--- a/src/HOL/Data_Structures/Define_Time_Function.ML Wed Aug 21 14:09:44 2024 +0100
+++ b/src/HOL/Data_Structures/Define_Time_Function.ML Wed Aug 21 20:41:16 2024 +0200
@@ -1,13 +1,18 @@
signature TIMING_FUNCTIONS =
sig
+type 'a wctxt = {
+ ctxt: local_theory,
+ origins: term list,
+ f: term -> 'a
+}
type 'a converter = {
- constc : local_theory -> term list -> (term -> 'a) -> term -> 'a,
- funcc : local_theory -> term list -> (term -> 'a) -> term -> term list -> 'a,
- ifc : local_theory -> term list -> (term -> 'a) -> typ -> term -> term -> term -> 'a,
- casec : local_theory -> term list -> (term -> 'a) -> term -> term list -> 'a,
- letc : local_theory -> term list -> (term -> 'a) -> typ -> term -> string list -> typ list -> term -> 'a
-};
+ constc : 'a wctxt -> term -> 'a,
+ funcc : 'a wctxt -> term -> term list -> 'a,
+ ifc : 'a wctxt -> typ -> term -> term -> term -> 'a,
+ casec : 'a wctxt -> term -> term list -> 'a,
+ letc : 'a wctxt -> typ -> term -> string list -> typ list -> term -> 'a
+}
val walk : local_theory -> term list -> 'a converter -> term -> 'a
type pfunc = { names : string list, terms : term list, typs : typ list }
@@ -16,10 +21,10 @@
val print_timing': Proof.context -> pfunc -> pfunc -> unit
val print_timing: Proof.context -> Function.info -> Function.info -> unit
-val reg_and_proove_time_func: theory -> term list -> term list
- -> bool -> Function.info * theory
-val reg_time_func: theory -> term list -> term list
- -> bool -> theory
+val reg_and_proove_time_func: local_theory -> term list -> term list
+ -> bool -> Function.info * local_theory
+val reg_time_func: local_theory -> term list -> term list
+ -> bool -> Function.info * local_theory
val time_dom_tac: Proof.context -> thm -> thm list -> int -> tactic
@@ -29,17 +34,16 @@
struct
(* Configure config variable to adjust the prefix *)
val bprefix = Attrib.setup_config_string @{binding "time_prefix"} (K "T_")
+(* Configure config variable to adjust the suffix *)
+val bsuffix = Attrib.setup_config_string @{binding "time_suffix"} (K "")
(* some default values to build terms easier *)
val zero = Const (@{const_name "Groups.zero"}, HOLogic.natT)
val one = Const (@{const_name "Groups.one"}, HOLogic.natT)
(* Extracts terms from function info *)
fun terms_of_info (info: Function.info) =
-let
- val {simps, ...} = info
-in
- map Thm.prop_of (case simps of SOME s => s | NONE => error "No terms of function found in info")
-end;
+ map Thm.prop_of (case #simps info of SOME s => s
+ | NONE => error "No terms of function found in info")
type pfunc = {
names : string list,
@@ -49,7 +53,9 @@
fun info_pfunc (info: Function.info): pfunc =
let
val {defname, fs, ...} = info;
- val T = case hd fs of (Const (_,T)) => T | _ => error "Internal error: Invalid info to print"
+ val T = case hd fs of (Const (_,T)) => T
+ | (Free (_,T)) => T
+ | _ => error "Internal error: Invalid info to print"
in
{ names=[Binding.name_of defname], terms=terms_of_info info, typs=[T] }
end
@@ -82,43 +88,41 @@
fun print_timing ctxt (oinfo: Function.info) (tinfo: Function.info) =
print_timing' ctxt (info_pfunc oinfo) (info_pfunc tinfo)
-val If_name = @{const_name "HOL.If"}
-val Let_name = @{const_name "HOL.Let"}
-
fun contains l e = exists (fn e' => e' = e) l
-fun zip [] [] = []
- | zip (x::xs) (y::ys) = (x, y) :: zip xs ys
- | zip _ _ = error "Internal error: Cannot zip lists with differing size"
+fun contains' comp l e = exists (comp e) l
fun index [] _ = 0
| index (x::xs) el = (if x = el then 0 else 1 + index xs el)
fun used_for_const orig_used t i = orig_used (t,i)
+(* Split name by . *)
+val split_name = String.fields (fn s => s = #".")
(* returns true if it's an if term *)
-fun is_if (Const (n,_)) = (n = If_name)
+fun is_if (Const (@{const_name "HOL.If"},_)) = true
| is_if _ = false
(* returns true if it's a case term *)
-fun is_case (Const (n,_)) = String.isPrefix "case_" (List.last (String.fields (fn s => s = #".") n))
+fun is_case (Const (n,_)) = n |> split_name |> List.last |> String.isPrefix "case_"
| is_case _ = false
(* returns true if it's a let term *)
-fun is_let (Const (n,_)) = (n = Let_name)
+fun is_let (Const (@{const_name "HOL.Let"},_)) = true
| is_let _ = false
(* change type of original function to new type (_ \<Rightarrow> ... \<Rightarrow> _ to _ \<Rightarrow> ... \<Rightarrow> nat)
- and replace all function arguments f with (t*T_f) *)
-fun change_typ' used i (Type ("fun", [T1, T2])) =
- Type ("fun", [check_for_fun' (used i) T1, change_typ' used (i+1) T2])
- | change_typ' _ _ _ = HOLogic.natT
-and check_for_fun' true (f as Type ("fun", [_,_])) = HOLogic.mk_prodT (f, change_typ' (K false) 0 f)
- | check_for_fun' false (f as Type ("fun", [_,_])) = change_typ' (K false) 0 f
+ and replace all function arguments f with (t*T_f) if used *)
+fun change_typ' used (Type ("fun", [T1, T2])) =
+ Type ("fun", [check_for_fun' (used 0) T1, change_typ' (fn i => used (i+1)) T2])
+ | change_typ' _ _ = HOLogic.natT
+and check_for_fun' true (f as Type ("fun", [_,_])) = HOLogic.mk_prodT (f, change_typ' (K false) f)
+ | check_for_fun' false (f as Type ("fun", [_,_])) = change_typ' (K false) f
| check_for_fun' _ t = t
-val change_typ = change_typ' (K false) 0
+val change_typ = change_typ' (K false)
(* Convert string name of function to its timing equivalent *)
-fun fun_name_to_time ctxt name =
+fun fun_name_to_time ctxt s name =
let
val prefix = Config.get ctxt bprefix
- fun replace_last_name [n] = [prefix ^ n]
+ val suffix = (if s then Config.get ctxt bsuffix else "")
+ fun replace_last_name [n] = [prefix ^ n ^ suffix]
| replace_last_name (n::ns) = n :: (replace_last_name ns)
| replace_last_name _ = error "Internal error: Invalid function name to convert"
- val parts = String.fields (fn s => s = #".") name
+ val parts = split_name name
in
String.concatWith "." (replace_last_name parts)
end
@@ -126,11 +130,10 @@
fun count_args (Type (n, [_,res])) = (if n = "fun" then 1 + count_args res else 0)
| count_args _ = 0
(* Check if number of arguments matches function *)
-fun check_args s (Const (_,T), args) =
- (if length args = count_args T then () else error ("Partial applications/Lambdas not allowed (" ^ s ^ ")"))
- | check_args s (Free (_,T), args) =
- (if length args = count_args T then () else error ("Partial applications/Lambdas not allowed (" ^ s ^ ")"))
- | check_args s _ = error ("Partial applications/Lambdas not allowed (" ^ s ^ ")")
+val _ = dest_Const
+fun check_args s (t, args) =
+ (if length args = count_args (type_of t) then ()
+ else error ("Partial applications/Lambdas not allowed (" ^ s ^ ")"))
(* Removes Abs *)
fun rem_abs f (Abs (_,_,t)) = rem_abs f t
| rem_abs f t = f t
@@ -148,39 +151,53 @@
| Const_name _ = NONE
fun is_Used (Type ("Product_Type.prod", _)) = true
| is_Used _ = false
+(* Custom compare function for types ignoring variable names *)
+fun typ_comp (Type (A,a)) (Type (B,b)) = (A = B) andalso List.foldl (fn ((c,i),s) => typ_comp c i andalso s) true (ListPair.zip (a, b))
+ | typ_comp (Type _) _ = false
+ | typ_comp _ (Type _) = false
+ | typ_comp _ _ = true
+fun const_comp (Const (nm,T)) (Const (nm',T')) = nm = nm' andalso typ_comp T T'
+ | const_comp _ _ = false
-fun time_term ctxt (Const (nm,T)) =
+fun time_term ctxt s (Const (nm,T)) =
let
- val T_nm = fun_name_to_time ctxt nm
+ val T_nm = fun_name_to_time ctxt s nm
val T_T = change_typ T
in
(SOME (Syntax.check_term ctxt (Const (T_nm,T_T))))
handle (ERROR _) =>
case Syntax.read_term ctxt (Long_Name.base_name T_nm)
- of (Const (nm,T_T)) =>
+ of (Const (T_nm,T_T)) =>
let
fun col_Used i (Type ("fun", [Type ("fun", _), Ts])) (Type ("fun", [T', Ts'])) =
(if is_Used T' then [i] else []) @ col_Used (i+1) Ts Ts'
| col_Used i (Type ("fun", [_, Ts])) (Type ("fun", [_, Ts'])) = col_Used (i+1) Ts Ts'
| col_Used _ _ _ = []
in
- SOME (Const (nm,change_typ' (contains (col_Used 0 T T_T)) 0 T))
+ SOME (Const (T_nm,change_typ' (contains (col_Used 0 T T_T)) T))
end
| _ => error ("Timing function of " ^ nm ^ " is not defined")
end
- | time_term _ _ = error "Internal error: No valid function given"
+ | time_term _ _ _ = error "Internal error: No valid function given"
+
+type 'a wctxt = {
+ ctxt: local_theory,
+ origins: term list,
+ f: term -> 'a
+}
type 'a converter = {
- constc : local_theory -> term list -> (term -> 'a) -> term -> 'a,
- funcc : local_theory -> term list -> (term -> 'a) -> term -> term list -> 'a,
- ifc : local_theory -> term list -> (term -> 'a) -> typ -> term -> term -> term -> 'a,
- casec : local_theory -> term list -> (term -> 'a) -> term -> term list -> 'a,
- letc : local_theory -> term list -> (term -> 'a) -> typ -> term -> string list -> typ list -> term -> 'a
-};
+ constc : 'a wctxt -> term -> 'a,
+ funcc : 'a wctxt -> term -> term list -> 'a,
+ ifc : 'a wctxt -> typ -> term -> term -> term -> 'a,
+ casec : 'a wctxt -> term -> term list -> 'a,
+ letc : 'a wctxt -> typ -> term -> string list -> typ list -> term -> 'a
+}
(* Walks over term and calls given converter *)
fun walk_func (t1 $ t2) ts = walk_func t1 (t2::ts)
| walk_func t ts = (t, ts)
+fun walk_func' t = walk_func t []
fun build_func (f, []) = f
| build_func (f, (t::ts)) = build_func (f$t, ts)
fun walk_abs (Abs (nm,T,t)) nms Ts = walk_abs t (nm::nms) (T::Ts)
@@ -193,23 +210,24 @@
val (f, args) = walk_func t []
val this = (walk ctxt origin conv)
val _ = (case f of Abs _ => error "Lambdas not supported" | _ => ())
+ val wctxt = {ctxt = ctxt, origins = origin, f = this}
in
(if is_if f then
(case f of (Const (_,T)) =>
- (case args of [cond, t, f] => ifc ctxt origin this T cond t f
+ (case args of [cond, t, f] => ifc wctxt T cond t f
| _ => error "Partial applications not supported (if)")
| _ => error "Internal error: invalid if term")
- else if is_case f then casec ctxt origin this f args
+ else if is_case f then casec wctxt f args
else if is_let f then
(case f of (Const (_,lT)) =>
(case args of [exp, t] =>
- let val (t,nms,Ts) = walk_abs t [] [] in letc ctxt origin this lT exp nms Ts t end
+ let val (t,nms,Ts) = walk_abs t [] [] in letc wctxt lT exp nms Ts t end
| _ => error "Partial applications not allowed (let)")
| _ => error "Internal error: invalid let term")
- else funcc ctxt origin this f args)
+ else funcc wctxt f args)
end
| walk ctxt origin (conv as {constc, ...}) c =
- constc ctxt origin (walk ctxt origin conv) c
+ constc {ctxt = ctxt, origins = origin, f = walk ctxt origin conv} c
(* 1. Fix all terms *)
(* Exchange Var in types and terms to Free *)
@@ -221,36 +239,34 @@
fun noFun (Type ("fun", _)) = error "Functions in datatypes are not allowed in case constructions"
| noFun T = T
fun casecBuildBounds n t = if n > 0 then casecBuildBounds (n-1) (t $ (Bound (n-1))) else t
-fun casecAbs ctxt f n (Type ("fun",[T,Tr])) (Abs (v,Ta,t)) = ( map_atyps noFun T; Abs (v,Ta,casecAbs ctxt f n Tr t))
- | casecAbs ctxt f n (Type ("fun",[T,Tr])) t =
- (map_atyps noFun T; case Variable.variant_fixes ["x"] ctxt of ([v],ctxt) =>
- (Abs (v,T,casecAbs ctxt f (n + 1) Tr t))
- | _ => error "Internal error: could not fix variable")
- | casecAbs _ f n _ t = f (casecBuildBounds n (Term.incr_bv n 0 t))
-fun fixCasecCases _ _ _ [t] = [t]
- | fixCasecCases ctxt f (Type (_,[T,Tr])) (t::ts) = casecAbs ctxt f 0 T t :: fixCasecCases ctxt f Tr ts
- | fixCasecCases _ _ _ _ = error "Internal error: invalid case types/terms"
-fun fixCasec ctxt _ f (t as Const (_,T)) args =
- (check_args "cases" (t,args); build_func (t,fixCasecCases ctxt f T args))
- | fixCasec _ _ _ _ _ = error "Internal error: invalid case term"
+fun casecAbs wctxt n (Type ("fun",[T,Tr])) (Abs (v,Ta,t)) = (map_atyps noFun T; Abs (v,Ta,casecAbs wctxt n Tr t))
+ | casecAbs wctxt n (Type ("fun",[T,Tr])) t =
+ (map_atyps noFun T; Abs ("uu",T,casecAbs wctxt (n + 1) Tr t))
+ | casecAbs wctxt n _ t = (#f wctxt) (casecBuildBounds n (Term.incr_bv n 0 t))
+fun fixCasecCases _ _ [t] = [t]
+ | fixCasecCases wctxt (Type (_,[T,Tr])) (t::ts) = casecAbs wctxt 0 T t :: fixCasecCases wctxt Tr ts
+ | fixCasecCases _ _ _ = error "Internal error: invalid case types/terms"
+fun fixCasec wctxt (t as Const (_,T)) args =
+ (check_args "cases" (t,args); build_func (t,fixCasecCases wctxt T args))
+ | fixCasec _ _ _ = error "Internal error: invalid case term"
fun fixPartTerms ctxt (term: term list) t =
let
val _ = check_args "args" (walk_func (get_l t) [])
in
map_r (walk ctxt term {
- funcc = (fn _ => fn _ => fn f => fn t => fn args =>
- (check_args "func" (t,args); build_func (t, map f args))),
- constc = (fn _ => fn _ => fn _ => fn c => (case c of Abs _ => error "Lambdas not supported" | _ => c)),
- ifc = (fn _ => fn _ => fn f => fn T => fn cond => fn tt => fn tf =>
- ((Const (If_name, T)) $ f cond $ (f tt) $ (f tf))),
+ funcc = (fn wctxt => fn t => fn args =>
+ (check_args "func" (t,args); build_func (t, map (#f wctxt) args))),
+ constc = (fn _ => fn c => (case c of Abs _ => error "Lambdas not supported" | _ => c)),
+ ifc = (fn wctxt => fn T => fn cond => fn tt => fn tf =>
+ ((Const (@{const_name "HOL.If"}, T)) $ (#f wctxt) cond $ ((#f wctxt) tt) $ ((#f wctxt) tf))),
casec = fixCasec,
- letc = (fn _ => fn _ => fn f => fn expT => fn exp => fn nms => fn Ts => fn t =>
+ letc = (fn wctxt => fn expT => fn exp => fn nms => fn Ts => fn t =>
let
val f' = if length nms = 0 then
- (case f (t$exp) of t$_ => t | _ => error "Internal error: case could not be fixed (let)")
- else f t
- in (Const (Let_name,expT) $ (f exp) $ build_abs f' nms Ts) end)
+ (case (#f wctxt) (t$exp) of t$_ => t | _ => error "Internal error: case could not be fixed (let)")
+ else (#f wctxt) t
+ in (Const (@{const_name "HOL.Let"},expT) $ ((#f wctxt) exp) $ build_abs f' nms Ts) end)
}) t
end
@@ -258,11 +274,16 @@
(* 2.1 Check if function is recursive *)
fun or f (a,b) = f a orelse b
fun find_rec ctxt term = (walk ctxt term {
- funcc = (fn _ => fn _ => fn f => fn t => fn args => List.exists (fn term => Const_name t = Const_name term) term orelse List.foldr (or f) false args),
- constc = (K o K o K o K) false,
- ifc = (fn _ => fn _ => fn f => fn _ => fn cond => fn tt => fn tf => f cond orelse f tt orelse f tf),
- casec = (fn _ => fn _ => fn f => fn t => fn cs => f t orelse List.foldr (or (rem_abs f)) false cs),
- letc = (fn _ => fn _ => fn f => fn _ => fn exp => fn _ => fn _ => fn t => f exp orelse f t)
+ funcc = (fn wctxt => fn t => fn args =>
+ List.exists (fn term => (Const_name t) = (Const_name term)) term
+ orelse List.foldr (or (#f wctxt)) false args),
+ constc = (K o K) false,
+ ifc = (fn wctxt => fn _ => fn cond => fn tt => fn tf =>
+ (#f wctxt) cond orelse (#f wctxt) tt orelse (#f wctxt) tf),
+ casec = (fn wctxt => fn t => fn cs =>
+ (#f wctxt) t orelse List.foldr (or (rem_abs (#f wctxt))) false cs),
+ letc = (fn wctxt => fn _ => fn exp => fn _ => fn _ => fn t =>
+ (#f wctxt) exp orelse (#f wctxt) t)
}) o get_r
fun is_rec ctxt (term: term list) = List.foldr (or (find_rec ctxt term)) false
@@ -277,14 +298,14 @@
f :: filter_passed args
| filter_passed (_::args) = filter_passed args
val frees' = (walk ctxt term {
- funcc = (fn _ => fn _ => fn f => fn t => fn args =>
+ funcc = (fn wctxt => fn t => fn args =>
(case t of (Const ("Product_Type.prod.snd", _)) => []
| _ => (if t = T_ident then [] else filter_passed args)
- @ List.foldr (fn (l,r) => f l @ r) [] args)),
- constc = (K o K o K o K) [],
- ifc = (fn _ => fn _ => fn f => fn _ => fn cond => fn tt => fn tf => f cond @ f tt @ f tf),
- casec = (fn _ => fn _ => fn f => fn _ => fn cs => List.foldr (fn (l,r) => f l @ r) [] cs),
- letc = (fn _ => fn _ => fn f => fn _ => fn exp => fn _ => fn _ => fn t => f exp @ f t)
+ @ List.foldr (fn (l,r) => (#f wctxt) l @ r) [] args)),
+ constc = (K o K) [],
+ ifc = (fn wctxt => fn _ => fn cond => fn tt => fn tf => (#f wctxt) cond @ (#f wctxt) tt @ (#f wctxt) tf),
+ casec = (fn wctxt => fn _ => fn cs => List.foldr (fn (l,r) => (#f wctxt) l @ r) [] cs),
+ letc = (fn wctxt => fn _ => fn exp => fn _ => fn _ => fn t => (#f wctxt) exp @ (#f wctxt) t)
}) (get_r T_t)
fun build _ [] _ = false
| build i (a::args) item =
@@ -293,7 +314,7 @@
build 0 T_args
end
fun find_used ctxt term terms T_terms =
- zip terms T_terms
+ ListPair.zip (terms, T_terms)
|> List.map (fn (t, T_t) => find_used' ctxt term t T_t)
|> List.foldr (fn (f,g) => fn item => f item orelse g item) (K false)
@@ -310,57 +331,54 @@
fun use_origin (Free (nm, T as Type ("fun",_))) = HOLogic.mk_fst (Free (nm,HOLogic.mk_prodT (T, change_typ T)))
| use_origin t = t
-(* Converting of function term *)
+(* Conversion of function term *)
fun fun_to_time ctxt orig_used _ (origin: term list) (func as Const (nm,T)) =
let
- val prefix = Config.get ctxt bprefix
val used' = used_for_const orig_used func
in
- if contains origin func then SOME (Free (prefix ^ Term.term_name func, change_typ' used' 0 T)) else
+ if contains' const_comp origin func then SOME (Free (func |> Term.term_name |> fun_name_to_time ctxt true, change_typ' used' T)) else
if Zero_Funcs.is_zero (Proof_Context.theory_of ctxt) (nm,T) then NONE else
- time_term ctxt func
+ time_term ctxt false func
end
| fun_to_time ctxt _ used _ (f as Free (nm,T)) = SOME (
if used f then HOLogic.mk_snd (Free (nm,HOLogic.mk_prodT (T,change_typ T)))
- else Free (Config.get ctxt bprefix ^ nm, change_typ T)
+ else Free (fun_name_to_time ctxt false nm, change_typ T)
)
| fun_to_time _ _ _ _ _ = error "Internal error: invalid function to convert"
(* Convert arguments of left side of a term *)
fun conv_arg ctxt used _ (f as Free (nm,T as Type("fun",_))) =
- if used f then Free (nm, HOLogic.mk_prodT (T, change_typ' (K false) 0 T))
- else Free (Config.get ctxt bprefix ^ nm, change_typ' (K false) 0 T)
- | conv_arg ctxt _ origin (f as Const (_, Type("fun",_))) =
- (error "weird case i don't understand TODO"; HOLogic.mk_prod (f, fun_to_time ctxt (K false) (K false) origin f |> Option.valOf))
+ if used f then Free (nm, HOLogic.mk_prodT (T, change_typ' (K false) T))
+ else Free (fun_name_to_time ctxt false nm, change_typ' (K false) T)
| conv_arg _ _ _ x = x
fun conv_args ctxt used origin = map (conv_arg ctxt used origin)
(* Handle function calls *)
-fun build_zero (Type ("fun", [T, R])) = Abs ("x", T, build_zero R)
+fun build_zero (Type ("fun", [T, R])) = Abs ("uu", T, build_zero R)
| build_zero _ = zero
-fun funcc_use_origin _ _ used (f as Free (nm, T as Type ("fun",_))) =
+fun funcc_use_origin used (f as Free (nm, T as Type ("fun",_))) =
if used f then HOLogic.mk_fst (Free (nm,HOLogic.mk_prodT (T, change_typ T)))
else error "Internal error: Error in used detection"
- | funcc_use_origin _ _ _ t = t
-fun funcc_conv_arg ctxt origin used _ (t as (_ $ _)) = map_aterms (funcc_use_origin ctxt origin used) t
- | funcc_conv_arg ctxt _ used u (f as Free (nm, T as Type ("fun",_))) =
+ | funcc_use_origin _ t = t
+fun funcc_conv_arg _ used _ (t as (_ $ _)) = map_aterms (funcc_use_origin used) t
+ | funcc_conv_arg wctxt used u (f as Free (nm, T as Type ("fun",_))) =
if used f then
if u then Free (nm, HOLogic.mk_prodT (T, change_typ T))
else HOLogic.mk_snd (Free (nm,HOLogic.mk_prodT (T,change_typ T)))
- else Free (Config.get ctxt bprefix ^ nm, change_typ T)
- | funcc_conv_arg ctxt origin _ true (f as Const (_,T as Type ("fun",_))) =
+ else Free (fun_name_to_time (#ctxt wctxt) false nm, change_typ T)
+ | funcc_conv_arg wctxt _ true (f as Const (_,T as Type ("fun",_))) =
(Const (@{const_name "Product_Type.Pair"},
Type ("fun", [T,Type ("fun", [change_typ T, HOLogic.mk_prodT (T,change_typ T)])]))
- $ f $ (Option.getOpt (fun_to_time ctxt (K false) (K false) origin f, build_zero T)))
- | funcc_conv_arg ctxt origin _ false (f as Const (_,T as Type ("fun",_))) =
- Option.getOpt (fun_to_time ctxt (K false) (K false) origin f, build_zero T)
- | funcc_conv_arg _ _ _ _ t = t
+ $ f $ (Option.getOpt (fun_to_time (#ctxt wctxt) (K false) (K false) (#origins wctxt) f, build_zero T)))
+ | funcc_conv_arg wctxt _ false (f as Const (_,T as Type ("fun",_))) =
+ Option.getOpt (fun_to_time (#ctxt wctxt) (K false) (K false) (#origins wctxt) f, build_zero T)
+ | funcc_conv_arg _ _ _ t = t
-fun funcc_conv_args _ _ _ _ [] = []
- | funcc_conv_args ctxt origin used (Type ("fun", [t, ts])) (a::args) =
- funcc_conv_arg ctxt origin used (is_Used t) a :: funcc_conv_args ctxt origin used ts args
- | funcc_conv_args _ _ _ _ _ = error "Internal error: Non matching type"
-fun funcc orig_used used ctxt (origin: term list) f func args =
+fun funcc_conv_args _ _ _ [] = []
+ | funcc_conv_args wctxt used (Type ("fun", [t, ts])) (a::args) =
+ funcc_conv_arg wctxt used (is_Used t) a :: funcc_conv_args wctxt used ts args
+ | funcc_conv_args _ _ _ _ = error "Internal error: Non matching type"
+fun funcc orig_used used wctxt func args =
let
fun get_T (Free (_,T)) = T
| get_T (Const (_,T)) = T
@@ -368,10 +386,10 @@
| get_T _ = error "Internal error: Forgotten type"
in
List.foldr (I #-> plus)
- (case fun_to_time ctxt orig_used used origin func
- of SOME t => SOME (build_func (t,funcc_conv_args ctxt origin used (get_T t) args))
+ (case fun_to_time (#ctxt wctxt) orig_used used (#origins wctxt) func
+ of SOME t => SOME (build_func (t,funcc_conv_args wctxt used (get_T t) args))
| NONE => NONE)
- (map f args)
+ (map (#f wctxt) args)
end
(* Handle case terms *)
@@ -389,48 +407,49 @@
(case casecAbs f t of (nconst, tt) =>
casecArgs f ar ||> (fn ar => tt :: ar) |>> (if nconst then K true else I))
| casecArgs _ _ = error "Internal error: Invalid case term"
-fun casec _ _ f (Const (t,T)) args =
+fun casec wctxt (Const (t,T)) args =
if not (casecIsCase T) then error "Internal error: Invalid case type" else
- let val (nconst, args') = casecArgs f args in
+ let val (nconst, args') = casecArgs (#f wctxt) args in
plus
- (f (List.last args))
+ ((#f wctxt) (List.last args))
(if nconst then
SOME (build_func (Const (t,casecTyp T), args'))
else NONE)
end
- | casec _ _ _ _ _ = error "Internal error: Invalid case term"
+ | casec _ _ _ = error "Internal error: Invalid case term"
(* Handle if terms -> drop the term if true and false terms are zero *)
-fun ifc _ _ f _ cond tt ft =
+fun ifc wctxt _ cond tt ft =
let
+ val f = #f wctxt
val rcond = map_aterms use_origin cond
val tt = f tt
val ft = f ft
in
plus (f cond) (case (tt,ft) of (NONE, NONE) => NONE | _ =>
if tt = ft then tt else
- (SOME ((Const (If_name, @{typ "bool \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"})) $ rcond $ (opt_term tt) $ (opt_term ft))))
+ (SOME ((Const (@{const_name "HOL.If"}, @{typ "bool \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"})) $ rcond $ (opt_term tt) $ (opt_term ft))))
end
fun letc_change_typ (Type ("fun", [T1, Type ("fun", [T2, _])])) = (Type ("fun", [T1, Type ("fun", [change_typ T2, HOLogic.natT])]))
| letc_change_typ _ = error "Internal error: invalid let type"
-fun letc _ _ f expT exp nms Ts t =
- plus (f exp)
+fun letc wctxt expT exp nms Ts t =
+ plus (#f wctxt exp)
(if length nms = 0 (* In case of "length nms = 0" the expression got reducted
Here we need Bound 0 to gain non-partial application *)
- then (case f (t $ Bound 0) of SOME (t' $ Bound 0) =>
- (SOME (Const (Let_name, letc_change_typ expT) $ (map_aterms use_origin exp) $ t'))
+ then (case #f wctxt (t $ Bound 0) of SOME (t' $ Bound 0) =>
+ (SOME (Const (@{const_name "HOL.Let"}, letc_change_typ expT) $ (map_aterms use_origin exp) $ t'))
(* Expression is not used and can therefore let be dropped *)
| SOME t' => SOME t'
| NONE => NONE)
- else (case f t of SOME t' =>
- SOME (if Term.is_dependent t' then Const (Let_name, letc_change_typ expT) $ (map_aterms use_origin exp) $ build_abs t' nms Ts
+ else (case #f wctxt t of SOME t' =>
+ SOME (if Term.is_dependent t' then Const (@{const_name "HOL.Let"}, letc_change_typ expT) $ (map_aterms use_origin exp) $ build_abs t' nms Ts
else Term.subst_bounds([exp],t'))
| NONE => NONE))
(* The converter for timing functions given to the walker *)
fun converter orig_used used : term option converter = {
- constc = fn _ => fn _ => fn _ => fn t =>
+ constc = fn _ => fn t =>
(case t of Const ("HOL.undefined", _) => SOME (Const ("HOL.undefined", @{typ "nat"}))
| _ => NONE),
funcc = (funcc orig_used used),
@@ -469,20 +488,22 @@
fun get_terms theory (term: term) =
- Spec_Rules.retrieve_global theory term
- |> hd |> #rules
- |> map Thm.prop_of
+let
+ val equations = Spec_Rules.retrieve theory term
+ |> map #rules
+ |> map (map Thm.prop_of)
handle Empty => error "Function or terms of function not found"
+in
+ equations
+ |> filter (fn ts => typ_comp (ts |> hd |> get_l |> walk_func' |> fst |> dest_Const |> snd) (term |> dest_Const |> snd))
+ |> hd
+end
(* Register timing function of a given function *)
-fun reg_and_proove_time_func (theory: theory) (term: term list) (terms: term list) print =
- reg_time_func theory term terms false
- |> proove_termination term terms print
-and reg_time_func (theory: theory) (term: term list) (terms: term list) print =
+fun reg_time_func (lthy: local_theory) (term: term list) (terms: term list) print =
let
- val lthy = Named_Target.theory_init theory
val _ =
- case time_term lthy (hd term)
+ case time_term lthy true (hd term)
handle (ERROR _) => NONE
of SOME _ => error ("Timing function already declared: " ^ (Term.term_name (hd term)))
| NONE => ()
@@ -517,7 +538,7 @@
(* 4. Register function and prove termination *)
val names = map Term.term_name term
- val timing_names = map (fun_name_to_time lthy) names
+ val timing_names = map (fun_name_to_time lthy true) names
val bindings = map (fn nm => (Binding.name nm, NONE, NoSyn)) timing_names
fun pat_completeness_auto ctxt =
Pat_Completeness.pat_completeness_tac ctxt 1 THEN auto_tac ctxt
@@ -539,34 +560,30 @@
val print_ctxt = lthy
|> Config.put show_question_marks false
|> Config.put show_sorts false (* Change it for debugging *)
- val print_ctxt = List.foldl (fn (term, ctxt) => Variable.add_fixes_implicit term ctxt) print_ctxt (term @ T_terms)
+ val print_ctxt = List.foldl (fn (term, ctxt) => Variable.add_fixes_implicit term ctxt) print_ctxt (term @ T_terms)
(* Print result if print *)
val _ = if not print then () else
let
- val nms = map dest_Const_name term
+ val nms = map (fst o dest_Const) term
val used = map (used_for_const orig_used) term
- val typs = map dest_Const_type term
+ val typs = map (snd o dest_Const) term
in
- print_timing' print_ctxt { names=nms, terms=terms, typs=typs } { names=timing_names, terms=T_terms, typs=map (fn (used, typ) => change_typ' used 0 typ) (zip used typs) }
+ print_timing' print_ctxt { names=nms, terms=terms, typs=typs }
+ { names=timing_names, terms=T_terms, typs=map (fn (used, typ) => change_typ' used typ) (ListPair.zip (used, typs)) }
end
- (* Register function *)
- val (_, lthy) =
- register false
+ in
+ register false
handle (ERROR _) =>
register true
| Match =>
register true
- in
- Local_Theory.exit_global lthy
end
-and proove_termination (term: term list) terms print (theory: theory) =
+fun proove_termination (term: term list) terms print (T_info: Function.info, lthy: local_theory) =
let
- val lthy = Named_Target.theory_init theory
-
(* Start proving the termination *)
val infos = SOME (map (Function.get_info lthy) term) handle Empty => NONE
- val timing_names = map (fun_name_to_time lthy o Term.term_name) term
+ val timing_names = map (fun_name_to_time lthy true o Term.term_name) term
(* Proof by lexicographic_order_tac *)
val (time_info, lthy') =
@@ -578,22 +595,22 @@
val _ = (if length term > 1 then error "Proof over dom not supported for mutual recursive functions" else ())
fun args (a$(Var ((nm,_),T))) = args a |> (fn ar => (nm,T)::ar)
- | args (a$(Const (_,T))) = args a |> (fn ar => ("x",T)::ar)
+ | args (a$(Const (_,T))) = args a |> (fn ar => ("uu",T)::ar)
| args _ = []
- val dom_args =
- terms |> hd |> get_l |> args
- |> Variable.variant_frees lthy []
- |> map fst
+ val dom_vars =
+ terms |> hd |> get_l |> map_types (map_atyps fixTypes)
+ |> args |> Variable.variant_frees lthy []
+ val dom_args =
+ List.foldl (fn (t,p) => HOLogic.mk_prod ((Free t),p)) (Free (hd dom_vars)) (tl dom_vars)
val {inducts, ...} = case infos of SOME [i] => i | _ => error "Proof over dom failed as no induct rule was found"
val induct = (Option.valOf inducts |> hd)
val domintros = Proof_Context.get_fact lthy (Facts.named (hd timing_names ^ ".domintros"))
- val prop = (hd timing_names ^ "_dom (" ^ (String.concatWith "," dom_args) ^ ")")
- |> Syntax.read_prop lthy
+ val prop = HOLogic.mk_Trueprop (#dom T_info $ dom_args)
(* Prove a helper lemma *)
- val dom_lemma = Goal.prove lthy dom_args [] prop
+ val dom_lemma = Goal.prove lthy (map fst dom_vars) [] prop
(fn {context, ...} => HEADGOAL (time_dom_tac context induct domintros))
(* Add dom_lemma to simplification set *)
val simp_lthy = Simplifier.add_simp dom_lemma lthy
@@ -602,7 +619,7 @@
Function.prove_termination NONE
(auto_tac simp_lthy) lthy
end
-
+
(* Context for printing without showing question marks *)
val print_ctxt = lthy'
|> Config.put show_question_marks false
@@ -616,63 +633,98 @@
print_timing' print_ctxt { names=nms, terms=terms, typs=typs } (info_pfunc time_info)
end
in
- (time_info, Local_Theory.exit_global lthy')
+ (time_info, lthy')
end
+fun reg_and_proove_time_func (lthy: local_theory) (term: term list) (terms: term list) print =
+ reg_time_func lthy term terms false
+ |> proove_termination term terms print
fun fix_definition (Const ("Pure.eq", _) $ l $ r) = Const ("HOL.Trueprop", @{typ "bool \<Rightarrow> prop"})
$ (Const ("HOL.eq", @{typ "bool \<Rightarrow> bool \<Rightarrow> bool"}) $ l $ r)
| fix_definition t = t
fun check_definition [t] = [t]
- | check_definition _ = error "Only a single defnition is allowed"
+ | check_definition _ = error "Only a single definition is allowed"
+
+fun isTypeClass' (Const (nm,_)) =
+ (case split_name nm |> rev
+ of (_::nm::_) => String.isSuffix "_class" nm
+ | _ => false)
+ | isTypeClass' _ = false
+val isTypeClass =
+ (List.foldr (fn (a,b) => a orelse b) false) o (map isTypeClass')
+
+fun detect_typ (ctxt: local_theory) (term: term) =
+let
+ val class_term = (case term of Const (nm,_) => Syntax.read_term ctxt nm
+ | _ => error "Could not find term of class")
+ fun find_free (Type (_,class)) (Type (_,inst)) =
+ List.foldl (fn ((c,i),s) => (case s of NONE => find_free c i | t => t)) (NONE) (ListPair.zip (class, inst))
+ | find_free (TFree _) (TFree _) = NONE
+ | find_free (TFree _) (Type (nm,_)) = SOME nm
+ | find_free _ _ = error "Unhandled case in detecting type"
+in
+ find_free (type_of class_term) (type_of term)
+ |> Option.map (hd o rev o split_name)
+end
+
+fun set_suffix (fterms: term list) ctxt =
+let
+ val isTypeClass = isTypeClass fterms
+ val _ = (if length fterms > 1 andalso isTypeClass then error "No mutual recursion inside instantiation allowed" else ())
+ val suffix = (if isTypeClass then detect_typ ctxt (hd fterms) else NONE)
+in
+ (case suffix of NONE => I | SOME s => Config.put bsuffix ("_" ^ s)) ctxt
+end
(* Convert function into its timing function (called by command) *)
-fun reg_time_fun_cmd (funcs, thms) (theory: theory) =
+fun reg_time_fun_cmd (funcs, thms) (ctxt: local_theory) =
let
- val ctxt = Proof_Context.init_global theory
val fterms = map (Syntax.read_term ctxt) funcs
- val (_, lthy') = reg_and_proove_time_func theory fterms
- (case thms of NONE => get_terms theory (hd fterms)
+ val ctxt = set_suffix fterms ctxt
+ val (_, ctxt') = reg_and_proove_time_func ctxt fterms
+ (case thms of NONE => get_terms ctxt (hd fterms)
| SOME thms => thms |> Attrib.eval_thms ctxt |> List.map Thm.prop_of)
true
-in lthy'
+in ctxt'
end
(* Convert function into its timing function (called by command) with termination proof provided by user*)
-fun reg_time_function_cmd (funcs, thms) (theory: theory) =
+fun reg_time_function_cmd (funcs, thms) (ctxt: local_theory) =
let
- val ctxt = Proof_Context.init_global theory
val fterms = map (Syntax.read_term ctxt) funcs
- val theory = reg_time_func theory fterms
- (case thms of NONE => get_terms theory (hd fterms)
+ val ctxt = set_suffix fterms ctxt
+ val ctxt' = reg_time_func ctxt fterms
+ (case thms of NONE => get_terms ctxt (hd fterms)
| SOME thms => thms |> Attrib.eval_thms ctxt |> List.map Thm.prop_of)
true
-in theory
+ |> snd
+in ctxt'
end
(* Convert function into its timing function (called by command) *)
-fun reg_time_definition_cmd (funcs, thms) (theory: theory) =
+fun reg_time_definition_cmd (funcs, thms) (ctxt: local_theory) =
let
- val ctxt = Proof_Context.init_global theory
val fterms = map (Syntax.read_term ctxt) funcs
- val (_, lthy') = reg_and_proove_time_func theory fterms
- (case thms of NONE => get_terms theory (hd fterms) |> check_definition |> map fix_definition
+ val ctxt = set_suffix fterms ctxt
+ val (_, ctxt') = reg_and_proove_time_func ctxt fterms
+ (case thms of NONE => get_terms ctxt (hd fterms) |> check_definition |> map fix_definition
| SOME thms => thms |> Attrib.eval_thms ctxt |> List.map Thm.prop_of)
true
-in lthy'
+in ctxt'
end
val parser = (Scan.repeat1 Parse.prop) -- (Scan.option (Parse.keyword_improper "equations" -- Parse.thms1 >> snd))
-val _ = Outer_Syntax.command @{command_keyword "time_fun"}
+val _ = Outer_Syntax.local_theory @{command_keyword "time_fun"}
"Defines runtime function of a function"
- (parser >> (fn p => Toplevel.theory (reg_time_fun_cmd p)))
+ (parser >> reg_time_fun_cmd)
-val _ = Outer_Syntax.command @{command_keyword "time_function"}
+val _ = Outer_Syntax.local_theory @{command_keyword "time_function"}
"Defines runtime function of a function"
- (parser >> (fn p => Toplevel.theory (reg_time_function_cmd p)))
+ (parser >> reg_time_function_cmd)
-val _ = Outer_Syntax.command @{command_keyword "time_definition"}
+val _ = Outer_Syntax.local_theory @{command_keyword "time_definition"}
"Defines runtime function of a definition"
- (parser >> (fn p => Toplevel.theory (reg_time_definition_cmd p)))
+ (parser >> reg_time_definition_cmd)
end