Tidying of proofs. New theorems are enterred immediately into the
relevant clasets or simpsets.
--- a/src/HOL/Fun.ML Thu Jan 09 10:22:42 1997 +0100
+++ b/src/HOL/Fun.ML Thu Jan 09 10:23:39 1997 +0100
@@ -35,14 +35,15 @@
by (REPEAT (ares_tac prems 1));
qed "imageE";
+AddIs [imageI];
+AddSEs [imageE];
+
goalw Fun.thy [o_def] "(f o g)``r = f``(g``r)";
-by (rtac set_ext 1);
-by (fast_tac (!claset addIs [imageI] addSEs [imageE]) 1);
+by (Fast_tac 1);
qed "image_compose";
goal Fun.thy "f``(A Un B) = f``A Un f``B";
-by (rtac set_ext 1);
-by (fast_tac (!claset addIs [imageI,UnCI] addSEs [imageE,UnE]) 1);
+by (Fast_tac 1);
qed "image_Un";
(*** Range of a function -- just a translation for image! ***)
@@ -108,7 +109,7 @@
val prems = goalw Fun.thy [inj_onto_def]
"(!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> inj_onto f A";
-by (fast_tac (!claset addIs prems addSIs [ballI]) 1);
+by (fast_tac (!claset addIs prems) 1);
qed "inj_ontoI";
val [major] = goal Fun.thy
@@ -141,7 +142,7 @@
val prems = goalw Fun.thy [o_def]
"[| inj(f); inj_onto g (range f) |] ==> inj(g o f)";
by (cut_facts_tac prems 1);
-by (fast_tac (!claset addIs [injI,rangeI]
+by (fast_tac (!claset addIs [injI]
addEs [injD,inj_ontoD]) 1);
qed "comp_inj";
@@ -163,20 +164,12 @@
"[| inj(f); A<=range(f) |] ==> inj_onto (Inv f) A";
by (cut_facts_tac prems 1);
by (fast_tac (!claset addIs [inj_ontoI]
- addEs [Inv_injective,injD,subsetD]) 1);
+ addEs [Inv_injective,injD]) 1);
qed "inj_onto_Inv";
-(*** Set reasoning tools ***)
-
-AddSIs [ballI, PowI, subsetI, InterI, INT_I, INT1_I, CollectI,
- ComplI, IntI, DiffI, UnCI, insertCI];
-AddIs [bexI, UnionI, UN_I, UN1_I, imageI, rangeI];
-AddSEs [bexE, make_elim PowD, UnionE, UN_E, UN1_E, DiffE,
- make_elim singleton_inject,
- CollectE, ComplE, IntE, UnE, insertE, imageE, rangeE, emptyE];
-AddEs [ballE, InterD, InterE, INT_D, INT_E, make_elim INT1_D,
- subsetD, subsetCE];
+AddIs [rangeI];
+AddSEs [rangeE];
val set_cs = !claset delrules [equalityI];
--- a/src/HOL/Set.ML Thu Jan 09 10:22:42 1997 +0100
+++ b/src/HOL/Set.ML Thu Jan 09 10:23:39 1997 +0100
@@ -10,13 +10,14 @@
section "Relating predicates and sets";
-val [prem] = goal Set.thy "P(a) ==> a : {x.P(x)}";
-by (stac mem_Collect_eq 1);
-by (rtac prem 1);
+AddIffs [mem_Collect_eq];
+
+goal Set.thy "!!a. P(a) ==> a : {x.P(x)}";
+by (Asm_simp_tac 1);
qed "CollectI";
-val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)";
-by (resolve_tac (prems RL [mem_Collect_eq RS subst]) 1);
+val prems = goal Set.thy "!!a. a : {x.P(x)} ==> P(a)";
+by (Asm_full_simp_tac 1);
qed "CollectD";
val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B";
@@ -31,6 +32,10 @@
val CollectE = make_elim CollectD;
+AddSIs [CollectI];
+AddSEs [CollectE];
+
+
section "Bounded quantifiers";
val prems = goalw Set.thy [Ball_def]
@@ -52,6 +57,9 @@
(*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
fun ball_tac i = etac ballE i THEN contr_tac (i+1);
+AddSIs [ballI];
+AddEs [ballE];
+
val prems = goalw Set.thy [Bex_def]
"[| P(x); x:A |] ==> ? x:A. P(x)";
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
@@ -69,6 +77,9 @@
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
qed "bexE";
+AddIs [bexI];
+AddSEs [bexE];
+
(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*)
goalw Set.thy [Ball_def] "(! x:A. True) = True";
by (Simp_tac 1);
@@ -134,12 +145,14 @@
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
fun set_mp_tac i = etac subsetCE i THEN mp_tac i;
-qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
- (fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]);
+AddSIs [subsetI];
+AddEs [subsetD, subsetCE];
-val prems = goal Set.thy "[| A<=B; B<=C |] ==> A<=(C::'a set)";
-by (cut_facts_tac prems 1);
-by (REPEAT (ares_tac [subsetI] 1 ORELSE set_mp_tac 1));
+qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
+ (fn _=> [Fast_tac 1]);
+
+val prems = goal Set.thy "!!B. [| A<=B; B<=C |] ==> A<=(C::'a set)";
+by (Fast_tac 1);
qed "subset_trans";
@@ -189,6 +202,11 @@
section "Set complement -- Compl";
+qed_goalw "Compl_iff" Set.thy [Compl_def] "(c : Compl(A)) = (c~:A)"
+ (fn _ => [ (Fast_tac 1) ]);
+
+Addsimps [Compl_iff];
+
val prems = goalw Set.thy [Compl_def]
"[| c:A ==> False |] ==> c : Compl(A)";
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
@@ -198,32 +216,36 @@
Negated assumptions behave like formulae on the right side of the notional
turnstile...*)
val major::prems = goalw Set.thy [Compl_def]
- "[| c : Compl(A) |] ==> c~:A";
+ "c : Compl(A) ==> c~:A";
by (rtac (major RS CollectD) 1);
qed "ComplD";
val ComplE = make_elim ComplD;
-qed_goal "Compl_iff" Set.thy "(c : Compl(A)) = (c~:A)"
- (fn _ => [ (fast_tac (!claset addSIs [ComplI] addSEs [ComplE]) 1) ]);
+AddSIs [ComplI];
+AddSEs [ComplE];
section "Binary union -- Un";
-val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B";
-by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1));
+qed_goalw "Un_iff" Set.thy [Un_def] "(c : A Un B) = (c:A | c:B)"
+ (fn _ => [ Fast_tac 1 ]);
+
+Addsimps [Un_iff];
+
+goal Set.thy "!!c. c:A ==> c : A Un B";
+by (Asm_simp_tac 1);
qed "UnI1";
-val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B";
-by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1));
+goal Set.thy "!!c. c:B ==> c : A Un B";
+by (Asm_simp_tac 1);
qed "UnI2";
(*Classical introduction rule: no commitment to A vs B*)
qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B"
(fn prems=>
- [ (rtac classical 1),
- (REPEAT (ares_tac (prems@[UnI1,notI]) 1)),
- (REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]);
+ [ (Simp_tac 1),
+ (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
val major::prems = goalw Set.thy [Un_def]
"[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P";
@@ -231,23 +253,27 @@
by (REPEAT (eresolve_tac prems 1));
qed "UnE";
-qed_goal "Un_iff" Set.thy "(c : A Un B) = (c:A | c:B)"
- (fn _ => [ (fast_tac (!claset addSIs [UnCI] addSEs [UnE]) 1) ]);
+AddSIs [UnCI];
+AddSEs [UnE];
section "Binary intersection -- Int";
-val prems = goalw Set.thy [Int_def]
- "[| c:A; c:B |] ==> c : A Int B";
-by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1));
+qed_goalw "Int_iff" Set.thy [Int_def] "(c : A Int B) = (c:A & c:B)"
+ (fn _ => [ (Fast_tac 1) ]);
+
+Addsimps [Int_iff];
+
+goal Set.thy "!!c. [| c:A; c:B |] ==> c : A Int B";
+by (Asm_simp_tac 1);
qed "IntI";
-val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A";
-by (rtac (major RS CollectD RS conjunct1) 1);
+goal Set.thy "!!c. c : A Int B ==> c:A";
+by (Asm_full_simp_tac 1);
qed "IntD1";
-val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B";
-by (rtac (major RS CollectD RS conjunct2) 1);
+goal Set.thy "!!c. c : A Int B ==> c:B";
+by (Asm_full_simp_tac 1);
qed "IntD2";
val [major,minor] = goal Set.thy
@@ -257,53 +283,54 @@
by (rtac (major RS IntD2) 1);
qed "IntE";
-qed_goal "Int_iff" Set.thy "(c : A Int B) = (c:A & c:B)"
- (fn _ => [ (fast_tac (!claset addSIs [IntI] addSEs [IntE]) 1) ]);
-
+AddSIs [IntI];
+AddSEs [IntE];
section "Set difference";
-qed_goalw "DiffI" Set.thy [set_diff_def]
- "[| c : A; c ~: B |] ==> c : A - B"
- (fn prems=> [ (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1)) ]);
+qed_goalw "Diff_iff" Set.thy [set_diff_def] "(c : A-B) = (c:A & c~:B)"
+ (fn _ => [ (Fast_tac 1) ]);
-qed_goalw "DiffD1" Set.thy [set_diff_def]
- "c : A - B ==> c : A"
- (fn [major]=> [ (rtac (major RS CollectD RS conjunct1) 1) ]);
+Addsimps [Diff_iff];
+
+qed_goal "DiffI" Set.thy "!!c. [| c : A; c ~: B |] ==> c : A - B"
+ (fn _=> [ Asm_simp_tac 1 ]);
-qed_goalw "DiffD2" Set.thy [set_diff_def]
- "[| c : A - B; c : B |] ==> P"
- (fn [major,minor]=>
- [rtac (minor RS (major RS CollectD RS conjunct2 RS notE)) 1]);
+qed_goal "DiffD1" Set.thy "!!c. c : A - B ==> c : A"
+ (fn _=> [ (Asm_full_simp_tac 1) ]);
-qed_goal "DiffE" Set.thy
- "[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P"
+qed_goal "DiffD2" Set.thy "!!c. [| c : A - B; c : B |] ==> P"
+ (fn _=> [ (Asm_full_simp_tac 1) ]);
+
+qed_goal "DiffE" Set.thy "[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P"
(fn prems=>
[ (resolve_tac prems 1),
(REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
-qed_goal "Diff_iff" Set.thy "(c : A-B) = (c:A & c~:B)"
- (fn _ => [ (fast_tac (!claset addSIs [DiffI] addSEs [DiffE]) 1) ]);
+AddSIs [DiffI];
+AddSEs [DiffE];
section "The empty set -- {}";
-qed_goalw "emptyE" Set.thy [empty_def] "a:{} ==> P"
- (fn [prem] => [rtac (prem RS CollectD RS FalseE) 1]);
+qed_goalw "empty_iff" Set.thy [empty_def] "(c : {}) = False"
+ (fn _ => [ (Fast_tac 1) ]);
+
+Addsimps [empty_iff];
+
+qed_goal "emptyE" Set.thy "!!a. a:{} ==> P"
+ (fn _ => [Full_simp_tac 1]);
+
+AddSEs [emptyE];
qed_goal "empty_subsetI" Set.thy "{} <= A"
- (fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]);
+ (fn _ => [ (Fast_tac 1) ]);
qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}"
- (fn prems=>
- [ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1
- ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]);
+ (fn [prem]=>
+ [ (fast_tac (!claset addIs [prem RS FalseE]) 1) ]);
-qed_goal "equals0D" Set.thy "[| A={}; a:A |] ==> P"
- (fn [major,minor]=>
- [ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]);
-
-qed_goal "empty_iff" Set.thy "(c : {}) = False"
- (fn _ => [ (fast_tac (!claset addSEs [emptyE]) 1) ]);
+qed_goal "equals0D" Set.thy "!!a. [| A={}; a:A |] ==> P"
+ (fn _ => [ (Fast_tac 1) ]);
goal Set.thy "Ball {} P = True";
by (simp_tac (HOL_ss addsimps [mem_Collect_eq, Ball_def, empty_def]) 1);
@@ -317,11 +344,16 @@
section "Augmenting a set -- insert";
-qed_goalw "insertI1" Set.thy [insert_def] "a : insert a B"
- (fn _ => [rtac (CollectI RS UnI1) 1, rtac refl 1]);
+qed_goalw "insert_iff" Set.thy [insert_def] "a : insert b A = (a=b | a:A)"
+ (fn _ => [Fast_tac 1]);
+
+Addsimps [insert_iff];
-qed_goalw "insertI2" Set.thy [insert_def] "a : B ==> a : insert b B"
- (fn [prem]=> [ (rtac (prem RS UnI2) 1) ]);
+qed_goal "insertI1" Set.thy "a : insert a B"
+ (fn _ => [Simp_tac 1]);
+
+qed_goal "insertI2" Set.thy "!!a. a : B ==> a : insert b B"
+ (fn _=> [Asm_simp_tac 1]);
qed_goalw "insertE" Set.thy [insert_def]
"[| a : insert b A; a=b ==> P; a:A ==> P |] ==> P"
@@ -329,37 +361,35 @@
[ (rtac (major RS UnE) 1),
(REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]);
-qed_goal "insert_iff" Set.thy "a : insert b A = (a=b | a:A)"
- (fn _ => [fast_tac (!claset addIs [insertI1,insertI2] addSEs [insertE]) 1]);
-
(*Classical introduction rule*)
qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert b B"
- (fn [prem]=>
- [ (rtac (disjCI RS (insert_iff RS iffD2)) 1),
- (etac prem 1) ]);
+ (fn prems=>
+ [ (Simp_tac 1),
+ (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
+
+AddSIs [insertCI];
+AddSEs [insertE];
section "Singletons, using insert";
qed_goal "singletonI" Set.thy "a : {a}"
(fn _=> [ (rtac insertI1 1) ]);
-goalw Set.thy [insert_def] "!!a. b : {a} ==> b=a";
-by (fast_tac (!claset addSEs [emptyE,CollectE,UnE]) 1);
+goal Set.thy "!!a. b : {a} ==> b=a";
+by (Fast_tac 1);
qed "singletonD";
bind_thm ("singletonE", make_elim singletonD);
-qed_goal "singleton_iff" thy "(b : {a}) = (b=a)" (fn _ => [
- rtac iffI 1,
- etac singletonD 1,
- hyp_subst_tac 1,
- rtac singletonI 1]);
+qed_goal "singleton_iff" thy "(b : {a}) = (b=a)"
+(fn _ => [Fast_tac 1]);
-val [major] = goal Set.thy "{a}={b} ==> a=b";
-by (rtac (major RS equalityD1 RS subsetD RS singletonD) 1);
-by (rtac singletonI 1);
+goal Set.thy "!!a b. {a}={b} ==> a=b";
+by (fast_tac (!claset addEs [equalityE]) 1);
qed "singleton_inject";
+AddSDs [singleton_inject];
+
section "The universal set -- UNIV";
@@ -372,10 +402,15 @@
section "Unions of families -- UNION x:A. B(x) is Union(B``A)";
+goalw Set.thy [UNION_def] "(b: (UN x:A. B(x))) = (EX x:A. b: B(x))";
+by (Fast_tac 1);
+qed "UN_iff";
+
+Addsimps [UN_iff];
+
(*The order of the premises presupposes that A is rigid; b may be flexible*)
-val prems = goalw Set.thy [UNION_def]
- "[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))";
-by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1));
+goal Set.thy "!!b. [| a:A; b: B(a) |] ==> b: (UN x:A. B(x))";
+by (Auto_tac());
qed "UN_I";
val major::prems = goalw Set.thy [UNION_def]
@@ -384,6 +419,9 @@
by (REPEAT (ares_tac prems 1));
qed "UN_E";
+AddIs [UN_I];
+AddSEs [UN_E];
+
val prems = goal Set.thy
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
\ (UN x:A. C(x)) = (UN x:B. D(x))";
@@ -395,15 +433,19 @@
section "Intersections of families -- INTER x:A. B(x) is Inter(B``A)";
+goalw Set.thy [INTER_def] "(b: (INT x:A. B(x))) = (ALL x:A. b: B(x))";
+by (Auto_tac());
+qed "INT_iff";
+
+Addsimps [INT_iff];
+
val prems = goalw Set.thy [INTER_def]
"(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
qed "INT_I";
-val major::prems = goalw Set.thy [INTER_def]
- "[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)";
-by (rtac (major RS CollectD RS bspec) 1);
-by (resolve_tac prems 1);
+goal Set.thy "!!b. [| b : (INT x:A. B(x)); a:A |] ==> b: B(a)";
+by (Auto_tac());
qed "INT_D";
(*"Classical" elimination -- by the Excluded Middle on a:A *)
@@ -413,6 +455,9 @@
by (REPEAT (eresolve_tac prems 1));
qed "INT_E";
+AddSIs [INT_I];
+AddEs [INT_D, INT_E];
+
val prems = goal Set.thy
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
\ (INT x:A. C(x)) = (INT x:B. D(x))";
@@ -424,10 +469,16 @@
section "Unions over a type; UNION1(B) = Union(range(B))";
+goalw Set.thy [UNION1_def] "(b: (UN x. B(x))) = (EX x. b: B(x))";
+by (Simp_tac 1);
+by (Fast_tac 1);
+qed "UN1_iff";
+
+Addsimps [UN1_iff];
+
(*The order of the premises presupposes that A is rigid; b may be flexible*)
-val prems = goalw Set.thy [UNION1_def]
- "b: B(x) ==> b: (UN x. B(x))";
-by (REPEAT (resolve_tac (prems @ [TrueI, CollectI RS UN_I]) 1));
+goal Set.thy "!!b. b: B(x) ==> b: (UN x. B(x))";
+by (Auto_tac());
qed "UN1_I";
val major::prems = goalw Set.thy [UNION1_def]
@@ -436,25 +487,43 @@
by (REPEAT (ares_tac prems 1));
qed "UN1_E";
+AddIs [UN1_I];
+AddSEs [UN1_E];
+
section "Intersections over a type; INTER1(B) = Inter(range(B))";
+goalw Set.thy [INTER1_def] "(b: (INT x. B(x))) = (ALL x. b: B(x))";
+by (Simp_tac 1);
+by (Fast_tac 1);
+qed "INT1_iff";
+
+Addsimps [INT1_iff];
+
val prems = goalw Set.thy [INTER1_def]
"(!!x. b: B(x)) ==> b : (INT x. B(x))";
by (REPEAT (ares_tac (INT_I::prems) 1));
qed "INT1_I";
-val [major] = goalw Set.thy [INTER1_def]
- "b : (INT x. B(x)) ==> b: B(a)";
-by (rtac (TrueI RS (CollectI RS (major RS INT_D))) 1);
+goal Set.thy "!!b. b : (INT x. B(x)) ==> b: B(a)";
+by (Asm_full_simp_tac 1);
qed "INT1_D";
+AddSIs [INT1_I];
+AddDs [INT1_D];
+
+
section "Union";
+goalw Set.thy [Union_def] "(A : Union(C)) = (EX X:C. A:X)";
+by (Fast_tac 1);
+qed "Union_iff";
+
+Addsimps [Union_iff];
+
(*The order of the premises presupposes that C is rigid; A may be flexible*)
-val prems = goalw Set.thy [Union_def]
- "[| X:C; A:X |] ==> A : Union(C)";
-by (REPEAT (resolve_tac (prems @ [UN_I]) 1));
+goal Set.thy "!!X. [| X:C; A:X |] ==> A : Union(C)";
+by (Auto_tac());
qed "UnionI";
val major::prems = goalw Set.thy [Union_def]
@@ -463,8 +532,18 @@
by (REPEAT (ares_tac prems 1));
qed "UnionE";
+AddIs [UnionI];
+AddSEs [UnionE];
+
+
section "Inter";
+goalw Set.thy [Inter_def] "(A : Inter(C)) = (ALL X:C. A:X)";
+by (Fast_tac 1);
+qed "Inter_iff";
+
+Addsimps [Inter_iff];
+
val prems = goalw Set.thy [Inter_def]
"[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
by (REPEAT (ares_tac ([INT_I] @ prems) 1));
@@ -472,10 +551,8 @@
(*A "destruct" rule -- every X in C contains A as an element, but
A:X can hold when X:C does not! This rule is analogous to "spec". *)
-val major::prems = goalw Set.thy [Inter_def]
- "[| A : Inter(C); X:C |] ==> A:X";
-by (rtac (major RS INT_D) 1);
-by (resolve_tac prems 1);
+goal Set.thy "!!X. [| A : Inter(C); X:C |] ==> A:X";
+by (Auto_tac());
qed "InterD";
(*"Classical" elimination rule -- does not require proving X:C *)
@@ -485,8 +562,17 @@
by (REPEAT (eresolve_tac prems 1));
qed "InterE";
+AddSIs [InterI];
+AddEs [InterD, InterE];
+
+
section "The Powerset operator -- Pow";
+qed_goalw "Pow_iff" Set.thy [Pow_def] "(A : Pow(B)) = (A <= B)"
+ (fn _ => [ (Asm_simp_tac 1) ]);
+
+AddIffs [Pow_iff];
+
qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)"
(fn _ => [ (etac CollectI 1) ]);
@@ -501,8 +587,11 @@
(*** Set reasoning tools ***)
+(*Each of these has ALREADY been added to !simpset above.*)
val mem_simps = [insert_iff, empty_iff, Un_iff, Int_iff, Compl_iff, Diff_iff,
- mem_Collect_eq];
+ mem_Collect_eq,
+ UN_iff, UN1_iff, Union_iff,
+ INT_iff, INT1_iff, Inter_iff];
(*Not for Addsimps -- it can cause goals to blow up!*)
goal Set.thy "(a : (if Q then x else y)) = ((Q --> a:x) & (~Q --> a : y))";
@@ -511,6 +600,5 @@
val mksimps_pairs = ("Ball",[bspec]) :: mksimps_pairs;
-simpset := !simpset addsimps mem_simps
- addcongs [ball_cong,bex_cong]
+simpset := !simpset addcongs [ball_cong,bex_cong]
setmksimps (mksimps mksimps_pairs);