--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Admin/jenkins/build/ci_build_benchmark.scala Mon Jun 20 10:51:34 2016 +0200
@@ -0,0 +1,17 @@
+object profile extends isabelle.CI_Profile
+{
+
+ import isabelle._
+
+ def threads = 8
+ def jobs = 1
+ def all = false
+ def groups = Nil
+ def exclude = Nil
+ def include = Nil
+ def select = List(Path.explode("$ISABELLE_HOME/src/Benchmarks"))
+
+ def pre_hook(args: List[String]) = {}
+ def post_hook(results: Build.Results) = {}
+
+}
--- a/src/HOL/Set.thy Fri Jun 17 17:02:13 2016 +0200
+++ b/src/HOL/Set.thy Mon Jun 20 10:51:34 2016 +0200
@@ -35,7 +35,7 @@
text \<open>Set comprehensions\<close>
syntax
- "_Coll" :: "pttrn => bool => 'a set" ("(1{_./ _})")
+ "_Coll" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a set" ("(1{_./ _})")
translations
"{x. P}" \<rightleftharpoons> "CONST Collect (\<lambda>x. P)"
@@ -52,15 +52,15 @@
lemma CollectD: "a \<in> {x. P x} \<Longrightarrow> P a"
by simp
-lemma Collect_cong: "(\<And>x. P x = Q x) ==> {x. P x} = {x. Q x}"
+lemma Collect_cong: "(\<And>x. P x = Q x) \<Longrightarrow> {x. P x} = {x. Q x}"
by simp
text \<open>
-Simproc for pulling \<open>x=t\<close> in \<open>{x. \<dots> & x=t & \<dots>}\<close>
-to the front (and similarly for \<open>t=x\<close>):
+ Simproc for pulling \<open>x = t\<close> in \<open>{x. \<dots> \<and> x = t \<and> \<dots>}\<close>
+ to the front (and similarly for \<open>t = x\<close>):
\<close>
-simproc_setup defined_Collect ("{x. P x & Q x}") = \<open>
+simproc_setup defined_Collect ("{x. P x \<and> Q x}") = \<open>
fn _ => Quantifier1.rearrange_Collect
(fn ctxt =>
resolve_tac ctxt @{thms Collect_cong} 1 THEN
@@ -80,8 +80,7 @@
then show ?thesis by simp
qed
-lemma set_eq_iff:
- "A = B \<longleftrightarrow> (\<forall>x. x \<in> A \<longleftrightarrow> x \<in> B)"
+lemma set_eq_iff: "A = B \<longleftrightarrow> (\<forall>x. x \<in> A \<longleftrightarrow> x \<in> B)"
by (auto intro:set_eqI)
text \<open>Lifting of predicate class instances\<close>
@@ -89,52 +88,52 @@
instantiation set :: (type) boolean_algebra
begin
-definition less_eq_set where
- "A \<le> B \<longleftrightarrow> (\<lambda>x. member x A) \<le> (\<lambda>x. member x B)"
-
-definition less_set where
- "A < B \<longleftrightarrow> (\<lambda>x. member x A) < (\<lambda>x. member x B)"
-
-definition inf_set where
- "A \<sqinter> B = Collect ((\<lambda>x. member x A) \<sqinter> (\<lambda>x. member x B))"
-
-definition sup_set where
- "A \<squnion> B = Collect ((\<lambda>x. member x A) \<squnion> (\<lambda>x. member x B))"
-
-definition bot_set where
- "\<bottom> = Collect \<bottom>"
-
-definition top_set where
- "\<top> = Collect \<top>"
-
-definition uminus_set where
- "- A = Collect (- (\<lambda>x. member x A))"
-
-definition minus_set where
- "A - B = Collect ((\<lambda>x. member x A) - (\<lambda>x. member x B))"
-
-instance proof
-qed (simp_all add: less_eq_set_def less_set_def inf_set_def sup_set_def
- bot_set_def top_set_def uminus_set_def minus_set_def
- less_le_not_le inf_compl_bot sup_compl_top sup_inf_distrib1 diff_eq
- set_eqI fun_eq_iff
- del: inf_apply sup_apply bot_apply top_apply minus_apply uminus_apply)
+definition less_eq_set
+ where "A \<le> B \<longleftrightarrow> (\<lambda>x. member x A) \<le> (\<lambda>x. member x B)"
+
+definition less_set
+ where "A < B \<longleftrightarrow> (\<lambda>x. member x A) < (\<lambda>x. member x B)"
+
+definition inf_set
+ where "A \<sqinter> B = Collect ((\<lambda>x. member x A) \<sqinter> (\<lambda>x. member x B))"
+
+definition sup_set
+ where "A \<squnion> B = Collect ((\<lambda>x. member x A) \<squnion> (\<lambda>x. member x B))"
+
+definition bot_set
+ where "\<bottom> = Collect \<bottom>"
+
+definition top_set
+ where "\<top> = Collect \<top>"
+
+definition uminus_set
+ where "- A = Collect (- (\<lambda>x. member x A))"
+
+definition minus_set
+ where "A - B = Collect ((\<lambda>x. member x A) - (\<lambda>x. member x B))"
+
+instance
+ by standard
+ (simp_all add: less_eq_set_def less_set_def inf_set_def sup_set_def
+ bot_set_def top_set_def uminus_set_def minus_set_def
+ less_le_not_le sup_inf_distrib1 diff_eq set_eqI fun_eq_iff
+ del: inf_apply sup_apply bot_apply top_apply minus_apply uminus_apply)
end
text \<open>Set enumerations\<close>
-abbreviation empty :: "'a set" ("{}") where
- "{} \<equiv> bot"
-
-definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
- insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"
+abbreviation empty :: "'a set" ("{}")
+ where "{} \<equiv> bot"
+
+definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set"
+ where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"
syntax
- "_Finset" :: "args => 'a set" ("{(_)}")
+ "_Finset" :: "args \<Rightarrow> 'a set" ("{(_)}")
translations
- "{x, xs}" == "CONST insert x {xs}"
- "{x}" == "CONST insert x {}"
+ "{x, xs}" \<rightleftharpoons> "CONST insert x {xs}"
+ "{x}" \<rightleftharpoons> "CONST insert x {}"
subsection \<open>Subsets and bounded quantifiers\<close>
@@ -171,28 +170,28 @@
subset_eq ("op <=") and
subset_eq ("(_/ <= _)" [51, 51] 50)
-definition Ball :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "Ball A P \<longleftrightarrow> (\<forall>x. x \<in> A \<longrightarrow> P x)" \<comment> "bounded universal quantifiers"
-
-definition Bex :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
- "Bex A P \<longleftrightarrow> (\<exists>x. x \<in> A \<and> P x)" \<comment> "bounded existential quantifiers"
+definition Ball :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+ where "Ball A P \<longleftrightarrow> (\<forall>x. x \<in> A \<longrightarrow> P x)" \<comment> "bounded universal quantifiers"
+
+definition Bex :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+ where "Bex A P \<longleftrightarrow> (\<exists>x. x \<in> A \<and> P x)" \<comment> "bounded existential quantifiers"
syntax (ASCII)
- "_Ball" :: "pttrn => 'a set => bool => bool" ("(3ALL _:_./ _)" [0, 0, 10] 10)
- "_Bex" :: "pttrn => 'a set => bool => bool" ("(3EX _:_./ _)" [0, 0, 10] 10)
- "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3EX! _:_./ _)" [0, 0, 10] 10)
- "_Bleast" :: "id => 'a set => bool => 'a" ("(3LEAST _:_./ _)" [0, 0, 10] 10)
+ "_Ball" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool" ("(3ALL _:_./ _)" [0, 0, 10] 10)
+ "_Bex" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool" ("(3EX _:_./ _)" [0, 0, 10] 10)
+ "_Bex1" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool" ("(3EX! _:_./ _)" [0, 0, 10] 10)
+ "_Bleast" :: "id \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a" ("(3LEAST _:_./ _)" [0, 0, 10] 10)
syntax (input)
- "_Ball" :: "pttrn => 'a set => bool => bool" ("(3! _:_./ _)" [0, 0, 10] 10)
- "_Bex" :: "pttrn => 'a set => bool => bool" ("(3? _:_./ _)" [0, 0, 10] 10)
- "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3?! _:_./ _)" [0, 0, 10] 10)
+ "_Ball" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool" ("(3! _:_./ _)" [0, 0, 10] 10)
+ "_Bex" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool" ("(3? _:_./ _)" [0, 0, 10] 10)
+ "_Bex1" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool" ("(3?! _:_./ _)" [0, 0, 10] 10)
syntax
- "_Ball" :: "pttrn => 'a set => bool => bool" ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
- "_Bex" :: "pttrn => 'a set => bool => bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
- "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
- "_Bleast" :: "id => 'a set => bool => 'a" ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10)
+ "_Ball" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool" ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
+ "_Bex" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool" ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
+ "_Bex1" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> bool" ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
+ "_Bleast" :: "id \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a" ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10)
translations
"\<forall>x\<in>A. P" \<rightleftharpoons> "CONST Ball A (\<lambda>x. P)"
@@ -201,25 +200,25 @@
"LEAST x:A. P" \<rightharpoonup> "LEAST x. x \<in> A \<and> P"
syntax (ASCII output)
- "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10)
- "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10)
- "_setleAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10)
- "_setleEx" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10)
- "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3EX! _<=_./ _)" [0, 0, 10] 10)
+ "_setlessAll" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3ALL _<_./ _)" [0, 0, 10] 10)
+ "_setlessEx" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3EX _<_./ _)" [0, 0, 10] 10)
+ "_setleAll" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10)
+ "_setleEx" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3EX _<=_./ _)" [0, 0, 10] 10)
+ "_setleEx1" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3EX! _<=_./ _)" [0, 0, 10] 10)
syntax
- "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subset>_./ _)" [0, 0, 10] 10)
- "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subset>_./ _)" [0, 0, 10] 10)
- "_setleAll" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
- "_setleEx" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
- "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
+ "_setlessAll" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3\<forall>_\<subset>_./ _)" [0, 0, 10] 10)
+ "_setlessEx" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3\<exists>_\<subset>_./ _)" [0, 0, 10] 10)
+ "_setleAll" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
+ "_setleEx" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
+ "_setleEx1" :: "[idt, 'a, bool] \<Rightarrow> bool" ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
translations
- "\<forall>A\<subset>B. P" \<rightharpoonup> "\<forall>A. A \<subset> B \<longrightarrow> P"
- "\<exists>A\<subset>B. P" \<rightharpoonup> "\<exists>A. A \<subset> B \<and> P"
- "\<forall>A\<subseteq>B. P" \<rightharpoonup> "\<forall>A. A \<subseteq> B \<longrightarrow> P"
- "\<exists>A\<subseteq>B. P" \<rightharpoonup> "\<exists>A. A \<subseteq> B \<and> P"
- "\<exists>!A\<subseteq>B. P" \<rightharpoonup> "\<exists>!A. A \<subseteq> B \<and> P"
+ "\<forall>A\<subset>B. P" \<rightharpoonup> "\<forall>A. A \<subset> B \<longrightarrow> P"
+ "\<exists>A\<subset>B. P" \<rightharpoonup> "\<exists>A. A \<subset> B \<and> P"
+ "\<forall>A\<subseteq>B. P" \<rightharpoonup> "\<forall>A. A \<subseteq> B \<longrightarrow> P"
+ "\<exists>A\<subseteq>B. P" \<rightharpoonup> "\<exists>A. A \<subseteq> B \<and> P"
+ "\<exists>!A\<subseteq>B. P" \<rightharpoonup> "\<exists>!A. A \<subseteq> B \<and> P"
print_translation \<open>
let
@@ -256,12 +255,13 @@
text \<open>
- \medskip Translate between \<open>{e | x1...xn. P}\<close> and \<open>{u. EX x1..xn. u = e & P}\<close>; \<open>{y. EX x1..xn. y = e & P}\<close> is
- only translated if \<open>[0..n] subset bvs(e)\<close>.
+ \<^medskip>
+ Translate between \<open>{e | x1\<dots>xn. P}\<close> and \<open>{u. \<exists>x1\<dots>xn. u = e \<and> P}\<close>;
+ \<open>{y. \<exists>x1\<dots>xn. y = e \<and> P}\<close> is only translated if \<open>[0..n] \<subseteq> bvs e\<close>.
\<close>
syntax
- "_Setcompr" :: "'a => idts => bool => 'a set" ("(1{_ |/_./ _})")
+ "_Setcompr" :: "'a \<Rightarrow> idts \<Rightarrow> bool \<Rightarrow> 'a set" ("(1{_ |/_./ _})")
parse_translation \<open>
let
@@ -319,31 +319,29 @@
in [(@{const_syntax Collect}, setcompr_tr')] end;
\<close>
-simproc_setup defined_Bex ("EX x:A. P x & Q x") = \<open>
+simproc_setup defined_Bex ("\<exists>x\<in>A. P x \<and> Q x") = \<open>
fn _ => Quantifier1.rearrange_bex
(fn ctxt =>
unfold_tac ctxt @{thms Bex_def} THEN
Quantifier1.prove_one_point_ex_tac ctxt)
\<close>
-simproc_setup defined_All ("ALL x:A. P x --> Q x") = \<open>
+simproc_setup defined_All ("\<forall>x\<in>A. P x \<longrightarrow> Q x") = \<open>
fn _ => Quantifier1.rearrange_ball
(fn ctxt =>
unfold_tac ctxt @{thms Ball_def} THEN
Quantifier1.prove_one_point_all_tac ctxt)
\<close>
-lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x"
+lemma ballI [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> P x) \<Longrightarrow> \<forall>x\<in>A. P x"
by (simp add: Ball_def)
lemmas strip = impI allI ballI
-lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x"
+lemma bspec [dest?]: "\<forall>x\<in>A. P x \<Longrightarrow> x \<in> A \<Longrightarrow> P x"
by (simp add: Ball_def)
-text \<open>
- Gives better instantiation for bound:
-\<close>
+text \<open>Gives better instantiation for bound:\<close>
setup \<open>
map_theory_claset (fn ctxt =>
@@ -353,98 +351,91 @@
ML \<open>
structure Simpdata =
struct
-
-open Simpdata;
-
-val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
-
+ open Simpdata;
+ val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
end;
open Simpdata;
\<close>
-declaration \<open>fn _ =>
- Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs))
-\<close>
-
-lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q"
- by (unfold Ball_def) blast
-
-lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x"
- \<comment> \<open>Normally the best argument order: @{prop "P x"} constrains the
- choice of @{prop "x:A"}.\<close>
- by (unfold Bex_def) blast
-
-lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x"
- \<comment> \<open>The best argument order when there is only one @{prop "x:A"}.\<close>
- by (unfold Bex_def) blast
-
-lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x"
- by (unfold Bex_def) blast
-
-lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q"
- by (unfold Bex_def) blast
-
-lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)"
+declaration \<open>fn _ => Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs))\<close>
+
+lemma ballE [elim]: "\<forall>x\<in>A. P x \<Longrightarrow> (P x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q"
+ unfolding Ball_def by blast
+
+lemma bexI [intro]: "P x \<Longrightarrow> x \<in> A \<Longrightarrow> \<exists>x\<in>A. P x"
+ \<comment> \<open>Normally the best argument order: \<open>P x\<close> constrains the choice of \<open>x \<in> A\<close>.\<close>
+ unfolding Bex_def by blast
+
+lemma rev_bexI [intro?]: "x \<in> A \<Longrightarrow> P x \<Longrightarrow> \<exists>x\<in>A. P x"
+ \<comment> \<open>The best argument order when there is only one \<open>x \<in> A\<close>.\<close>
+ unfolding Bex_def by blast
+
+lemma bexCI: "(\<forall>x\<in>A. \<not> P x \<Longrightarrow> P a) \<Longrightarrow> a \<in> A \<Longrightarrow> \<exists>x\<in>A. P x"
+ unfolding Bex_def by blast
+
+lemma bexE [elim!]: "\<exists>x\<in>A. P x \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> P x \<Longrightarrow> Q) \<Longrightarrow> Q"
+ unfolding Bex_def by blast
+
+lemma ball_triv [simp]: "(\<forall>x\<in>A. P) \<longleftrightarrow> ((\<exists>x. x \<in> A) \<longrightarrow> P)"
\<comment> \<open>Trival rewrite rule.\<close>
by (simp add: Ball_def)
-lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)"
+lemma bex_triv [simp]: "(\<exists>x\<in>A. P) \<longleftrightarrow> ((\<exists>x. x \<in> A) \<and> P)"
\<comment> \<open>Dual form for existentials.\<close>
by (simp add: Bex_def)
-lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)"
+lemma bex_triv_one_point1 [simp]: "(\<exists>x\<in>A. x = a) \<longleftrightarrow> a \<in> A"
by blast
-lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)"
+lemma bex_triv_one_point2 [simp]: "(\<exists>x\<in>A. a = x) \<longleftrightarrow> a \<in> A"
by blast
-lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)"
+lemma bex_one_point1 [simp]: "(\<exists>x\<in>A. x = a \<and> P x) \<longleftrightarrow> a \<in> A \<and> P a"
by blast
-lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)"
+lemma bex_one_point2 [simp]: "(\<exists>x\<in>A. a = x \<and> P x) \<longleftrightarrow> a \<in> A \<and> P a"
by blast
-lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)"
+lemma ball_one_point1 [simp]: "(\<forall>x\<in>A. x = a \<longrightarrow> P x) \<longleftrightarrow> (a \<in> A \<longrightarrow> P a)"
by blast
-lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)"
+lemma ball_one_point2 [simp]: "(\<forall>x\<in>A. a = x \<longrightarrow> P x) \<longleftrightarrow> (a \<in> A \<longrightarrow> P a)"
by blast
-lemma ball_conj_distrib:
- "(\<forall>x\<in>A. P x \<and> Q x) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>A. Q x))"
+lemma ball_conj_distrib: "(\<forall>x\<in>A. P x \<and> Q x) \<longleftrightarrow> (\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>A. Q x)"
by blast
-lemma bex_disj_distrib:
- "(\<exists>x\<in>A. P x \<or> Q x) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>A. Q x))"
+lemma bex_disj_distrib: "(\<exists>x\<in>A. P x \<or> Q x) \<longleftrightarrow> (\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>A. Q x)"
by blast
text \<open>Congruence rules\<close>
lemma ball_cong:
- "A = B ==> (!!x. x:B ==> P x = Q x) ==>
- (ALL x:A. P x) = (ALL x:B. Q x)"
+ "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> P x \<longleftrightarrow> Q x) \<Longrightarrow>
+ (\<forall>x\<in>A. P x) \<longleftrightarrow> (\<forall>x\<in>B. Q x)"
by (simp add: Ball_def)
lemma strong_ball_cong [cong]:
- "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
- (ALL x:A. P x) = (ALL x:B. Q x)"
+ "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> P x \<longleftrightarrow> Q x) \<Longrightarrow>
+ (\<forall>x\<in>A. P x) \<longleftrightarrow> (\<forall>x\<in>B. Q x)"
by (simp add: simp_implies_def Ball_def)
lemma bex_cong:
- "A = B ==> (!!x. x:B ==> P x = Q x) ==>
- (EX x:A. P x) = (EX x:B. Q x)"
+ "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> P x \<longleftrightarrow> Q x) \<Longrightarrow>
+ (\<exists>x\<in>A. P x) \<longleftrightarrow> (\<exists>x\<in>B. Q x)"
by (simp add: Bex_def cong: conj_cong)
lemma strong_bex_cong [cong]:
- "A = B ==> (!!x. x:B =simp=> P x = Q x) ==>
- (EX x:A. P x) = (EX x:B. Q x)"
+ "A = B \<Longrightarrow> (\<And>x. x \<in> B =simp=> P x \<longleftrightarrow> Q x) \<Longrightarrow>
+ (\<exists>x\<in>A. P x) \<longleftrightarrow> (\<exists>x\<in>B. Q x)"
by (simp add: simp_implies_def Bex_def cong: conj_cong)
lemma bex1_def: "(\<exists>!x\<in>X. P x) \<longleftrightarrow> (\<exists>x\<in>X. P x) \<and> (\<forall>x\<in>X. \<forall>y\<in>X. P x \<longrightarrow> P y \<longrightarrow> x = y)"
by auto
+
subsection \<open>Basic operations\<close>
subsubsection \<open>Subsets\<close>
@@ -453,50 +444,45 @@
by (simp add: less_eq_set_def le_fun_def)
text \<open>
- \medskip Map the type \<open>'a set => anything\<close> to just @{typ
- 'a}; for overloading constants whose first argument has type @{typ
- "'a set"}.
+ \<^medskip>
+ Map the type \<open>'a set \<Rightarrow> anything\<close> to just \<open>'a\<close>; for overloading constants
+ whose first argument has type \<open>'a set\<close>.
\<close>
-lemma subsetD [elim, intro?]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B"
+lemma subsetD [elim, intro?]: "A \<subseteq> B \<Longrightarrow> c \<in> A \<Longrightarrow> c \<in> B"
by (simp add: less_eq_set_def le_fun_def)
\<comment> \<open>Rule in Modus Ponens style.\<close>
-lemma rev_subsetD [intro?]: "c \<in> A ==> A \<subseteq> B ==> c \<in> B"
- \<comment> \<open>The same, with reversed premises for use with \<open>erule\<close> --
- cf \<open>rev_mp\<close>.\<close>
+lemma rev_subsetD [intro?]: "c \<in> A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> c \<in> B"
+ \<comment> \<open>The same, with reversed premises for use with \<open>erule\<close> -- cf. \<open>rev_mp\<close>.\<close>
by (rule subsetD)
-text \<open>
- \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
-\<close>
-
-lemma subsetCE [elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P"
+lemma subsetCE [elim]: "A \<subseteq> B \<Longrightarrow> (c \<notin> A \<Longrightarrow> P) \<Longrightarrow> (c \<in> B \<Longrightarrow> P) \<Longrightarrow> P"
\<comment> \<open>Classical elimination rule.\<close>
by (auto simp add: less_eq_set_def le_fun_def)
-lemma subset_eq: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast
-
-lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A"
+lemma subset_eq: "A \<le> B = (\<forall>x\<in>A. x \<in> B)"
+ by blast
+
+lemma contra_subsetD: "A \<subseteq> B \<Longrightarrow> c \<notin> B \<Longrightarrow> c \<notin> A"
by blast
lemma subset_refl: "A \<subseteq> A"
by (fact order_refl) (* already [iff] *)
-lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C"
+lemma subset_trans: "A \<subseteq> B \<Longrightarrow> B \<subseteq> C \<Longrightarrow> A \<subseteq> C"
by (fact order_trans)
-lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B"
+lemma set_rev_mp: "x \<in> A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> x \<in> B"
by (rule subsetD)
-lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B"
+lemma set_mp: "A \<subseteq> B \<Longrightarrow> x \<in> A \<Longrightarrow> x \<in> B"
by (rule subsetD)
-lemma subset_not_subset_eq [code]:
- "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"
+lemma subset_not_subset_eq [code]: "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"
by (fact less_le_not_le)
-lemma eq_mem_trans: "a=b ==> b \<in> A ==> a \<in> A"
+lemma eq_mem_trans: "a = b \<Longrightarrow> b \<in> A \<Longrightarrow> a \<in> A"
by simp
lemmas basic_trans_rules [trans] =
@@ -505,123 +491,120 @@
subsubsection \<open>Equality\<close>
-lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B"
+lemma subset_antisym [intro!]: "A \<subseteq> B \<Longrightarrow> B \<subseteq> A \<Longrightarrow> A = B"
\<comment> \<open>Anti-symmetry of the subset relation.\<close>
by (iprover intro: set_eqI subsetD)
-text \<open>
- \medskip Equality rules from ZF set theory -- are they appropriate
- here?
-\<close>
-
-lemma equalityD1: "A = B ==> A \<subseteq> B"
+text \<open>\<^medskip> Equality rules from ZF set theory -- are they appropriate here?\<close>
+
+lemma equalityD1: "A = B \<Longrightarrow> A \<subseteq> B"
by simp
-lemma equalityD2: "A = B ==> B \<subseteq> A"
+lemma equalityD2: "A = B \<Longrightarrow> B \<subseteq> A"
by simp
text \<open>
- \medskip Be careful when adding this to the claset as \<open>subset_empty\<close> is in the simpset: @{prop "A = {}"} goes to @{prop "{}
- \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
+ \<^medskip>
+ Be careful when adding this to the claset as \<open>subset_empty\<close> is in the
+ simpset: @{prop "A = {}"} goes to @{prop "{} \<subseteq> A"} and @{prop "A \<subseteq> {}"}
+ and then back to @{prop "A = {}"}!
\<close>
-lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P"
+lemma equalityE: "A = B \<Longrightarrow> (A \<subseteq> B \<Longrightarrow> B \<subseteq> A \<Longrightarrow> P) \<Longrightarrow> P"
by simp
-lemma equalityCE [elim]:
- "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P"
+lemma equalityCE [elim]: "A = B \<Longrightarrow> (c \<in> A \<Longrightarrow> c \<in> B \<Longrightarrow> P) \<Longrightarrow> (c \<notin> A \<Longrightarrow> c \<notin> B \<Longrightarrow> P) \<Longrightarrow> P"
by blast
-lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)"
+lemma eqset_imp_iff: "A = B \<Longrightarrow> x \<in> A \<longleftrightarrow> x \<in> B"
by simp
-lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)"
+lemma eqelem_imp_iff: "x = y \<Longrightarrow> x \<in> A \<longleftrightarrow> y \<in> A"
by simp
subsubsection \<open>The empty set\<close>
-lemma empty_def:
- "{} = {x. False}"
+lemma empty_def: "{} = {x. False}"
by (simp add: bot_set_def bot_fun_def)
-lemma empty_iff [simp]: "(c : {}) = False"
+lemma empty_iff [simp]: "c \<in> {} \<longleftrightarrow> False"
by (simp add: empty_def)
-lemma emptyE [elim!]: "a : {} ==> P"
+lemma emptyE [elim!]: "a \<in> {} \<Longrightarrow> P"
by simp
lemma empty_subsetI [iff]: "{} \<subseteq> A"
- \<comment> \<open>One effect is to delete the ASSUMPTION @{prop "{} <= A"}\<close>
+ \<comment> \<open>One effect is to delete the ASSUMPTION @{prop "{} \<subseteq> A"}\<close>
by blast
-lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
+lemma equals0I: "(\<And>y. y \<in> A \<Longrightarrow> False) \<Longrightarrow> A = {}"
by blast
-lemma equals0D: "A = {} ==> a \<notin> A"
- \<comment> \<open>Use for reasoning about disjointness: \<open>A Int B = {}\<close>\<close>
+lemma equals0D: "A = {} \<Longrightarrow> a \<notin> A"
+ \<comment> \<open>Use for reasoning about disjointness: \<open>A \<inter> B = {}\<close>\<close>
by blast
-lemma ball_empty [simp]: "Ball {} P = True"
+lemma ball_empty [simp]: "Ball {} P \<longleftrightarrow> True"
by (simp add: Ball_def)
-lemma bex_empty [simp]: "Bex {} P = False"
+lemma bex_empty [simp]: "Bex {} P \<longleftrightarrow> False"
by (simp add: Bex_def)
subsubsection \<open>The universal set -- UNIV\<close>
-abbreviation UNIV :: "'a set" where
- "UNIV \<equiv> top"
-
-lemma UNIV_def:
- "UNIV = {x. True}"
+abbreviation UNIV :: "'a set"
+ where "UNIV \<equiv> top"
+
+lemma UNIV_def: "UNIV = {x. True}"
by (simp add: top_set_def top_fun_def)
-lemma UNIV_I [simp]: "x : UNIV"
+lemma UNIV_I [simp]: "x \<in> UNIV"
by (simp add: UNIV_def)
declare UNIV_I [intro] \<comment> \<open>unsafe makes it less likely to cause problems\<close>
-lemma UNIV_witness [intro?]: "EX x. x : UNIV"
+lemma UNIV_witness [intro?]: "\<exists>x. x \<in> UNIV"
by simp
lemma subset_UNIV: "A \<subseteq> UNIV"
by (fact top_greatest) (* already simp *)
text \<open>
- \medskip Eta-contracting these two rules (to remove \<open>P\<close>)
- causes them to be ignored because of their interaction with
- congruence rules.
+ \<^medskip>
+ Eta-contracting these two rules (to remove \<open>P\<close>) causes them
+ to be ignored because of their interaction with congruence rules.
\<close>
-lemma ball_UNIV [simp]: "Ball UNIV P = All P"
+lemma ball_UNIV [simp]: "Ball UNIV P \<longleftrightarrow> All P"
by (simp add: Ball_def)
-lemma bex_UNIV [simp]: "Bex UNIV P = Ex P"
+lemma bex_UNIV [simp]: "Bex UNIV P \<longleftrightarrow> Ex P"
by (simp add: Bex_def)
lemma UNIV_eq_I: "(\<And>x. x \<in> A) \<Longrightarrow> UNIV = A"
by auto
-lemma UNIV_not_empty [iff]: "UNIV ~= {}"
+lemma UNIV_not_empty [iff]: "UNIV \<noteq> {}"
by (blast elim: equalityE)
lemma empty_not_UNIV[simp]: "{} \<noteq> UNIV"
-by blast
+ by blast
+
subsubsection \<open>The Powerset operator -- Pow\<close>
-definition Pow :: "'a set => 'a set set" where
- Pow_def: "Pow A = {B. B \<le> A}"
-
-lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)"
+definition Pow :: "'a set \<Rightarrow> 'a set set"
+ where Pow_def: "Pow A = {B. B \<subseteq> A}"
+
+lemma Pow_iff [iff]: "A \<in> Pow B \<longleftrightarrow> A \<subseteq> B"
by (simp add: Pow_def)
-lemma PowI: "A \<subseteq> B ==> A \<in> Pow B"
+lemma PowI: "A \<subseteq> B \<Longrightarrow> A \<in> Pow B"
by (simp add: Pow_def)
-lemma PowD: "A \<in> Pow B ==> A \<subseteq> B"
+lemma PowD: "A \<in> Pow B \<Longrightarrow> A \<subseteq> B"
by (simp add: Pow_def)
lemma Pow_bottom: "{} \<in> Pow B"
@@ -636,23 +619,25 @@
subsubsection \<open>Set complement\<close>
-lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)"
+lemma Compl_iff [simp]: "c \<in> - A \<longleftrightarrow> c \<notin> A"
by (simp add: fun_Compl_def uminus_set_def)
-lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A"
+lemma ComplI [intro!]: "(c \<in> A \<Longrightarrow> False) \<Longrightarrow> c \<in> - A"
by (simp add: fun_Compl_def uminus_set_def) blast
text \<open>
- \medskip This form, with negated conclusion, works well with the
- Classical prover. Negated assumptions behave like formulae on the
- right side of the notional turnstile ...\<close>
-
-lemma ComplD [dest!]: "c : -A ==> c~:A"
+ \<^medskip>
+ This form, with negated conclusion, works well with the Classical prover.
+ Negated assumptions behave like formulae on the right side of the
+ notional turnstile \dots
+\<close>
+
+lemma ComplD [dest!]: "c \<in> - A \<Longrightarrow> c \<notin> A"
by simp
lemmas ComplE = ComplD [elim_format]
-lemma Compl_eq: "- A = {x. ~ x : A}"
+lemma Compl_eq: "- A = {x. \<not> x \<in> A}"
by blast
@@ -664,23 +649,22 @@
notation (ASCII)
inter (infixl "Int" 70)
-lemma Int_def:
- "A \<inter> B = {x. x \<in> A \<and> x \<in> B}"
+lemma Int_def: "A \<inter> B = {x. x \<in> A \<and> x \<in> B}"
by (simp add: inf_set_def inf_fun_def)
-lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)"
- by (unfold Int_def) blast
-
-lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B"
+lemma Int_iff [simp]: "c \<in> A \<inter> B \<longleftrightarrow> c \<in> A \<and> c \<in> B"
+ unfolding Int_def by blast
+
+lemma IntI [intro!]: "c \<in> A \<Longrightarrow> c \<in> B \<Longrightarrow> c \<in> A \<inter> B"
by simp
-lemma IntD1: "c : A Int B ==> c:A"
+lemma IntD1: "c \<in> A \<inter> B \<Longrightarrow> c \<in> A"
by simp
-lemma IntD2: "c : A Int B ==> c:B"
+lemma IntD2: "c \<in> A \<inter> B \<Longrightarrow> c \<in> B"
by simp
-lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P"
+lemma IntE [elim!]: "c \<in> A \<inter> B \<Longrightarrow> (c \<in> A \<Longrightarrow> c \<in> B \<Longrightarrow> P) \<Longrightarrow> P"
by simp
lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B"
@@ -695,29 +679,25 @@
notation (ASCII)
union (infixl "Un" 65)
-lemma Un_def:
- "A \<union> B = {x. x \<in> A \<or> x \<in> B}"
+lemma Un_def: "A \<union> B = {x. x \<in> A \<or> x \<in> B}"
by (simp add: sup_set_def sup_fun_def)
-lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)"
- by (unfold Un_def) blast
-
-lemma UnI1 [elim?]: "c:A ==> c : A Un B"
- by simp
-
-lemma UnI2 [elim?]: "c:B ==> c : A Un B"
+lemma Un_iff [simp]: "c \<in> A \<union> B \<longleftrightarrow> c \<in> A \<or> c \<in> B"
+ unfolding Un_def by blast
+
+lemma UnI1 [elim?]: "c \<in> A \<Longrightarrow> c \<in> A \<union> B"
by simp
-text \<open>
- \medskip Classical introduction rule: no commitment to @{prop A} vs
- @{prop B}.
-\<close>
-
-lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B"
+lemma UnI2 [elim?]: "c \<in> B \<Longrightarrow> c \<in> A \<union> B"
+ by simp
+
+text \<open>\<^medskip> Classical introduction rule: no commitment to @{prop A} vs @{prop B}.\<close>
+
+lemma UnCI [intro!]: "(c \<notin> B \<Longrightarrow> c \<in> A) \<Longrightarrow> c \<in> A \<union> B"
by auto
-lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P"
- by (unfold Un_def) blast
+lemma UnE [elim!]: "c \<in> A \<union> B \<Longrightarrow> (c \<in> A \<Longrightarrow> P) \<Longrightarrow> (c \<in> B \<Longrightarrow> P) \<Longrightarrow> P"
+ unfolding Un_def by blast
lemma insert_def: "insert a B = {x. x = a} \<union> B"
by (simp add: insert_compr Un_def)
@@ -728,109 +708,110 @@
subsubsection \<open>Set difference\<close>
-lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)"
+lemma Diff_iff [simp]: "c \<in> A - B \<longleftrightarrow> c \<in> A \<and> c \<notin> B"
by (simp add: minus_set_def fun_diff_def)
-lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B"
+lemma DiffI [intro!]: "c \<in> A \<Longrightarrow> c \<notin> B \<Longrightarrow> c \<in> A - B"
by simp
-lemma DiffD1: "c : A - B ==> c : A"
+lemma DiffD1: "c \<in> A - B \<Longrightarrow> c \<in> A"
by simp
-lemma DiffD2: "c : A - B ==> c : B ==> P"
+lemma DiffD2: "c \<in> A - B \<Longrightarrow> c \<in> B \<Longrightarrow> P"
by simp
-lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P"
+lemma DiffE [elim!]: "c \<in> A - B \<Longrightarrow> (c \<in> A \<Longrightarrow> c \<notin> B \<Longrightarrow> P) \<Longrightarrow> P"
by simp
-lemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blast
-
-lemma Compl_eq_Diff_UNIV: "-A = (UNIV - A)"
-by blast
+lemma set_diff_eq: "A - B = {x. x \<in> A \<and> x \<notin> B}"
+ by blast
+
+lemma Compl_eq_Diff_UNIV: "- A = (UNIV - A)"
+ by blast
subsubsection \<open>Augmenting a set -- @{const insert}\<close>
-lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)"
- by (unfold insert_def) blast
-
-lemma insertI1: "a : insert a B"
+lemma insert_iff [simp]: "a \<in> insert b A \<longleftrightarrow> a = b \<or> a \<in> A"
+ unfolding insert_def by blast
+
+lemma insertI1: "a \<in> insert a B"
by simp
-lemma insertI2: "a : B ==> a : insert b B"
+lemma insertI2: "a \<in> B \<Longrightarrow> a \<in> insert b B"
by simp
-lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P"
- by (unfold insert_def) blast
-
-lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B"
+lemma insertE [elim!]: "a \<in> insert b A \<Longrightarrow> (a = b \<Longrightarrow> P) \<Longrightarrow> (a \<in> A \<Longrightarrow> P) \<Longrightarrow> P"
+ unfolding insert_def by blast
+
+lemma insertCI [intro!]: "(a \<notin> B \<Longrightarrow> a = b) \<Longrightarrow> a \<in> insert b B"
\<comment> \<open>Classical introduction rule.\<close>
by auto
-lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
+lemma subset_insert_iff: "A \<subseteq> insert x B \<longleftrightarrow> (if x \<in> A then A - {x} \<subseteq> B else A \<subseteq> B)"
by auto
lemma set_insert:
assumes "x \<in> A"
obtains B where "A = insert x B" and "x \<notin> B"
proof
- from assms show "A = insert x (A - {x})" by blast
-next
+ show "A = insert x (A - {x})" using assms by blast
show "x \<notin> A - {x}" by blast
qed
-lemma insert_ident: "x ~: A ==> x ~: B ==> (insert x A = insert x B) = (A = B)"
-by auto
-
-lemma insert_eq_iff: assumes "a \<notin> A" "b \<notin> B"
-shows "insert a A = insert b B \<longleftrightarrow>
- (if a=b then A=B else \<exists>C. A = insert b C \<and> b \<notin> C \<and> B = insert a C \<and> a \<notin> C)"
- (is "?L \<longleftrightarrow> ?R")
+lemma insert_ident: "x \<notin> A \<Longrightarrow> x \<notin> B \<Longrightarrow> insert x A = insert x B \<longleftrightarrow> A = B"
+ by auto
+
+lemma insert_eq_iff:
+ assumes "a \<notin> A" "b \<notin> B"
+ shows "insert a A = insert b B \<longleftrightarrow>
+ (if a = b then A = B else \<exists>C. A = insert b C \<and> b \<notin> C \<and> B = insert a C \<and> a \<notin> C)"
+ (is "?L \<longleftrightarrow> ?R")
proof
- assume ?L
- show ?R
- proof cases
- assume "a=b" with assms \<open>?L\<close> show ?R by (simp add: insert_ident)
+ show ?R if ?L
+ proof (cases "a = b")
+ case True
+ with assms \<open>?L\<close> show ?R
+ by (simp add: insert_ident)
next
- assume "a\<noteq>b"
+ case False
let ?C = "A - {b}"
have "A = insert b ?C \<and> b \<notin> ?C \<and> B = insert a ?C \<and> a \<notin> ?C"
- using assms \<open>?L\<close> \<open>a\<noteq>b\<close> by auto
- thus ?R using \<open>a\<noteq>b\<close> by auto
+ using assms \<open>?L\<close> \<open>a \<noteq> b\<close> by auto
+ then show ?R using \<open>a \<noteq> b\<close> by auto
qed
-next
- assume ?R thus ?L by (auto split: if_splits)
+ show ?L if ?R
+ using that by (auto split: if_splits)
qed
lemma insert_UNIV: "insert x UNIV = UNIV"
-by auto
+ by auto
+
subsubsection \<open>Singletons, using insert\<close>
-lemma singletonI [intro!]: "a : {a}"
- \<comment> \<open>Redundant? But unlike \<open>insertCI\<close>, it proves the subgoal immediately!\<close>
+lemma singletonI [intro!]: "a \<in> {a}"
+ \<comment> \<open>Redundant? But unlike \<open>insertCI\<close>, it proves the subgoal immediately!\<close>
by (rule insertI1)
-lemma singletonD [dest!]: "b : {a} ==> b = a"
+lemma singletonD [dest!]: "b \<in> {a} \<Longrightarrow> b = a"
by blast
lemmas singletonE = singletonD [elim_format]
-lemma singleton_iff: "(b : {a}) = (b = a)"
+lemma singleton_iff: "b \<in> {a} \<longleftrightarrow> b = a"
by blast
-lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
+lemma singleton_inject [dest!]: "{a} = {b} \<Longrightarrow> a = b"
by blast
-lemma singleton_insert_inj_eq [iff]:
- "({b} = insert a A) = (a = b & A \<subseteq> {b})"
+lemma singleton_insert_inj_eq [iff]: "{b} = insert a A \<longleftrightarrow> a = b \<and> A \<subseteq> {b}"
by blast
-lemma singleton_insert_inj_eq' [iff]:
- "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
+lemma singleton_insert_inj_eq' [iff]: "insert a A = {b} \<longleftrightarrow> a = b \<and> A \<subseteq> {b}"
by blast
-lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
+lemma subset_singletonD: "A \<subseteq> {x} \<Longrightarrow> A = {} \<or> A = {x}"
by fast
lemma subset_singleton_iff: "X \<subseteq> {a} \<longleftrightarrow> X = {} \<or> X = {a}"
@@ -842,73 +823,59 @@
lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
by blast
-lemma Diff_single_insert: "A - {x} \<subseteq> B ==> A \<subseteq> insert x B"
+lemma Diff_single_insert: "A - {x} \<subseteq> B \<Longrightarrow> A \<subseteq> insert x B"
by blast
-lemma subset_Diff_insert: "A \<subseteq> B - (insert x C) \<longleftrightarrow> A \<subseteq> B - C \<and> x \<notin> A"
+lemma subset_Diff_insert: "A \<subseteq> B - insert x C \<longleftrightarrow> A \<subseteq> B - C \<and> x \<notin> A"
by blast
-lemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d | a=d & b=c)"
+lemma doubleton_eq_iff: "{a, b} = {c, d} \<longleftrightarrow> a = c \<and> b = d \<or> a = d & b = c"
by (blast elim: equalityE)
-lemma Un_singleton_iff:
- "(A \<union> B = {x}) = (A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x})"
-by auto
-
-lemma singleton_Un_iff:
- "({x} = A \<union> B) = (A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x})"
-by auto
+lemma Un_singleton_iff: "A \<union> B = {x} \<longleftrightarrow> A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x}"
+ by auto
+
+lemma singleton_Un_iff: "{x} = A \<union> B \<longleftrightarrow> A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x}"
+ by auto
subsubsection \<open>Image of a set under a function\<close>
-text \<open>
- Frequently @{term b} does not have the syntactic form of @{term "f x"}.
-\<close>
-
-definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90)
-where
- "f ` A = {y. \<exists>x\<in>A. y = f x}"
-
-lemma image_eqI [simp, intro]:
- "b = f x \<Longrightarrow> x \<in> A \<Longrightarrow> b \<in> f ` A"
- by (unfold image_def) blast
-
-lemma imageI:
- "x \<in> A \<Longrightarrow> f x \<in> f ` A"
+text \<open>Frequently \<open>b\<close> does not have the syntactic form of \<open>f x\<close>.\<close>
+
+definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90)
+ where "f ` A = {y. \<exists>x\<in>A. y = f x}"
+
+lemma image_eqI [simp, intro]: "b = f x \<Longrightarrow> x \<in> A \<Longrightarrow> b \<in> f ` A"
+ unfolding image_def by blast
+
+lemma imageI: "x \<in> A \<Longrightarrow> f x \<in> f ` A"
by (rule image_eqI) (rule refl)
-lemma rev_image_eqI:
- "x \<in> A \<Longrightarrow> b = f x \<Longrightarrow> b \<in> f ` A"
- \<comment> \<open>This version's more effective when we already have the
- required @{term x}.\<close>
+lemma rev_image_eqI: "x \<in> A \<Longrightarrow> b = f x \<Longrightarrow> b \<in> f ` A"
+ \<comment> \<open>This version's more effective when we already have the required \<open>x\<close>.\<close>
by (rule image_eqI)
lemma imageE [elim!]:
- assumes "b \<in> (\<lambda>x. f x) ` A" \<comment> \<open>The eta-expansion gives variable-name preservation.\<close>
+ assumes "b \<in> (\<lambda>x. f x) ` A" \<comment> \<open>The eta-expansion gives variable-name preservation.\<close>
obtains x where "b = f x" and "x \<in> A"
- using assms by (unfold image_def) blast
-
-lemma Compr_image_eq:
- "{x \<in> f ` A. P x} = f ` {x \<in> A. P (f x)}"
+ using assms unfolding image_def by blast
+
+lemma Compr_image_eq: "{x \<in> f ` A. P x} = f ` {x \<in> A. P (f x)}"
by auto
-lemma image_Un:
- "f ` (A \<union> B) = f ` A \<union> f ` B"
+lemma image_Un: "f ` (A \<union> B) = f ` A \<union> f ` B"
by blast
-lemma image_iff:
- "z \<in> f ` A \<longleftrightarrow> (\<exists>x\<in>A. z = f x)"
+lemma image_iff: "z \<in> f ` A \<longleftrightarrow> (\<exists>x\<in>A. z = f x)"
by blast
-lemma image_subsetI:
- "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` A \<subseteq> B"
+lemma image_subsetI: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` A \<subseteq> B"
\<comment> \<open>Replaces the three steps \<open>subsetI\<close>, \<open>imageE\<close>,
\<open>hypsubst\<close>, but breaks too many existing proofs.\<close>
by blast
-lemma image_subset_iff:
- "f ` A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. f x \<in> B)"
+lemma image_subset_iff: "f ` A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. f x \<in> B)"
\<comment> \<open>This rewrite rule would confuse users if made default.\<close>
by blast
@@ -921,68 +888,53 @@
ultimately show thesis by (blast intro: that)
qed
-lemma subset_image_iff:
- "B \<subseteq> f ` A \<longleftrightarrow> (\<exists>AA\<subseteq>A. B = f ` AA)"
+lemma subset_image_iff: "B \<subseteq> f ` A \<longleftrightarrow> (\<exists>AA\<subseteq>A. B = f ` AA)"
by (blast elim: subset_imageE)
-lemma image_ident [simp]:
- "(\<lambda>x. x) ` Y = Y"
+lemma image_ident [simp]: "(\<lambda>x. x) ` Y = Y"
by blast
-lemma image_empty [simp]:
- "f ` {} = {}"
+lemma image_empty [simp]: "f ` {} = {}"
by blast
-lemma image_insert [simp]:
- "f ` insert a B = insert (f a) (f ` B)"
+lemma image_insert [simp]: "f ` insert a B = insert (f a) (f ` B)"
by blast
-lemma image_constant:
- "x \<in> A \<Longrightarrow> (\<lambda>x. c) ` A = {c}"
+lemma image_constant: "x \<in> A \<Longrightarrow> (\<lambda>x. c) ` A = {c}"
by auto
-lemma image_constant_conv:
- "(\<lambda>x. c) ` A = (if A = {} then {} else {c})"
+lemma image_constant_conv: "(\<lambda>x. c) ` A = (if A = {} then {} else {c})"
by auto
-lemma image_image:
- "f ` (g ` A) = (\<lambda>x. f (g x)) ` A"
+lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A"
by blast
-lemma insert_image [simp]:
- "x \<in> A ==> insert (f x) (f ` A) = f ` A"
+lemma insert_image [simp]: "x \<in> A \<Longrightarrow> insert (f x) (f ` A) = f ` A"
by blast
-lemma image_is_empty [iff]:
- "f ` A = {} \<longleftrightarrow> A = {}"
+lemma image_is_empty [iff]: "f ` A = {} \<longleftrightarrow> A = {}"
by blast
-lemma empty_is_image [iff]:
- "{} = f ` A \<longleftrightarrow> A = {}"
+lemma empty_is_image [iff]: "{} = f ` A \<longleftrightarrow> A = {}"
by blast
-lemma image_Collect:
- "f ` {x. P x} = {f x | x. P x}"
- \<comment> \<open>NOT suitable as a default simprule: the RHS isn't simpler than the LHS,
+lemma image_Collect: "f ` {x. P x} = {f x | x. P x}"
+ \<comment> \<open>NOT suitable as a default simp rule: the RHS isn't simpler than the LHS,
with its implicit quantifier and conjunction. Also image enjoys better
equational properties than does the RHS.\<close>
by blast
lemma if_image_distrib [simp]:
- "(\<lambda>x. if P x then f x else g x) ` S
- = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
+ "(\<lambda>x. if P x then f x else g x) ` S = f ` (S \<inter> {x. P x}) \<union> g ` (S \<inter> {x. \<not> P x})"
by auto
-lemma image_cong:
- "M = N \<Longrightarrow> (\<And>x. x \<in> N \<Longrightarrow> f x = g x) \<Longrightarrow> f ` M = g ` N"
+lemma image_cong: "M = N \<Longrightarrow> (\<And>x. x \<in> N \<Longrightarrow> f x = g x) \<Longrightarrow> f ` M = g ` N"
by (simp add: image_def)
-lemma image_Int_subset:
- "f ` (A \<inter> B) \<subseteq> f ` A \<inter> f ` B"
+lemma image_Int_subset: "f ` (A \<inter> B) \<subseteq> f ` A \<inter> f ` B"
by blast
-lemma image_diff_subset:
- "f ` A - f ` B \<subseteq> f ` (A - B)"
+lemma image_diff_subset: "f ` A - f ` B \<subseteq> f ` (A - B)"
by blast
lemma Setcompr_eq_image: "{f x | x. x \<in> A} = f ` A"
@@ -991,78 +943,67 @@
lemma setcompr_eq_image: "{f x |x. P x} = f ` {x. P x}"
by auto
-lemma ball_imageD:
- assumes "\<forall>x\<in>f ` A. P x"
- shows "\<forall>x\<in>A. P (f x)"
- using assms by simp
-
-lemma bex_imageD:
- assumes "\<exists>x\<in>f ` A. P x"
- shows "\<exists>x\<in>A. P (f x)"
- using assms by auto
-
-lemma image_add_0 [simp]: "op+ (0::'a::comm_monoid_add) ` S = S"
+lemma ball_imageD: "\<forall>x\<in>f ` A. P x \<Longrightarrow> \<forall>x\<in>A. P (f x)"
+ by simp
+
+lemma bex_imageD: "\<exists>x\<in>f ` A. P x \<Longrightarrow> \<exists>x\<in>A. P (f x)"
+ by auto
+
+lemma image_add_0 [simp]: "op + (0::'a::comm_monoid_add) ` S = S"
by auto
-text \<open>
- \medskip Range of a function -- just a translation for image!
-\<close>
-
-abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set"
-where \<comment> "of function"
- "range f \<equiv> f ` UNIV"
-
-lemma range_eqI:
- "b = f x \<Longrightarrow> b \<in> range f"
+text \<open>\<^medskip> Range of a function -- just an abbreviation for image!\<close>
+
+abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> "of function"
+ where "range f \<equiv> f ` UNIV"
+
+lemma range_eqI: "b = f x \<Longrightarrow> b \<in> range f"
by simp
-lemma rangeI:
- "f x \<in> range f"
+lemma rangeI: "f x \<in> range f"
by simp
-lemma rangeE [elim?]:
- "b \<in> range (\<lambda>x. f x) \<Longrightarrow> (\<And>x. b = f x \<Longrightarrow> P) \<Longrightarrow> P"
+lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) \<Longrightarrow> (\<And>x. b = f x \<Longrightarrow> P) \<Longrightarrow> P"
by (rule imageE)
-lemma full_SetCompr_eq:
- "{u. \<exists>x. u = f x} = range f"
+lemma full_SetCompr_eq: "{u. \<exists>x. u = f x} = range f"
by auto
-lemma range_composition:
- "range (\<lambda>x. f (g x)) = f ` range g"
+lemma range_composition: "range (\<lambda>x. f (g x)) = f ` range g"
by auto
subsubsection \<open>Some rules with \<open>if\<close>\<close>
-text\<open>Elimination of \<open>{x. \<dots> & x=t & \<dots>}\<close>.\<close>
-
-lemma Collect_conv_if: "{x. x=a & P x} = (if P a then {a} else {})"
+text \<open>Elimination of \<open>{x. \<dots> \<and> x = t \<and> \<dots>}\<close>.\<close>
+
+lemma Collect_conv_if: "{x. x = a \<and> P x} = (if P a then {a} else {})"
by auto
-lemma Collect_conv_if2: "{x. a=x & P x} = (if P a then {a} else {})"
+lemma Collect_conv_if2: "{x. a = x \<and> P x} = (if P a then {a} else {})"
by auto
text \<open>
Rewrite rules for boolean case-splitting: faster than \<open>if_split [split]\<close>.
\<close>
-lemma if_split_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))"
+lemma if_split_eq1: "(if Q then x else y) = b \<longleftrightarrow> (Q \<longrightarrow> x = b) \<and> (\<not> Q \<longrightarrow> y = b)"
by (rule if_split)
-lemma if_split_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))"
+lemma if_split_eq2: "a = (if Q then x else y) \<longleftrightarrow> (Q \<longrightarrow> a = x) \<and> (\<not> Q \<longrightarrow> a = y)"
by (rule if_split)
text \<open>
- Split ifs on either side of the membership relation. Not for \<open>[simp]\<close> -- can cause goals to blow up!
+ Split ifs on either side of the membership relation.
+ Not for \<open>[simp]\<close> -- can cause goals to blow up!
\<close>
-lemma if_split_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))"
+lemma if_split_mem1: "(if Q then x else y) \<in> b \<longleftrightarrow> (Q \<longrightarrow> x \<in> b) \<and> (\<not> Q \<longrightarrow> y \<in> b)"
by (rule if_split)
-lemma if_split_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))"
- by (rule if_split [where P="%S. a : S"])
+lemma if_split_mem2: "(a \<in> (if Q then x else y)) \<longleftrightarrow> (Q \<longrightarrow> a \<in> x) \<and> (\<not> Q \<longrightarrow> a \<in> y)"
+ by (rule if_split [where P = "\<lambda>S. a \<in> S"])
lemmas split_ifs = if_bool_eq_conj if_split_eq1 if_split_eq2 if_split_mem1 if_split_mem2
@@ -1080,58 +1021,48 @@
subsubsection \<open>The ``proper subset'' relation\<close>
-lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B"
- by (unfold less_le) blast
-
-lemma psubsetE [elim!]:
- "[|A \<subset> B; [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R"
- by (unfold less_le) blast
+lemma psubsetI [intro!]: "A \<subseteq> B \<Longrightarrow> A \<noteq> B \<Longrightarrow> A \<subset> B"
+ unfolding less_le by blast
+
+lemma psubsetE [elim!]: "A \<subset> B \<Longrightarrow> (A \<subseteq> B \<Longrightarrow> \<not> B \<subseteq> A \<Longrightarrow> R) \<Longrightarrow> R"
+ unfolding less_le by blast
lemma psubset_insert_iff:
- "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
+ "A \<subset> insert x B \<longleftrightarrow> (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
by (auto simp add: less_le subset_insert_iff)
-lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)"
+lemma psubset_eq: "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> A \<noteq> B"
by (simp only: less_le)
-lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B"
+lemma psubset_imp_subset: "A \<subset> B \<Longrightarrow> A \<subseteq> B"
by (simp add: psubset_eq)
-lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C"
-apply (unfold less_le)
-apply (auto dest: subset_antisym)
-done
-
-lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B"
-apply (unfold less_le)
-apply (auto dest: subsetD)
-done
-
-lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C"
+lemma psubset_trans: "A \<subset> B \<Longrightarrow> B \<subset> C \<Longrightarrow> A \<subset> C"
+ unfolding less_le by (auto dest: subset_antisym)
+
+lemma psubsetD: "A \<subset> B \<Longrightarrow> c \<in> A \<Longrightarrow> c \<in> B"
+ unfolding less_le by (auto dest: subsetD)
+
+lemma psubset_subset_trans: "A \<subset> B \<Longrightarrow> B \<subseteq> C \<Longrightarrow> A \<subset> C"
by (auto simp add: psubset_eq)
-lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C"
+lemma subset_psubset_trans: "A \<subseteq> B \<Longrightarrow> B \<subset> C \<Longrightarrow> A \<subset> C"
by (auto simp add: psubset_eq)
-lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)"
- by (unfold less_le) blast
-
-lemma atomize_ball:
- "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)"
+lemma psubset_imp_ex_mem: "A \<subset> B \<Longrightarrow> \<exists>b. b \<in> B - A"
+ unfolding less_le by blast
+
+lemma atomize_ball: "(\<And>x. x \<in> A \<Longrightarrow> P x) \<equiv> Trueprop (\<forall>x\<in>A. P x)"
by (simp only: Ball_def atomize_all atomize_imp)
lemmas [symmetric, rulify] = atomize_ball
and [symmetric, defn] = atomize_ball
-lemma image_Pow_mono:
- assumes "f ` A \<subseteq> B"
- shows "image f ` Pow A \<subseteq> Pow B"
- using assms by blast
-
-lemma image_Pow_surj:
- assumes "f ` A = B"
- shows "image f ` Pow A = Pow B"
- using assms by (blast elim: subset_imageE)
+lemma image_Pow_mono: "f ` A \<subseteq> B \<Longrightarrow> image f ` Pow A \<subseteq> Pow B"
+ by blast
+
+lemma image_Pow_surj: "f ` A = B \<Longrightarrow> image f ` Pow A = Pow B"
+ by (blast elim: subset_imageE)
subsubsection \<open>Derived rules involving subsets.\<close>
@@ -1144,11 +1075,11 @@
lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B"
by blast
-lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)"
+lemma subset_insert: "x \<notin> A \<Longrightarrow> A \<subseteq> insert x B \<longleftrightarrow> A \<subseteq> B"
by blast
-text \<open>\medskip Finite Union -- the least upper bound of two sets.\<close>
+text \<open>\<^medskip> Finite Union -- the least upper bound of two sets.\<close>
lemma Un_upper1: "A \<subseteq> A \<union> B"
by (fact sup_ge1)
@@ -1156,11 +1087,11 @@
lemma Un_upper2: "B \<subseteq> A \<union> B"
by (fact sup_ge2)
-lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C"
+lemma Un_least: "A \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> A \<union> B \<subseteq> C"
by (fact sup_least)
-text \<open>\medskip Finite Intersection -- the greatest lower bound of two sets.\<close>
+text \<open>\<^medskip> Finite Intersection -- the greatest lower bound of two sets.\<close>
lemma Int_lower1: "A \<inter> B \<subseteq> A"
by (fact inf_le1)
@@ -1168,17 +1099,17 @@
lemma Int_lower2: "A \<inter> B \<subseteq> B"
by (fact inf_le2)
-lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B"
+lemma Int_greatest: "C \<subseteq> A \<Longrightarrow> C \<subseteq> B \<Longrightarrow> C \<subseteq> A \<inter> B"
by (fact inf_greatest)
-text \<open>\medskip Set difference.\<close>
+text \<open>\<^medskip> Set difference.\<close>
lemma Diff_subset: "A - B \<subseteq> A"
by blast
-lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)"
-by blast
+lemma Diff_subset_conv: "A - B \<subseteq> C \<longleftrightarrow> A \<subseteq> B \<union> C"
+ by blast
subsubsection \<open>Equalities involving union, intersection, inclusion, etc.\<close>
@@ -1189,49 +1120,47 @@
\<comment> \<open>supersedes \<open>Collect_False_empty\<close>\<close>
by auto
-lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
+lemma subset_empty [simp]: "A \<subseteq> {} \<longleftrightarrow> A = {}"
by (fact bot_unique)
lemma not_psubset_empty [iff]: "\<not> (A < {})"
by (fact not_less_bot) (* FIXME: already simp *)
-lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
-by blast
-
-lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"
-by blast
+lemma Collect_empty_eq [simp]: "Collect P = {} \<longleftrightarrow> (\<forall>x. \<not> P x)"
+ by blast
+
+lemma empty_Collect_eq [simp]: "{} = Collect P \<longleftrightarrow> (\<forall>x. \<not> P x)"
+ by blast
lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
by blast
-lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
+lemma Collect_disj_eq: "{x. P x \<or> Q x} = {x. P x} \<union> {x. Q x}"
by blast
-lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
+lemma Collect_imp_eq: "{x. P x \<longrightarrow> Q x} = - {x. P x} \<union> {x. Q x}"
by blast
-lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
+lemma Collect_conj_eq: "{x. P x \<and> Q x} = {x. P x} \<inter> {x. Q x}"
by blast
lemma Collect_mono_iff: "Collect P \<subseteq> Collect Q \<longleftrightarrow> (\<forall>x. P x \<longrightarrow> Q x)"
by blast
-text \<open>\medskip \<open>insert\<close>.\<close>
-
-lemma insert_is_Un: "insert a A = {a} Un A"
- \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} == insert a {}\<close>\<close>
+text \<open>\<^medskip> \<open>insert\<close>.\<close>
+
+lemma insert_is_Un: "insert a A = {a} \<union> A"
+ \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} \<equiv> insert a {}\<close>\<close>
by blast
lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
- by blast
-
-lemmas empty_not_insert = insert_not_empty [symmetric]
-declare empty_not_insert [simp]
-
-lemma insert_absorb: "a \<in> A ==> insert a A = A"
+ and empty_not_insert [simp]: "{} \<noteq> insert a A"
+ by blast+
+
+lemma insert_absorb: "a \<in> A \<Longrightarrow> insert a A = A"
\<comment> \<open>\<open>[simp]\<close> causes recursive calls when there are nested inserts\<close>
- \<comment> \<open>with \emph{quadratic} running time\<close>
+ \<comment> \<open>with \<^emph>\<open>quadratic\<close> running time\<close>
by blast
lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A"
@@ -1240,32 +1169,31 @@
lemma insert_commute: "insert x (insert y A) = insert y (insert x A)"
by blast
-lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)"
+lemma insert_subset [simp]: "insert x A \<subseteq> B \<longleftrightarrow> x \<in> B \<and> A \<subseteq> B"
by blast
-lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B"
+lemma mk_disjoint_insert: "a \<in> A \<Longrightarrow> \<exists>B. A = insert a B \<and> a \<notin> B"
\<comment> \<open>use new \<open>B\<close> rather than \<open>A - {a}\<close> to avoid infinite unfolding\<close>
- apply (rule_tac x = "A - {a}" in exI, blast)
- done
-
-lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
+ by (rule exI [where x = "A - {a}"]) blast
+
+lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a \<longrightarrow> P u}"
by auto
-lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)"
+lemma insert_inter_insert [simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)"
by blast
lemma insert_disjoint [simp]:
- "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
- "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
+ "insert a A \<inter> B = {} \<longleftrightarrow> a \<notin> B \<and> A \<inter> B = {}"
+ "{} = insert a A \<inter> B \<longleftrightarrow> a \<notin> B \<and> {} = A \<inter> B"
by auto
lemma disjoint_insert [simp]:
- "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
- "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
+ "B \<inter> insert a A = {} \<longleftrightarrow> a \<notin> B \<and> B \<inter> A = {}"
+ "{} = A \<inter> insert b B \<longleftrightarrow> b \<notin> A \<and> {} = A \<inter> B"
by auto
-text \<open>\medskip \<open>Int\<close>\<close>
+text \<open>\<^medskip> \<open>Int\<close>\<close>
lemma Int_absorb: "A \<inter> A = A"
by (fact inf_idem) (* already simp *)
@@ -1285,10 +1213,10 @@
lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute
\<comment> \<open>Intersection is an AC-operator\<close>
-lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B"
+lemma Int_absorb1: "B \<subseteq> A \<Longrightarrow> A \<inter> B = B"
by (fact inf_absorb2)
-lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A"
+lemma Int_absorb2: "A \<subseteq> B \<Longrightarrow> A \<inter> B = A"
by (fact inf_absorb1)
lemma Int_empty_left: "{} \<inter> B = {}"
@@ -1297,10 +1225,10 @@
lemma Int_empty_right: "A \<inter> {} = {}"
by (fact inf_bot_right) (* already simp *)
-lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
+lemma disjoint_eq_subset_Compl: "A \<inter> B = {} \<longleftrightarrow> A \<subseteq> - B"
by blast
-lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
+lemma disjoint_iff_not_equal: "A \<inter> B = {} \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
by blast
lemma Int_UNIV_left: "UNIV \<inter> B = B"
@@ -1315,17 +1243,17 @@
lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)"
by (fact inf_sup_distrib2)
-lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)"
+lemma Int_UNIV [simp]: "A \<inter> B = UNIV \<longleftrightarrow> A = UNIV \<and> B = UNIV"
by (fact inf_eq_top_iff) (* already simp *)
-lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)"
+lemma Int_subset_iff [simp]: "C \<subseteq> A \<inter> B \<longleftrightarrow> C \<subseteq> A \<and> C \<subseteq> B"
by (fact le_inf_iff)
-lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
+lemma Int_Collect: "x \<in> A \<inter> {x. P x} \<longleftrightarrow> x \<in> A \<and> P x"
by blast
-text \<open>\medskip \<open>Un\<close>.\<close>
+text \<open>\<^medskip> \<open>Un\<close>.\<close>
lemma Un_absorb: "A \<union> A = A"
by (fact sup_idem) (* already simp *)
@@ -1345,10 +1273,10 @@
lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
\<comment> \<open>Union is an AC-operator\<close>
-lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B"
+lemma Un_absorb1: "A \<subseteq> B \<Longrightarrow> A \<union> B = B"
by (fact sup_absorb2)
-lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A"
+lemma Un_absorb2: "B \<subseteq> A \<Longrightarrow> A \<union> B = A"
by (fact sup_absorb1)
lemma Un_empty_left: "{} \<union> B = B"
@@ -1369,28 +1297,22 @@
lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)"
by blast
-lemma Int_insert_left:
- "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)"
+lemma Int_insert_left: "(insert a B) \<inter> C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)"
by auto
-lemma Int_insert_left_if0[simp]:
- "a \<notin> C \<Longrightarrow> (insert a B) Int C = B \<inter> C"
+lemma Int_insert_left_if0 [simp]: "a \<notin> C \<Longrightarrow> (insert a B) \<inter> C = B \<inter> C"
by auto
-lemma Int_insert_left_if1[simp]:
- "a \<in> C \<Longrightarrow> (insert a B) Int C = insert a (B Int C)"
+lemma Int_insert_left_if1 [simp]: "a \<in> C \<Longrightarrow> (insert a B) \<inter> C = insert a (B \<inter> C)"
by auto
-lemma Int_insert_right:
- "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)"
+lemma Int_insert_right: "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)"
by auto
-lemma Int_insert_right_if0[simp]:
- "a \<notin> A \<Longrightarrow> A Int (insert a B) = A Int B"
+lemma Int_insert_right_if0 [simp]: "a \<notin> A \<Longrightarrow> A \<inter> (insert a B) = A \<inter> B"
by auto
-lemma Int_insert_right_if1[simp]:
- "a \<in> A \<Longrightarrow> A Int (insert a B) = insert a (A Int B)"
+lemma Int_insert_right_if1 [simp]: "a \<in> A \<Longrightarrow> A \<inter> (insert a B) = insert a (A \<inter> B)"
by auto
lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)"
@@ -1399,17 +1321,16 @@
lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)"
by (fact sup_inf_distrib2)
-lemma Un_Int_crazy:
- "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)"
+lemma Un_Int_crazy: "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)"
by blast
-lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)"
+lemma subset_Un_eq: "A \<subseteq> B \<longleftrightarrow> A \<union> B = B"
by (fact le_iff_sup)
-lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
+lemma Un_empty [iff]: "A \<union> B = {} \<longleftrightarrow> A = {} \<and> B = {}"
by (fact sup_eq_bot_iff) (* FIXME: already simp *)
-lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)"
+lemma Un_subset_iff [simp]: "A \<union> B \<subseteq> C \<longleftrightarrow> A \<subseteq> C \<and> B \<subseteq> C"
by (fact le_sup_iff)
lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A"
@@ -1419,78 +1340,79 @@
by blast
-text \<open>\medskip Set complement\<close>
-
-lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
+text \<open>\<^medskip> Set complement\<close>
+
+lemma Compl_disjoint [simp]: "A \<inter> - A = {}"
by (fact inf_compl_bot)
-lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
+lemma Compl_disjoint2 [simp]: "- A \<inter> A = {}"
by (fact compl_inf_bot)
-lemma Compl_partition: "A \<union> -A = UNIV"
+lemma Compl_partition: "A \<union> - A = UNIV"
by (fact sup_compl_top)
-lemma Compl_partition2: "-A \<union> A = UNIV"
+lemma Compl_partition2: "- A \<union> A = UNIV"
by (fact compl_sup_top)
-lemma double_complement: "- (-A) = (A::'a set)"
+lemma double_complement: "- (-A) = A" for A :: "'a set"
by (fact double_compl) (* already simp *)
-lemma Compl_Un: "-(A \<union> B) = (-A) \<inter> (-B)"
+lemma Compl_Un: "- (A \<union> B) = (- A) \<inter> (- B)"
by (fact compl_sup) (* already simp *)
-lemma Compl_Int: "-(A \<inter> B) = (-A) \<union> (-B)"
+lemma Compl_Int: "- (A \<inter> B) = (- A) \<union> (- B)"
by (fact compl_inf) (* already simp *)
-lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
+lemma subset_Compl_self_eq: "A \<subseteq> - A \<longleftrightarrow> A = {}"
by blast
-lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)"
+lemma Un_Int_assoc_eq: "(A \<inter> B) \<union> C = A \<inter> (B \<union> C) \<longleftrightarrow> C \<subseteq> A"
\<comment> \<open>Halmos, Naive Set Theory, page 16.\<close>
by blast
-lemma Compl_UNIV_eq: "-UNIV = {}"
+lemma Compl_UNIV_eq: "- UNIV = {}"
by (fact compl_top_eq) (* already simp *)
-lemma Compl_empty_eq: "-{} = UNIV"
+lemma Compl_empty_eq: "- {} = UNIV"
by (fact compl_bot_eq) (* already simp *)
-lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)"
+lemma Compl_subset_Compl_iff [iff]: "- A \<subseteq> - B \<longleftrightarrow> B \<subseteq> A"
by (fact compl_le_compl_iff) (* FIXME: already simp *)
-lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))"
+lemma Compl_eq_Compl_iff [iff]: "- A = - B \<longleftrightarrow> A = B" for A B :: "'a set"
by (fact compl_eq_compl_iff) (* FIXME: already simp *)
-lemma Compl_insert: "- insert x A = (-A) - {x}"
+lemma Compl_insert: "- insert x A = (- A) - {x}"
by blast
-text \<open>\medskip Bounded quantifiers.
+text \<open>\<^medskip> Bounded quantifiers.
The following are not added to the default simpset because
- (a) they duplicate the body and (b) there are no similar rules for \<open>Int\<close>.\<close>
-
-lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))"
+ (a) they duplicate the body and (b) there are no similar rules for \<open>Int\<close>.
+\<close>
+
+lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) \<longleftrightarrow> (\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>B. P x)"
by blast
-lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))"
+lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) \<longleftrightarrow> (\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>B. P x)"
by blast
-text \<open>\medskip Set difference.\<close>
-
-lemma Diff_eq: "A - B = A \<inter> (-B)"
+text \<open>\<^medskip> Set difference.\<close>
+
+lemma Diff_eq: "A - B = A \<inter> (- B)"
by blast
-lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A \<subseteq> B)"
+lemma Diff_eq_empty_iff [simp]: "A - B = {} \<longleftrightarrow> A \<subseteq> B"
by blast
lemma Diff_cancel [simp]: "A - A = {}"
by blast
-lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)"
-by blast
-
-lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
+lemma Diff_idemp [simp]: "(A - B) - B = A - B" for A B :: "'a set"
+ by blast
+
+lemma Diff_triv: "A \<inter> B = {} \<Longrightarrow> A - B = A"
by (blast elim: equalityE)
lemma empty_Diff [simp]: "{} - A = {}"
@@ -1502,39 +1424,39 @@
lemma Diff_UNIV [simp]: "A - UNIV = {}"
by blast
-lemma Diff_insert0 [simp]: "x \<notin> A ==> A - insert x B = A - B"
+lemma Diff_insert0 [simp]: "x \<notin> A \<Longrightarrow> A - insert x B = A - B"
by blast
lemma Diff_insert: "A - insert a B = A - B - {a}"
- \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} == insert a 0\<close>\<close>
+ \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} \<equiv> insert a 0\<close>\<close>
by blast
lemma Diff_insert2: "A - insert a B = A - {a} - B"
- \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} == insert a 0\<close>\<close>
+ \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} \<equiv> insert a 0\<close>\<close>
by blast
lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))"
by auto
-lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B"
+lemma insert_Diff1 [simp]: "x \<in> B \<Longrightarrow> insert x A - B = A - B"
by blast
lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
-by blast
-
-lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
by blast
-lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
+lemma insert_Diff: "a \<in> A \<Longrightarrow> insert a (A - {a}) = A"
+ by blast
+
+lemma Diff_insert_absorb: "x \<notin> A \<Longrightarrow> (insert x A) - {x} = A"
by auto
lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
by blast
-lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B"
+lemma Diff_partition: "A \<subseteq> B \<Longrightarrow> A \<union> (B - A) = B"
by blast
-lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A"
+lemma double_diff: "A \<subseteq> B \<Longrightarrow> B \<subseteq> C \<Longrightarrow> B - (C - A) = A"
by blast
lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B"
@@ -1567,13 +1489,13 @@
lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B"
by auto
-lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B"
+lemma Compl_Diff_eq [simp]: "- (A - B) = - A \<union> B"
by blast
-lemma subset_Compl_singleton [simp]: "A \<subseteq> - {b} \<longleftrightarrow> (b \<notin> A)"
+lemma subset_Compl_singleton [simp]: "A \<subseteq> - {b} \<longleftrightarrow> b \<notin> A"
by blast
-text \<open>\medskip Quantification over type @{typ bool}.\<close>
+text \<open>\<^medskip> Quantification over type @{typ bool}.\<close>
lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x"
by (cases x) auto
@@ -1590,7 +1512,7 @@
lemma UNIV_bool: "UNIV = {False, True}"
by (auto intro: bool_induct)
-text \<open>\medskip \<open>Pow\<close>\<close>
+text \<open>\<^medskip> \<open>Pow\<close>\<close>
lemma Pow_empty [simp]: "Pow {} = {{}}"
by (auto simp add: Pow_def)
@@ -1601,7 +1523,7 @@
lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)"
by (blast intro: image_eqI [where ?x = "u - {a}" for u])
-lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
+lemma Pow_Compl: "Pow (- A) = {- B | B. A \<in> Pow B}"
by (blast intro: exI [where ?x = "- u" for u])
lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
@@ -1614,21 +1536,21 @@
by blast
-text \<open>\medskip Miscellany.\<close>
-
-lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)"
+text \<open>\<^medskip> Miscellany.\<close>
+
+lemma set_eq_subset: "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
by blast
-lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)"
+lemma subset_iff: "A \<subseteq> B \<longleftrightarrow> (\<forall>t. t \<in> A \<longrightarrow> t \<in> B)"
by blast
-lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))"
- by (unfold less_le) blast
-
-lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) = (A = {})"
+lemma subset_iff_psubset_eq: "A \<subseteq> B \<longleftrightarrow> A \<subset> B \<or> A = B"
+ unfolding less_le by blast
+
+lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) \<longleftrightarrow> A = {}"
by blast
-lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
+lemma ex_in_conv: "(\<exists>x. x \<in> A) \<longleftrightarrow> A \<noteq> {}"
by blast
lemma ball_simps [simp, no_atp]:
@@ -1658,112 +1580,110 @@
subsubsection \<open>Monotonicity of various operations\<close>
-lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B"
+lemma image_mono: "A \<subseteq> B \<Longrightarrow> f ` A \<subseteq> f ` B"
by blast
-lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B"
+lemma Pow_mono: "A \<subseteq> B \<Longrightarrow> Pow A \<subseteq> Pow B"
by blast
-lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D"
+lemma insert_mono: "C \<subseteq> D \<Longrightarrow> insert a C \<subseteq> insert a D"
by blast
-lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D"
+lemma Un_mono: "A \<subseteq> C \<Longrightarrow> B \<subseteq> D \<Longrightarrow> A \<union> B \<subseteq> C \<union> D"
by (fact sup_mono)
-lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D"
+lemma Int_mono: "A \<subseteq> C \<Longrightarrow> B \<subseteq> D \<Longrightarrow> A \<inter> B \<subseteq> C \<inter> D"
by (fact inf_mono)
-lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D"
+lemma Diff_mono: "A \<subseteq> C \<Longrightarrow> D \<subseteq> B \<Longrightarrow> A - B \<subseteq> C - D"
by blast
-lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A"
+lemma Compl_anti_mono: "A \<subseteq> B \<Longrightarrow> - B \<subseteq> - A"
by (fact compl_mono)
-text \<open>\medskip Monotonicity of implications.\<close>
-
-lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B"
+text \<open>\<^medskip> Monotonicity of implications.\<close>
+
+lemma in_mono: "A \<subseteq> B \<Longrightarrow> x \<in> A \<longrightarrow> x \<in> B"
apply (rule impI)
apply (erule subsetD, assumption)
done
-lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)"
- by iprover
-
-lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)"
+lemma conj_mono: "P1 \<longrightarrow> Q1 \<Longrightarrow> P2 \<longrightarrow> Q2 \<Longrightarrow> (P1 \<and> P2) \<longrightarrow> (Q1 \<and> Q2)"
by iprover
-lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)"
+lemma disj_mono: "P1 \<longrightarrow> Q1 \<Longrightarrow> P2 \<longrightarrow> Q2 \<Longrightarrow> (P1 \<or> P2) \<longrightarrow> (Q1 \<or> Q2)"
by iprover
-lemma imp_refl: "P --> P" ..
-
-lemma not_mono: "Q --> P ==> ~ P --> ~ Q"
+lemma imp_mono: "Q1 \<longrightarrow> P1 \<Longrightarrow> P2 \<longrightarrow> Q2 \<Longrightarrow> (P1 \<longrightarrow> P2) \<longrightarrow> (Q1 \<longrightarrow> Q2)"
by iprover
-lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)"
+lemma imp_refl: "P \<longrightarrow> P" ..
+
+lemma not_mono: "Q \<longrightarrow> P \<Longrightarrow> \<not> P \<longrightarrow> \<not> Q"
by iprover
-lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)"
+lemma ex_mono: "(\<And>x. P x \<longrightarrow> Q x) \<Longrightarrow> (\<exists>x. P x) \<longrightarrow> (\<exists>x. Q x)"
by iprover
-lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q"
+lemma all_mono: "(\<And>x. P x \<longrightarrow> Q x) \<Longrightarrow> (\<forall>x. P x) \<longrightarrow> (\<forall>x. Q x)"
+ by iprover
+
+lemma Collect_mono: "(\<And>x. P x \<longrightarrow> Q x) \<Longrightarrow> Collect P \<subseteq> Collect Q"
by blast
-lemma Int_Collect_mono:
- "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q"
+lemma Int_Collect_mono: "A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> P x \<longrightarrow> Q x) \<Longrightarrow> A \<inter> Collect P \<subseteq> B \<inter> Collect Q"
by blast
lemmas basic_monos =
- subset_refl imp_refl disj_mono conj_mono
- ex_mono Collect_mono in_mono
-
-lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c"
+ subset_refl imp_refl disj_mono conj_mono ex_mono Collect_mono in_mono
+
+lemma eq_to_mono: "a = b \<Longrightarrow> c = d \<Longrightarrow> b \<longrightarrow> d \<Longrightarrow> a \<longrightarrow> c"
by iprover
subsubsection \<open>Inverse image of a function\<close>
-definition vimage :: "('a => 'b) => 'b set => 'a set" (infixr "-`" 90) where
- "f -` B == {x. f x : B}"
-
-lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)"
- by (unfold vimage_def) blast
-
-lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
+definition vimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set" (infixr "-`" 90)
+ where "f -` B \<equiv> {x. f x \<in> B}"
+
+lemma vimage_eq [simp]: "a \<in> f -` B \<longleftrightarrow> f a \<in> B"
+ unfolding vimage_def by blast
+
+lemma vimage_singleton_eq: "a \<in> f -` {b} \<longleftrightarrow> f a = b"
by simp
-lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B"
- by (unfold vimage_def) blast
-
-lemma vimageI2: "f a : A ==> a : f -` A"
- by (unfold vimage_def) fast
-
-lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P"
- by (unfold vimage_def) blast
-
-lemma vimageD: "a : f -` A ==> f a : A"
- by (unfold vimage_def) fast
+lemma vimageI [intro]: "f a = b \<Longrightarrow> b \<in> B \<Longrightarrow> a \<in> f -` B"
+ unfolding vimage_def by blast
+
+lemma vimageI2: "f a \<in> A \<Longrightarrow> a \<in> f -` A"
+ unfolding vimage_def by fast
+
+lemma vimageE [elim!]: "a \<in> f -` B \<Longrightarrow> (\<And>x. f a = x \<Longrightarrow> x \<in> B \<Longrightarrow> P) \<Longrightarrow> P"
+ unfolding vimage_def by blast
+
+lemma vimageD: "a \<in> f -` A \<Longrightarrow> f a \<in> A"
+ unfolding vimage_def by fast
lemma vimage_empty [simp]: "f -` {} = {}"
by blast
-lemma vimage_Compl: "f -` (-A) = -(f -` A)"
+lemma vimage_Compl: "f -` (- A) = - (f -` A)"
by blast
-lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)"
+lemma vimage_Un [simp]: "f -` (A \<union> B) = (f -` A) \<union> (f -` B)"
by blast
-lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)"
+lemma vimage_Int [simp]: "f -` (A \<inter> B) = (f -` A) \<inter> (f -` B)"
by fast
lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
by blast
-lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q"
+lemma vimage_Collect: "(\<And>x. P (f x) = Q x) \<Longrightarrow> f -` (Collect P) = Collect Q"
by blast
-lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
- \<comment> \<open>NOT suitable for rewriting because of the recurrence of @{term "{a}"}.\<close>
+lemma vimage_insert: "f -` (insert a B) = (f -` {a}) \<union> (f -` B)"
+ \<comment> \<open>NOT suitable for rewriting because of the recurrence of \<open>{a}\<close>.\<close>
by blast
lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)"
@@ -1772,18 +1692,18 @@
lemma vimage_UNIV [simp]: "f -` UNIV = UNIV"
by blast
-lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B"
+lemma vimage_mono: "A \<subseteq> B \<Longrightarrow> f -` A \<subseteq> f -` B"
\<comment> \<open>monotonicity\<close>
by blast
-lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}"
-by (blast intro: sym)
-
-lemma image_vimage_subset: "f ` (f -` A) <= A"
-by blast
-
-lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f"
-by blast
+lemma vimage_image_eq: "f -` (f ` A) = {y. \<exists>x\<in>A. f x = f y}"
+ by (blast intro: sym)
+
+lemma image_vimage_subset: "f ` (f -` A) \<subseteq> A"
+ by blast
+
+lemma image_vimage_eq [simp]: "f ` (f -` A) = A \<inter> range f"
+ by blast
lemma image_subset_iff_subset_vimage: "f ` A \<subseteq> B \<longleftrightarrow> A \<subseteq> f -` B"
by blast
@@ -1793,21 +1713,20 @@
lemma vimage_if [simp]: "((\<lambda>x. if x \<in> B then c else d) -` A) =
(if c \<in> A then (if d \<in> A then UNIV else B)
- else if d \<in> A then -B else {})"
+ else if d \<in> A then - B else {})"
by (auto simp add: vimage_def)
-lemma vimage_inter_cong:
- "(\<And> w. w \<in> S \<Longrightarrow> f w = g w) \<Longrightarrow> f -` y \<inter> S = g -` y \<inter> S"
+lemma vimage_inter_cong: "(\<And> w. w \<in> S \<Longrightarrow> f w = g w) \<Longrightarrow> f -` y \<inter> S = g -` y \<inter> S"
by auto
-lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
+lemma vimage_ident [simp]: "(\<lambda>x. x) -` Y = Y"
by blast
subsubsection \<open>Singleton sets\<close>
-definition is_singleton :: "'a set \<Rightarrow> bool" where
- "is_singleton A \<longleftrightarrow> (\<exists>x. A = {x})"
+definition is_singleton :: "'a set \<Rightarrow> bool"
+ where "is_singleton A \<longleftrightarrow> (\<exists>x. A = {x})"
lemma is_singletonI [simp, intro!]: "is_singleton {x}"
unfolding is_singleton_def by simp
@@ -1819,10 +1738,10 @@
unfolding is_singleton_def by blast
-subsubsection \<open>Getting the Contents of a Singleton Set\<close>
-
-definition the_elem :: "'a set \<Rightarrow> 'a" where
- "the_elem X = (THE x. X = {x})"
+subsubsection \<open>Getting the contents of a singleton set\<close>
+
+definition the_elem :: "'a set \<Rightarrow> 'a"
+ where "the_elem X = (THE x. X = {x})"
lemma the_elem_eq [simp]: "the_elem {x} = x"
by (simp add: the_elem_def)
@@ -1832,9 +1751,10 @@
lemma the_elem_image_unique:
assumes "A \<noteq> {}"
- assumes *: "\<And>y. y \<in> A \<Longrightarrow> f y = f x"
+ and *: "\<And>y. y \<in> A \<Longrightarrow> f y = f x"
shows "the_elem (f ` A) = f x"
-unfolding the_elem_def proof (rule the1_equality)
+ unfolding the_elem_def
+proof (rule the1_equality)
from \<open>A \<noteq> {}\<close> obtain y where "y \<in> A" by auto
with * have "f x = f y" by simp
with \<open>y \<in> A\<close> have "f x \<in> f ` A" by blast
@@ -1845,12 +1765,12 @@
subsubsection \<open>Least value operator\<close>
-lemma Least_mono:
- "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y
- ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"
- \<comment> \<open>Courtesy of Stephan Merz\<close>
+lemma Least_mono: "mono f \<Longrightarrow> \<exists>x\<in>S. \<forall>y\<in>S. x \<le> y \<Longrightarrow> (LEAST y. y \<in> f ` S) = f (LEAST x. x \<in> S)"
+ for f :: "'a::order \<Rightarrow> 'b::order"
+ \<comment> \<open>Courtesy of Stephan Merz\<close>
apply clarify
- apply (erule_tac P = "%x. x : S" in LeastI2_order, fast)
+ apply (erule_tac P = "\<lambda>x. x : S" in LeastI2_order)
+ apply fast
apply (rule LeastI2_order)
apply (auto elim: monoD intro!: order_antisym)
done
@@ -1858,22 +1778,18 @@
subsubsection \<open>Monad operation\<close>
-definition bind :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
- "bind A f = {x. \<exists>B \<in> f`A. x \<in> B}"
+definition bind :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"
+ where "bind A f = {x. \<exists>B \<in> f`A. x \<in> B}"
hide_const (open) bind
-lemma bind_bind:
- fixes A :: "'a set"
- shows "Set.bind (Set.bind A B) C = Set.bind A (\<lambda>x. Set.bind (B x) C)"
+lemma bind_bind: "Set.bind (Set.bind A B) C = Set.bind A (\<lambda>x. Set.bind (B x) C)" for A :: "'a set"
by (auto simp add: bind_def)
-lemma empty_bind [simp]:
- "Set.bind {} f = {}"
+lemma empty_bind [simp]: "Set.bind {} f = {}"
by (simp add: bind_def)
-lemma nonempty_bind_const:
- "A \<noteq> {} \<Longrightarrow> Set.bind A (\<lambda>_. B) = B"
+lemma nonempty_bind_const: "A \<noteq> {} \<Longrightarrow> Set.bind A (\<lambda>_. B) = B"
by (auto simp add: bind_def)
lemma bind_const: "Set.bind A (\<lambda>_. B) = (if A = {} then {} else B)"
@@ -1882,53 +1798,50 @@
lemma bind_singleton_conv_image: "Set.bind A (\<lambda>x. {f x}) = f ` A"
by(auto simp add: bind_def)
+
subsubsection \<open>Operations for execution\<close>
-definition is_empty :: "'a set \<Rightarrow> bool" where
- [code_abbrev]: "is_empty A \<longleftrightarrow> A = {}"
+definition is_empty :: "'a set \<Rightarrow> bool"
+ where [code_abbrev]: "is_empty A \<longleftrightarrow> A = {}"
hide_const (open) is_empty
-definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
- [code_abbrev]: "remove x A = A - {x}"
+definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set"
+ where [code_abbrev]: "remove x A = A - {x}"
hide_const (open) remove
-lemma member_remove [simp]:
- "x \<in> Set.remove y A \<longleftrightarrow> x \<in> A \<and> x \<noteq> y"
+lemma member_remove [simp]: "x \<in> Set.remove y A \<longleftrightarrow> x \<in> A \<and> x \<noteq> y"
by (simp add: remove_def)
-definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where
- [code_abbrev]: "filter P A = {a \<in> A. P a}"
+definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set"
+ where [code_abbrev]: "filter P A = {a \<in> A. P a}"
hide_const (open) filter
-lemma member_filter [simp]:
- "x \<in> Set.filter P A \<longleftrightarrow> x \<in> A \<and> P x"
+lemma member_filter [simp]: "x \<in> Set.filter P A \<longleftrightarrow> x \<in> A \<and> P x"
by (simp add: filter_def)
instantiation set :: (equal) equal
begin
-definition
- "HOL.equal A B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
-
-instance proof
-qed (auto simp add: equal_set_def)
+definition "HOL.equal A B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
+
+instance by standard (auto simp add: equal_set_def)
end
text \<open>Misc\<close>
-definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)"
-
-lemma pairwise_subset: "\<lbrakk>pairwise P S; T \<subseteq> S\<rbrakk> \<Longrightarrow> pairwise P T"
+definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x \<noteq> y \<longrightarrow> R x y)"
+
+lemma pairwise_subset: "pairwise P S \<Longrightarrow> T \<subseteq> S \<Longrightarrow> pairwise P T"
by (force simp: pairwise_def)
-definition disjnt where "disjnt A B \<equiv> A \<inter> B = {}"
-
-lemma disjnt_iff: "disjnt A B \<longleftrightarrow> (\<forall>x. ~ (x \<in> A \<and> x \<in> B))"
+definition disjnt where "disjnt A B \<longleftrightarrow> A \<inter> B = {}"
+
+lemma disjnt_iff: "disjnt A B \<longleftrightarrow> (\<forall>x. \<not> (x \<in> A \<and> x \<in> B))"
by (force simp: disjnt_def)
lemma pairwise_empty [simp]: "pairwise P {}"
@@ -1938,12 +1851,11 @@
by (simp add: pairwise_def)
lemma pairwise_insert:
- "pairwise r (insert x s) \<longleftrightarrow> (\<forall>y. y \<in> s \<and> y \<noteq> x \<longrightarrow> r x y \<and> r y x) \<and> pairwise r s"
-by (force simp: pairwise_def)
-
-lemma pairwise_image:
- "pairwise r (f ` s) \<longleftrightarrow> pairwise (\<lambda>x y. (f x \<noteq> f y) \<longrightarrow> r (f x) (f y)) s"
-by (force simp: pairwise_def)
+ "pairwise r (insert x s) \<longleftrightarrow> (\<forall>y. y \<in> s \<and> y \<noteq> x \<longrightarrow> r x y \<and> r y x) \<and> pairwise r s"
+ by (force simp: pairwise_def)
+
+lemma pairwise_image: "pairwise r (f ` s) \<longleftrightarrow> pairwise (\<lambda>x y. (f x \<noteq> f y) \<longrightarrow> r (f x) (f y)) s"
+ by (force simp: pairwise_def)
lemma Int_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B \<Longrightarrow> False) \<Longrightarrow> A \<inter> B = {}"
by blast
--- a/src/HOL/Tools/BNF/bnf_gfp.ML Fri Jun 17 17:02:13 2016 +0200
+++ b/src/HOL/Tools/BNF/bnf_gfp.ML Mon Jun 20 10:51:34 2016 +0200
@@ -135,17 +135,12 @@
val all_sbisT = HOLogic.mk_tupleT setsRTs;
val setR'Ts = map HOLogic.mk_setT R'Ts;
val FRTs = mk_FTs (passiveAs @ RTs);
- val sumBsAs = map2 (curry mk_sumT) activeBs activeAs;
- val sumFTs = mk_FTs (passiveAs @ sumBsAs);
- val sum_sTs = map2 (fn T => fn U => T --> U) activeAs sumFTs;
(* terms *)
val mapsAsAs = @{map 4} mk_map_of_bnf Dss Ass Ass bnfs;
val mapsAsBs = @{map 4} mk_map_of_bnf Dss Ass Bss bnfs;
val mapsBsCs' = @{map 4} mk_map_of_bnf Dss Bss Css' bnfs;
val mapsAsCs' = @{map 4} mk_map_of_bnf Dss Ass Css' bnfs;
- val map_Inls = @{map 4} mk_map_of_bnf Dss Bss (replicate n (passiveAs @ sumBsAs)) bnfs;
- val map_Inls_rev = @{map 4} mk_map_of_bnf Dss (replicate n (passiveAs @ sumBsAs)) Bss bnfs;
val map_fsts = @{map 4} mk_map_of_bnf Dss (replicate n (passiveAs @ RTs)) Ass bnfs;
val map_snds = @{map 4} mk_map_of_bnf Dss (replicate n (passiveAs @ RTs)) Bss bnfs;
fun mk_setss Ts = @{map 3} mk_sets_of_bnf (map (replicate live) Dss)
@@ -174,10 +169,8 @@
val passive_UNIVs = map HOLogic.mk_UNIV passiveAs;
val passive_eqs = map HOLogic.eq_const passiveAs;
val active_UNIVs = map HOLogic.mk_UNIV activeAs;
- val sum_UNIVs = map HOLogic.mk_UNIV sumBsAs;
val passive_ids = map HOLogic.id_const passiveAs;
val active_ids = map HOLogic.id_const activeAs;
- val Inls = map2 Inl_const activeBs activeAs;
val fsts = map fst_const RTs;
val snds = map snd_const RTs;
@@ -389,8 +382,8 @@
Term.list_comb (Const (mor, morT), args)
end;
- val (((((((((((((((zs, z's), Bs), Bs_copy), B's), B''s), ss), sum_ss), s's), s''s), fs),
- fs_copy), gs), RFs), Rs), _) =
+ val ((((((((((((((zs, z's), Bs), Bs_copy), B's), B''s), ss), s's), s''s), fs), fs_copy), gs),
+ RFs), Rs), _) =
lthy
|> mk_Frees "b" activeAs
||>> mk_Frees "b" activeBs
@@ -399,7 +392,6 @@
||>> mk_Frees "B'" B'Ts
||>> mk_Frees "B''" B''Ts
||>> mk_Frees "s" sTs
- ||>> mk_Frees "sums" sum_sTs
||>> mk_Frees "s'" s'Ts
||>> mk_Frees "s''" s''Ts
||>> mk_Frees "f" fTs
@@ -497,19 +489,6 @@
|> Thm.close_derivation
end;
- val mor_case_sum_thm =
- let
- val maps = @{map 3} (fn s => fn sum_s => fn mapx =>
- mk_case_sum (HOLogic.mk_comp (Term.list_comb (mapx, passive_ids @ Inls), s), sum_s))
- s's sum_ss map_Inls;
- val goal = HOLogic.mk_Trueprop (mk_mor (map HOLogic.mk_UNIV activeBs) s's sum_UNIVs maps Inls);
- val vars = Variable.add_free_names lthy goal [];
- in
- Goal.prove_sorry lthy vars [] goal
- (fn {context = ctxt, prems = _} => mk_mor_case_sum_tac ctxt ks mor_UNIV_thm)
- |> Thm.close_derivation
- end;
-
val timer = time (timer "Morphism definition & thms");
(* bisimulation *)
@@ -1379,11 +1358,6 @@
val FTs_setss = mk_setss (passiveAs @ Ts);
val map_FTs = map2 (fn Ds => mk_map_of_bnf Ds treeQTs (passiveAs @ Ts)) Dss bnfs;
val unfold_fTs = map2 (curry op -->) activeAs Ts;
- val corec_sTs = map (Term.typ_subst_atomic (activeBs ~~ Ts)) sum_sTs;
- val corec_maps = map (Term.subst_atomic_types (activeBs ~~ Ts)) map_Inls;
- val corec_maps_rev = map (Term.subst_atomic_types (activeBs ~~ Ts)) map_Inls_rev;
- val corec_Inls = map (Term.subst_atomic_types (activeBs ~~ Ts)) Inls;
- val corec_UNIVs = map2 (HOLogic.mk_UNIV oo curry mk_sumT) Ts activeAs;
val emptys = map (fn T => HOLogic.mk_set T []) passiveAs;
val Zeros = map (fn empty =>
@@ -1472,12 +1446,11 @@
val unfold_defs = map (fn def =>
mk_unabs_def (n + 1) (Morphism.thm phi def RS meta_eq_to_obj_eq)) unfold_def_frees;
- val ((((ss, TRs), unfold_fs), corec_ss), _) =
+ val (((ss, TRs), unfold_fs), _) =
lthy
|> mk_Frees "s" sTs
||>> mk_Frees "r" (map (mk_relT o `I) Ts)
- ||>> mk_Frees "f" unfold_fTs
- ||>> mk_Frees "s" corec_sTs;
+ ||>> mk_Frees "f" unfold_fTs;
val mor_unfold_thm =
let
@@ -1602,15 +1575,12 @@
val timer = time (timer "ctor definitions & thms");
- val ((((((((zs, Jzs), Jzs_copy), Jzs1), Jzs2), unfold_fs), corec_ss), phis), _) =
+ val (((((Jzs, Jzs_copy), Jzs1), Jzs2), phis), _) =
lthy
- |> mk_Frees "b" activeAs
- ||>> mk_Frees "z" Ts
+ |> mk_Frees "z" Ts
||>> mk_Frees "z'" Ts
||>> mk_Frees "z1" Ts
||>> mk_Frees "z2" Ts
- ||>> mk_Frees "f" unfold_fTs
- ||>> mk_Frees "s" corec_sTs
||>> mk_Frees "P" (map2 mk_pred2T Ts Ts);
val (coinduct_params, dtor_coinduct_thm) =
--- a/src/HOL/Tools/BNF/bnf_gfp_tactics.ML Fri Jun 17 17:02:13 2016 +0200
+++ b/src/HOL/Tools/BNF/bnf_gfp_tactics.ML Mon Jun 20 10:51:34 2016 +0200
@@ -55,7 +55,6 @@
thm list -> thm list list -> thm list list -> thm list -> thm list -> thm list -> thm list ->
thm list -> thm list -> thm list list -> thm list list list -> thm list list list ->
thm list list -> thm list -> thm list -> tactic
- val mk_mor_case_sum_tac: Proof.context -> 'a list -> thm -> tactic
val mk_mor_comp_tac: Proof.context -> thm -> thm list -> thm list -> thm list -> tactic
val mk_mor_elim_tac: Proof.context -> thm -> tactic
val mk_mor_col_tac: Proof.context -> int -> int -> cterm option list -> int -> thm list ->
@@ -163,9 +162,6 @@
fun mk_mor_str_tac ctxt ks mor_UNIV =
(rtac ctxt (mor_UNIV RS iffD2) THEN' CONJ_WRAP' (K (rtac ctxt refl)) ks) 1;
-fun mk_mor_case_sum_tac ctxt ks mor_UNIV =
- (rtac ctxt (mor_UNIV RS iffD2) THEN' CONJ_WRAP' (K (rtac ctxt @{thm case_sum_o_inj(1)[symmetric]})) ks) 1;
-
fun mk_set_incl_Jset_tac ctxt rec_Suc =
EVERY' (map (rtac ctxt) [@{thm SUP_upper2}, UNIV_I, @{thm ord_le_eq_trans}, @{thm Un_upper1}, sym,
rec_Suc]) 1;
--- a/src/HOL/Tools/BNF/bnf_lfp.ML Fri Jun 17 17:02:13 2016 +0200
+++ b/src/HOL/Tools/BNF/bnf_lfp.ML Mon Jun 20 10:51:34 2016 +0200
@@ -97,17 +97,12 @@
val self_fTs = map2 (curry op -->) activeAs activeAs;
val gTs = map2 (curry op -->) activeBs activeCs;
val all_gTs = map2 (curry op -->) allBs allCs';
- val prodBsAs = map2 (curry HOLogic.mk_prodT) activeBs activeAs;
- val prodFTs = mk_FTs (passiveAs @ prodBsAs);
- val prod_sTs = map2 (curry op -->) prodFTs activeAs;
(* terms *)
val mapsAsAs = @{map 4} mk_map_of_bnf Dss Ass Ass bnfs;
val mapsAsBs = @{map 4} mk_map_of_bnf Dss Ass Bss bnfs;
val mapsBsCs' = @{map 4} mk_map_of_bnf Dss Bss Css' bnfs;
val mapsAsCs' = @{map 4} mk_map_of_bnf Dss Ass Css' bnfs;
- val map_fsts = @{map 4} mk_map_of_bnf Dss (replicate n (passiveAs @ prodBsAs)) Bss bnfs;
- val map_fsts_rev = @{map 4} mk_map_of_bnf Dss Bss (replicate n (passiveAs @ prodBsAs)) bnfs;
fun mk_setss Ts = @{map 3} mk_sets_of_bnf (map (replicate live) Dss)
(map (replicate live) (replicate n Ts)) bnfs;
val setssAs = mk_setss allAs;
@@ -131,10 +126,8 @@
val passive_UNIVs = map HOLogic.mk_UNIV passiveAs;
val active_UNIVs = map HOLogic.mk_UNIV activeAs;
- val prod_UNIVs = map HOLogic.mk_UNIV prodBsAs;
val passive_ids = map HOLogic.id_const passiveAs;
val active_ids = map HOLogic.id_const activeAs;
- val fsts = map fst_const prodBsAs;
(* thms *)
val bd0_card_orders = map bd_card_order_of_bnf bnfs;
@@ -352,15 +345,13 @@
Term.list_comb (Const (mor, morT), args)
end;
- val ((((((((((((Bs, Bs_copy), B's), B''s), ss), prod_ss), s's), s''s), fs), fs_copy), gs), xFs),
- _) =
+ val (((((((((((Bs, Bs_copy), B's), B''s), ss), s's), s''s), fs), fs_copy), gs), xFs), _) =
lthy
|> mk_Frees "B" BTs
||>> mk_Frees "B" BTs
||>> mk_Frees "B'" B'Ts
||>> mk_Frees "B''" B''Ts
||>> mk_Frees "s" sTs
- ||>> mk_Frees "prods" prod_sTs
||>> mk_Frees "s'" s'Ts
||>> mk_Frees "s''" s''Ts
||>> mk_Frees "f" fTs
@@ -436,20 +427,6 @@
|> Thm.close_derivation
end;
- val mor_convol_thm =
- let
- val maps = @{map 3} (fn s => fn prod_s => fn mapx =>
- mk_convol (HOLogic.mk_comp (s, Term.list_comb (mapx, passive_ids @ fsts)), prod_s))
- s's prod_ss map_fsts;
- val goal = HOLogic.mk_Trueprop
- (mk_mor prod_UNIVs maps (map HOLogic.mk_UNIV activeBs) s's fsts)
- val vars = Variable.add_free_names lthy goal [];
- in
- Goal.prove_sorry lthy vars [] goal
- (fn {context = ctxt, prems = _} => mk_mor_convol_tac ctxt ks mor_def)
- |> Thm.close_derivation
- end;
-
val mor_UNIV_thm =
let
fun mk_conjunct mapAsBs f s s' = HOLogic.mk_eq
@@ -960,11 +937,6 @@
mk_map_of_bnf Ds (passiveAs @ Ts) (passiveAs @ active_initTs)) Dss bnfs;
val fTs = map2 (curry op -->) Ts activeAs;
val foldT = Library.foldr1 HOLogic.mk_prodT (map2 (curry op -->) Ts activeAs);
- val rec_sTs = map (Term.typ_subst_atomic (activeBs ~~ Ts)) prod_sTs;
- val rec_maps = map (Term.subst_atomic_types (activeBs ~~ Ts)) map_fsts;
- val rec_maps_rev = map (Term.subst_atomic_types (activeBs ~~ Ts)) map_fsts_rev;
- val rec_fsts = map (Term.subst_atomic_types (activeBs ~~ Ts)) fsts;
- val rec_UNIVs = map2 (HOLogic.mk_UNIV oo curry HOLogic.mk_prodT) Ts activeAs;
val ((ss, (fold_f, fold_f')), _) =
lthy
@@ -1054,15 +1026,14 @@
(* algebra copies *)
- val (((((((Bs, B's), ss), s's), inv_fs), fs), rec_ss), _) =
+ val ((((((Bs, B's), ss), s's), inv_fs), fs), _) =
lthy
|> mk_Frees "B" BTs
||>> mk_Frees "B'" B'Ts
||>> mk_Frees "s" sTs
||>> mk_Frees "s'" s'Ts
||>> mk_Frees "f" inv_fTs
- ||>> mk_Frees "f" fTs
- ||>> mk_Frees "s" rec_sTs;
+ ||>> mk_Frees "f" fTs;
val copy_thm =
let
@@ -1202,15 +1173,13 @@
val timer = time (timer "dtor definitions & thms");
- val (((((((((Izs, (Izs1, Izs1'))), (Izs2, Izs2')), xFs), yFs), fs), rec_ss), init_phis), _) =
+ val (((((((Izs, (Izs1, Izs1'))), (Izs2, Izs2')), xFs), yFs), init_phis), _) =
lthy
|> mk_Frees "z" Ts
||>> mk_Frees' "z1" Ts
||>> mk_Frees' "z2" Ts'
||>> mk_Frees "x" FTs
||>> mk_Frees "y" FTs'
- ||>> mk_Frees "f" fTs
- ||>> mk_Frees "s" rec_sTs
||>> mk_Frees "P" (replicate n (mk_pred1T initT));
val phis = map2 retype_const_or_free (map mk_pred1T Ts) init_phis;
--- a/src/HOL/Tools/BNF/bnf_lfp_tactics.ML Fri Jun 17 17:02:13 2016 +0200
+++ b/src/HOL/Tools/BNF/bnf_lfp_tactics.ML Mon Jun 20 10:51:34 2016 +0200
@@ -55,7 +55,6 @@
thm list list -> tactic
val mk_mor_UNIV_tac: Proof.context -> int -> thm list -> thm -> tactic
val mk_mor_comp_tac: Proof.context -> thm -> thm list list -> thm list -> tactic
- val mk_mor_convol_tac: Proof.context -> 'a list -> thm -> tactic
val mk_mor_elim_tac: Proof.context -> thm -> tactic
val mk_mor_incl_tac: Proof.context -> thm -> thm list -> tactic
val mk_mor_fold_tac: Proof.context -> ctyp -> cterm -> thm list -> thm -> thm -> tactic
@@ -145,11 +144,6 @@
CONJ_WRAP' (K (EVERY' [rtac ctxt ballI, rtac ctxt UNIV_I])) ks THEN'
CONJ_WRAP' (K (EVERY' [rtac ctxt ballI, rtac ctxt refl])) ks) 1;
-fun mk_mor_convol_tac ctxt ks mor_def =
- (rtac ctxt (mor_def RS iffD2) THEN' rtac ctxt conjI THEN'
- CONJ_WRAP' (K (EVERY' [rtac ctxt ballI, rtac ctxt UNIV_I])) ks THEN'
- CONJ_WRAP' (K (EVERY' [rtac ctxt ballI, rtac ctxt trans, rtac ctxt @{thm fst_convol'}, rtac ctxt o_apply])) ks) 1;
-
fun mk_mor_UNIV_tac ctxt m morEs mor_def =
let
val n = length morEs;
--- a/src/HOL/Tools/Ctr_Sugar/ctr_sugar.ML Fri Jun 17 17:02:13 2016 +0200
+++ b/src/HOL/Tools/Ctr_Sugar/ctr_sugar.ML Mon Jun 20 10:51:34 2016 +0200
@@ -805,12 +805,13 @@
(thm, asm_thm)
end;
- val (sel_defs, all_sel_thms, sel_thmss, disc_defs, disc_thmss, nontriv_disc_thmss,
- discI_thms, nontriv_discI_thms, distinct_disc_thms, distinct_disc_thmsss,
- exhaust_disc_thms, exhaust_sel_thms, all_collapse_thms, safe_collapse_thms,
- expand_thms, split_sel_thms, split_sel_asm_thms, case_eq_if_thms, disc_eq_case_thms) =
+ val (sel_defs, all_sel_thms, sel_thmss, disc_defs, nontriv_disc_defs, disc_thmss,
+ nontriv_disc_thmss, discI_thms, nontriv_discI_thms, distinct_disc_thms,
+ distinct_disc_thmsss, exhaust_disc_thms, exhaust_sel_thms, all_collapse_thms,
+ safe_collapse_thms, expand_thms, split_sel_thms, split_sel_asm_thms, case_eq_if_thms,
+ disc_eq_case_thms) =
if no_discs_sels then
- ([], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [])
+ ([], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [])
else
let
val udiscs = map (rapp u) discs;
@@ -870,6 +871,9 @@
val has_alternate_disc_def =
exists (fn def => Thm.eq_thm_prop (def, alternate_disc_no_def)) disc_defs;
+ val nontriv_disc_defs = disc_defs
+ |> filter_out (member Thm.eq_thm_prop [unique_disc_no_def, alternate_disc_no_def]);
+
val disc_defs' =
map2 (fn k => fn def =>
if Thm.eq_thm_prop (def, unique_disc_no_def) then mk_unique_disc_def ()
@@ -1044,11 +1048,11 @@
|> Conjunction.elim_balanced (length goals)
end;
in
- (sel_defs, all_sel_thms, sel_thmss, disc_defs, disc_thmss, nontriv_disc_thmss,
- discI_thms, nontriv_discI_thms, distinct_disc_thms, distinct_disc_thmsss,
- [exhaust_disc_thm], [exhaust_sel_thm], all_collapse_thms, safe_collapse_thms,
- [expand_thm], [split_sel_thm], [split_sel_asm_thm], [case_eq_if_thm],
- disc_eq_case_thms)
+ (sel_defs, all_sel_thms, sel_thmss, disc_defs, nontriv_disc_defs, disc_thmss,
+ nontriv_disc_thmss, discI_thms, nontriv_discI_thms, distinct_disc_thms,
+ distinct_disc_thmsss, [exhaust_disc_thm], [exhaust_sel_thm], all_collapse_thms,
+ safe_collapse_thms, [expand_thm], [split_sel_thm], [split_sel_asm_thm],
+ [case_eq_if_thm], disc_eq_case_thms)
end;
val case_distrib_thm =
@@ -1118,7 +1122,7 @@
|> Local_Theory.declaration {syntax = false, pervasive = true}
(fn phi => Case_Translation.register
(Morphism.term phi casex) (map (Morphism.term phi) ctrs))
- |> Local_Theory.background_theory (fold (fold Code.del_eqn) [disc_defs, sel_defs])
+ |> Local_Theory.background_theory (fold (fold Code.del_eqn) [nontriv_disc_defs, sel_defs])
|> plugins code_plugin ?
Local_Theory.declaration {syntax = false, pervasive = false}
(fn phi => Context.mapping
@@ -1135,7 +1139,7 @@
exhaust = exhaust_thm, nchotomy = nchotomy_thm, injects = inject_thms,
distincts = distinct_thms, case_thms = case_thms, case_cong = case_cong_thm,
case_cong_weak = case_cong_weak_thm, case_distribs = [case_distrib_thm],
- split = split_thm, split_asm = split_asm_thm, disc_defs = disc_defs,
+ split = split_thm, split_asm = split_asm_thm, disc_defs = nontriv_disc_defs,
disc_thmss = disc_thmss, discIs = discI_thms, disc_eq_cases = disc_eq_case_thms,
sel_defs = sel_defs, sel_thmss = sel_thmss, distinct_discsss = distinct_disc_thmsss,
exhaust_discs = exhaust_disc_thms, exhaust_sels = exhaust_sel_thms,
--- a/src/HOL/Tools/Sledgehammer/sledgehammer.ML Fri Jun 17 17:02:13 2016 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer.ML Mon Jun 20 10:51:34 2016 +0200
@@ -63,49 +63,51 @@
fun is_metis_method (Metis_Method _) = true
| is_metis_method _ = false
-fun play_one_line_proof minimize timeout used_facts0 state i (preferred_meth, methss) =
- let val used_facts = filter_out (fn (_, (sc, _)) => sc = Chained) used_facts0 in
- if timeout = Time.zeroTime then
- (used_facts, (preferred_meth, Play_Timed_Out Time.zeroTime))
- else
- let
- val ctxt = Proof.context_of state
+fun play_one_line_proof minimize timeout used_facts state i (preferred_meth, methss) =
+ (if timeout = Time.zeroTime then
+ (used_facts, (preferred_meth, Play_Timed_Out Time.zeroTime))
+ else
+ let
+ val ctxt = Proof.context_of state
- val fact_names = map fst used_facts
- val {facts = chained, goal, ...} = Proof.goal state
- val goal_t = Logic.get_goal (Thm.prop_of goal) i
+ val fact_names = map fst used_facts
+ val {facts = chained, goal, ...} = Proof.goal state
+ val goal_t = Logic.get_goal (Thm.prop_of goal) i
- fun try_methss [] [] = (used_facts, (preferred_meth, Play_Timed_Out Time.zeroTime))
- | try_methss ress [] =
- (used_facts,
- (case AList.lookup (op =) ress preferred_meth of
- SOME play => (preferred_meth, play)
- | NONE => hd (sort (play_outcome_ord o apply2 snd) (rev ress))))
- | try_methss ress (meths :: methss) =
- let
- fun mk_step fact_names meths =
- Prove ([], [], ("", 0), goal_t, [], ([], fact_names), meths, "")
- in
- (case preplay_isar_step ctxt chained timeout [] (mk_step fact_names meths) of
- (res as (meth, Played time)) :: _ =>
- (* if a fact is needed by an ATP, it will be needed by "metis" *)
- if not minimize orelse is_metis_method meth then
- (used_facts, res)
- else
- let
- val (time', used_names') =
- minimized_isar_step ctxt chained time (mk_step fact_names [meth])
- ||> (facts_of_isar_step #> snd)
- val used_facts' = filter (member (op =) used_names' o fst) used_facts
- in
- (used_facts', (meth, Played time'))
- end
- | ress' => try_methss (ress' @ ress) methss)
- end
- in
- try_methss [] methss
- end
- end
+ fun try_methss [] [] = (used_facts, (preferred_meth, Play_Timed_Out Time.zeroTime))
+ | try_methss ress [] =
+ (used_facts,
+ (case AList.lookup (op =) ress preferred_meth of
+ SOME play => (preferred_meth, play)
+ | NONE => hd (sort (play_outcome_ord o apply2 snd) (rev ress))))
+ | try_methss ress (meths :: methss) =
+ let
+ fun mk_step fact_names meths =
+ Prove ([], [], ("", 0), goal_t, [], ([], fact_names), meths, "")
+ in
+ (case preplay_isar_step ctxt chained timeout [] (mk_step fact_names meths) of
+ (res as (meth, Played time)) :: _ =>
+ (* if a fact is needed by an ATP, it will be needed by "metis" *)
+ if not minimize orelse is_metis_method meth then
+ (used_facts, res)
+ else
+ let
+ val (time', used_names') =
+ minimized_isar_step ctxt chained time (mk_step fact_names [meth])
+ ||> (facts_of_isar_step #> snd)
+ val used_facts' = filter (member (op =) used_names' o fst) used_facts
+ in
+ (used_facts', (meth, Played time'))
+ end
+ | ress' => try_methss (ress' @ ress) methss)
+ end
+ in
+ try_methss [] methss
+ end)
+ |> (fn (used_facts, (meth, play)) =>
+ (used_facts |> not (proof_method_distinguishes_chained_and_direct meth)
+ ? filter_out (fn (_, (sc, _)) => sc = Chained),
+ (meth, play)))
fun launch_prover (params as {debug, verbose, spy, max_facts, minimize, timeout, preplay_timeout,
expect, ...}) mode writeln_result only learn