b \<in> int; q \<in> int; r \<in> int |] 
-      ==> a zmod b = r"
-by (blast intro: quorem_div_mod [THEN unique_remainder])
-
-lemma zdiv_pos_pos_trivial_raw:
-     "[| a \<in> int;  b \<in> int;  #0 $<= a;  a $< b |] ==> a zdiv b = #0"
-apply (rule quorem_div)
-apply (auto simp add: quorem_def)
-(*linear arithmetic*)
-apply (blast dest: zle_zless_trans)+
-done
-
-lemma zdiv_pos_pos_trivial: "[| #0 $<= a;  a $< b |] ==> a zdiv b = #0"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" 
-       in zdiv_pos_pos_trivial_raw)
-apply auto
-done
-
-lemma zdiv_neg_neg_trivial_raw:
-     "[| a \<in> int;  b \<in> int;  a $<= #0;  b $< a |] ==> a zdiv b = #0"
-apply (rule_tac r = "a" in quorem_div)
-apply (auto simp add: quorem_def)
-(*linear arithmetic*)
-apply (blast dest: zle_zless_trans zless_trans)+
-done
-
-lemma zdiv_neg_neg_trivial: "[| a $<= #0;  b $< a |] ==> a zdiv b = #0"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" 
-       in zdiv_neg_neg_trivial_raw)
-apply auto
-done
-
-lemma zadd_le_0_lemma: "[| a$+b $<= #0;  #0 $< a;  #0 $< b |] ==> False"
-apply (drule_tac z' = "#0" and z = "b" in zadd_zless_mono)
-apply (auto simp add: zle_def)
-apply (blast dest: zless_trans)
-done
-
-lemma zdiv_pos_neg_trivial_raw:
-     "[| a \<in> int;  b \<in> int;  #0 $< a;  a$+b $<= #0 |] ==> a zdiv b = #-1"
-apply (rule_tac r = "a $+ b" in quorem_div)
-apply (auto simp add: quorem_def)
-(*linear arithmetic*)
-apply (blast dest: zadd_le_0_lemma zle_zless_trans)+
-done
-
-lemma zdiv_pos_neg_trivial: "[| #0 $< a;  a$+b $<= #0 |] ==> a zdiv b = #-1"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" 
-       in zdiv_pos_neg_trivial_raw)
-apply auto
-done
-
-(*There is no zdiv_neg_pos_trivial because  #0 zdiv b = #0 would supersede it*)
-
-
-lemma zmod_pos_pos_trivial_raw:
-     "[| a \<in> int;  b \<in> int;  #0 $<= a;  a $< b |] ==> a zmod b = a"
-apply (rule_tac q = "#0" in quorem_mod)
-apply (auto simp add: quorem_def)
-(*linear arithmetic*)
-apply (blast dest: zle_zless_trans)+
-done
-
-lemma zmod_pos_pos_trivial: "[| #0 $<= a;  a $< b |] ==> a zmod b = intify(a)"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" 
-       in zmod_pos_pos_trivial_raw)
-apply auto
-done
-
-lemma zmod_neg_neg_trivial_raw:
-     "[| a \<in> int;  b \<in> int;  a $<= #0;  b $< a |] ==> a zmod b = a"
-apply (rule_tac q = "#0" in quorem_mod)
-apply (auto simp add: quorem_def)
-(*linear arithmetic*)
-apply (blast dest: zle_zless_trans zless_trans)+
-done
-
-lemma zmod_neg_neg_trivial: "[| a $<= #0;  b $< a |] ==> a zmod b = intify(a)"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" 
-       in zmod_neg_neg_trivial_raw)
-apply auto
-done
-
-lemma zmod_pos_neg_trivial_raw:
-     "[| a \<in> int;  b \<in> int;  #0 $< a;  a$+b $<= #0 |] ==> a zmod b = a$+b"
-apply (rule_tac q = "#-1" in quorem_mod)
-apply (auto simp add: quorem_def)
-(*linear arithmetic*)
-apply (blast dest: zadd_le_0_lemma zle_zless_trans)+
-done
-
-lemma zmod_pos_neg_trivial: "[| #0 $< a;  a$+b $<= #0 |] ==> a zmod b = a$+b"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" 
-       in zmod_pos_neg_trivial_raw)
-apply auto
-done
-
-(*There is no zmod_neg_pos_trivial...*)
-
-
-(*Simpler laws such as -a zdiv b = -(a zdiv b) FAIL*)
-
-lemma zdiv_zminus_zminus_raw:
-     "[|a \<in> int;  b \<in> int|] ==> ($-a) zdiv ($-b) = a zdiv b"
-apply (case_tac "b = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_div])
-apply auto
-done
-
-lemma zdiv_zminus_zminus [simp]: "($-a) zdiv ($-b) = a zdiv b"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zminus_zminus_raw)
-apply auto
-done
-
-(*Simpler laws such as -a zmod b = -(a zmod b) FAIL*)
-lemma zmod_zminus_zminus_raw:
-     "[|a \<in> int;  b \<in> int|] ==> ($-a) zmod ($-b) = $- (a zmod b)"
-apply (case_tac "b = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod])
-apply auto
-done
-
-lemma zmod_zminus_zminus [simp]: "($-a) zmod ($-b) = $- (a zmod b)"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zminus_zminus_raw)
-apply auto
-done
-
-
-subsection{* division of a number by itself *}
-
-lemma self_quotient_aux1: "[| #0 $< a; a = r $+ a$*q; r $< a |] ==> #1 $<= q"
-apply (subgoal_tac "#0 $< a$*q")
-apply (cut_tac w = "#0" and z = "q" in add1_zle_iff)
-apply (simp add: int_0_less_mult_iff)
-apply (blast dest: zless_trans)
-(*linear arithmetic...*)
-apply (drule_tac t = "%x. x $- r" in subst_context)
-apply (drule sym)
-apply (simp add: zcompare_rls)
-done
-
-lemma self_quotient_aux2: "[| #0 $< a; a = r $+ a$*q; #0 $<= r |] ==> q $<= #1"
-apply (subgoal_tac "#0 $<= a$* (#1$-q)")
- apply (simp add: int_0_le_mult_iff zcompare_rls)
- apply (blast dest: zle_zless_trans)
-apply (simp add: zdiff_zmult_distrib2)
-apply (drule_tac t = "%x. x $- a $* q" in subst_context)
-apply (simp add: zcompare_rls)
-done
-
-lemma self_quotient:
-     "[| quorem(<a,a>,<q,r>);  a \<in> int;  q \<in> int;  a \<noteq> #0|] ==> q = #1"
-apply (simp add: split_ifs quorem_def neq_iff_zless)
-apply (rule zle_anti_sym)
-apply safe
-apply auto
-prefer 4 apply (blast dest: zless_trans)
-apply (blast dest: zless_trans)
-apply (rule_tac [3] a = "$-a" and r = "$-r" in self_quotient_aux1)
-apply (rule_tac a = "$-a" and r = "$-r" in self_quotient_aux2)
-apply (rule_tac [6] zminus_equation [THEN iffD1])
-apply (rule_tac [2] zminus_equation [THEN iffD1])
-apply (force intro: self_quotient_aux1 self_quotient_aux2
-  simp add: zadd_commute zmult_zminus)+
-done
-
-lemma self_remainder:
-     "[|quorem(<a,a>,<q,r>); a \<in> int; q \<in> int; r \<in> int; a \<noteq> #0|] ==> r = #0"
-apply (frule self_quotient)
-apply (auto simp add: quorem_def)
-done
-
-lemma zdiv_self_raw: "[|a \<noteq> #0; a \<in> int|] ==> a zdiv a = #1"
-apply (blast intro: quorem_div_mod [THEN self_quotient])
-done
-
-lemma zdiv_self [simp]: "intify(a) \<noteq> #0 ==> a zdiv a = #1"
-apply (drule zdiv_self_raw)
-apply auto
-done
-
-(*Here we have 0 zmod 0 = 0, also assumed by Knuth (who puts m zmod 0 = 0) *)
-lemma zmod_self_raw: "a \<in> int ==> a zmod a = #0"
-apply (case_tac "a = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (blast intro: quorem_div_mod [THEN self_remainder])
-done
-
-lemma zmod_self [simp]: "a zmod a = #0"
-apply (cut_tac a = "intify (a)" in zmod_self_raw)
-apply auto
-done
-
-
-subsection{* Computation of division and remainder *}
-
-lemma zdiv_zero [simp]: "#0 zdiv b = #0"
-apply (simp (no_asm) add: zdiv_def divAlg_def)
-done
-
-lemma zdiv_eq_minus1: "#0 $< b ==> #-1 zdiv b = #-1"
-apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
-done
-
-lemma zmod_zero [simp]: "#0 zmod b = #0"
-apply (simp (no_asm) add: zmod_def divAlg_def)
-done
-
-lemma zdiv_minus1: "#0 $< b ==> #-1 zdiv b = #-1"
-apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
-done
-
-lemma zmod_minus1: "#0 $< b ==> #-1 zmod b = b $- #1"
-apply (simp (no_asm_simp) add: zmod_def divAlg_def)
-done
-
-(** a positive, b positive **)
-
-lemma zdiv_pos_pos: "[| #0 $< a;  #0 $<= b |]  
-      ==> a zdiv b = fst (posDivAlg(<intify(a), intify(b)>))"
-apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
-apply (auto simp add: zle_def)
-done
-
-lemma zmod_pos_pos:
-     "[| #0 $< a;  #0 $<= b |]  
-      ==> a zmod b = snd (posDivAlg(<intify(a), intify(b)>))"
-apply (simp (no_asm_simp) add: zmod_def divAlg_def)
-apply (auto simp add: zle_def)
-done
-
-(** a negative, b positive **)
-
-lemma zdiv_neg_pos:
-     "[| a $< #0;  #0 $< b |]  
-      ==> a zdiv b = fst (negDivAlg(<intify(a), intify(b)>))"
-apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
-apply (blast dest: zle_zless_trans)
-done
-
-lemma zmod_neg_pos:
-     "[| a $< #0;  #0 $< b |]  
-      ==> a zmod b = snd (negDivAlg(<intify(a), intify(b)>))"
-apply (simp (no_asm_simp) add: zmod_def divAlg_def)
-apply (blast dest: zle_zless_trans)
-done
-
-(** a positive, b negative **)
-
-lemma zdiv_pos_neg:
-     "[| #0 $< a;  b $< #0 |]  
-      ==> a zdiv b = fst (negateSnd(negDivAlg (<$-a, $-b>)))"
-apply (simp (no_asm_simp) add: zdiv_def divAlg_def intify_eq_0_iff_zle)
-apply auto
-apply (blast dest: zle_zless_trans)+
-apply (blast dest: zless_trans)
-apply (blast intro: zless_imp_zle)
-done
-
-lemma zmod_pos_neg:
-     "[| #0 $< a;  b $< #0 |]  
-      ==> a zmod b = snd (negateSnd(negDivAlg (<$-a, $-b>)))"
-apply (simp (no_asm_simp) add: zmod_def divAlg_def intify_eq_0_iff_zle)
-apply auto
-apply (blast dest: zle_zless_trans)+
-apply (blast dest: zless_trans)
-apply (blast intro: zless_imp_zle)
-done
-
-(** a negative, b negative **)
-
-lemma zdiv_neg_neg:
-     "[| a $< #0;  b $<= #0 |]  
-      ==> a zdiv b = fst (negateSnd(posDivAlg(<$-a, $-b>)))"
-apply (simp (no_asm_simp) add: zdiv_def divAlg_def)
-apply auto
-apply (blast dest!: zle_zless_trans)+
-done
-
-lemma zmod_neg_neg:
-     "[| a $< #0;  b $<= #0 |]  
-      ==> a zmod b = snd (negateSnd(posDivAlg(<$-a, $-b>)))"
-apply (simp (no_asm_simp) add: zmod_def divAlg_def)
-apply auto
-apply (blast dest!: zle_zless_trans)+
-done
-
-declare zdiv_pos_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
-declare zdiv_neg_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
-declare zdiv_pos_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
-declare zdiv_neg_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
-declare zmod_pos_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
-declare zmod_neg_pos [of "integ_of (v)" "integ_of (w)", standard, simp]
-declare zmod_pos_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
-declare zmod_neg_neg [of "integ_of (v)" "integ_of (w)", standard, simp]
-declare posDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", standard, simp]
-declare negDivAlg_eqn [of concl: "integ_of (v)" "integ_of (w)", standard, simp]
-
-
-(** Special-case simplification **)
-
-lemma zmod_1 [simp]: "a zmod #1 = #0"
-apply (cut_tac a = "a" and b = "#1" in pos_mod_sign)
-apply (cut_tac [2] a = "a" and b = "#1" in pos_mod_bound)
-apply auto
-(*arithmetic*)
-apply (drule add1_zle_iff [THEN iffD2])
-apply (rule zle_anti_sym)
-apply auto
-done
-
-lemma zdiv_1 [simp]: "a zdiv #1 = intify(a)"
-apply (cut_tac a = "a" and b = "#1" in zmod_zdiv_equality)
-apply auto
-done
-
-lemma zmod_minus1_right [simp]: "a zmod #-1 = #0"
-apply (cut_tac a = "a" and b = "#-1" in neg_mod_sign)
-apply (cut_tac [2] a = "a" and b = "#-1" in neg_mod_bound)
-apply auto
-(*arithmetic*)
-apply (drule add1_zle_iff [THEN iffD2])
-apply (rule zle_anti_sym)
-apply auto
-done
-
-lemma zdiv_minus1_right_raw: "a \<in> int ==> a zdiv #-1 = $-a"
-apply (cut_tac a = "a" and b = "#-1" in zmod_zdiv_equality)
-apply auto
-apply (rule equation_zminus [THEN iffD2])
-apply auto
-done
-
-lemma zdiv_minus1_right: "a zdiv #-1 = $-a"
-apply (cut_tac a = "intify (a)" in zdiv_minus1_right_raw)
-apply auto
-done
-declare zdiv_minus1_right [simp]
-
-
-subsection{* Monotonicity in the first argument (divisor) *}
-
-lemma zdiv_mono1: "[| a $<= a';  #0 $< b |] ==> a zdiv b $<= a' zdiv b"
-apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
-apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality)
-apply (rule unique_quotient_lemma)
-apply (erule subst)
-apply (erule subst)
-apply (simp_all (no_asm_simp) add: pos_mod_sign pos_mod_bound)
-done
-
-lemma zdiv_mono1_neg: "[| a $<= a';  b $< #0 |] ==> a' zdiv b $<= a zdiv b"
-apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
-apply (cut_tac a = "a'" and b = "b" in zmod_zdiv_equality)
-apply (rule unique_quotient_lemma_neg)
-apply (erule subst)
-apply (erule subst)
-apply (simp_all (no_asm_simp) add: neg_mod_sign neg_mod_bound)
-done
-
-
-subsection{* Monotonicity in the second argument (dividend) *}
-
-lemma q_pos_lemma:
-     "[| #0 $<= b'$*q' $+ r'; r' $< b';  #0 $< b' |] ==> #0 $<= q'"
-apply (subgoal_tac "#0 $< b'$* (q' $+ #1)")
- apply (simp add: int_0_less_mult_iff)
- apply (blast dest: zless_trans intro: zless_add1_iff_zle [THEN iffD1])
-apply (simp add: zadd_zmult_distrib2)
-apply (erule zle_zless_trans)
-apply (erule zadd_zless_mono2)
-done
-
-lemma zdiv_mono2_lemma:
-     "[| b$*q $+ r = b'$*q' $+ r';  #0 $<= b'$*q' $+ r';   
-         r' $< b';  #0 $<= r;  #0 $< b';  b' $<= b |]   
-      ==> q $<= q'"
-apply (frule q_pos_lemma, assumption+) 
-apply (subgoal_tac "b$*q $< b$* (q' $+ #1)")
- apply (simp add: zmult_zless_cancel1)
- apply (force dest: zless_add1_iff_zle [THEN iffD1] zless_trans zless_zle_trans)
-apply (subgoal_tac "b$*q = r' $- r $+ b'$*q'")
- prefer 2 apply (simp add: zcompare_rls)
-apply (simp (no_asm_simp) add: zadd_zmult_distrib2)
-apply (subst zadd_commute [of "b $\<times> q'"], rule zadd_zless_mono)
- prefer 2 apply (blast intro: zmult_zle_mono1)
-apply (subgoal_tac "r' $+ #0 $< b $+ r")
- apply (simp add: zcompare_rls)
-apply (rule zadd_zless_mono)
- apply auto
-apply (blast dest: zless_zle_trans)
-done
-
-
-lemma zdiv_mono2_raw:
-     "[| #0 $<= a;  #0 $< b';  b' $<= b;  a \<in> int |]   
-      ==> a zdiv b $<= a zdiv b'"
-apply (subgoal_tac "#0 $< b")
- prefer 2 apply (blast dest: zless_zle_trans)
-apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
-apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality)
-apply (rule zdiv_mono2_lemma)
-apply (erule subst)
-apply (erule subst)
-apply (simp_all add: pos_mod_sign pos_mod_bound)
-done
-
-lemma zdiv_mono2:
-     "[| #0 $<= a;  #0 $< b';  b' $<= b |]   
-      ==> a zdiv b $<= a zdiv b'"
-apply (cut_tac a = "intify (a)" in zdiv_mono2_raw)
-apply auto
-done
-
-lemma q_neg_lemma:
-     "[| b'$*q' $+ r' $< #0;  #0 $<= r';  #0 $< b' |] ==> q' $< #0"
-apply (subgoal_tac "b'$*q' $< #0")
- prefer 2 apply (force intro: zle_zless_trans)
-apply (simp add: zmult_less_0_iff)
-apply (blast dest: zless_trans)
-done
-
-
-
-lemma zdiv_mono2_neg_lemma:
-     "[| b$*q $+ r = b'$*q' $+ r';  b'$*q' $+ r' $< #0;   
-         r $< b;  #0 $<= r';  #0 $< b';  b' $<= b |]   
-      ==> q' $<= q"
-apply (subgoal_tac "#0 $< b")
- prefer 2 apply (blast dest: zless_zle_trans)
-apply (frule q_neg_lemma, assumption+) 
-apply (subgoal_tac "b$*q' $< b$* (q $+ #1)")
- apply (simp add: zmult_zless_cancel1)
- apply (blast dest: zless_trans zless_add1_iff_zle [THEN iffD1])
-apply (simp (no_asm_simp) add: zadd_zmult_distrib2)
-apply (subgoal_tac "b$*q' $<= b'$*q'")
- prefer 2
- apply (simp add: zmult_zle_cancel2)
- apply (blast dest: zless_trans)
-apply (subgoal_tac "b'$*q' $+ r $< b $+ (b$*q $+ r)")
- prefer 2
- apply (erule ssubst)
- apply simp
- apply (drule_tac w' = "r" and z' = "#0" in zadd_zless_mono)
-  apply (assumption)
- apply simp
-apply (simp (no_asm_use) add: zadd_commute)
-apply (rule zle_zless_trans)
- prefer 2 apply (assumption)
-apply (simp (no_asm_simp) add: zmult_zle_cancel2)
-apply (blast dest: zless_trans)
-done
-
-lemma zdiv_mono2_neg_raw:
-     "[| a $< #0;  #0 $< b';  b' $<= b;  a \<in> int |]   
-      ==> a zdiv b' $<= a zdiv b"
-apply (subgoal_tac "#0 $< b")
- prefer 2 apply (blast dest: zless_zle_trans)
-apply (cut_tac a = "a" and b = "b" in zmod_zdiv_equality)
-apply (cut_tac a = "a" and b = "b'" in zmod_zdiv_equality)
-apply (rule zdiv_mono2_neg_lemma)
-apply (erule subst)
-apply (erule subst)
-apply (simp_all add: pos_mod_sign pos_mod_bound)
-done
-
-lemma zdiv_mono2_neg: "[| a $< #0;  #0 $< b';  b' $<= b |]   
-      ==> a zdiv b' $<= a zdiv b"
-apply (cut_tac a = "intify (a)" in zdiv_mono2_neg_raw)
-apply auto
-done
-
-
-
-subsection{* More algebraic laws for zdiv and zmod *}
-
-(** proving (a*b) zdiv c = a $* (b zdiv c) $+ a * (b zmod c) **)
-
-lemma zmult1_lemma:
-     "[| quorem(<b,c>, <q,r>);  c \<in> int;  c \<noteq> #0 |]  
-      ==> quorem (<a$*b, c>, <a$*q $+ (a$*r) zdiv c, (a$*r) zmod c>)"
-apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2
-                      pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
-apply (auto intro: raw_zmod_zdiv_equality) 
-done
-
-lemma zdiv_zmult1_eq_raw:
-     "[|b \<in> int;  c \<in> int|]  
-      ==> (a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c"
-apply (case_tac "c = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_div])
-apply auto
-done
-
-lemma zdiv_zmult1_eq: "(a$*b) zdiv c = a$*(b zdiv c) $+ a$*(b zmod c) zdiv c"
-apply (cut_tac b = "intify (b)" and c = "intify (c)" in zdiv_zmult1_eq_raw)
-apply auto
-done
-
-lemma zmod_zmult1_eq_raw:
-     "[|b \<in> int;  c \<in> int|] ==> (a$*b) zmod c = a$*(b zmod c) zmod c"
-apply (case_tac "c = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (rule quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod])
-apply auto
-done
-
-lemma zmod_zmult1_eq: "(a$*b) zmod c = a$*(b zmod c) zmod c"
-apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult1_eq_raw)
-apply auto
-done
-
-lemma zmod_zmult1_eq': "(a$*b) zmod c = ((a zmod c) $* b) zmod c"
-apply (rule trans)
-apply (rule_tac b = " (b $* a) zmod c" in trans)
-apply (rule_tac [2] zmod_zmult1_eq)
-apply (simp_all (no_asm) add: zmult_commute)
-done
-
-lemma zmod_zmult_distrib: "(a$*b) zmod c = ((a zmod c) $* (b zmod c)) zmod c"
-apply (rule zmod_zmult1_eq' [THEN trans])
-apply (rule zmod_zmult1_eq)
-done
-
-lemma zdiv_zmult_self1 [simp]: "intify(b) \<noteq> #0 ==> (a$*b) zdiv b = intify(a)"
-apply (simp (no_asm_simp) add: zdiv_zmult1_eq)
-done
-
-lemma zdiv_zmult_self2 [simp]: "intify(b) \<noteq> #0 ==> (b$*a) zdiv b = intify(a)"
-apply (subst zmult_commute , erule zdiv_zmult_self1)
-done
-
-lemma zmod_zmult_self1 [simp]: "(a$*b) zmod b = #0"
-apply (simp (no_asm) add: zmod_zmult1_eq)
-done
-
-lemma zmod_zmult_self2 [simp]: "(b$*a) zmod b = #0"
-apply (simp (no_asm) add: zmult_commute zmod_zmult1_eq)
-done
-
-
-(** proving (a$+b) zdiv c = 
-            a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c) **)
-
-lemma zadd1_lemma:
-     "[| quorem(<a,c>, <aq,ar>);  quorem(<b,c>, <bq,br>);   
-         c \<in> int;  c \<noteq> #0 |]  
-      ==> quorem (<a$+b, c>, <aq $+ bq $+ (ar$+br) zdiv c, (ar$+br) zmod c>)"
-apply (auto simp add: split_ifs quorem_def neq_iff_zless zadd_zmult_distrib2
-                      pos_mod_sign pos_mod_bound neg_mod_sign neg_mod_bound)
-apply (auto intro: raw_zmod_zdiv_equality)
-done
-
-(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
-lemma zdiv_zadd1_eq_raw:
-     "[|a \<in> int; b \<in> int; c \<in> int|] ==>  
-      (a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)"
-apply (case_tac "c = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod,
-                                 THEN quorem_div])
-done
-
-lemma zdiv_zadd1_eq:
-     "(a$+b) zdiv c = a zdiv c $+ b zdiv c $+ ((a zmod c $+ b zmod c) zdiv c)"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)" 
-       in zdiv_zadd1_eq_raw)
-apply auto
-done
-
-lemma zmod_zadd1_eq_raw:
-     "[|a \<in> int; b \<in> int; c \<in> int|]   
-      ==> (a$+b) zmod c = (a zmod c $+ b zmod c) zmod c"
-apply (case_tac "c = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod, 
-                                 THEN quorem_mod])
-done
-
-lemma zmod_zadd1_eq: "(a$+b) zmod c = (a zmod c $+ b zmod c) zmod c"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" and c = "intify (c)" 
-       in zmod_zadd1_eq_raw)
-apply auto
-done
-
-lemma zmod_div_trivial_raw:
-     "[|a \<in> int; b \<in> int|] ==> (a zmod b) zdiv b = #0"
-apply (case_tac "b = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound
-         zdiv_pos_pos_trivial neg_mod_sign neg_mod_bound zdiv_neg_neg_trivial)
-done
-
-lemma zmod_div_trivial [simp]: "(a zmod b) zdiv b = #0"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_div_trivial_raw)
-apply auto
-done
-
-lemma zmod_mod_trivial_raw:
-     "[|a \<in> int; b \<in> int|] ==> (a zmod b) zmod b = a zmod b"
-apply (case_tac "b = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (auto simp add: neq_iff_zless pos_mod_sign pos_mod_bound 
-       zmod_pos_pos_trivial neg_mod_sign neg_mod_bound zmod_neg_neg_trivial)
-done
-
-lemma zmod_mod_trivial [simp]: "(a zmod b) zmod b = a zmod b"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_mod_trivial_raw)
-apply auto
-done
-
-lemma zmod_zadd_left_eq: "(a$+b) zmod c = ((a zmod c) $+ b) zmod c"
-apply (rule trans [symmetric])
-apply (rule zmod_zadd1_eq)
-apply (simp (no_asm))
-apply (rule zmod_zadd1_eq [symmetric])
-done
-
-lemma zmod_zadd_right_eq: "(a$+b) zmod c = (a $+ (b zmod c)) zmod c"
-apply (rule trans [symmetric])
-apply (rule zmod_zadd1_eq)
-apply (simp (no_asm))
-apply (rule zmod_zadd1_eq [symmetric])
-done
-
-
-lemma zdiv_zadd_self1 [simp]:
-     "intify(a) \<noteq> #0 ==> (a$+b) zdiv a = b zdiv a $+ #1"
-by (simp (no_asm_simp) add: zdiv_zadd1_eq)
-
-lemma zdiv_zadd_self2 [simp]:
-     "intify(a) \<noteq> #0 ==> (b$+a) zdiv a = b zdiv a $+ #1"
-by (simp (no_asm_simp) add: zdiv_zadd1_eq)
-
-lemma zmod_zadd_self1 [simp]: "(a$+b) zmod a = b zmod a"
-apply (case_tac "a = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (simp (no_asm_simp) add: zmod_zadd1_eq)
-done
-
-lemma zmod_zadd_self2 [simp]: "(b$+a) zmod a = b zmod a"
-apply (case_tac "a = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (simp (no_asm_simp) add: zmod_zadd1_eq)
-done
-
-
-subsection{* proving  a zdiv (b*c) = (a zdiv b) zdiv c *}
-
-(*The condition c>0 seems necessary.  Consider that 7 zdiv ~6 = ~2 but
-  7 zdiv 2 zdiv ~3 = 3 zdiv ~3 = ~1.  The subcase (a zdiv b) zmod c = 0 seems
-  to cause particular problems.*)
-
-(** first, four lemmas to bound the remainder for the cases b<0 and b>0 **)
-
-lemma zdiv_zmult2_aux1:
-     "[| #0 $< c;  b $< r;  r $<= #0 |] ==> b$*c $< b$*(q zmod c) $+ r"
-apply (subgoal_tac "b $* (c $- q zmod c) $< r $* #1")
-apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls)
-apply (rule zle_zless_trans)
-apply (erule_tac [2] zmult_zless_mono1)
-apply (rule zmult_zle_mono2_neg)
-apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound)
-apply (blast intro: zless_imp_zle dest: zless_zle_trans)
-done
-
-lemma zdiv_zmult2_aux2:
-     "[| #0 $< c;   b $< r;  r $<= #0 |] ==> b $* (q zmod c) $+ r $<= #0"
-apply (subgoal_tac "b $* (q zmod c) $<= #0")
- prefer 2
- apply (simp add: zmult_le_0_iff pos_mod_sign) 
- apply (blast intro: zless_imp_zle dest: zless_zle_trans)
-(*arithmetic*)
-apply (drule zadd_zle_mono)
-apply assumption
-apply (simp add: zadd_commute)
-done
-
-lemma zdiv_zmult2_aux3:
-     "[| #0 $< c;  #0 $<= r;  r $< b |] ==> #0 $<= b $* (q zmod c) $+ r"
-apply (subgoal_tac "#0 $<= b $* (q zmod c)")
- prefer 2
- apply (simp add: int_0_le_mult_iff pos_mod_sign) 
- apply (blast intro: zless_imp_zle dest: zle_zless_trans)
-(*arithmetic*)
-apply (drule zadd_zle_mono)
-apply assumption
-apply (simp add: zadd_commute)
-done
-
-lemma zdiv_zmult2_aux4:
-     "[| #0 $< c; #0 $<= r; r $< b |] ==> b $* (q zmod c) $+ r $< b $* c"
-apply (subgoal_tac "r $* #1 $< b $* (c $- q zmod c)")
-apply (simp add: zdiff_zmult_distrib2 zadd_commute zcompare_rls)
-apply (rule zless_zle_trans)
-apply (erule zmult_zless_mono1)
-apply (rule_tac [2] zmult_zle_mono2)
-apply (auto simp add: zcompare_rls zadd_commute add1_zle_iff pos_mod_bound)
-apply (blast intro: zless_imp_zle dest: zle_zless_trans)
-done
-
-lemma zdiv_zmult2_lemma:
-     "[| quorem (<a,b>, <q,r>);  a \<in> int;  b \<in> int;  b \<noteq> #0;  #0 $< c |]  
-      ==> quorem (<a,b$*c>, <q zdiv c, b$*(q zmod c) $+ r>)"
-apply (auto simp add: zmult_ac zmod_zdiv_equality [symmetric] quorem_def
-               neq_iff_zless int_0_less_mult_iff 
-               zadd_zmult_distrib2 [symmetric] zdiv_zmult2_aux1 zdiv_zmult2_aux2
-               zdiv_zmult2_aux3 zdiv_zmult2_aux4)
-apply (blast dest: zless_trans)+
-done
-
-lemma zdiv_zmult2_eq_raw:
-     "[|#0 $< c;  a \<in> int;  b \<in> int|] ==> a zdiv (b$*c) = (a zdiv b) zdiv c"
-apply (case_tac "b = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_div])
-apply (auto simp add: intify_eq_0_iff_zle)
-apply (blast dest: zle_zless_trans)
-done
-
-lemma zdiv_zmult2_eq: "#0 $< c ==> a zdiv (b$*c) = (a zdiv b) zdiv c"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" in zdiv_zmult2_eq_raw)
-apply auto
-done
-
-lemma zmod_zmult2_eq_raw:
-     "[|#0 $< c;  a \<in> int;  b \<in> int|]  
-      ==> a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b"
-apply (case_tac "b = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (rule quorem_div_mod [THEN zdiv_zmult2_lemma, THEN quorem_mod])
-apply (auto simp add: intify_eq_0_iff_zle)
-apply (blast dest: zle_zless_trans)
-done
-
-lemma zmod_zmult2_eq:
-     "#0 $< c ==> a zmod (b$*c) = b$*(a zdiv b zmod c) $+ a zmod b"
-apply (cut_tac a = "intify (a)" and b = "intify (b)" in zmod_zmult2_eq_raw)
-apply auto
-done
-
-subsection{* Cancellation of common factors in "zdiv" *}
-
-lemma zdiv_zmult_zmult1_aux1:
-     "[| #0 $< b;  intify(c) \<noteq> #0 |] ==> (c$*a) zdiv (c$*b) = a zdiv b"
-apply (subst zdiv_zmult2_eq)
-apply auto
-done
-
-lemma zdiv_zmult_zmult1_aux2:
-     "[| b $< #0;  intify(c) \<noteq> #0 |] ==> (c$*a) zdiv (c$*b) = a zdiv b"
-apply (subgoal_tac " (c $* ($-a)) zdiv (c $* ($-b)) = ($-a) zdiv ($-b)")
-apply (rule_tac [2] zdiv_zmult_zmult1_aux1)
-apply auto
-done
-
-lemma zdiv_zmult_zmult1_raw:
-     "[|intify(c) \<noteq> #0; b \<in> int|] ==> (c$*a) zdiv (c$*b) = a zdiv b"
-apply (case_tac "b = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (auto simp add: neq_iff_zless [of b]
-  zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2)
-done
-
-lemma zdiv_zmult_zmult1: "intify(c) \<noteq> #0 ==> (c$*a) zdiv (c$*b) = a zdiv b"
-apply (cut_tac b = "intify (b)" in zdiv_zmult_zmult1_raw)
-apply auto
-done
-
-lemma zdiv_zmult_zmult2: "intify(c) \<noteq> #0 ==> (a$*c) zdiv (b$*c) = a zdiv b"
-apply (drule zdiv_zmult_zmult1)
-apply (auto simp add: zmult_commute)
-done
-
-
-subsection{* Distribution of factors over "zmod" *}
-
-lemma zmod_zmult_zmult1_aux1:
-     "[| #0 $< b;  intify(c) \<noteq> #0 |]  
-      ==> (c$*a) zmod (c$*b) = c $* (a zmod b)"
-apply (subst zmod_zmult2_eq)
-apply auto
-done
-
-lemma zmod_zmult_zmult1_aux2:
-     "[| b $< #0;  intify(c) \<noteq> #0 |]  
-      ==> (c$*a) zmod (c$*b) = c $* (a zmod b)"
-apply (subgoal_tac " (c $* ($-a)) zmod (c $* ($-b)) = c $* (($-a) zmod ($-b))")
-apply (rule_tac [2] zmod_zmult_zmult1_aux1)
-apply auto
-done
-
-lemma zmod_zmult_zmult1_raw:
-     "[|b \<in> int; c \<in> int|] ==> (c$*a) zmod (c$*b) = c $* (a zmod b)"
-apply (case_tac "b = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (case_tac "c = #0")
- apply (simp add: DIVISION_BY_ZERO_ZDIV DIVISION_BY_ZERO_ZMOD) 
-apply (auto simp add: neq_iff_zless [of b]
-  zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2)
-done
-
-lemma zmod_zmult_zmult1: "(c$*a) zmod (c$*b) = c $* (a zmod b)"
-apply (cut_tac b = "intify (b)" and c = "intify (c)" in zmod_zmult_zmult1_raw)
-apply auto
-done
-
-lemma zmod_zmult_zmult2: "(a$*c) zmod (b$*c) = (a zmod b) $* c"
-apply (cut_tac c = "c" in zmod_zmult_zmult1)
-apply (auto simp add: zmult_commute)
-done
-
-
-(** Quotients of signs **)
-
-lemma zdiv_neg_pos_less0: "[| a $< #0;  #0 $< b |] ==> a zdiv b $< #0"
-apply (subgoal_tac "a zdiv b $<= #-1")
-apply (erule zle_zless_trans)
-apply (simp (no_asm))
-apply (rule zle_trans)
-apply (rule_tac a' = "#-1" in zdiv_mono1)
-apply (rule zless_add1_iff_zle [THEN iffD1])
-apply (simp (no_asm))
-apply (auto simp add: zdiv_minus1)
-done
-
-lemma zdiv_nonneg_neg_le0: "[| #0 $<= a;  b $< #0 |] ==> a zdiv b $<= #0"
-apply (drule zdiv_mono1_neg)
-apply auto
-done
-
-lemma pos_imp_zdiv_nonneg_iff: "#0 $< b ==> (#0 $<= a zdiv b) <-> (#0 $<= a)"
-apply auto
-apply (drule_tac [2] zdiv_mono1)
-apply (auto simp add: neq_iff_zless)
-apply (simp (no_asm_use) add: not_zless_iff_zle [THEN iff_sym])
-apply (blast intro: zdiv_neg_pos_less0)
-done
-
-lemma neg_imp_zdiv_nonneg_iff: "b $< #0 ==> (#0 $<= a zdiv b) <-> (a $<= #0)"
-apply (subst zdiv_zminus_zminus [symmetric])
-apply (rule iff_trans)
-apply (rule pos_imp_zdiv_nonneg_iff)
-apply auto
-done
-
-(*But not (a zdiv b $<= 0 iff a$<=0); consider a=1, b=2 when a zdiv b = 0.*)
-lemma pos_imp_zdiv_neg_iff: "#0 $< b ==> (a zdiv b $< #0) <-> (a $< #0)"
-apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym])
-apply (erule pos_imp_zdiv_nonneg_iff)
-done
-
-(*Again the law fails for $<=: consider a = -1, b = -2 when a zdiv b = 0*)
-lemma neg_imp_zdiv_neg_iff: "b $< #0 ==> (a zdiv b $< #0) <-> (#0 $< a)"
-apply (simp (no_asm_simp) add: not_zle_iff_zless [THEN iff_sym])
-apply (erule neg_imp_zdiv_nonneg_iff)
-done
-
-(*
- THESE REMAIN TO BE CONVERTED -- but aren't that useful!
-
- subsection{* Speeding up the division algorithm with shifting *}
-
- (** computing "zdiv" by shifting **)
-
- lemma pos_zdiv_mult_2: "#0 $<= a ==> (#1 $+ #2$*b) zdiv (#2$*a) = b zdiv a"
- apply (case_tac "a = #0")
- apply (subgoal_tac "#1 $<= a")
-  apply (arith_tac 2)
- apply (subgoal_tac "#1 $< a $* #2")
-  apply (arith_tac 2)
- apply (subgoal_tac "#2$* (#1 $+ b zmod a) $<= #2$*a")
-  apply (rule_tac [2] zmult_zle_mono2)
- apply (auto simp add: zadd_commute zmult_commute add1_zle_iff pos_mod_bound)
- apply (subst zdiv_zadd1_eq)
- apply (simp (no_asm_simp) add: zdiv_zmult_zmult2 zmod_zmult_zmult2 zdiv_pos_pos_trivial)
- apply (subst zdiv_pos_pos_trivial)
- apply (simp (no_asm_simp) add: [zmod_pos_pos_trivial pos_mod_sign [THEN zadd_zle_mono1] RSN (2,zle_trans) ])
- apply (auto simp add: zmod_pos_pos_trivial)
- apply (subgoal_tac "#0 $<= b zmod a")
-  apply (asm_simp_tac (simpset () add: pos_mod_sign) 2)
- apply arith
- done
-
-
- lemma neg_zdiv_mult_2: "a $<= #0 ==> (#1 $+ #2$*b) zdiv (#2$*a) <-> (b$+#1) zdiv a"
- apply (subgoal_tac " (#1 $+ #2$* ($-b-#1)) zdiv (#2 $* ($-a)) <-> ($-b-#1) zdiv ($-a)")
- apply (rule_tac [2] pos_zdiv_mult_2)
- apply (auto simp add: zmult_zminus_right)
- apply (subgoal_tac " (#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))")
- apply (Simp_tac 2)
- apply (asm_full_simp_tac (HOL_ss add: zdiv_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric])
- done
-
-
- (*Not clear why this must be proved separately; probably integ_of causes
-   simplification problems*)
- lemma lemma: "~ #0 $<= x ==> x $<= #0"
- apply auto
- done
-
- lemma zdiv_integ_of_BIT: "integ_of (v BIT b) zdiv integ_of (w BIT False) =  
-           (if ~b | #0 $<= integ_of w                    
-            then integ_of v zdiv (integ_of w)     
-            else (integ_of v $+ #1) zdiv (integ_of w))"
- apply (simp_tac (simpset_of Int.thy add: zadd_assoc integ_of_BIT)
- apply (simp (no_asm_simp) del: bin_arith_extra_simps@bin_rel_simps add: zdiv_zmult_zmult1 pos_zdiv_mult_2 lemma neg_zdiv_mult_2)
- done
-
- declare zdiv_integ_of_BIT [simp]
-
-
- (** computing "zmod" by shifting (proofs resemble those for "zdiv") **)
-
- lemma pos_zmod_mult_2: "#0 $<= a ==> (#1 $+ #2$*b) zmod (#2$*a) = #1 $+ #2 $* (b zmod a)"
- apply (case_tac "a = #0")
- apply (subgoal_tac "#1 $<= a")
-  apply (arith_tac 2)
- apply (subgoal_tac "#1 $< a $* #2")
-  apply (arith_tac 2)
- apply (subgoal_tac "#2$* (#1 $+ b zmod a) $<= #2$*a")
-  apply (rule_tac [2] zmult_zle_mono2)
- apply (auto simp add: zadd_commute zmult_commute add1_zle_iff pos_mod_bound)
- apply (subst zmod_zadd1_eq)
- apply (simp (no_asm_simp) add: zmod_zmult_zmult2 zmod_pos_pos_trivial)
- apply (rule zmod_pos_pos_trivial)
- apply (simp (no_asm_simp) # add: [zmod_pos_pos_trivial pos_mod_sign [THEN zadd_zle_mono1] RSN (2,zle_trans) ])
- apply (auto simp add: zmod_pos_pos_trivial)
- apply (subgoal_tac "#0 $<= b zmod a")
-  apply (asm_simp_tac (simpset () add: pos_mod_sign) 2)
- apply arith
- done
-
-
- lemma neg_zmod_mult_2: "a $<= #0 ==> (#1 $+ #2$*b) zmod (#2$*a) = #2 $* ((b$+#1) zmod a) - #1"
- apply (subgoal_tac " (#1 $+ #2$* ($-b-#1)) zmod (#2$* ($-a)) = #1 $+ #2$* (($-b-#1) zmod ($-a))")
- apply (rule_tac [2] pos_zmod_mult_2)
- apply (auto simp add: zmult_zminus_right)
- apply (subgoal_tac " (#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))")
- apply (Simp_tac 2)
- apply (asm_full_simp_tac (HOL_ss add: zmod_zminus_zminus zdiff_def zminus_zadd_distrib [symmetric])
- apply (dtac (zminus_equation [THEN iffD1, symmetric])
- apply auto
- done
-
- lemma zmod_integ_of_BIT: "integ_of (v BIT b) zmod integ_of (w BIT False) =  
-           (if b then  
-                 if #0 $<= integ_of w  
-                 then #2 $* (integ_of v zmod integ_of w) $+ #1     
-                 else #2 $* ((integ_of v $+ #1) zmod integ_of w) - #1   
-            else #2 $* (integ_of v zmod integ_of w))"
- apply (simp_tac (simpset_of Int.thy add: zadd_assoc integ_of_BIT)
- apply (simp (no_asm_simp) del: bin_arith_extra_simps@bin_rel_simps add: zmod_zmult_zmult1 pos_zmod_mult_2 lemma neg_zmod_mult_2)
- done
-
- declare zmod_integ_of_BIT [simp]
-*)
-
-ML{*
-val zspos_add_zspos_imp_zspos = thm "zspos_add_zspos_imp_zspos";
-val zpos_add_zpos_imp_zpos = thm "zpos_add_zpos_imp_zpos";
-val zneg_add_zneg_imp_zneg = thm "zneg_add_zneg_imp_zneg";
-val zneg_or_0_add_zneg_or_0_imp_zneg_or_0 = thm "zneg_or_0_add_zneg_or_0_imp_zneg_or_0";
-val zero_lt_zmagnitude = thm "zero_lt_zmagnitude";
-val zless_add_succ_iff = thm "zless_add_succ_iff";
-val zadd_succ_zle_iff = thm "zadd_succ_zle_iff";
-val zless_add1_iff_zle = thm "zless_add1_iff_zle";
-val add1_zle_iff = thm "add1_zle_iff";
-val add1_left_zle_iff = thm "add1_left_zle_iff";
-val zmult_zle_mono1 = thm "zmult_zle_mono1";
-val zmult_zle_mono1_neg = thm "zmult_zle_mono1_neg";
-val zmult_zle_mono2 = thm "zmult_zle_mono2";
-val zmult_zle_mono2_neg = thm "zmult_zle_mono2_neg";
-val zmult_zle_mono = thm "zmult_zle_mono";
-val zmult_zless_mono2 = thm "zmult_zless_mono2";
-val zmult_zless_mono1 = thm "zmult_zless_mono1";
-val zmult_zless_mono = thm "zmult_zless_mono";
-val zmult_zless_mono1_neg = thm "zmult_zless_mono1_neg";
-val zmult_zless_mono2_neg = thm "zmult_zless_mono2_neg";
-val zmult_eq_0_iff = thm "zmult_eq_0_iff";
-val zmult_zless_cancel2 = thm "zmult_zless_cancel2";
-val zmult_zless_cancel1 = thm "zmult_zless_cancel1";
-val zmult_zle_cancel2 = thm "zmult_zle_cancel2";
-val zmult_zle_cancel1 = thm "zmult_zle_cancel1";
-val int_eq_iff_zle = thm "int_eq_iff_zle";
-val zmult_cancel2 = thm "zmult_cancel2";
-val zmult_cancel1 = thm "zmult_cancel1";
-val unique_quotient = thm "unique_quotient";
-val unique_remainder = thm "unique_remainder";
-val adjust_eq = thm "adjust_eq";
-val posDivAlg_termination = thm "posDivAlg_termination";
-val posDivAlg_unfold = thm "posDivAlg_unfold";
-val posDivAlg_eqn = thm "posDivAlg_eqn";
-val posDivAlg_induct = thm "posDivAlg_induct";
-val intify_eq_0_iff_zle = thm "intify_eq_0_iff_zle";
-val zmult_pos = thm "zmult_pos";
-val zmult_neg = thm "zmult_neg";
-val zmult_pos_neg = thm "zmult_pos_neg";
-val int_0_less_mult_iff = thm "int_0_less_mult_iff";
-val int_0_le_mult_iff = thm "int_0_le_mult_iff";
-val zmult_less_0_iff = thm "zmult_less_0_iff";
-val zmult_le_0_iff = thm "zmult_le_0_iff";
-val posDivAlg_type = thm "posDivAlg_type";
-val posDivAlg_correct = thm "posDivAlg_correct";
-val negDivAlg_termination = thm "negDivAlg_termination";
-val negDivAlg_unfold = thm "negDivAlg_unfold";
-val negDivAlg_eqn = thm "negDivAlg_eqn";
-val negDivAlg_induct = thm "negDivAlg_induct";
-val negDivAlg_type = thm "negDivAlg_type";
-val negDivAlg_correct = thm "negDivAlg_correct";
-val quorem_0 = thm "quorem_0";
-val posDivAlg_zero_divisor = thm "posDivAlg_zero_divisor";
-val posDivAlg_0 = thm "posDivAlg_0";
-val negDivAlg_minus1 = thm "negDivAlg_minus1";
-val negateSnd_eq = thm "negateSnd_eq";
-val negateSnd_type = thm "negateSnd_type";
-val quorem_neg = thm "quorem_neg";
-val divAlg_correct = thm "divAlg_correct";
-val divAlg_type = thm "divAlg_type";
-val zdiv_intify1 = thm "zdiv_intify1";
-val zdiv_intify2 = thm "zdiv_intify2";
-val zdiv_type = thm "zdiv_type";
-val zmod_intify1 = thm "zmod_intify1";
-val zmod_intify2 = thm "zmod_intify2";
-val zmod_type = thm "zmod_type";
-val DIVISION_BY_ZERO_ZDIV = thm "DIVISION_BY_ZERO_ZDIV";
-val DIVISION_BY_ZERO_ZMOD = thm "DIVISION_BY_ZERO_ZMOD";
-val zmod_zdiv_equality = thm "zmod_zdiv_equality";
-val pos_mod = thm "pos_mod";
-val pos_mod_sign = thm "pos_mod_sign";
-val neg_mod = thm "neg_mod";
-val neg_mod_sign = thm "neg_mod_sign";
-val quorem_div_mod = thm "quorem_div_mod";
-val quorem_div = thm "quorem_div";
-val quorem_mod = thm "quorem_mod";
-val zdiv_pos_pos_trivial = thm "zdiv_pos_pos_trivial";
-val zdiv_neg_neg_trivial = thm "zdiv_neg_neg_trivial";
-val zdiv_pos_neg_trivial = thm "zdiv_pos_neg_trivial";
-val zmod_pos_pos_trivial = thm "zmod_pos_pos_trivial";
-val zmod_neg_neg_trivial = thm "zmod_neg_neg_trivial";
-val zmod_pos_neg_trivial = thm "zmod_pos_neg_trivial";
-val zdiv_zminus_zminus = thm "zdiv_zminus_zminus";
-val zmod_zminus_zminus = thm "zmod_zminus_zminus";
-val self_quotient = thm "self_quotient";
-val self_remainder = thm "self_remainder";
-val zdiv_self = thm "zdiv_self";
-val zmod_self = thm "zmod_self";
-val zdiv_zero = thm "zdiv_zero";
-val zdiv_eq_minus1 = thm "zdiv_eq_minus1";
-val zmod_zero = thm "zmod_zero";
-val zdiv_minus1 = thm "zdiv_minus1";
-val zmod_minus1 = thm "zmod_minus1";
-val zdiv_pos_pos = thm "zdiv_pos_pos";
-val zmod_pos_pos = thm "zmod_pos_pos";
-val zdiv_neg_pos = thm "zdiv_neg_pos";
-val zmod_neg_pos = thm "zmod_neg_pos";
-val zdiv_pos_neg = thm "zdiv_pos_neg";
-val zmod_pos_neg = thm "zmod_pos_neg";
-val zdiv_neg_neg = thm "zdiv_neg_neg";
-val zmod_neg_neg = thm "zmod_neg_neg";
-val zmod_1 = thm "zmod_1";
-val zdiv_1 = thm "zdiv_1";
-val zmod_minus1_right = thm "zmod_minus1_right";
-val zdiv_minus1_right = thm "zdiv_minus1_right";
-val zdiv_mono1 = thm "zdiv_mono1";
-val zdiv_mono1_neg = thm "zdiv_mono1_neg";
-val zdiv_mono2 = thm "zdiv_mono2";
-val zdiv_mono2_neg = thm "zdiv_mono2_neg";
-val zdiv_zmult1_eq = thm "zdiv_zmult1_eq";
-val zmod_zmult1_eq = thm "zmod_zmult1_eq";
-val zmod_zmult1_eq' = thm "zmod_zmult1_eq'";
-val zmod_zmult_distrib = thm "zmod_zmult_distrib";
-val zdiv_zmult_self1 = thm "zdiv_zmult_self1";
-val zdiv_zmult_self2 = thm "zdiv_zmult_self2";
-val zmod_zmult_self1 = thm "zmod_zmult_self1";
-val zmod_zmult_self2 = thm "zmod_zmult_self2";
-val zdiv_zadd1_eq = thm "zdiv_zadd1_eq";
-val zmod_zadd1_eq = thm "zmod_zadd1_eq";
-val zmod_div_trivial = thm "zmod_div_trivial";
-val zmod_mod_trivial = thm "zmod_mod_trivial";
-val zmod_zadd_left_eq = thm "zmod_zadd_left_eq";
-val zmod_zadd_right_eq = thm "zmod_zadd_right_eq";
-val zdiv_zadd_self1 = thm "zdiv_zadd_self1";
-val zdiv_zadd_self2 = thm "zdiv_zadd_self2";
-val zmod_zadd_self1 = thm "zmod_zadd_self1";
-val zmod_zadd_self2 = thm "zmod_zadd_self2";
-val zdiv_zmult2_eq = thm "zdiv_zmult2_eq";
-val zmod_zmult2_eq = thm "zmod_zmult2_eq";
-val zdiv_zmult_zmult1 = thm "zdiv_zmult_zmult1";
-val zdiv_zmult_zmult2 = thm "zdiv_zmult_zmult2";
-val zmod_zmult_zmult1 = thm "zmod_zmult_zmult1";
-val zmod_zmult_zmult2 = thm "zmod_zmult_zmult2";
-val zdiv_neg_pos_less0 = thm "zdiv_neg_pos_less0";
-val zdiv_nonneg_neg_le0 = thm "zdiv_nonneg_neg_le0";
-val pos_imp_zdiv_nonneg_iff = thm "pos_imp_zdiv_nonneg_iff";
-val neg_imp_zdiv_nonneg_iff = thm "neg_imp_zdiv_nonneg_iff";
-val pos_imp_zdiv_neg_iff = thm "pos_imp_zdiv_neg_iff";
-val neg_imp_zdiv_neg_iff = thm "neg_imp_zdiv_neg_iff";
-*}
-
-end
-
--- a/src/ZF/Integ/int_arith.ML	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,443 +0,0 @@
-(*  Title:      ZF/Integ/int_arith.ML
-    ID:         $Id$
-    Author:     Larry Paulson
-    Copyright   2000  University of Cambridge
-
-Simprocs for linear arithmetic.
-*)
-
-
-(** To simplify inequalities involving integer negation and literals,
-    such as -x = #3
-**)
-
-Addsimps [inst "y" "integ_of(?w)" zminus_equation,
-          inst "x" "integ_of(?w)" equation_zminus];
-
-AddIffs [inst "y" "integ_of(?w)" zminus_zless,
-         inst "x" "integ_of(?w)" zless_zminus];
-
-AddIffs [inst "y" "integ_of(?w)" zminus_zle,
-         inst "x" "integ_of(?w)" zle_zminus];
-
-Addsimps [inst "s" "integ_of(?w)" (thm "Let_def")];
-
-(*** Simprocs for numeric literals ***)
-
-(** Combining of literal coefficients in sums of products **)
-
-Goal "(x $< y) <-> (x$-y $< #0)";
-by (simp_tac (simpset() addsimps zcompare_rls) 1);
-qed "zless_iff_zdiff_zless_0";
-
-Goal "[| x: int; y: int |] ==> (x = y) <-> (x$-y = #0)";
-by (asm_simp_tac (simpset() addsimps zcompare_rls) 1);
-qed "eq_iff_zdiff_eq_0";
-
-Goal "(x $<= y) <-> (x$-y $<= #0)";
-by (asm_simp_tac (simpset() addsimps zcompare_rls) 1);
-qed "zle_iff_zdiff_zle_0";
-
-
-(** For combine_numerals **)
-
-Goal "i$*u $+ (j$*u $+ k) = (i$+j)$*u $+ k";
-by (simp_tac (simpset() addsimps [zadd_zmult_distrib]@zadd_ac) 1);
-qed "left_zadd_zmult_distrib";
-
-
-(** For cancel_numerals **)
-
-val rel_iff_rel_0_rls = map (inst "y" "?u$+?v")
-                          [zless_iff_zdiff_zless_0, eq_iff_zdiff_eq_0,
-                           zle_iff_zdiff_zle_0] @
-                        map (inst "y" "n")
-                          [zless_iff_zdiff_zless_0, eq_iff_zdiff_eq_0,
-                           zle_iff_zdiff_zle_0];
-
-Goal "(i$*u $+ m = j$*u $+ n) <-> ((i$-j)$*u $+ m = intify(n))";
-by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1);
-by (simp_tac (simpset() addsimps zcompare_rls) 1);
-by (simp_tac (simpset() addsimps zadd_ac) 1);
-qed "eq_add_iff1";
-
-Goal "(i$*u $+ m = j$*u $+ n) <-> (intify(m) = (j$-i)$*u $+ n)";
-by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1);
-by (simp_tac (simpset() addsimps zcompare_rls) 1);
-by (simp_tac (simpset() addsimps zadd_ac) 1);
-qed "eq_add_iff2";
-
-Goal "(i$*u $+ m $< j$*u $+ n) <-> ((i$-j)$*u $+ m $< n)";
-by (asm_simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]@
-                                     zadd_ac@rel_iff_rel_0_rls) 1);
-qed "less_add_iff1";
-
-Goal "(i$*u $+ m $< j$*u $+ n) <-> (m $< (j$-i)$*u $+ n)";
-by (asm_simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]@
-                                     zadd_ac@rel_iff_rel_0_rls) 1);
-qed "less_add_iff2";
-
-Goal "(i$*u $+ m $<= j$*u $+ n) <-> ((i$-j)$*u $+ m $<= n)";
-by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1);
-by (simp_tac (simpset() addsimps zcompare_rls) 1);
-by (simp_tac (simpset() addsimps zadd_ac) 1);
-qed "le_add_iff1";
-
-Goal "(i$*u $+ m $<= j$*u $+ n) <-> (m $<= (j$-i)$*u $+ n)";
-by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1);
-by (simp_tac (simpset() addsimps zcompare_rls) 1);
-by (simp_tac (simpset() addsimps zadd_ac) 1);
-qed "le_add_iff2";
-
-
-structure Int_Numeral_Simprocs =
-struct
-
-(*Utilities*)
-
-val integ_of_const = Const ("Bin.integ_of", iT --> iT);
-
-fun mk_numeral n = integ_of_const $ NumeralSyntax.mk_bin n;
-
-(*Decodes a binary INTEGER*)
-fun dest_numeral (Const("Bin.integ_of", _) $ w) =
-     (NumeralSyntax.dest_bin w
-      handle Match => raise TERM("Int_Numeral_Simprocs.dest_numeral:1", [w]))
-  | dest_numeral t =  raise TERM("Int_Numeral_Simprocs.dest_numeral:2", [t]);
-
-fun find_first_numeral past (t::terms) =
-        ((dest_numeral t, rev past @ terms)
-         handle TERM _ => find_first_numeral (t::past) terms)
-  | find_first_numeral past [] = raise TERM("find_first_numeral", []);
-
-val zero = mk_numeral 0;
-val mk_plus = FOLogic.mk_binop "Int.zadd";
-
-val iT = Ind_Syntax.iT;
-
-val zminus_const = Const ("Int.zminus", iT --> iT);
-
-(*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*)
-fun mk_sum []        = zero
-  | mk_sum [t,u]     = mk_plus (t, u)
-  | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
-
-(*this version ALWAYS includes a trailing zero*)
-fun long_mk_sum []        = zero
-  | long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
-
-val dest_plus = FOLogic.dest_bin "Int.zadd" iT;
-
-(*decompose additions AND subtractions as a sum*)
-fun dest_summing (pos, Const ("Int.zadd", _) $ t $ u, ts) =
-        dest_summing (pos, t, dest_summing (pos, u, ts))
-  | dest_summing (pos, Const ("Int.zdiff", _) $ t $ u, ts) =
-        dest_summing (pos, t, dest_summing (not pos, u, ts))
-  | dest_summing (pos, t, ts) =
-        if pos then t::ts else zminus_const$t :: ts;
-
-fun dest_sum t = dest_summing (true, t, []);
-
-val mk_diff = FOLogic.mk_binop "Int.zdiff";
-val dest_diff = FOLogic.dest_bin "Int.zdiff" iT;
-
-val one = mk_numeral 1;
-val mk_times = FOLogic.mk_binop "Int.zmult";
-
-fun mk_prod [] = one
-  | mk_prod [t] = t
-  | mk_prod (t :: ts) = if t = one then mk_prod ts
-                        else mk_times (t, mk_prod ts);
-
-val dest_times = FOLogic.dest_bin "Int.zmult" iT;
-
-fun dest_prod t =
-      let val (t,u) = dest_times t
-      in  dest_prod t @ dest_prod u  end
-      handle TERM _ => [t];
-
-(*DON'T do the obvious simplifications; that would create special cases*)
-fun mk_coeff (k, t) = mk_times (mk_numeral k, t);
-
-(*Express t as a product of (possibly) a numeral with other sorted terms*)
-fun dest_coeff sign (Const ("Int.zminus", _) $ t) = dest_coeff (~sign) t
-  | dest_coeff sign t =
-    let val ts = sort Term.term_ord (dest_prod t)
-        val (n, ts') = find_first_numeral [] ts
-                          handle TERM _ => (1, ts)
-    in (sign*n, mk_prod ts') end;
-
-(*Find first coefficient-term THAT MATCHES u*)
-fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
-  | find_first_coeff past u (t::terms) =
-        let val (n,u') = dest_coeff 1 t
-        in  if u aconv u' then (n, rev past @ terms)
-                          else find_first_coeff (t::past) u terms
-        end
-        handle TERM _ => find_first_coeff (t::past) u terms;
-
-
-(*Simplify #1*n and n*#1 to n*)
-val add_0s = [zadd_0_intify, zadd_0_right_intify];
-
-val mult_1s = [zmult_1_intify, zmult_1_right_intify,
-               zmult_minus1, zmult_minus1_right];
-
-val tc_rules = [integ_of_type, intify_in_int,
-                int_of_type, zadd_type, zdiff_type, zmult_type] @ 
-               thms "bin.intros";
-val intifys = [intify_ident, zadd_intify1, zadd_intify2,
-               zdiff_intify1, zdiff_intify2, zmult_intify1, zmult_intify2,
-               zless_intify1, zless_intify2, zle_intify1, zle_intify2];
-
-(*To perform binary arithmetic*)
-val bin_simps = [add_integ_of_left] @ bin_arith_simps @ bin_rel_simps;
-
-(*To evaluate binary negations of coefficients*)
-val zminus_simps = NCons_simps @
-                   [integ_of_minus RS sym,
-                    bin_minus_1, bin_minus_0, bin_minus_Pls, bin_minus_Min,
-                    bin_pred_1, bin_pred_0, bin_pred_Pls, bin_pred_Min];
-
-(*To let us treat subtraction as addition*)
-val diff_simps = [zdiff_def, zminus_zadd_distrib, zminus_zminus];
-
-(*push the unary minus down: - x * y = x * - y *)
-val int_minus_mult_eq_1_to_2 =
-    [zmult_zminus, zmult_zminus_right RS sym] MRS trans |> standard;
-
-(*to extract again any uncancelled minuses*)
-val int_minus_from_mult_simps =
-    [zminus_zminus, zmult_zminus, zmult_zminus_right];
-
-(*combine unary minus with numeric literals, however nested within a product*)
-val int_mult_minus_simps =
-    [zmult_assoc, zmult_zminus RS sym, int_minus_mult_eq_1_to_2];
-
-fun prep_simproc (name, pats, proc) =
-  Simplifier.simproc (the_context ()) name pats proc;
-
-structure CancelNumeralsCommon =
-  struct
-  val mk_sum            = (fn T:typ => mk_sum)
-  val dest_sum          = dest_sum
-  val mk_coeff          = mk_coeff
-  val dest_coeff        = dest_coeff 1
-  val find_first_coeff  = find_first_coeff []
-  fun trans_tac _       = ArithData.gen_trans_tac iff_trans
-
-  val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ zadd_ac
-  val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys
-  val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ zadd_ac @ zmult_ac @ tc_rules @ intifys
-  fun norm_tac ss =
-    ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
-    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
-    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3))
-
-  val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys
-  fun numeral_simp_tac ss =
-    ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
-    THEN ALLGOALS (SIMPSET' (fn simpset => asm_simp_tac (Simplifier.inherit_context ss simpset)))
-  val simplify_meta_eq  = ArithData.simplify_meta_eq (add_0s @ mult_1s)
-  end;
-
-
-structure EqCancelNumerals = CancelNumeralsFun
- (open CancelNumeralsCommon
-  val prove_conv = ArithData.prove_conv "inteq_cancel_numerals"
-  val mk_bal   = FOLogic.mk_eq
-  val dest_bal = FOLogic.dest_eq
-  val bal_add1 = eq_add_iff1 RS iff_trans
-  val bal_add2 = eq_add_iff2 RS iff_trans
-);
-
-structure LessCancelNumerals = CancelNumeralsFun
- (open CancelNumeralsCommon
-  val prove_conv = ArithData.prove_conv "intless_cancel_numerals"
-  val mk_bal   = FOLogic.mk_binrel "Int.zless"
-  val dest_bal = FOLogic.dest_bin "Int.zless" iT
-  val bal_add1 = less_add_iff1 RS iff_trans
-  val bal_add2 = less_add_iff2 RS iff_trans
-);
-
-structure LeCancelNumerals = CancelNumeralsFun
- (open CancelNumeralsCommon
-  val prove_conv = ArithData.prove_conv "intle_cancel_numerals"
-  val mk_bal   = FOLogic.mk_binrel "Int.zle"
-  val dest_bal = FOLogic.dest_bin "Int.zle" iT
-  val bal_add1 = le_add_iff1 RS iff_trans
-  val bal_add2 = le_add_iff2 RS iff_trans
-);
-
-val cancel_numerals =
-  map prep_simproc
-   [("inteq_cancel_numerals",
-     ["l $+ m = n", "l = m $+ n",
-      "l $- m = n", "l = m $- n",
-      "l $* m = n", "l = m $* n"],
-     K EqCancelNumerals.proc),
-    ("intless_cancel_numerals",
-     ["l $+ m $< n", "l $< m $+ n",
-      "l $- m $< n", "l $< m $- n",
-      "l $* m $< n", "l $< m $* n"],
-     K LessCancelNumerals.proc),
-    ("intle_cancel_numerals",
-     ["l $+ m $<= n", "l $<= m $+ n",
-      "l $- m $<= n", "l $<= m $- n",
-      "l $* m $<= n", "l $<= m $* n"],
-     K LeCancelNumerals.proc)];
-
-
-(*version without the hyps argument*)
-fun prove_conv_nohyps name tacs sg = ArithData.prove_conv name tacs sg [];
-
-structure CombineNumeralsData =
-  struct
-  type coeff            = IntInf.int
-  val iszero            = (fn x : IntInf.int => x = 0)
-  val add               = IntInf.+ 
-  val mk_sum            = (fn T:typ => long_mk_sum) (*to work for #2*x $+ #3*x *)
-  val dest_sum          = dest_sum
-  val mk_coeff          = mk_coeff
-  val dest_coeff        = dest_coeff 1
-  val left_distrib      = left_zadd_zmult_distrib RS trans
-  val prove_conv        = prove_conv_nohyps "int_combine_numerals"
-  fun trans_tac _       = ArithData.gen_trans_tac trans
-
-  val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ zadd_ac @ intifys
-  val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys
-  val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ zadd_ac @ zmult_ac @ tc_rules @ intifys
-  fun norm_tac ss =
-    ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
-    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
-    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3))
-
-  val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys
-  fun numeral_simp_tac ss =
-    ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
-  val simplify_meta_eq  = ArithData.simplify_meta_eq (add_0s @ mult_1s)
-  end;
-
-structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
-
-val combine_numerals =
-  prep_simproc ("int_combine_numerals", ["i $+ j", "i $- j"], K CombineNumerals.proc);
-
-
-
-(** Constant folding for integer multiplication **)
-
-(*The trick is to regard products as sums, e.g. #3 $* x $* #4 as
-  the "sum" of #3, x, #4; the literals are then multiplied*)
-
-
-structure CombineNumeralsProdData =
-  struct
-  type coeff            = IntInf.int
-  val iszero            = (fn x : IntInf.int => x = 0)
-  val add               = IntInf.*
-  val mk_sum            = (fn T:typ => mk_prod)
-  val dest_sum          = dest_prod
-  fun mk_coeff(k,t) = if t=one then mk_numeral k
-                      else raise TERM("mk_coeff", [])
-  fun dest_coeff t = (dest_numeral t, one)  (*We ONLY want pure numerals.*)
-  val left_distrib      = zmult_assoc RS sym RS trans
-  val prove_conv        = prove_conv_nohyps "int_combine_numerals_prod"
-  fun trans_tac _       = ArithData.gen_trans_tac trans
-
-
-
-val norm_ss1 = ZF_ss addsimps mult_1s @ diff_simps @ zminus_simps
-  val norm_ss2 = ZF_ss addsimps [zmult_zminus_right RS sym] @
-    bin_simps @ zmult_ac @ tc_rules @ intifys
-  fun norm_tac ss =
-    ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
-    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
-
-  val numeral_simp_ss = ZF_ss addsimps bin_simps @ tc_rules @ intifys
-  fun numeral_simp_tac ss =
-    ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
-  val simplify_meta_eq  = ArithData.simplify_meta_eq (mult_1s);
-  end;
-
-
-structure CombineNumeralsProd = CombineNumeralsFun(CombineNumeralsProdData);
-
-val combine_numerals_prod =
-  prep_simproc ("int_combine_numerals_prod", ["i $* j"], K CombineNumeralsProd.proc);
-
-end;
-
-
-Addsimprocs Int_Numeral_Simprocs.cancel_numerals;
-Addsimprocs [Int_Numeral_Simprocs.combine_numerals,
-             Int_Numeral_Simprocs.combine_numerals_prod];
-
-
-(*examples:*)
-(*
-print_depth 22;
-set timing;
-set trace_simp;
-fun test s = (Goal s; by (Asm_simp_tac 1));
-val sg = #sign (rep_thm (topthm()));
-val t = FOLogic.dest_Trueprop (Logic.strip_assums_concl(getgoal 1));
-val (t,_) = FOLogic.dest_eq t;
-
-(*combine_numerals_prod (products of separate literals) *)
-test "#5 $* x $* #3 = y";
-
-test "y2 $+ ?x42 = y $+ y2";
-
-test "oo : int ==> l $+ (l $+ #2) $+ oo = oo";
-
-test "#9$*x $+ y = x$*#23 $+ z";
-test "y $+ x = x $+ z";
-
-test "x : int ==> x $+ y $+ z = x $+ z";
-test "x : int ==> y $+ (z $+ x) = z $+ x";
-test "z : int ==> x $+ y $+ z = (z $+ y) $+ (x $+ w)";
-test "z : int ==> x$*y $+ z = (z $+ y) $+ (y$*x $+ w)";
-
-test "#-3 $* x $+ y $<= x $* #2 $+ z";
-test "y $+ x $<= x $+ z";
-test "x $+ y $+ z $<= x $+ z";
-
-test "y $+ (z $+ x) $< z $+ x";
-test "x $+ y $+ z $< (z $+ y) $+ (x $+ w)";
-test "x$*y $+ z $< (z $+ y) $+ (y$*x $+ w)";
-
-test "l $+ #2 $+ #2 $+ #2 $+ (l $+ #2) $+ (oo $+ #2) = uu";
-test "u : int ==> #2 $* u = u";
-test "(i $+ j $+ #12 $+ k) $- #15 = y";
-test "(i $+ j $+ #12 $+ k) $- #5 = y";
-
-test "y $- b $< b";
-test "y $- (#3 $* b $+ c) $< b $- #2 $* c";
-
-test "(#2 $* x $- (u $* v) $+ y) $- v $* #3 $* u = w";
-test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u $* #4 = w";
-test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u = w";
-test "u $* v $- (x $* u $* v $+ (u $* v) $* #4 $+ y) = w";
-
-test "(i $+ j $+ #12 $+ k) = u $+ #15 $+ y";
-test "(i $+ j $* #2 $+ #12 $+ k) = j $+ #5 $+ y";
-
-test "#2 $* y $+ #3 $* z $+ #6 $* w $+ #2 $* y $+ #3 $* z $+ #2 $* u = #2 $* y' $+ #3 $* z' $+ #6 $* w' $+ #2 $* y' $+ #3 $* z' $+ u $+ vv";
-
-test "a $+ $-(b$+c) $+ b = d";
-test "a $+ $-(b$+c) $- b = d";
-
-(*negative numerals*)
-test "(i $+ j $+ #-2 $+ k) $- (u $+ #5 $+ y) = zz";
-test "(i $+ j $+ #-3 $+ k) $< u $+ #5 $+ y";
-test "(i $+ j $+ #3 $+ k) $< u $+ #-6 $+ y";
-test "(i $+ j $+ #-12 $+ k) $- #15 = y";
-test "(i $+ j $+ #12 $+ k) $- #-15 = y";
-test "(i $+ j $+ #-12 $+ k) $- #-15 = y";
-
-(*Multiplying separated numerals*)
-Goal "#6 $* ($# x $* #2) =  uu";
-Goal "#4 $* ($# x $* $# x) $* (#2 $* $# x) =  uu";
-*)
-
--- a/src/ZF/Integ/twos_compl.ML	Thu May 31 11:00:06 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,128 +0,0 @@
-(*  Title:      ZF/ex/twos-compl.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-ML code for Arithmetic on binary integers; the model for theory Bin
-
-   The sign Pls stands for an infinite string of leading 0s.
-   The sign Min stands for an infinite string of leading 1s.
-
-See int_of_binary for the numerical interpretation.  A number can have
-multiple representations, namely leading 0s with sign Pls and leading 1s with
-sign Min.  A number is in NORMAL FORM if it has no such extra bits.
-
-The representation expects that (m mod 2) is 0 or 1, even if m is negative;
-For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1
-
-Still needs division!
-
-print_depth 40;
-System.Control.Print.printDepth := 350; 
-*)
-
-infix 5 $$ $$$
-
-(*Recursive datatype of binary integers*)
-datatype bin = Pls | Min | $$ of bin * int;
-
-(** Conversions between bin and int **)
-
-fun int_of_binary Pls = 0
-  | int_of_binary Min = ~1
-  | int_of_binary (w$$b) = 2 * int_of_binary w + b;
-
-fun binary_of_int 0 = Pls
-  | binary_of_int ~1 = Min
-  | binary_of_int n = binary_of_int (n div 2) $$ (n mod 2);
-
-(*** Addition ***)
-
-(*Attach a bit while preserving the normal form.  Cases left as default
-  are Pls$$$1 and Min$$$0. *)
-fun  Pls $$$ 0 = Pls
-  | Min $$$ 1 = Min
-  |     v $$$ x = v$$x;
-
-(*Successor of an integer, assumed to be in normal form.
-  If w$$1 is normal then w is not Min, so bin_succ(w) $$ 0 is normal.
-  But Min$$0 is normal while Min$$1 is not.*)
-fun bin_succ Pls = Pls$$1
-  | bin_succ Min = Pls
-  | bin_succ (w$$1) = bin_succ(w) $$ 0
-  | bin_succ (w$$0) = w $$$ 1;
-
-(*Predecessor of an integer, assumed to be in normal form.
-  If w$$0 is normal then w is not Pls, so bin_pred(w) $$ 1 is normal.
-  But Pls$$1 is normal while Pls$$0 is not.*)
-fun bin_pred Pls = Min
-  | bin_pred Min = Min$$0
-  | bin_pred (w$$1) = w $$$ 0
-  | bin_pred (w$$0) = bin_pred(w) $$ 1;
-
-(*Sum of two binary integers in normal form.  
-  Ensure last $$ preserves normal form! *)
-fun bin_add (Pls, w) = w
-  | bin_add (Min, w) = bin_pred w
-  | bin_add (v$$x, Pls) = v$$x
-  | bin_add (v$$x, Min) = bin_pred (v$$x)
-  | bin_add (v$$x, w$$y) = 
-      bin_add(v, if x+y=2 then bin_succ w else w) $$$ ((x+y) mod 2);
-
-(*** Subtraction ***)
-
-(*Unary minus*)
-fun bin_minus Pls = Pls
-  | bin_minus Min = Pls$$1
-  | bin_minus (w$$1) = bin_pred (bin_minus(w) $$$ 0)
-  | bin_minus (w$$0) = bin_minus(w) $$ 0;
-
-(*** Multiplication ***)
-
-(*product of two bins; a factor of 0 might cause leading 0s in result*)
-fun bin_mult (Pls, _) = Pls
-  | bin_mult (Min, v) = bin_minus v
-  | bin_mult (w$$1, v) = bin_add(bin_mult(w,v) $$$ 0,  v)
-  | bin_mult (w$$0, v) = bin_mult(w,v) $$$ 0;
-
-(*** Testing ***)
-
-(*tests addition*)
-fun checksum m n =
-    let val wm = binary_of_int m
-        and wn = binary_of_int n
-        val wsum = bin_add(wm,wn)
-    in  if m+n = int_of_binary wsum then (wm, wn, wsum, m+n)
-        else raise Match
-    end;
-
-fun bfact n = if n=0 then  Pls$$1  
-              else  bin_mult(binary_of_int n, bfact(n-1));
-
-(*Examples...
-bfact 5;
-int_of_binary it;
-bfact 69;
-int_of_binary it;
-
-(*For {HOL,ZF}/ex/BinEx.ML*)
-bin_add(binary_of_int 13, binary_of_int 19);
-bin_add(binary_of_int 1234, binary_of_int 5678);
-bin_add(binary_of_int 1359, binary_of_int ~2468);
-bin_add(binary_of_int 93746, binary_of_int ~46375);
-bin_minus(binary_of_int 65745);
-bin_minus(binary_of_int ~54321);
-bin_mult(binary_of_int 13, binary_of_int 19);
-bin_mult(binary_of_int ~84, binary_of_int 51);
-bin_mult(binary_of_int 255, binary_of_int 255);
-bin_mult(binary_of_int 1359, binary_of_int ~2468);
-
-
-(*leading zeros??*)
-bin_add(binary_of_int 1234, binary_of_int ~1234);
-bin_mult(binary_of_int 1234, Pls);
-
-(*leading ones??*)
-bin_add(binary_of_int 1, binary_of_int ~2);
-bin_add(binary_of_int 1234, binary_of_int ~1235);
-*)
--- a/src/ZF/IsaMakefile	Thu May 31 11:00:06 2007 +0200
+++ b/src/ZF/IsaMakefile	Thu May 31 12:06:31 2007 +0200
@@ -28,18 +28,18 @@
 FOL:
 	@cd $(SRC)/FOL; $(ISATOOL) make FOL
 
-$(OUT)/ZF$(ML_SUFFIX): $(OUT)/FOL$(ML_SUFFIX) AC.thy Arith.thy			\
-  ArithSimp.thy Bool.thy Cardinal.thy CardinalArith.thy Cardinal_AC.thy		\
-  Datatype.thy Epsilon.thy Finite.thy Fixedpt.thy Inductive.thy			\
-  InfDatatype.thy Integ/Bin.thy Integ/EquivClass.thy Integ/Int.thy		\
-  Integ/IntArith.thy Integ/IntDiv.thy Integ/int_arith.ML List.thy		\
-  Main.thy Main_ZFC.thy Nat.thy OrdQuant.thy Order.thy OrderArith.thy		\
-  OrderType.thy Ordinal.thy Perm.thy QPair.thy QUniv.thy ROOT.ML Sum.thy	\
-  Tools/cartprod.ML Tools/datatype_package.ML Tools/ind_cases.ML		\
-  Tools/induct_tacs.ML Tools/inductive_package.ML				\
-  Tools/numeral_syntax.ML Tools/primrec_package.ML Tools/typechk.ML		\
-  Trancl.thy Univ.thy WF.thy ZF.thy Zorn.thy arith_data.ML			\
-  equalities.thy func.thy ind_syntax.ML pair.thy simpdata.ML upair.thy
+$(OUT)/ZF$(ML_SUFFIX): $(OUT)/FOL$(ML_SUFFIX) AC.thy Arith.thy		\
+  ArithSimp.thy Bin.thy Bool.thy Cardinal.thy CardinalArith.thy		\
+  Cardinal_AC.thy Datatype.thy Epsilon.thy EquivClass.thy Finite.thy	\
+  Fixedpt.thy Inductive.thy InfDatatype.thy Int.thy IntArith.thy	\
+  IntDiv.thy List.thy Main.thy Main_ZFC.thy Nat.thy OrdQuant.thy	\
+  Order.thy OrderArith.thy OrderType.thy Ordinal.thy Perm.thy QPair.thy	\
+  QUniv.thy ROOT.ML Sum.thy Tools/cartprod.ML Tools/datatype_package.ML	\
+  Tools/ind_cases.ML Tools/induct_tacs.ML Tools/inductive_package.ML	\
+  Tools/numeral_syntax.ML Tools/primrec_package.ML Tools/typechk.ML	\
+  Trancl.thy Univ.thy WF.thy ZF.thy Zorn.thy arith_data.ML		\
+  equalities.thy func.thy ind_syntax.ML int_arith.ML pair.thy		\
+  simpdata.ML upair.thy
 	@$(ISATOOL) usedir -b -r $(OUT)/FOL ZF
 
 
--- a/src/ZF/ROOT.ML	Thu May 31 11:00:06 2007 +0200
+++ b/src/ZF/ROOT.ML	Thu May 31 12:06:31 2007 +0200
@@ -13,6 +13,6 @@
 
 reset eta_contract;
 
-with_path "Integ" use_thy "Main_ZFC";
+use_thy "Main_ZFC";
 
 Goal "True";  (*leave subgoal package empty*)
--- a/src/ZF/Tools/numeral_syntax.ML	Thu May 31 11:00:06 2007 +0200
+++ b/src/ZF/Tools/numeral_syntax.ML	Thu May 31 12:06:31 2007 +0200
@@ -3,7 +3,7 @@
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 
 Concrete syntax for generic numerals.  Assumes consts and syntax of
-theory ZF/Integ/Bin.
+theory Bin.
 *)
 
 signature NUMERAL_SYNTAX =
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Tools/twos_compl.ML	Thu May 31 12:06:31 2007 +0200
@@ -0,0 +1,128 @@
+(*  Title:      ZF/ex/twos-compl.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+ML code for Arithmetic on binary integers; the model for theory Bin
+
+   The sign Pls stands for an infinite string of leading 0s.
+   The sign Min stands for an infinite string of leading 1s.
+
+See int_of_binary for the numerical interpretation.  A number can have
+multiple representations, namely leading 0s with sign Pls and leading 1s with
+sign Min.  A number is in NORMAL FORM if it has no such extra bits.
+
+The representation expects that (m mod 2) is 0 or 1, even if m is negative;
+For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1
+
+Still needs division!
+
+print_depth 40;
+System.Control.Print.printDepth := 350; 
+*)
+
+infix 5 $$ $$$
+
+(*Recursive datatype of binary integers*)
+datatype bin = Pls | Min | $$ of bin * int;
+
+(** Conversions between bin and int **)
+
+fun int_of_binary Pls = 0
+  | int_of_binary Min = ~1
+  | int_of_binary (w$$b) = 2 * int_of_binary w + b;
+
+fun binary_of_int 0 = Pls
+  | binary_of_int ~1 = Min
+  | binary_of_int n = binary_of_int (n div 2) $$ (n mod 2);
+
+(*** Addition ***)
+
+(*Attach a bit while preserving the normal form.  Cases left as default
+  are Pls$$$1 and Min$$$0. *)
+fun  Pls $$$ 0 = Pls
+  | Min $$$ 1 = Min
+  |     v $$$ x = v$$x;
+
+(*Successor of an integer, assumed to be in normal form.
+  If w$$1 is normal then w is not Min, so bin_succ(w) $$ 0 is normal.
+  But Min$$0 is normal while Min$$1 is not.*)
+fun bin_succ Pls = Pls$$1
+  | bin_succ Min = Pls
+  | bin_succ (w$$1) = bin_succ(w) $$ 0
+  | bin_succ (w$$0) = w $$$ 1;
+
+(*Predecessor of an integer, assumed to be in normal form.
+  If w$$0 is normal then w is not Pls, so bin_pred(w) $$ 1 is normal.
+  But Pls$$1 is normal while Pls$$0 is not.*)
+fun bin_pred Pls = Min
+  | bin_pred Min = Min$$0
+  | bin_pred (w$$1) = w $$$ 0
+  | bin_pred (w$$0) = bin_pred(w) $$ 1;
+
+(*Sum of two binary integers in normal form.  
+  Ensure last $$ preserves normal form! *)
+fun bin_add (Pls, w) = w
+  | bin_add (Min, w) = bin_pred w
+  | bin_add (v$$x, Pls) = v$$x
+  | bin_add (v$$x, Min) = bin_pred (v$$x)
+  | bin_add (v$$x, w$$y) = 
+      bin_add(v, if x+y=2 then bin_succ w else w) $$$ ((x+y) mod 2);
+
+(*** Subtraction ***)
+
+(*Unary minus*)
+fun bin_minus Pls = Pls
+  | bin_minus Min = Pls$$1
+  | bin_minus (w$$1) = bin_pred (bin_minus(w) $$$ 0)
+  | bin_minus (w$$0) = bin_minus(w) $$ 0;
+
+(*** Multiplication ***)
+
+(*product of two bins; a factor of 0 might cause leading 0s in result*)
+fun bin_mult (Pls, _) = Pls
+  | bin_mult (Min, v) = bin_minus v
+  | bin_mult (w$$1, v) = bin_add(bin_mult(w,v) $$$ 0,  v)
+  | bin_mult (w$$0, v) = bin_mult(w,v) $$$ 0;
+
+(*** Testing ***)
+
+(*tests addition*)
+fun checksum m n =
+    let val wm = binary_of_int m
+        and wn = binary_of_int n
+        val wsum = bin_add(wm,wn)
+    in  if m+n = int_of_binary wsum then (wm, wn, wsum, m+n)
+        else raise Match
+    end;
+
+fun bfact n = if n=0 then  Pls$$1  
+              else  bin_mult(binary_of_int n, bfact(n-1));
+
+(*Examples...
+bfact 5;
+int_of_binary it;
+bfact 69;
+int_of_binary it;
+
+(*For {HOL,ZF}/ex/BinEx.ML*)
+bin_add(binary_of_int 13, binary_of_int 19);
+bin_add(binary_of_int 1234, binary_of_int 5678);
+bin_add(binary_of_int 1359, binary_of_int ~2468);
+bin_add(binary_of_int 93746, binary_of_int ~46375);
+bin_minus(binary_of_int 65745);
+bin_minus(binary_of_int ~54321);
+bin_mult(binary_of_int 13, binary_of_int 19);
+bin_mult(binary_of_int ~84, binary_of_int 51);
+bin_mult(binary_of_int 255, binary_of_int 255);
+bin_mult(binary_of_int 1359, binary_of_int ~2468);
+
+
+(*leading zeros??*)
+bin_add(binary_of_int 1234, binary_of_int ~1234);
+bin_mult(binary_of_int 1234, Pls);
+
+(*leading ones??*)
+bin_add(binary_of_int 1, binary_of_int ~2);
+bin_add(binary_of_int 1234, binary_of_int ~1235);
+*)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/int_arith.ML	Thu May 31 12:06:31 2007 +0200
@@ -0,0 +1,443 @@
+(*  Title:      ZF/int_arith.ML
+    ID:         $Id$
+    Author:     Larry Paulson
+    Copyright   2000  University of Cambridge
+
+Simprocs for linear arithmetic.
+*)
+
+
+(** To simplify inequalities involving integer negation and literals,
+    such as -x = #3
+**)
+
+Addsimps [inst "y" "integ_of(?w)" zminus_equation,
+          inst "x" "integ_of(?w)" equation_zminus];
+
+AddIffs [inst "y" "integ_of(?w)" zminus_zless,
+         inst "x" "integ_of(?w)" zless_zminus];
+
+AddIffs [inst "y" "integ_of(?w)" zminus_zle,
+         inst "x" "integ_of(?w)" zle_zminus];
+
+Addsimps [inst "s" "integ_of(?w)" (thm "Let_def")];
+
+(*** Simprocs for numeric literals ***)
+
+(** Combining of literal coefficients in sums of products **)
+
+Goal "(x $< y) <-> (x$-y $< #0)";
+by (simp_tac (simpset() addsimps zcompare_rls) 1);
+qed "zless_iff_zdiff_zless_0";
+
+Goal "[| x: int; y: int |] ==> (x = y) <-> (x$-y = #0)";
+by (asm_simp_tac (simpset() addsimps zcompare_rls) 1);
+qed "eq_iff_zdiff_eq_0";
+
+Goal "(x $<= y) <-> (x$-y $<= #0)";
+by (asm_simp_tac (simpset() addsimps zcompare_rls) 1);
+qed "zle_iff_zdiff_zle_0";
+
+
+(** For combine_numerals **)
+
+Goal "i$*u $+ (j$*u $+ k) = (i$+j)$*u $+ k";
+by (simp_tac (simpset() addsimps [zadd_zmult_distrib]@zadd_ac) 1);
+qed "left_zadd_zmult_distrib";
+
+
+(** For cancel_numerals **)
+
+val rel_iff_rel_0_rls = map (inst "y" "?u$+?v")
+                          [zless_iff_zdiff_zless_0, eq_iff_zdiff_eq_0,
+                           zle_iff_zdiff_zle_0] @
+                        map (inst "y" "n")
+                          [zless_iff_zdiff_zless_0, eq_iff_zdiff_eq_0,
+                           zle_iff_zdiff_zle_0];
+
+Goal "(i$*u $+ m = j$*u $+ n) <-> ((i$-j)$*u $+ m = intify(n))";
+by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1);
+by (simp_tac (simpset() addsimps zcompare_rls) 1);
+by (simp_tac (simpset() addsimps zadd_ac) 1);
+qed "eq_add_iff1";
+
+Goal "(i$*u $+ m = j$*u $+ n) <-> (intify(m) = (j$-i)$*u $+ n)";
+by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1);
+by (simp_tac (simpset() addsimps zcompare_rls) 1);
+by (simp_tac (simpset() addsimps zadd_ac) 1);
+qed "eq_add_iff2";
+
+Goal "(i$*u $+ m $< j$*u $+ n) <-> ((i$-j)$*u $+ m $< n)";
+by (asm_simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]@
+                                     zadd_ac@rel_iff_rel_0_rls) 1);
+qed "less_add_iff1";
+
+Goal "(i$*u $+ m $< j$*u $+ n) <-> (m $< (j$-i)$*u $+ n)";
+by (asm_simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]@
+                                     zadd_ac@rel_iff_rel_0_rls) 1);
+qed "less_add_iff2";
+
+Goal "(i$*u $+ m $<= j$*u $+ n) <-> ((i$-j)$*u $+ m $<= n)";
+by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1);
+by (simp_tac (simpset() addsimps zcompare_rls) 1);
+by (simp_tac (simpset() addsimps zadd_ac) 1);
+qed "le_add_iff1";
+
+Goal "(i$*u $+ m $<= j$*u $+ n) <-> (m $<= (j$-i)$*u $+ n)";
+by (simp_tac (simpset() addsimps [zdiff_def, zadd_zmult_distrib]) 1);
+by (simp_tac (simpset() addsimps zcompare_rls) 1);
+by (simp_tac (simpset() addsimps zadd_ac) 1);
+qed "le_add_iff2";
+
+
+structure Int_Numeral_Simprocs =
+struct
+
+(*Utilities*)
+
+val integ_of_const = Const ("Bin.integ_of", iT --> iT);
+
+fun mk_numeral n = integ_of_const $ NumeralSyntax.mk_bin n;
+
+(*Decodes a binary INTEGER*)
+fun dest_numeral (Const("Bin.integ_of", _) $ w) =
+     (NumeralSyntax.dest_bin w
+      handle Match => raise TERM("Int_Numeral_Simprocs.dest_numeral:1", [w]))
+  | dest_numeral t =  raise TERM("Int_Numeral_Simprocs.dest_numeral:2", [t]);
+
+fun find_first_numeral past (t::terms) =
+        ((dest_numeral t, rev past @ terms)
+         handle TERM _ => find_first_numeral (t::past) terms)
+  | find_first_numeral past [] = raise TERM("find_first_numeral", []);
+
+val zero = mk_numeral 0;
+val mk_plus = FOLogic.mk_binop "Int.zadd";
+
+val iT = Ind_Syntax.iT;
+
+val zminus_const = Const ("Int.zminus", iT --> iT);
+
+(*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*)
+fun mk_sum []        = zero
+  | mk_sum [t,u]     = mk_plus (t, u)
+  | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
+
+(*this version ALWAYS includes a trailing zero*)
+fun long_mk_sum []        = zero
+  | long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
+
+val dest_plus = FOLogic.dest_bin "Int.zadd" iT;
+
+(*decompose additions AND subtractions as a sum*)
+fun dest_summing (pos, Const ("Int.zadd", _) $ t $ u, ts) =
+        dest_summing (pos, t, dest_summing (pos, u, ts))
+  | dest_summing (pos, Const ("Int.zdiff", _) $ t $ u, ts) =
+        dest_summing (pos, t, dest_summing (not pos, u, ts))
+  | dest_summing (pos, t, ts) =
+        if pos then t::ts else zminus_const$t :: ts;
+
+fun dest_sum t = dest_summing (true, t, []);
+
+val mk_diff = FOLogic.mk_binop "Int.zdiff";
+val dest_diff = FOLogic.dest_bin "Int.zdiff" iT;
+
+val one = mk_numeral 1;
+val mk_times = FOLogic.mk_binop "Int.zmult";
+
+fun mk_prod [] = one
+  | mk_prod [t] = t
+  | mk_prod (t :: ts) = if t = one then mk_prod ts
+                        else mk_times (t, mk_prod ts);
+
+val dest_times = FOLogic.dest_bin "Int.zmult" iT;
+
+fun dest_prod t =
+      let val (t,u) = dest_times t
+      in  dest_prod t @ dest_prod u  end
+      handle TERM _ => [t];
+
+(*DON'T do the obvious simplifications; that would create special cases*)
+fun mk_coeff (k, t) = mk_times (mk_numeral k, t);
+
+(*Express t as a product of (possibly) a numeral with other sorted terms*)
+fun dest_coeff sign (Const ("Int.zminus", _) $ t) = dest_coeff (~sign) t
+  | dest_coeff sign t =
+    let val ts = sort Term.term_ord (dest_prod t)
+        val (n, ts') = find_first_numeral [] ts
+                          handle TERM _ => (1, ts)
+    in (sign*n, mk_prod ts') end;
+
+(*Find first coefficient-term THAT MATCHES u*)
+fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
+  | find_first_coeff past u (t::terms) =
+        let val (n,u') = dest_coeff 1 t
+        in  if u aconv u' then (n, rev past @ terms)
+                          else find_first_coeff (t::past) u terms
+        end
+        handle TERM _ => find_first_coeff (t::past) u terms;
+
+
+(*Simplify #1*n and n*#1 to n*)
+val add_0s = [zadd_0_intify, zadd_0_right_intify];
+
+val mult_1s = [zmult_1_intify, zmult_1_right_intify,
+               zmult_minus1, zmult_minus1_right];
+
+val tc_rules = [integ_of_type, intify_in_int,
+                int_of_type, zadd_type, zdiff_type, zmult_type] @ 
+               thms "bin.intros";
+val intifys = [intify_ident, zadd_intify1, zadd_intify2,
+               zdiff_intify1, zdiff_intify2, zmult_intify1, zmult_intify2,
+               zless_intify1, zless_intify2, zle_intify1, zle_intify2];
+
+(*To perform binary arithmetic*)
+val bin_simps = [add_integ_of_left] @ bin_arith_simps @ bin_rel_simps;
+
+(*To evaluate binary negations of coefficients*)
+val zminus_simps = NCons_simps @
+                   [integ_of_minus RS sym,
+                    bin_minus_1, bin_minus_0, bin_minus_Pls, bin_minus_Min,
+                    bin_pred_1, bin_pred_0, bin_pred_Pls, bin_pred_Min];
+
+(*To let us treat subtraction as addition*)
+val diff_simps = [zdiff_def, zminus_zadd_distrib, zminus_zminus];
+
+(*push the unary minus down: - x * y = x * - y *)
+val int_minus_mult_eq_1_to_2 =
+    [zmult_zminus, zmult_zminus_right RS sym] MRS trans |> standard;
+
+(*to extract again any uncancelled minuses*)
+val int_minus_from_mult_simps =
+    [zminus_zminus, zmult_zminus, zmult_zminus_right];
+
+(*combine unary minus with numeric literals, however nested within a product*)
+val int_mult_minus_simps =
+    [zmult_assoc, zmult_zminus RS sym, int_minus_mult_eq_1_to_2];
+
+fun prep_simproc (name, pats, proc) =
+  Simplifier.simproc (the_context ()) name pats proc;
+
+structure CancelNumeralsCommon =
+  struct
+  val mk_sum            = (fn T:typ => mk_sum)
+  val dest_sum          = dest_sum
+  val mk_coeff          = mk_coeff
+  val dest_coeff        = dest_coeff 1
+  val find_first_coeff  = find_first_coeff []
+  fun trans_tac _       = ArithData.gen_trans_tac iff_trans
+
+  val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ zadd_ac
+  val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys
+  val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ zadd_ac @ zmult_ac @ tc_rules @ intifys
+  fun norm_tac ss =
+    ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
+    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
+    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3))
+
+  val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys
+  fun numeral_simp_tac ss =
+    ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
+    THEN ALLGOALS (SIMPSET' (fn simpset => asm_simp_tac (Simplifier.inherit_context ss simpset)))
+  val simplify_meta_eq  = ArithData.simplify_meta_eq (add_0s @ mult_1s)
+  end;
+
+
+structure EqCancelNumerals = CancelNumeralsFun
+ (open CancelNumeralsCommon
+  val prove_conv = ArithData.prove_conv "inteq_cancel_numerals"
+  val mk_bal   = FOLogic.mk_eq
+  val dest_bal = FOLogic.dest_eq
+  val bal_add1 = eq_add_iff1 RS iff_trans
+  val bal_add2 = eq_add_iff2 RS iff_trans
+);
+
+structure LessCancelNumerals = CancelNumeralsFun
+ (open CancelNumeralsCommon
+  val prove_conv = ArithData.prove_conv "intless_cancel_numerals"
+  val mk_bal   = FOLogic.mk_binrel "Int.zless"
+  val dest_bal = FOLogic.dest_bin "Int.zless" iT
+  val bal_add1 = less_add_iff1 RS iff_trans
+  val bal_add2 = less_add_iff2 RS iff_trans
+);
+
+structure LeCancelNumerals = CancelNumeralsFun
+ (open CancelNumeralsCommon
+  val prove_conv = ArithData.prove_conv "intle_cancel_numerals"
+  val mk_bal   = FOLogic.mk_binrel "Int.zle"
+  val dest_bal = FOLogic.dest_bin "Int.zle" iT
+  val bal_add1 = le_add_iff1 RS iff_trans
+  val bal_add2 = le_add_iff2 RS iff_trans
+);
+
+val cancel_numerals =
+  map prep_simproc
+   [("inteq_cancel_numerals",
+     ["l $+ m = n", "l = m $+ n",
+      "l $- m = n", "l = m $- n",
+      "l $* m = n", "l = m $* n"],
+     K EqCancelNumerals.proc),
+    ("intless_cancel_numerals",
+     ["l $+ m $< n", "l $< m $+ n",
+      "l $- m $< n", "l $< m $- n",
+      "l $* m $< n", "l $< m $* n"],
+     K LessCancelNumerals.proc),
+    ("intle_cancel_numerals",
+     ["l $+ m $<= n", "l $<= m $+ n",
+      "l $- m $<= n", "l $<= m $- n",
+      "l $* m $<= n", "l $<= m $* n"],
+     K LeCancelNumerals.proc)];
+
+
+(*version without the hyps argument*)
+fun prove_conv_nohyps name tacs sg = ArithData.prove_conv name tacs sg [];
+
+structure CombineNumeralsData =
+  struct
+  type coeff            = IntInf.int
+  val iszero            = (fn x : IntInf.int => x = 0)
+  val add               = IntInf.+ 
+  val mk_sum            = (fn T:typ => long_mk_sum) (*to work for #2*x $+ #3*x *)
+  val dest_sum          = dest_sum
+  val mk_coeff          = mk_coeff
+  val dest_coeff        = dest_coeff 1
+  val left_distrib      = left_zadd_zmult_distrib RS trans
+  val prove_conv        = prove_conv_nohyps "int_combine_numerals"
+  fun trans_tac _       = ArithData.gen_trans_tac trans
+
+  val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ zadd_ac @ intifys
+  val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys
+  val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ zadd_ac @ zmult_ac @ tc_rules @ intifys
+  fun norm_tac ss =
+    ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
+    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
+    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3))
+
+  val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys
+  fun numeral_simp_tac ss =
+    ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
+  val simplify_meta_eq  = ArithData.simplify_meta_eq (add_0s @ mult_1s)
+  end;
+
+structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
+
+val combine_numerals =
+  prep_simproc ("int_combine_numerals", ["i $+ j", "i $- j"], K CombineNumerals.proc);
+
+
+
+(** Constant folding for integer multiplication **)
+
+(*The trick is to regard products as sums, e.g. #3 $* x $* #4 as
+  the "sum" of #3, x, #4; the literals are then multiplied*)
+
+
+structure CombineNumeralsProdData =
+  struct
+  type coeff            = IntInf.int
+  val iszero            = (fn x : IntInf.int => x = 0)
+  val add               = IntInf.*
+  val mk_sum            = (fn T:typ => mk_prod)
+  val dest_sum          = dest_prod
+  fun mk_coeff(k,t) = if t=one then mk_numeral k
+                      else raise TERM("mk_coeff", [])
+  fun dest_coeff t = (dest_numeral t, one)  (*We ONLY want pure numerals.*)
+  val left_distrib      = zmult_assoc RS sym RS trans
+  val prove_conv        = prove_conv_nohyps "int_combine_numerals_prod"
+  fun trans_tac _       = ArithData.gen_trans_tac trans
+
+
+
+val norm_ss1 = ZF_ss addsimps mult_1s @ diff_simps @ zminus_simps
+  val norm_ss2 = ZF_ss addsimps [zmult_zminus_right RS sym] @
+    bin_simps @ zmult_ac @ tc_rules @ intifys
+  fun norm_tac ss =
+    ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1))
+    THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2))
+
+  val numeral_simp_ss = ZF_ss addsimps bin_simps @ tc_rules @ intifys
+  fun numeral_simp_tac ss =
+    ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
+  val simplify_meta_eq  = ArithData.simplify_meta_eq (mult_1s);
+  end;
+
+
+structure CombineNumeralsProd = CombineNumeralsFun(CombineNumeralsProdData);
+
+val combine_numerals_prod =
+  prep_simproc ("int_combine_numerals_prod", ["i $* j"], K CombineNumeralsProd.proc);
+
+end;
+
+
+Addsimprocs Int_Numeral_Simprocs.cancel_numerals;
+Addsimprocs [Int_Numeral_Simprocs.combine_numerals,
+             Int_Numeral_Simprocs.combine_numerals_prod];
+
+
+(*examples:*)
+(*
+print_depth 22;
+set timing;
+set trace_simp;
+fun test s = (Goal s; by (Asm_simp_tac 1));
+val sg = #sign (rep_thm (topthm()));
+val t = FOLogic.dest_Trueprop (Logic.strip_assums_concl(getgoal 1));
+val (t,_) = FOLogic.dest_eq t;
+
+(*combine_numerals_prod (products of separate literals) *)
+test "#5 $* x $* #3 = y";
+
+test "y2 $+ ?x42 = y $+ y2";
+
+test "oo : int ==> l $+ (l $+ #2) $+ oo = oo";
+
+test "#9$*x $+ y = x$*#23 $+ z";
+test "y $+ x = x $+ z";
+
+test "x : int ==> x $+ y $+ z = x $+ z";
+test "x : int ==> y $+ (z $+ x) = z $+ x";
+test "z : int ==> x $+ y $+ z = (z $+ y) $+ (x $+ w)";
+test "z : int ==> x$*y $+ z = (z $+ y) $+ (y$*x $+ w)";
+
+test "#-3 $* x $+ y $<= x $* #2 $+ z";
+test "y $+ x $<= x $+ z";
+test "x $+ y $+ z $<= x $+ z";
+
+test "y $+ (z $+ x) $< z $+ x";
+test "x $+ y $+ z $< (z $+ y) $+ (x $+ w)";
+test "x$*y $+ z $< (z $+ y) $+ (y$*x $+ w)";
+
+test "l $+ #2 $+ #2 $+ #2 $+ (l $+ #2) $+ (oo $+ #2) = uu";
+test "u : int ==> #2 $* u = u";
+test "(i $+ j $+ #12 $+ k) $- #15 = y";
+test "(i $+ j $+ #12 $+ k) $- #5 = y";
+
+test "y $- b $< b";
+test "y $- (#3 $* b $+ c) $< b $- #2 $* c";
+
+test "(#2 $* x $- (u $* v) $+ y) $- v $* #3 $* u = w";
+test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u $* #4 = w";
+test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u = w";
+test "u $* v $- (x $* u $* v $+ (u $* v) $* #4 $+ y) = w";
+
+test "(i $+ j $+ #12 $+ k) = u $+ #15 $+ y";
+test "(i $+ j $* #2 $+ #12 $+ k) = j $+ #5 $+ y";
+
+test "#2 $* y $+ #3 $* z $+ #6 $* w $+ #2 $* y $+ #3 $* z $+ #2 $* u = #2 $* y' $+ #3 $* z' $+ #6 $* w' $+ #2 $* y' $+ #3 $* z' $+ u $+ vv";
+
+test "a $+ $-(b$+c) $+ b = d";
+test "a $+ $-(b$+c) $- b = d";
+
+(*negative numerals*)
+test "(i $+ j $+ #-2 $+ k) $- (u $+ #5 $+ y) = zz";
+test "(i $+ j $+ #-3 $+ k) $< u $+ #5 $+ y";
+test "(i $+ j $+ #3 $+ k) $< u $+ #-6 $+ y";
+test "(i $+ j $+ #-12 $+ k) $- #15 = y";
+test "(i $+ j $+ #12 $+ k) $- #-15 = y";
+test "(i $+ j $+ #-12 $+ k) $- #-15 = y";
+
+(*Multiplying separated numerals*)
+Goal "#6 $* ($# x $* #2) =  uu";
+Goal "#4 $* ($# x $* $# x) $* (#2 $* $# x) =  uu";
+*)
+