--- a/NEWS Fri Mar 06 15:31:26 2009 +0100
+++ b/NEWS Fri Mar 06 15:54:33 2009 +0100
@@ -224,6 +224,21 @@
With strict functions on linear orders, reasoning about (in)equalities is
facilitated by theorems "strict_mono_eq", "strict_mono_less_eq" and "strict_mono_less".
+* Some set operations are now proper qualified constants with authentic syntax.
+INCOMPATIBILITY:
+
+ op Int ~> Set.Int
+ op Un ~> Set.Un
+ INTER ~> Set.INTER
+ UNION ~> Set.UNION
+ Inter ~> Set.Inter
+ Union ~> Set.Union
+ {} ~> Set.empty
+ UNIV ~> Set.UNIV
+
+* Class complete_lattice with operations Inf, Sup, INFI, SUPR now in theory
+Set.
+
* Auxiliary class "itself" has disappeared -- classes without any parameter
are treated as expected by the 'class' command.
@@ -301,7 +316,7 @@
avoiding strange error messages.
* Simplifier: simproc for let expressions now unfolds if bound variable
-occurs at most one time in let expression body. INCOMPATIBILITY.
+occurs at most once in let expression body. INCOMPATIBILITY.
* New classes "top" and "bot" with corresponding operations "top" and "bot"
in theory Orderings; instantiation of class "complete_lattice" requires
--- a/src/HOL/Fun.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Fun.thy Fri Mar 06 15:54:33 2009 +0100
@@ -1,5 +1,4 @@
(* Title: HOL/Fun.thy
- ID: $Id$
Author: Tobias Nipkow, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
--- a/src/HOL/Hoare/Hoare.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Hoare/Hoare.thy Fri Mar 06 15:54:33 2009 +0100
@@ -161,9 +161,9 @@
(* assn_tr' & bexp_tr'*)
ML{*
fun assn_tr' (Const ("Collect",_) $ T) = dest_abstuple T
- | assn_tr' (Const ("op Int",_) $ (Const ("Collect",_) $ T1) $
+ | assn_tr' (Const (@{const_name Set.Int}, _) $ (Const ("Collect",_) $ T1) $
(Const ("Collect",_) $ T2)) =
- Syntax.const "op Int" $ dest_abstuple T1 $ dest_abstuple T2
+ Syntax.const "Set.Int" $ dest_abstuple T1 $ dest_abstuple T2
| assn_tr' t = t;
fun bexp_tr' (Const ("Collect",_) $ T) = dest_abstuple T
--- a/src/HOL/Hoare/HoareAbort.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Hoare/HoareAbort.thy Fri Mar 06 15:54:33 2009 +0100
@@ -163,9 +163,9 @@
(* assn_tr' & bexp_tr'*)
ML{*
fun assn_tr' (Const ("Collect",_) $ T) = dest_abstuple T
- | assn_tr' (Const ("op Int",_) $ (Const ("Collect",_) $ T1) $
+ | assn_tr' (Const (@{const_name Int},_) $ (Const ("Collect",_) $ T1) $
(Const ("Collect",_) $ T2)) =
- Syntax.const "op Int" $ dest_abstuple T1 $ dest_abstuple T2
+ Syntax.const "Set.Int" $ dest_abstuple T1 $ dest_abstuple T2
| assn_tr' t = t;
fun bexp_tr' (Const ("Collect",_) $ T) = dest_abstuple T
--- a/src/HOL/HoareParallel/OG_Tran.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/HoareParallel/OG_Tran.thy Fri Mar 06 15:54:33 2009 +0100
@@ -102,7 +102,7 @@
"SEM c S \<equiv> \<Union>sem c ` S "
syntax "_Omega" :: "'a com" ("\<Omega>" 63)
-translations "\<Omega>" \<rightleftharpoons> "While UNIV UNIV (Basic id)"
+translations "\<Omega>" \<rightleftharpoons> "While CONST UNIV CONST UNIV (Basic id)"
consts fwhile :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> nat \<Rightarrow> 'a com"
primrec
--- a/src/HOL/Lattices.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Lattices.thy Fri Mar 06 15:54:33 2009 +0100
@@ -5,7 +5,7 @@
header {* Abstract lattices *}
theory Lattices
-imports Fun
+imports Orderings
begin
subsection {* Lattices *}
@@ -328,135 +328,6 @@
min_max.le_infI1 min_max.le_infI2
-subsection {* Complete lattices *}
-
-class complete_lattice = lattice + bot + top +
- fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
- and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
- assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
- and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
- assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
- and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
-begin
-
-lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
- by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
-
-lemma Sup_Inf: "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
- by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
-
-lemma Inf_Univ: "\<Sqinter>UNIV = \<Squnion>{}"
- unfolding Sup_Inf by auto
-
-lemma Sup_Univ: "\<Squnion>UNIV = \<Sqinter>{}"
- unfolding Inf_Sup by auto
-
-lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
- by (auto intro: antisym Inf_greatest Inf_lower)
-
-lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
- by (auto intro: antisym Sup_least Sup_upper)
-
-lemma Inf_singleton [simp]:
- "\<Sqinter>{a} = a"
- by (auto intro: antisym Inf_lower Inf_greatest)
-
-lemma Sup_singleton [simp]:
- "\<Squnion>{a} = a"
- by (auto intro: antisym Sup_upper Sup_least)
-
-lemma Inf_insert_simp:
- "\<Sqinter>insert a A = (if A = {} then a else a \<sqinter> \<Sqinter>A)"
- by (cases "A = {}") (simp_all, simp add: Inf_insert)
-
-lemma Sup_insert_simp:
- "\<Squnion>insert a A = (if A = {} then a else a \<squnion> \<Squnion>A)"
- by (cases "A = {}") (simp_all, simp add: Sup_insert)
-
-lemma Inf_binary:
- "\<Sqinter>{a, b} = a \<sqinter> b"
- by (simp add: Inf_insert_simp)
-
-lemma Sup_binary:
- "\<Squnion>{a, b} = a \<squnion> b"
- by (simp add: Sup_insert_simp)
-
-lemma bot_def:
- "bot = \<Squnion>{}"
- by (auto intro: antisym Sup_least)
-
-lemma top_def:
- "top = \<Sqinter>{}"
- by (auto intro: antisym Inf_greatest)
-
-lemma sup_bot [simp]:
- "x \<squnion> bot = x"
- using bot_least [of x] by (simp add: le_iff_sup sup_commute)
-
-lemma inf_top [simp]:
- "x \<sqinter> top = x"
- using top_greatest [of x] by (simp add: le_iff_inf inf_commute)
-
-definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
- "SUPR A f == \<Squnion> (f ` A)"
-
-definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
- "INFI A f == \<Sqinter> (f ` A)"
-
-end
-
-syntax
- "_SUP1" :: "pttrns => 'b => 'b" ("(3SUP _./ _)" [0, 10] 10)
- "_SUP" :: "pttrn => 'a set => 'b => 'b" ("(3SUP _:_./ _)" [0, 10] 10)
- "_INF1" :: "pttrns => 'b => 'b" ("(3INF _./ _)" [0, 10] 10)
- "_INF" :: "pttrn => 'a set => 'b => 'b" ("(3INF _:_./ _)" [0, 10] 10)
-
-translations
- "SUP x y. B" == "SUP x. SUP y. B"
- "SUP x. B" == "CONST SUPR UNIV (%x. B)"
- "SUP x. B" == "SUP x:UNIV. B"
- "SUP x:A. B" == "CONST SUPR A (%x. B)"
- "INF x y. B" == "INF x. INF y. B"
- "INF x. B" == "CONST INFI UNIV (%x. B)"
- "INF x. B" == "INF x:UNIV. B"
- "INF x:A. B" == "CONST INFI A (%x. B)"
-
-(* To avoid eta-contraction of body: *)
-print_translation {*
-let
- fun btr' syn (A :: Abs abs :: ts) =
- let val (x,t) = atomic_abs_tr' abs
- in list_comb (Syntax.const syn $ x $ A $ t, ts) end
- val const_syntax_name = Sign.const_syntax_name @{theory} o fst o dest_Const
-in
-[(const_syntax_name @{term SUPR}, btr' "_SUP"),(const_syntax_name @{term "INFI"}, btr' "_INF")]
-end
-*}
-
-context complete_lattice
-begin
-
-lemma le_SUPI: "i : A \<Longrightarrow> M i \<le> (SUP i:A. M i)"
- by (auto simp add: SUPR_def intro: Sup_upper)
-
-lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<le> u) \<Longrightarrow> (SUP i:A. M i) \<le> u"
- by (auto simp add: SUPR_def intro: Sup_least)
-
-lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<le> M i"
- by (auto simp add: INFI_def intro: Inf_lower)
-
-lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<le> M i) \<Longrightarrow> u \<le> (INF i:A. M i)"
- by (auto simp add: INFI_def intro: Inf_greatest)
-
-lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
- by (auto intro: antisym SUP_leI le_SUPI)
-
-lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
- by (auto intro: antisym INF_leI le_INFI)
-
-end
-
-
subsection {* Bool as lattice *}
instantiation bool :: distrib_lattice
@@ -473,28 +344,6 @@
end
-instantiation bool :: complete_lattice
-begin
-
-definition
- Inf_bool_def: "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"
-
-definition
- Sup_bool_def: "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"
-
-instance
- by intro_classes (auto simp add: Inf_bool_def Sup_bool_def le_bool_def)
-
-end
-
-lemma Inf_empty_bool [simp]:
- "\<Sqinter>{}"
- unfolding Inf_bool_def by auto
-
-lemma not_Sup_empty_bool [simp]:
- "\<not> Sup {}"
- unfolding Sup_bool_def by auto
-
subsection {* Fun as lattice *}
@@ -522,85 +371,6 @@
instance "fun" :: (type, distrib_lattice) distrib_lattice
by default (auto simp add: inf_fun_eq sup_fun_eq sup_inf_distrib1)
-instantiation "fun" :: (type, complete_lattice) complete_lattice
-begin
-
-definition
- Inf_fun_def [code del]: "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
-
-definition
- Sup_fun_def [code del]: "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
-
-instance
- by intro_classes
- (auto simp add: Inf_fun_def Sup_fun_def le_fun_def
- intro: Inf_lower Sup_upper Inf_greatest Sup_least)
-
-end
-
-lemma Inf_empty_fun:
- "\<Sqinter>{} = (\<lambda>_. \<Sqinter>{})"
- by rule (auto simp add: Inf_fun_def)
-
-lemma Sup_empty_fun:
- "\<Squnion>{} = (\<lambda>_. \<Squnion>{})"
- by rule (auto simp add: Sup_fun_def)
-
-
-subsection {* Set as lattice *}
-
-lemma inf_set_eq: "A \<sqinter> B = A \<inter> B"
- apply (rule subset_antisym)
- apply (rule Int_greatest)
- apply (rule inf_le1)
- apply (rule inf_le2)
- apply (rule inf_greatest)
- apply (rule Int_lower1)
- apply (rule Int_lower2)
- done
-
-lemma sup_set_eq: "A \<squnion> B = A \<union> B"
- apply (rule subset_antisym)
- apply (rule sup_least)
- apply (rule Un_upper1)
- apply (rule Un_upper2)
- apply (rule Un_least)
- apply (rule sup_ge1)
- apply (rule sup_ge2)
- done
-
-lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B"
- apply (fold inf_set_eq sup_set_eq)
- apply (erule mono_inf)
- done
-
-lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)"
- apply (fold inf_set_eq sup_set_eq)
- apply (erule mono_sup)
- done
-
-lemma Inf_set_eq: "\<Sqinter>S = \<Inter>S"
- apply (rule subset_antisym)
- apply (rule Inter_greatest)
- apply (erule Inf_lower)
- apply (rule Inf_greatest)
- apply (erule Inter_lower)
- done
-
-lemma Sup_set_eq: "\<Squnion>S = \<Union>S"
- apply (rule subset_antisym)
- apply (rule Sup_least)
- apply (erule Union_upper)
- apply (rule Union_least)
- apply (erule Sup_upper)
- done
-
-lemma top_set_eq: "top = UNIV"
- by (iprover intro!: subset_antisym subset_UNIV top_greatest)
-
-lemma bot_set_eq: "bot = {}"
- by (iprover intro!: subset_antisym empty_subsetI bot_least)
-
text {* redundant bindings *}
@@ -611,8 +381,6 @@
less_eq (infix "\<sqsubseteq>" 50) and
less (infix "\<sqsubset>" 50) and
inf (infixl "\<sqinter>" 70) and
- sup (infixl "\<squnion>" 65) and
- Inf ("\<Sqinter>_" [900] 900) and
- Sup ("\<Squnion>_" [900] 900)
+ sup (infixl "\<squnion>" 65)
end
--- a/src/HOL/Library/Euclidean_Space.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Library/Euclidean_Space.thy Fri Mar 06 15:54:33 2009 +0100
@@ -4199,7 +4199,7 @@
assumes iB: "independent (B:: (real ^'n) set)"
shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)"
proof-
- from maximal_independent_subset_extend[of B "UNIV"] iB
+ from maximal_independent_subset_extend[of B UNIV] iB
obtain C where C: "B \<subseteq> C" "independent C" "\<And>x. x \<in> span C" by auto
from C(2) independent_bound[of C] linear_independent_extend_lemma[of C f]
--- a/src/HOL/Library/Executable_Set.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Library/Executable_Set.thy Fri Mar 06 15:54:33 2009 +0100
@@ -178,7 +178,7 @@
lemma iso_insert:
"set (insertl x xs) = insert x (set xs)"
- unfolding insertl_def iso_member by (simp add: Set.insert_absorb)
+ unfolding insertl_def iso_member by (simp add: insert_absorb)
lemma iso_remove1:
assumes distnct: "distinct xs"
@@ -261,7 +261,7 @@
subsubsection {* const serializations *}
consts_code
- "{}" ("{*[]*}")
+ "Set.empty" ("{*[]*}")
insert ("{*insertl*}")
is_empty ("{*null*}")
"op \<union>" ("{*unionl*}")
--- a/src/HOL/Library/Finite_Cartesian_Product.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Library/Finite_Cartesian_Product.thy Fri Mar 06 15:54:33 2009 +0100
@@ -15,7 +15,7 @@
definition "dimindex (S:: 'a set) = (if finite (UNIV::'a set) then card (UNIV:: 'a set) else 1)"
syntax "_type_dimindex" :: "type => nat" ("(1DIM/(1'(_')))")
-translations "DIM(t)" => "CONST dimindex (UNIV :: t set)"
+translations "DIM(t)" => "CONST dimindex (CONST UNIV :: t set)"
lemma dimindex_nonzero: "dimindex S \<noteq> 0"
unfolding dimindex_def
--- a/src/HOL/Library/LaTeXsugar.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Library/LaTeXsugar.thy Fri Mar 06 15:54:33 2009 +0100
@@ -30,7 +30,7 @@
(* empty set *)
notation (latex)
- "{}" ("\<emptyset>")
+ "Set.empty" ("\<emptyset>")
(* insert *)
translations
--- a/src/HOL/Nominal/nominal_inductive2.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Nominal/nominal_inductive2.ML Fri Mar 06 15:54:33 2009 +0100
@@ -75,7 +75,7 @@
| add_binders thy i (Abs (_, _, t)) bs = add_binders thy (i + 1) t bs
| add_binders thy i _ bs = bs;
-fun mk_set T [] = Const ("{}", HOLogic.mk_setT T)
+fun mk_set T [] = Const (@{const_name Set.empty}, HOLogic.mk_setT T)
| mk_set T (x :: xs) =
Const ("insert", T --> HOLogic.mk_setT T --> HOLogic.mk_setT T) $ x $
mk_set T xs;
@@ -201,7 +201,7 @@
| add_set (t, T) ((u, U) :: ps) =
if T = U then
let val S = HOLogic.mk_setT T
- in (Const (@{const_name "op Un"}, S --> S --> S) $ u $ t, T) :: ps
+ in (Const (@{const_name "Un"}, S --> S --> S) $ u $ t, T) :: ps
end
else (u, U) :: add_set (t, T) ps
in
--- a/src/HOL/Nominal/nominal_package.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Nominal/nominal_package.ML Fri Mar 06 15:54:33 2009 +0100
@@ -1010,8 +1010,8 @@
(augment_sort thy8 pt_cp_sort
(HOLogic.mk_Trueprop (HOLogic.mk_eq
(supp c,
- if null dts then Const ("{}", HOLogic.mk_setT atomT)
- else foldr1 (HOLogic.mk_binop "op Un") (map supp args2)))))
+ if null dts then Const (@{const_name Set.empty}, HOLogic.mk_setT atomT)
+ else foldr1 (HOLogic.mk_binop @{const_name Un}) (map supp args2)))))
(fn _ =>
simp_tac (HOL_basic_ss addsimps (supp_def ::
Un_assoc :: de_Morgan_conj :: Collect_disj_eq :: finite_Un ::
--- a/src/HOL/Set.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Set.thy Fri Mar 06 15:54:33 2009 +0100
@@ -1,12 +1,11 @@
(* Title: HOL/Set.thy
- ID: $Id$
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
*)
header {* Set theory for higher-order logic *}
theory Set
-imports Orderings
+imports Lattices
begin
text {* A set in HOL is simply a predicate. *}
@@ -19,36 +18,21 @@
types 'a set = "'a => bool"
consts
- "{}" :: "'a set" ("{}")
- UNIV :: "'a set"
+ Collect :: "('a => bool) => 'a set" -- "comprehension"
+ "op :" :: "'a => 'a set => bool" -- "membership"
insert :: "'a => 'a set => 'a set"
- Collect :: "('a => bool) => 'a set" -- "comprehension"
- "op Int" :: "'a set => 'a set => 'a set" (infixl "Int" 70)
- "op Un" :: "'a set => 'a set => 'a set" (infixl "Un" 65)
- UNION :: "'a set => ('a => 'b set) => 'b set" -- "general union"
- INTER :: "'a set => ('a => 'b set) => 'b set" -- "general intersection"
- Union :: "'a set set => 'a set" -- "union of a set"
- Inter :: "'a set set => 'a set" -- "intersection of a set"
- Pow :: "'a set => 'a set set" -- "powerset"
Ball :: "'a set => ('a => bool) => bool" -- "bounded universal quantifiers"
Bex :: "'a set => ('a => bool) => bool" -- "bounded existential quantifiers"
Bex1 :: "'a set => ('a => bool) => bool" -- "bounded unique existential quantifiers"
+ Pow :: "'a set => 'a set set" -- "powerset"
image :: "('a => 'b) => 'a set => 'b set" (infixr "`" 90)
- "op :" :: "'a => 'a set => bool" -- "membership"
+
+local
notation
"op :" ("op :") and
"op :" ("(_/ : _)" [50, 51] 50)
-local
-
-
-subsection {* Additional concrete syntax *}
-
-abbreviation
- range :: "('a => 'b) => 'b set" where -- "of function"
- "range f == f ` UNIV"
-
abbreviation
"not_mem x A == ~ (x : A)" -- "non-membership"
@@ -57,32 +41,51 @@
not_mem ("(_/ ~: _)" [50, 51] 50)
notation (xsymbols)
- "op Int" (infixl "\<inter>" 70) and
- "op Un" (infixl "\<union>" 65) and
"op :" ("op \<in>") and
"op :" ("(_/ \<in> _)" [50, 51] 50) and
not_mem ("op \<notin>") and
- not_mem ("(_/ \<notin> _)" [50, 51] 50) and
- Union ("\<Union>_" [90] 90) and
- Inter ("\<Inter>_" [90] 90)
+ not_mem ("(_/ \<notin> _)" [50, 51] 50)
notation (HTML output)
- "op Int" (infixl "\<inter>" 70) and
- "op Un" (infixl "\<union>" 65) and
"op :" ("op \<in>") and
"op :" ("(_/ \<in> _)" [50, 51] 50) and
not_mem ("op \<notin>") and
not_mem ("(_/ \<notin> _)" [50, 51] 50)
syntax
+ "@Coll" :: "pttrn => bool => 'a set" ("(1{_./ _})")
+
+translations
+ "{x. P}" == "Collect (%x. P)"
+
+definition empty :: "'a set" ("{}") where
+ "empty \<equiv> {x. False}"
+
+definition UNIV :: "'a set" where
+ "UNIV \<equiv> {x. True}"
+
+syntax
"@Finset" :: "args => 'a set" ("{(_)}")
- "@Coll" :: "pttrn => bool => 'a set" ("(1{_./ _})")
- "@SetCompr" :: "'a => idts => bool => 'a set" ("(1{_ |/_./ _})")
- "@Collect" :: "idt => 'a set => bool => 'a set" ("(1{_ :/ _./ _})")
- "@INTER1" :: "pttrns => 'b set => 'b set" ("(3INT _./ _)" [0, 10] 10)
- "@UNION1" :: "pttrns => 'b set => 'b set" ("(3UN _./ _)" [0, 10] 10)
- "@INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3INT _:_./ _)" [0, 10] 10)
- "@UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3UN _:_./ _)" [0, 10] 10)
+
+translations
+ "{x, xs}" == "insert x {xs}"
+ "{x}" == "insert x {}"
+
+definition Int :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Int" 70) where
+ "A Int B \<equiv> {x. x \<in> A \<and> x \<in> B}"
+
+definition Un :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "Un" 65) where
+ "A Un B \<equiv> {x. x \<in> A \<or> x \<in> B}"
+
+notation (xsymbols)
+ "Int" (infixl "\<inter>" 70) and
+ "Un" (infixl "\<union>" 65)
+
+notation (HTML output)
+ "Int" (infixl "\<inter>" 70) and
+ "Un" (infixl "\<union>" 65)
+
+syntax
"_Ball" :: "pttrn => 'a set => bool => bool" ("(3ALL _:_./ _)" [0, 0, 10] 10)
"_Bex" :: "pttrn => 'a set => bool => bool" ("(3EX _:_./ _)" [0, 0, 10] 10)
"_Bex1" :: "pttrn => 'a set => bool => bool" ("(3EX! _:_./ _)" [0, 0, 10] 10)
@@ -93,24 +96,6 @@
"_Bex" :: "pttrn => 'a set => bool => bool" ("(3? _:_./ _)" [0, 0, 10] 10)
"_Bex1" :: "pttrn => 'a set => bool => bool" ("(3?! _:_./ _)" [0, 0, 10] 10)
-translations
- "{x, xs}" == "insert x {xs}"
- "{x}" == "insert x {}"
- "{x. P}" == "Collect (%x. P)"
- "{x:A. P}" => "{x. x:A & P}"
- "UN x y. B" == "UN x. UN y. B"
- "UN x. B" == "UNION UNIV (%x. B)"
- "UN x. B" == "UN x:UNIV. B"
- "INT x y. B" == "INT x. INT y. B"
- "INT x. B" == "INTER UNIV (%x. B)"
- "INT x. B" == "INT x:UNIV. B"
- "UN x:A. B" == "UNION A (%x. B)"
- "INT x:A. B" == "INTER A (%x. B)"
- "ALL x:A. P" == "Ball A (%x. P)"
- "EX x:A. P" == "Bex A (%x. P)"
- "EX! x:A. P" == "Bex1 A (%x. P)"
- "LEAST x:A. P" => "LEAST x. x:A & P"
-
syntax (xsymbols)
"_Ball" :: "pttrn => 'a set => bool => bool" ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
"_Bex" :: "pttrn => 'a set => bool => bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
@@ -122,26 +107,71 @@
"_Bex" :: "pttrn => 'a set => bool => bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
"_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
+translations
+ "ALL x:A. P" == "Ball A (%x. P)"
+ "EX x:A. P" == "Bex A (%x. P)"
+ "EX! x:A. P" == "Bex1 A (%x. P)"
+ "LEAST x:A. P" => "LEAST x. x:A & P"
+
+definition INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
+ "INTER A B \<equiv> {y. \<forall>x\<in>A. y \<in> B x}"
+
+definition UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
+ "UNION A B \<equiv> {y. \<exists>x\<in>A. y \<in> B x}"
+
+definition Inter :: "'a set set \<Rightarrow> 'a set" where
+ "Inter S \<equiv> INTER S (\<lambda>x. x)"
+
+definition Union :: "'a set set \<Rightarrow> 'a set" where
+ "Union S \<equiv> UNION S (\<lambda>x. x)"
+
+notation (xsymbols)
+ Inter ("\<Inter>_" [90] 90) and
+ Union ("\<Union>_" [90] 90)
+
+
+subsection {* Additional concrete syntax *}
+
+syntax
+ "@SetCompr" :: "'a => idts => bool => 'a set" ("(1{_ |/_./ _})")
+ "@Collect" :: "idt => 'a set => bool => 'a set" ("(1{_ :/ _./ _})")
+ "@INTER1" :: "pttrns => 'b set => 'b set" ("(3INT _./ _)" [0, 10] 10)
+ "@UNION1" :: "pttrns => 'b set => 'b set" ("(3UN _./ _)" [0, 10] 10)
+ "@INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3INT _:_./ _)" [0, 10] 10)
+ "@UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3UN _:_./ _)" [0, 10] 10)
+
syntax (xsymbols)
"@Collect" :: "idt => 'a set => bool => 'a set" ("(1{_ \<in>/ _./ _})")
+ "@INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>_./ _)" [0, 10] 10)
"@UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>_./ _)" [0, 10] 10)
- "@INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>_./ _)" [0, 10] 10)
+ "@INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>_\<in>_./ _)" [0, 10] 10)
"@UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>_\<in>_./ _)" [0, 10] 10)
- "@INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>_\<in>_./ _)" [0, 10] 10)
syntax (latex output)
+ "@INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
"@UNION1" :: "pttrns => 'b set => 'b set" ("(3\<Union>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
- "@INTER1" :: "pttrns => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<^esub>)/ _)" [0, 10] 10)
+ "@INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
"@UNION" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Union>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
- "@INTER" :: "pttrn => 'a set => 'b set => 'b set" ("(3\<Inter>(00\<^bsub>_\<in>_\<^esub>)/ _)" [0, 10] 10)
-
-text{*
+
+translations
+ "{x:A. P}" => "{x. x:A & P}"
+ "INT x y. B" == "INT x. INT y. B"
+ "INT x. B" == "CONST INTER CONST UNIV (%x. B)"
+ "INT x. B" == "INT x:CONST UNIV. B"
+ "INT x:A. B" == "CONST INTER A (%x. B)"
+ "UN x y. B" == "UN x. UN y. B"
+ "UN x. B" == "CONST UNION CONST UNIV (%x. B)"
+ "UN x. B" == "UN x:CONST UNIV. B"
+ "UN x:A. B" == "CONST UNION A (%x. B)"
+
+text {*
Note the difference between ordinary xsymbol syntax of indexed
unions and intersections (e.g.\ @{text"\<Union>a\<^isub>1\<in>A\<^isub>1. B"})
and their \LaTeX\ rendition: @{term"\<Union>a\<^isub>1\<in>A\<^isub>1. B"}. The
former does not make the index expression a subscript of the
union/intersection symbol because this leads to problems with nested
- subscripts in Proof General. *}
+ subscripts in Proof General.
+*}
abbreviation
subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where
@@ -183,6 +213,10 @@
supset_eq ("op \<supseteq>") and
supset_eq ("(_/ \<supseteq> _)" [50, 51] 50)
+abbreviation
+ range :: "('a => 'b) => 'b set" where -- "of function"
+ "range f == f ` UNIV"
+
subsubsection "Bounded quantifiers"
@@ -280,12 +314,12 @@
(* To avoid eta-contraction of body: *)
print_translation {*
let
- fun btr' syn [A,Abs abs] =
- let val (x,t) = atomic_abs_tr' abs
+ fun btr' syn [A, Abs abs] =
+ let val (x, t) = atomic_abs_tr' abs
in Syntax.const syn $ x $ A $ t end
in
-[("Ball", btr' "_Ball"),("Bex", btr' "_Bex"),
- ("UNION", btr' "@UNION"),("INTER", btr' "@INTER")]
+[(@{const_syntax Ball}, btr' "_Ball"), (@{const_syntax Bex}, btr' "_Bex"),
+ (@{const_syntax UNION}, btr' "@UNION"),(@{const_syntax INTER}, btr' "@INTER")]
end
*}
@@ -373,15 +407,7 @@
end
defs
- Un_def: "A Un B == {x. x:A | x:B}"
- Int_def: "A Int B == {x. x:A & x:B}"
- INTER_def: "INTER A B == {y. ALL x:A. y: B(x)}"
- UNION_def: "UNION A B == {y. EX x:A. y: B(x)}"
- Inter_def: "Inter S == (INT x:S. x)"
- Union_def: "Union S == (UN x:S. x)"
Pow_def: "Pow A == {B. B <= A}"
- empty_def: "{} == {x. False}"
- UNIV_def: "UNIV == {x. True}"
insert_def: "insert a B == {x. x=a} Un B"
image_def: "f`A == {y. EX x:A. y = f(x)}"
@@ -1048,12 +1074,12 @@
to use term-nets to associate patterns with rules. Also, if a rule fails to
apply, then the formula should be kept.
[("HOL.uminus", Compl_iff RS iffD1), ("HOL.minus", [Diff_iff RS iffD1]),
- ("op Int", [IntD1,IntD2]),
+ ("Int", [IntD1,IntD2]),
("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
*)
ML {*
- val mksimps_pairs = [("Ball", @{thms bspec})] @ mksimps_pairs;
+ val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
*}
declaration {* fn _ =>
Simplifier.map_ss (fn ss => ss setmksimps (mksimps mksimps_pairs))
@@ -2160,9 +2186,7 @@
subsection {* Getting the Contents of a Singleton Set *}
-definition
- contents :: "'a set \<Rightarrow> 'a"
-where
+definition contents :: "'a set \<Rightarrow> 'a" where
[code del]: "contents X = (THE x. X = {x})"
lemma contents_eq [simp]: "contents {x} = x"
@@ -2215,6 +2239,255 @@
unfolding vimage_def Collect_def mem_def ..
+subsection {* Complete lattices *}
+
+notation
+ less_eq (infix "\<sqsubseteq>" 50) and
+ less (infix "\<sqsubset>" 50) and
+ inf (infixl "\<sqinter>" 70) and
+ sup (infixl "\<squnion>" 65)
+
+class complete_lattice = lattice + bot + top +
+ fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
+ and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
+ assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x"
+ and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A"
+ assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A"
+ and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z"
+begin
+
+lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
+ by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
+
+lemma Sup_Inf: "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
+ by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least)
+
+lemma Inf_Univ: "\<Sqinter>UNIV = \<Squnion>{}"
+ unfolding Sup_Inf by auto
+
+lemma Sup_Univ: "\<Squnion>UNIV = \<Sqinter>{}"
+ unfolding Inf_Sup by auto
+
+lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
+ by (auto intro: antisym Inf_greatest Inf_lower)
+
+lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
+ by (auto intro: antisym Sup_least Sup_upper)
+
+lemma Inf_singleton [simp]:
+ "\<Sqinter>{a} = a"
+ by (auto intro: antisym Inf_lower Inf_greatest)
+
+lemma Sup_singleton [simp]:
+ "\<Squnion>{a} = a"
+ by (auto intro: antisym Sup_upper Sup_least)
+
+lemma Inf_insert_simp:
+ "\<Sqinter>insert a A = (if A = {} then a else a \<sqinter> \<Sqinter>A)"
+ by (cases "A = {}") (simp_all, simp add: Inf_insert)
+
+lemma Sup_insert_simp:
+ "\<Squnion>insert a A = (if A = {} then a else a \<squnion> \<Squnion>A)"
+ by (cases "A = {}") (simp_all, simp add: Sup_insert)
+
+lemma Inf_binary:
+ "\<Sqinter>{a, b} = a \<sqinter> b"
+ by (simp add: Inf_insert_simp)
+
+lemma Sup_binary:
+ "\<Squnion>{a, b} = a \<squnion> b"
+ by (simp add: Sup_insert_simp)
+
+lemma bot_def:
+ "bot = \<Squnion>{}"
+ by (auto intro: antisym Sup_least)
+
+lemma top_def:
+ "top = \<Sqinter>{}"
+ by (auto intro: antisym Inf_greatest)
+
+lemma sup_bot [simp]:
+ "x \<squnion> bot = x"
+ using bot_least [of x] by (simp add: le_iff_sup sup_commute)
+
+lemma inf_top [simp]:
+ "x \<sqinter> top = x"
+ using top_greatest [of x] by (simp add: le_iff_inf inf_commute)
+
+definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
+ "SUPR A f == \<Squnion> (f ` A)"
+
+definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
+ "INFI A f == \<Sqinter> (f ` A)"
+
+end
+
+syntax
+ "_SUP1" :: "pttrns => 'b => 'b" ("(3SUP _./ _)" [0, 10] 10)
+ "_SUP" :: "pttrn => 'a set => 'b => 'b" ("(3SUP _:_./ _)" [0, 10] 10)
+ "_INF1" :: "pttrns => 'b => 'b" ("(3INF _./ _)" [0, 10] 10)
+ "_INF" :: "pttrn => 'a set => 'b => 'b" ("(3INF _:_./ _)" [0, 10] 10)
+
+translations
+ "SUP x y. B" == "SUP x. SUP y. B"
+ "SUP x. B" == "CONST SUPR CONST UNIV (%x. B)"
+ "SUP x. B" == "SUP x:CONST UNIV. B"
+ "SUP x:A. B" == "CONST SUPR A (%x. B)"
+ "INF x y. B" == "INF x. INF y. B"
+ "INF x. B" == "CONST INFI CONST UNIV (%x. B)"
+ "INF x. B" == "INF x:CONST UNIV. B"
+ "INF x:A. B" == "CONST INFI A (%x. B)"
+
+(* To avoid eta-contraction of body: *)
+print_translation {*
+let
+ fun btr' syn (A :: Abs abs :: ts) =
+ let val (x,t) = atomic_abs_tr' abs
+ in list_comb (Syntax.const syn $ x $ A $ t, ts) end
+ val const_syntax_name = Sign.const_syntax_name @{theory} o fst o dest_Const
+in
+[(const_syntax_name @{term SUPR}, btr' "_SUP"),(const_syntax_name @{term "INFI"}, btr' "_INF")]
+end
+*}
+
+context complete_lattice
+begin
+
+lemma le_SUPI: "i : A \<Longrightarrow> M i \<le> (SUP i:A. M i)"
+ by (auto simp add: SUPR_def intro: Sup_upper)
+
+lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<le> u) \<Longrightarrow> (SUP i:A. M i) \<le> u"
+ by (auto simp add: SUPR_def intro: Sup_least)
+
+lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<le> M i"
+ by (auto simp add: INFI_def intro: Inf_lower)
+
+lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<le> M i) \<Longrightarrow> u \<le> (INF i:A. M i)"
+ by (auto simp add: INFI_def intro: Inf_greatest)
+
+lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
+ by (auto intro: antisym SUP_leI le_SUPI)
+
+lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
+ by (auto intro: antisym INF_leI le_INFI)
+
+end
+
+
+subsection {* Bool as complete lattice *}
+
+instantiation bool :: complete_lattice
+begin
+
+definition
+ Inf_bool_def: "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)"
+
+definition
+ Sup_bool_def: "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)"
+
+instance
+ by intro_classes (auto simp add: Inf_bool_def Sup_bool_def le_bool_def)
+
+end
+
+lemma Inf_empty_bool [simp]:
+ "\<Sqinter>{}"
+ unfolding Inf_bool_def by auto
+
+lemma not_Sup_empty_bool [simp]:
+ "\<not> Sup {}"
+ unfolding Sup_bool_def by auto
+
+
+subsection {* Fun as complete lattice *}
+
+instantiation "fun" :: (type, complete_lattice) complete_lattice
+begin
+
+definition
+ Inf_fun_def [code del]: "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
+
+definition
+ Sup_fun_def [code del]: "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
+
+instance
+ by intro_classes
+ (auto simp add: Inf_fun_def Sup_fun_def le_fun_def
+ intro: Inf_lower Sup_upper Inf_greatest Sup_least)
+
+end
+
+lemma Inf_empty_fun:
+ "\<Sqinter>{} = (\<lambda>_. \<Sqinter>{})"
+ by rule (auto simp add: Inf_fun_def)
+
+lemma Sup_empty_fun:
+ "\<Squnion>{} = (\<lambda>_. \<Squnion>{})"
+ by rule (auto simp add: Sup_fun_def)
+
+
+subsection {* Set as lattice *}
+
+lemma inf_set_eq: "A \<sqinter> B = A \<inter> B"
+ apply (rule subset_antisym)
+ apply (rule Int_greatest)
+ apply (rule inf_le1)
+ apply (rule inf_le2)
+ apply (rule inf_greatest)
+ apply (rule Int_lower1)
+ apply (rule Int_lower2)
+ done
+
+lemma sup_set_eq: "A \<squnion> B = A \<union> B"
+ apply (rule subset_antisym)
+ apply (rule sup_least)
+ apply (rule Un_upper1)
+ apply (rule Un_upper2)
+ apply (rule Un_least)
+ apply (rule sup_ge1)
+ apply (rule sup_ge2)
+ done
+
+lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B"
+ apply (fold inf_set_eq sup_set_eq)
+ apply (erule mono_inf)
+ done
+
+lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)"
+ apply (fold inf_set_eq sup_set_eq)
+ apply (erule mono_sup)
+ done
+
+lemma Inf_set_eq: "\<Sqinter>S = \<Inter>S"
+ apply (rule subset_antisym)
+ apply (rule Inter_greatest)
+ apply (erule Inf_lower)
+ apply (rule Inf_greatest)
+ apply (erule Inter_lower)
+ done
+
+lemma Sup_set_eq: "\<Squnion>S = \<Union>S"
+ apply (rule subset_antisym)
+ apply (rule Sup_least)
+ apply (erule Union_upper)
+ apply (rule Union_least)
+ apply (erule Sup_upper)
+ done
+
+lemma top_set_eq: "top = UNIV"
+ by (iprover intro!: subset_antisym subset_UNIV top_greatest)
+
+lemma bot_set_eq: "bot = {}"
+ by (iprover intro!: subset_antisym empty_subsetI bot_least)
+
+no_notation
+ less_eq (infix "\<sqsubseteq>" 50) and
+ less (infix "\<sqsubset>" 50) and
+ inf (infixl "\<sqinter>" 70) and
+ sup (infixl "\<squnion>" 65) and
+ Inf ("\<Sqinter>_" [900] 900) and
+ Sup ("\<Squnion>_" [900] 900)
+
subsection {* Basic ML bindings *}
--- a/src/HOL/SizeChange/sct.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/SizeChange/sct.ML Fri Mar 06 15:54:33 2009 +0100
@@ -266,12 +266,12 @@
fun mk_edge m G n = HOLogic.mk_prod (m, HOLogic.mk_prod (G, n))
-fun mk_set T [] = Const ("{}", HOLogic.mk_setT T)
- | mk_set T (x :: xs) = Const ("insert",
+fun mk_set T [] = Const (@{const_name Set.empty}, HOLogic.mk_setT T)
+ | mk_set T (x :: xs) = Const (@{const_name insert},
T --> HOLogic.mk_setT T --> HOLogic.mk_setT T) $ x $ mk_set T xs
-fun dest_set (Const ("{}", _)) = []
- | dest_set (Const ("insert", _) $ x $ xs) = x :: dest_set xs
+fun dest_set (Const (@{const_name Set.empty}, _)) = []
+ | dest_set (Const (@{const_name insert}, _) $ x $ xs) = x :: dest_set xs
val in_graph_tac =
simp_tac (HOL_basic_ss addsimps has_edge_simps) 1
--- a/src/HOL/Tools/Qelim/cooper.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/Qelim/cooper.ML Fri Mar 06 15:54:33 2009 +0100
@@ -428,8 +428,8 @@
in
fun provein x S =
case term_of S of
- Const("{}",_) => error "Unexpected error in Cooper please email Amine Chaieb"
- | Const("insert",_)$y$_ =>
+ Const(@{const_name Set.empty}, _) => error "Unexpected error in Cooper please email Amine Chaieb"
+ | Const(@{const_name insert}, _) $ y $ _ =>
let val (cy,S') = Thm.dest_binop S
in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2)
--- a/src/HOL/Tools/Qelim/ferrante_rackoff.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/Qelim/ferrante_rackoff.ML Fri Mar 06 15:54:33 2009 +0100
@@ -99,8 +99,8 @@
in
fun provein x S =
case term_of S of
- Const("{}",_) => raise CTERM ("provein : not a member!", [S])
- | Const("insert",_)$y$_ =>
+ Const(@{const_name Set.empty}, _) => raise CTERM ("provein : not a member!", [S])
+ | Const(@{const_name insert}, _) $ y $_ =>
let val (cy,S') = Thm.dest_binop S
in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2)
--- a/src/HOL/Tools/Qelim/langford.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/Qelim/langford.ML Fri Mar 06 15:54:33 2009 +0100
@@ -14,9 +14,9 @@
val dest_set =
let
fun h acc ct =
- case (term_of ct) of
- Const("{}",_) => acc
- | Const("insert",_)$_$t => h (Thm.dest_arg1 ct :: acc) (Thm.dest_arg ct)
+ case term_of ct of
+ Const (@{const_name Set.empty}, _) => acc
+ | Const (@{const_name insert}, _) $ _ $ t => h (Thm.dest_arg1 ct :: acc) (Thm.dest_arg ct)
in h [] end;
fun prove_finite cT u =
@@ -48,11 +48,11 @@
in (ne, f) end
val qe = case (term_of L, term_of U) of
- (Const("{}",_),_) =>
+ (Const (@{const_name Set.empty}, _),_) =>
let
val (neU,fU) = proveneF U
in simp_rule (transitive ths (dlo_qeth_nolb OF [neU, fU])) end
- | (_,Const("{}",_)) =>
+ | (_,Const (@{const_name Set.empty}, _)) =>
let
val (neL,fL) = proveneF L
in simp_rule (transitive ths (dlo_qeth_noub OF [neL, fL])) end
--- a/src/HOL/Tools/datatype_rep_proofs.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/datatype_rep_proofs.ML Fri Mar 06 15:54:33 2009 +0100
@@ -461,7 +461,7 @@
(if i < length newTs then Const ("True", HOLogic.boolT)
else HOLogic.mk_mem (mk_Free "x" Univ_elT i,
Const ("image", [isoT, HOLogic.mk_setT T] ---> UnivT) $
- Const (iso_name, isoT) $ Const ("UNIV", HOLogic.mk_setT T)))
+ Const (iso_name, isoT) $ Const (@{const_name UNIV}, HOLogic.mk_setT T)))
end;
val iso_t = HOLogic.mk_Trueprop (mk_conj (map mk_iso_t
--- a/src/HOL/Tools/function_package/decompose.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/function_package/decompose.ML Fri Mar 06 15:54:33 2009 +0100
@@ -30,7 +30,7 @@
if is_some (Termination.get_chain D c1 c2) then D else
let
val goal = HOLogic.mk_eq (HOLogic.mk_binop @{const_name "Relation.rel_comp"} (c1, c2),
- Const (@{const_name "{}"}, fastype_of c1))
+ Const (@{const_name Set.empty}, fastype_of c1))
|> HOLogic.mk_Trueprop (* "C1 O C2 = {}" *)
val chain = case FundefLib.try_proof (cterm_of thy goal) chain_tac of
--- a/src/HOL/Tools/function_package/fundef_lib.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/function_package/fundef_lib.ML Fri Mar 06 15:54:33 2009 +0100
@@ -139,7 +139,7 @@
Here, + can be any binary operation that is AC.
- cn - The name of the binop-constructor (e.g. @{const_name "op Un"})
+ cn - The name of the binop-constructor (e.g. @{const_name Un})
ac - the AC rewrite rules for cn
is - the list of indices of the expressions that should become the first part
(e.g. [0,1,3] in the above example)
@@ -168,8 +168,8 @@
(* instance for unions *)
fun regroup_union_conv t =
- regroup_conv (@{const_name "{}"})
- @{const_name "op Un"}
+ regroup_conv (@{const_name Set.empty})
+ @{const_name Un}
(map (fn t => t RS eq_reflection) (@{thms "Un_ac"} @
@{thms "Un_empty_right"} @
@{thms "Un_empty_left"})) t
--- a/src/HOL/Tools/function_package/lexicographic_order.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/function_package/lexicographic_order.ML Fri Mar 06 15:54:33 2009 +0100
@@ -24,7 +24,7 @@
let
val relT = HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT))
val mlexT = (domT --> HOLogic.natT) --> relT --> relT
- fun mk_ms [] = Const (@{const_name "{}"}, relT)
+ fun mk_ms [] = Const (@{const_name Set.empty}, relT)
| mk_ms (f::fs) =
Const (@{const_name "mlex_prod"}, mlexT) $ f $ mk_ms fs
in
--- a/src/HOL/Tools/function_package/scnp_reconstruct.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/function_package/scnp_reconstruct.ML Fri Mar 06 15:54:33 2009 +0100
@@ -142,7 +142,7 @@
val setT = HOLogic.mk_setT
-fun mk_set T [] = Const (@{const_name "{}"}, setT T)
+fun mk_set T [] = Const (@{const_name Set.empty}, setT T)
| mk_set T (x :: xs) =
Const (@{const_name insert}, T --> setT T --> setT T) $
x $ mk_set T xs
--- a/src/HOL/Tools/function_package/termination.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/function_package/termination.ML Fri Mar 06 15:54:33 2009 +0100
@@ -145,7 +145,7 @@
fun mk_sum_skel rel =
let
- val cs = FundefLib.dest_binop_list @{const_name "op Un"} rel
+ val cs = FundefLib.dest_binop_list @{const_name Un} rel
fun collect_pats (Const ("Collect", _) $ Abs (_, _, c)) =
let
val (Const ("op &", _) $ (Const ("op =", _) $ _ $ (Const ("Pair", _) $ r $ l)) $ Gam)
@@ -233,7 +233,7 @@
fun CALLS tac i st =
if Thm.no_prems st then all_tac st
else case Thm.term_of (Thm.cprem_of st i) of
- (_ $ (_ $ rel)) => tac (FundefLib.dest_binop_list @{const_name "op Un"} rel, i) st
+ (_ $ (_ $ rel)) => tac (FundefLib.dest_binop_list @{const_name Un} rel, i) st
|_ => no_tac st
type ttac = (data -> int -> tactic) -> (data -> int -> tactic) -> data -> int -> tactic
@@ -291,9 +291,9 @@
val relation =
if null ineqs then
- Const (@{const_name "{}"}, fastype_of rel)
+ Const (@{const_name Set.empty}, fastype_of rel)
else
- foldr1 (HOLogic.mk_binop @{const_name "op Un"}) (map mk_compr ineqs)
+ foldr1 (HOLogic.mk_binop @{const_name Un}) (map mk_compr ineqs)
fun solve_membership_tac i =
(EVERY' (replicate (i - 2) (rtac @{thm UnI2})) (* pick the right component of the union *)
--- a/src/HOL/Tools/hologic.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/hologic.ML Fri Mar 06 15:54:33 2009 +0100
@@ -225,7 +225,7 @@
fun dest_mem (Const ("op :", _) $ x $ A) = (x, A)
| dest_mem t = raise TERM ("dest_mem", [t]);
-fun mk_UNIV T = Const ("UNIV", mk_setT T);
+fun mk_UNIV T = Const ("Set.UNIV", mk_setT T);
(* binary operations and relations *)
--- a/src/HOL/Tools/inductive_set_package.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/inductive_set_package.ML Fri Mar 06 15:54:33 2009 +0100
@@ -73,8 +73,8 @@
in Drule.instantiate' [] (rev (map (SOME o cterm_of thy o Var) vs))
(p (fold (Logic.all o Var) vs t) f)
end;
- fun mkop "op &" T x = SOME (Const ("op Int", T --> T --> T), x)
- | mkop "op |" T x = SOME (Const ("op Un", T --> T --> T), x)
+ fun mkop "op &" T x = SOME (Const (@{const_name "Int"}, T --> T --> T), x)
+ | mkop "op |" T x = SOME (Const (@{const_name "Un"}, T --> T --> T), x)
| mkop _ _ _ = NONE;
fun mk_collect p T t =
let val U = HOLogic.dest_setT T
--- a/src/HOL/Tools/refute.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/refute.ML Fri Mar 06 15:54:33 2009 +0100
@@ -2094,7 +2094,7 @@
val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
val HOLogic_setT = HOLogic.mk_setT HOLogic_prodT
(* Term.term *)
- val HOLogic_empty_set = Const (@{const_name "{}"}, HOLogic_setT)
+ val HOLogic_empty_set = Const (@{const_name Set.empty}, HOLogic_setT)
val HOLogic_insert =
Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
in
@@ -3159,7 +3159,7 @@
val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
val HOLogic_setT = HOLogic.mk_setT HOLogic_prodT
(* Term.term *)
- val HOLogic_empty_set = Const (@{const_name "{}"}, HOLogic_setT)
+ val HOLogic_empty_set = Const (@{const_name Set.empty}, HOLogic_setT)
val HOLogic_insert =
Const (@{const_name insert}, HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
in
--- a/src/HOL/Tools/res_clause.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/Tools/res_clause.ML Fri Mar 06 15:54:33 2009 +0100
@@ -98,21 +98,21 @@
(*Provide readable names for the more common symbolic functions*)
val const_trans_table =
- Symtab.make [("op =", "equal"),
+ Symtab.make [(@{const_name "op ="}, "equal"),
(@{const_name HOL.less_eq}, "lessequals"),
(@{const_name HOL.less}, "less"),
- ("op &", "and"),
- ("op |", "or"),
+ (@{const_name "op &"}, "and"),
+ (@{const_name "op |"}, "or"),
(@{const_name HOL.plus}, "plus"),
(@{const_name HOL.minus}, "minus"),
(@{const_name HOL.times}, "times"),
(@{const_name Divides.div}, "div"),
(@{const_name HOL.divide}, "divide"),
- ("op -->", "implies"),
- ("{}", "emptyset"),
- ("op :", "in"),
- ("op Un", "union"),
- ("op Int", "inter"),
+ (@{const_name "op -->"}, "implies"),
+ (@{const_name Set.empty}, "emptyset"),
+ (@{const_name "op :"}, "in"),
+ (@{const_name Un}, "union"),
+ (@{const_name Int}, "inter"),
("List.append", "append"),
("ATP_Linkup.fequal", "fequal"),
("ATP_Linkup.COMBI", "COMBI"),
--- a/src/HOL/UNITY/Union.thy Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOL/UNITY/Union.thy Fri Mar 06 15:54:33 2009 +0100
@@ -43,7 +43,7 @@
translations
"JN x : A. B" == "JOIN A (%x. B)"
"JN x y. B" == "JN x. JN y. B"
- "JN x. B" == "JOIN UNIV (%x. B)"
+ "JN x. B" == "JOIN CONST UNIV (%x. B)"
syntax (xsymbols)
SKIP :: "'a program" ("\<bottom>")
--- a/src/HOLCF/IOA/meta_theory/ioa_package.ML Fri Mar 06 15:31:26 2009 +0100
+++ b/src/HOLCF/IOA/meta_theory/ioa_package.ML Fri Mar 06 15:54:33 2009 +0100
@@ -159,7 +159,8 @@
(constructor_head thy atypstr a)::(constructor_head_list thy atypstr r);
(* producing an action set *)
-fun action_set_string thy atyp [] = "{}" |
+(*FIXME*)
+fun action_set_string thy atyp [] = "Set.empty" |
action_set_string thy atyp [a] = constr_set_string thy atyp (strip_quote a) |
action_set_string thy atyp (a::r) = (constr_set_string thy atyp (strip_quote a)) ^
" Un " ^ (action_set_string thy atyp r);