merged
authorblanchet
Fri, 16 Apr 2010 15:49:46 +0200
changeset 36171 2c787345c083
parent 36166 da7b40aa2215 (diff)
parent 36170 0cdb76723c88 (current diff)
child 36172 fc407d02af4a
child 36181 2156a7392885
merged
--- a/Admin/isatest/isatest-makeall	Fri Apr 16 15:49:13 2010 +0200
+++ b/Admin/isatest/isatest-makeall	Fri Apr 16 15:49:46 2010 +0200
@@ -186,7 +186,7 @@
         echo >> $ERRORLOG
 
         FAIL="$FAIL$SHORT "
-        (cd $ERRORDIR; ln -s $TESTLOG)
+        (cd $ERRORDIR; cp -a $TESTLOG .)
     fi
 
     rm -f $RUNNING/$SHORT.running
--- a/Admin/isatest/isatest-makedist	Fri Apr 16 15:49:13 2010 +0200
+++ b/Admin/isatest/isatest-makedist	Fri Apr 16 15:49:46 2010 +0200
@@ -55,6 +55,7 @@
 
 echo "### cleaning up old isabelle-* directories" >> $DISTLOG 2>&1
 rm -rf $HOME/isabelle-*
+ssh atbroy102 "rm -rf isabelle-cygwin-poly"
 
 echo "### building distribution"  >> $DISTLOG 2>&1
 mkdir -p $DISTPREFIX
--- a/NEWS	Fri Apr 16 15:49:13 2010 +0200
+++ b/NEWS	Fri Apr 16 15:49:46 2010 +0200
@@ -74,6 +74,8 @@
 
 *** Pure ***
 
+* Code generator: simple concept for abstract datatypes obeying invariants.
+
 * Local theory specifications may depend on extra type variables that
 are not present in the result type -- arguments TYPE('a) :: 'a itself
 are added internally.  For example:
@@ -106,6 +108,10 @@
 
 *** HOL ***
 
+* Library theory 'RBT' renamed to 'RBT_Impl'; new library theory 'RBT'
+provides abstract red-black tree type which is backed by RBT_Impl
+as implementation.  INCOMPATIBILTY.
+
 * Command 'typedef' now works within a local theory context -- without
 introducing dependencies on parameters or assumptions, which is not
 possible in Isabelle/Pure/HOL.  Note that the logical environment may
@@ -292,6 +298,10 @@
 * Antiquotation @{syntax_const NAME} ensures that NAME refers to a raw
 syntax constant (cf. 'syntax' command).
 
+* Antiquotation @{make_string} inlines a function to print arbitrary
+values similar to the ML toplevel.  The result is compiler dependent
+and may fall back on "?" in certain situations.
+
 * Renamed old-style Drule.standard to Drule.export_without_context, to
 emphasize that this is in no way a standard operation.
 INCOMPATIBILITY.
--- a/doc-src/IsarImplementation/Thy/Logic.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/doc-src/IsarImplementation/Thy/Logic.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -334,7 +334,7 @@
   this is a datatype with constructors @{ML Bound}, @{ML Free}, @{ML
   Var}, @{ML Const}, @{ML Abs}, @{ML "op $"}.
 
-  \item @{text "t"}~@{ML aconv}~@{text "u"} checks @{text
+  \item @{text "t"}~@{ML_text aconv}~@{text "u"} checks @{text
   "\<alpha>"}-equivalence of two terms.  This is the basic equality relation
   on type @{ML_type term}; raw datatype equality should only be used
   for operations related to parsing or printing!
--- a/doc-src/IsarImplementation/Thy/ML.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/doc-src/IsarImplementation/Thy/ML.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -209,7 +209,7 @@
   options} for type @{ML_type "bool"}/@{ML_type "int"}/@{ML_type
   "string"} (see structure @{ML_struct Config} and @{ML
   Attrib.config_bool} etc.), and lists of theorems (see functor
-  @{ML_functor NamedThmsFun}).
+  @{ML_functor Named_Thms}).
 
   \item Keep components with local state information
   \emph{re-entrant}.  Instead of poking initial values into (private)
@@ -623,7 +623,7 @@
   whenever such pure finite mappings are neccessary.
 
   The key type of tables must be given explicitly by instantiating
-  the @{ML_functor TableFun} functor which takes the key type
+  the @{ML_functor Table} functor which takes the key type
   together with its @{ML_type order}; for convience, we restrict
   here to the @{ML_struct Symtab} instance with @{ML_type string}
   as key type.
--- a/doc-src/IsarImplementation/Thy/document/ML.tex	Fri Apr 16 15:49:13 2010 +0200
+++ b/doc-src/IsarImplementation/Thy/document/ML.tex	Fri Apr 16 15:49:46 2010 +0200
@@ -222,7 +222,7 @@
   \secref{sec:context-data}) there are drop-in replacements that
   emulate primitive references for common cases of \emph{configuration
   options} for type \verb|bool|/\verb|int|/\verb|string| (see structure \verb|Config| and \verb|Attrib.config_bool| etc.), and lists of theorems (see functor
-  \verb|NamedThmsFun|).
+  \verb|Named_Thms|).
 
   \item Keep components with local state information
   \emph{re-entrant}.  Instead of poking initial values into (private)
@@ -763,7 +763,7 @@
   whenever such pure finite mappings are neccessary.
 
   The key type of tables must be given explicitly by instantiating
-  the \verb|TableFun| functor which takes the key type
+  the \verb|Table| functor which takes the key type
   together with its \verb|order|; for convience, we restrict
   here to the \verb|Symtab| instance with \verb|string|
   as key type.
--- a/doc-src/IsarRef/Thy/HOL_Specific.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/doc-src/IsarRef/Thy/HOL_Specific.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -178,7 +178,7 @@
   \end{matharray}
 
   \begin{rail}
-    'record' typespec '=' (type '+')? (constdecl +)
+    'record' typespecsorts '=' (type '+')? (constdecl +)
     ;
   \end{rail}
 
--- a/doc-src/IsarRef/Thy/document/HOL_Specific.tex	Fri Apr 16 15:49:13 2010 +0200
+++ b/doc-src/IsarRef/Thy/document/HOL_Specific.tex	Fri Apr 16 15:49:46 2010 +0200
@@ -202,7 +202,7 @@
   \end{matharray}
 
   \begin{rail}
-    'record' typespec '=' (type '+')? (constdecl +)
+    'record' typespecsorts '=' (type '+')? (constdecl +)
     ;
   \end{rail}
 
--- a/doc-src/antiquote_setup.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/doc-src/antiquote_setup.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -54,7 +54,7 @@
 
 fun ml_structure (txt, _) = "functor XXX() = struct structure XX = " ^ txt ^ " end;";
 
-fun ml_functor _ = "";  (*no check!*)
+fun ml_functor (txt, _) = "ML_Env.check_functor " ^ ML_Syntax.print_string txt;
 
 fun index_ml name kind ml = ThyOutput.antiquotation name
   (Scan.lift (Args.name -- Scan.optional (Args.colon |-- Args.name) ""))
--- a/src/HOL/Imperative_HOL/ex/SatChecker.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Imperative_HOL/ex/SatChecker.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -5,7 +5,7 @@
 header {* An efficient checker for proofs from a SAT solver *}
 
 theory SatChecker
-imports RBT Sorted_List "~~/src/HOL/Imperative_HOL/Imperative_HOL" 
+imports RBT_Impl Sorted_List "~~/src/HOL/Imperative_HOL/Imperative_HOL" 
 begin
 
 section{* General settings and functions for our representation of clauses *}
@@ -635,24 +635,24 @@
 
 section {* Functional version with RedBlackTrees *}
 
-fun tres_thm :: "(ClauseId, Clause) rbt \<Rightarrow> Lit \<times> ClauseId \<Rightarrow> Clause \<Rightarrow> Clause Heap"
+fun tres_thm :: "(ClauseId, Clause) RBT_Impl.rbt \<Rightarrow> Lit \<times> ClauseId \<Rightarrow> Clause \<Rightarrow> Clause Heap"
 where
   "tres_thm t (l, j) cli =
-  (case (RBT.lookup t j) of 
+  (case (RBT_Impl.lookup t j) of 
      None \<Rightarrow> raise (''MiniSatChecked.res_thm: No resolvant clause in thms array for Conflict step.'')
    | Some clj \<Rightarrow> res_thm' l cli clj)"
 
-fun tdoProofStep :: " ProofStep \<Rightarrow> ((ClauseId, Clause) rbt * Clause list) \<Rightarrow> ((ClauseId, Clause) rbt * Clause list) Heap"
+fun tdoProofStep :: " ProofStep \<Rightarrow> ((ClauseId, Clause) RBT_Impl.rbt * Clause list) \<Rightarrow> ((ClauseId, Clause) RBT_Impl.rbt * Clause list) Heap"
 where
   "tdoProofStep (Conflict saveTo (i, rs)) (t, rcl) =
-     (case (RBT.lookup t i) of
+     (case (RBT_Impl.lookup t i) of
        None \<Rightarrow> raise (''MiniSatChecked.doProofStep: No starting clause in thms array for Conflict step.'')
      | Some cli \<Rightarrow> (do
                       result \<leftarrow> foldM (tres_thm t) rs cli;
-                      return ((RBT.insert saveTo result t), rcl)
+                      return ((RBT_Impl.insert saveTo result t), rcl)
                     done))"
-| "tdoProofStep (Delete cid) (t, rcl) = return ((RBT.delete cid t), rcl)"
-| "tdoProofStep (Root cid clause) (t, rcl) = return (RBT.insert cid (sort clause) t, (remdups(sort clause)) # rcl)"
+| "tdoProofStep (Delete cid) (t, rcl) = return ((RBT_Impl.delete cid t), rcl)"
+| "tdoProofStep (Root cid clause) (t, rcl) = return (RBT_Impl.insert cid (sort clause) t, (remdups(sort clause)) # rcl)"
 | "tdoProofStep (Xstep cid1 cid2) (t, rcl) = raise ''MiniSatChecked.doProofStep: Xstep constructor found.''"
 | "tdoProofStep (ProofDone b) (t, rcl) = raise ''MiniSatChecked.doProofStep: ProofDone constructor found.''"
 
@@ -660,8 +660,8 @@
 where
   "tchecker n p i =
   (do 
-     rcs \<leftarrow> foldM (tdoProofStep) p (RBT.Empty, []);
-     (if (RBT.lookup (fst rcs) i) = Some [] then return (snd rcs) 
+     rcs \<leftarrow> foldM (tdoProofStep) p (RBT_Impl.Empty, []);
+     (if (RBT_Impl.lookup (fst rcs) i) = Some [] then return (snd rcs) 
                 else raise(''No empty clause''))
    done)"
 
--- a/src/HOL/IsaMakefile	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/IsaMakefile	Fri Apr 16 15:49:46 2010 +0200
@@ -1,3 +1,4 @@
+
 #
 # IsaMakefile for HOL
 #
@@ -406,14 +407,15 @@
   Library/Library/ROOT.ML Library/Library/document/root.tex		\
   Library/Library/document/root.bib					\
   Library/Transitive_Closure_Table.thy Library/While_Combinator.thy	\
-  Library/Product_ord.thy Library/Char_nat.thy Library/Table.thy	\
+  Library/Product_ord.thy Library/Char_nat.thy				\
   Library/Sublist_Order.thy Library/List_lexord.thy			\
   Library/AssocList.thy Library/Formal_Power_Series.thy			\
   Library/Binomial.thy Library/Eval_Witness.thy Library/Code_Char.thy	\
   Library/Code_Char_chr.thy Library/Code_Integer.thy			\
   Library/Mapping.thy Library/Numeral_Type.thy Library/Reflection.thy	\
   Library/Boolean_Algebra.thy Library/Countable.thy			\
-  Library/Diagonalize.thy Library/RBT.thy Library/Univ_Poly.thy		\
+  Library/Diagonalize.thy Library/RBT.thy Library/RBT_Impl.thy		\
+  Library/Univ_Poly.thy							\
   Library/Poly_Deriv.thy Library/Polynomial.thy Library/Preorder.thy	\
   Library/Product_plus.thy Library/Product_Vector.thy 			\
   Library/Enum.thy Library/Float.thy Library/Quotient_List.thy		\
--- a/src/HOL/Library/Library.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Library/Library.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -57,7 +57,6 @@
   SML_Quickcheck
   State_Monad
   Sum_Of_Squares
-  Table
   Transitive_Closure_Table
   Univ_Poly
   While_Combinator
--- a/src/HOL/Library/Quotient_List.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Library/Quotient_List.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -217,6 +217,52 @@
   apply (simp_all)
   done
 
+lemma list_rel_rsp:
+  assumes r: "\<forall>x y. R x y \<longrightarrow> (\<forall>a b. R a b \<longrightarrow> S x a = T y b)"
+  and l1: "list_rel R x y"
+  and l2: "list_rel R a b"
+  shows "list_rel S x a = list_rel T y b"
+  proof -
+    have a: "length y = length x" by (rule list_rel_len[OF l1, symmetric])
+    have c: "length a = length b" by (rule list_rel_len[OF l2])
+    show ?thesis proof (cases "length x = length a")
+      case True
+      have b: "length x = length a" by fact
+      show ?thesis using a b c r l1 l2 proof (induct rule: list_induct4)
+        case Nil
+        show ?case using assms by simp
+      next
+        case (Cons h t)
+        then show ?case by auto
+      qed
+    next
+      case False
+      have d: "length x \<noteq> length a" by fact
+      then have e: "\<not>list_rel S x a" using list_rel_len by auto
+      have "length y \<noteq> length b" using d a c by simp
+      then have "\<not>list_rel T y b" using list_rel_len by auto
+      then show ?thesis using e by simp
+    qed
+  qed
+
+lemma[quot_respect]:
+  "((R ===> R ===> op =) ===> list_rel R ===> list_rel R ===> op =) list_rel list_rel"
+  by (simp add: list_rel_rsp)
+
+lemma[quot_preserve]:
+  assumes a: "Quotient R abs1 rep1"
+  shows "((abs1 ---> abs1 ---> id) ---> map rep1 ---> map rep1 ---> id) list_rel = list_rel"
+  apply (simp add: expand_fun_eq)
+  apply clarify
+  apply (induct_tac xa xb rule: list_induct2')
+  apply (simp_all add: Quotient_abs_rep[OF a])
+  done
+
+lemma[quot_preserve]:
+  assumes a: "Quotient R abs1 rep1"
+  shows "(list_rel ((rep1 ---> rep1 ---> id) R) l m) = (l = m)"
+  by (induct l m rule: list_induct2') (simp_all add: Quotient_rel_rep[OF a])
+
 lemma list_rel_eq[id_simps]:
   shows "(list_rel (op =)) = (op =)"
   unfolding expand_fun_eq
--- a/src/HOL/Library/RBT.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Library/RBT.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -1,1100 +1,253 @@
-(*  Title:      RBT.thy
-    Author:     Markus Reiter, TU Muenchen
-    Author:     Alexander Krauss, TU Muenchen
-*)
+(* Author: Florian Haftmann, TU Muenchen *)
 
-header {* Red-Black Trees *}
+header {* Abstract type of Red-Black Trees *}
 
 (*<*)
 theory RBT
-imports Main
+imports Main RBT_Impl Mapping
 begin
 
-subsection {* Datatype of RB trees *}
-
-datatype color = R | B
-datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt"
-
-lemma rbt_cases:
-  obtains (Empty) "t = Empty" 
-  | (Red) l k v r where "t = Branch R l k v r" 
-  | (Black) l k v r where "t = Branch B l k v r"
-proof (cases t)
-  case Empty with that show thesis by blast
-next
-  case (Branch c) with that show thesis by (cases c) blast+
-qed
-
-subsection {* Tree properties *}
-
-subsubsection {* Content of a tree *}
-
-primrec entries :: "('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list"
-where 
-  "entries Empty = []"
-| "entries (Branch _ l k v r) = entries l @ (k,v) # entries r"
-
-abbreviation (input) entry_in_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
-where
-  "entry_in_tree k v t \<equiv> (k, v) \<in> set (entries t)"
-
-definition keys :: "('a, 'b) rbt \<Rightarrow> 'a list" where
-  "keys t = map fst (entries t)"
-
-lemma keys_simps [simp, code]:
-  "keys Empty = []"
-  "keys (Branch c l k v r) = keys l @ k # keys r"
-  by (simp_all add: keys_def)
-
-lemma entry_in_tree_keys:
-  assumes "(k, v) \<in> set (entries t)"
-  shows "k \<in> set (keys t)"
-proof -
-  from assms have "fst (k, v) \<in> fst ` set (entries t)" by (rule imageI)
-  then show ?thesis by (simp add: keys_def)
-qed
-
-lemma keys_entries:
-  "k \<in> set (keys t) \<longleftrightarrow> (\<exists>v. (k, v) \<in> set (entries t))"
-  by (auto intro: entry_in_tree_keys) (auto simp add: keys_def)
-
-
-subsubsection {* Search tree properties *}
-
-definition tree_less :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
-where
-  tree_less_prop: "tree_less k t \<longleftrightarrow> (\<forall>x\<in>set (keys t). x < k)"
-
-abbreviation tree_less_symbol (infix "|\<guillemotleft>" 50)
-where "t |\<guillemotleft> x \<equiv> tree_less x t"
-
-definition tree_greater :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50) 
-where
-  tree_greater_prop: "tree_greater k t = (\<forall>x\<in>set (keys t). k < x)"
-
-lemma tree_less_simps [simp]:
-  "tree_less k Empty = True"
-  "tree_less k (Branch c lt kt v rt) \<longleftrightarrow> kt < k \<and> tree_less k lt \<and> tree_less k rt"
-  by (auto simp add: tree_less_prop)
-
-lemma tree_greater_simps [simp]:
-  "tree_greater k Empty = True"
-  "tree_greater k (Branch c lt kt v rt) \<longleftrightarrow> k < kt \<and> tree_greater k lt \<and> tree_greater k rt"
-  by (auto simp add: tree_greater_prop)
-
-lemmas tree_ord_props = tree_less_prop tree_greater_prop
-
-lemmas tree_greater_nit = tree_greater_prop entry_in_tree_keys
-lemmas tree_less_nit = tree_less_prop entry_in_tree_keys
-
-lemma tree_less_eq_trans: "l |\<guillemotleft> u \<Longrightarrow> u \<le> v \<Longrightarrow> l |\<guillemotleft> v"
-  and tree_less_trans: "t |\<guillemotleft> x \<Longrightarrow> x < y \<Longrightarrow> t |\<guillemotleft> y"
-  and tree_greater_eq_trans: "u \<le> v \<Longrightarrow> v \<guillemotleft>| r \<Longrightarrow> u \<guillemotleft>| r"
-  and tree_greater_trans: "x < y \<Longrightarrow> y \<guillemotleft>| t \<Longrightarrow> x \<guillemotleft>| t"
-  by (auto simp: tree_ord_props)
-
-primrec sorted :: "('a::linorder, 'b) rbt \<Rightarrow> bool"
-where
-  "sorted Empty = True"
-| "sorted (Branch c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> sorted l \<and> sorted r)"
-
-lemma sorted_entries:
-  "sorted t \<Longrightarrow> List.sorted (List.map fst (entries t))"
-by (induct t) 
-  (force simp: sorted_append sorted_Cons tree_ord_props 
-      dest!: entry_in_tree_keys)+
-
-lemma distinct_entries:
-  "sorted t \<Longrightarrow> distinct (List.map fst (entries t))"
-by (induct t) 
-  (force simp: sorted_append sorted_Cons tree_ord_props 
-      dest!: entry_in_tree_keys)+
-
-
-subsubsection {* Tree lookup *}
-
-primrec lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
-where
-  "lookup Empty k = None"
-| "lookup (Branch _ l x y r) k = (if k < x then lookup l k else if x < k then lookup r k else Some y)"
-
-lemma lookup_keys: "sorted t \<Longrightarrow> dom (lookup t) = set (keys t)"
-  by (induct t) (auto simp: dom_def tree_greater_prop tree_less_prop)
+subsection {* Type definition *}
 
-lemma dom_lookup_Branch: 
-  "sorted (Branch c t1 k v t2) \<Longrightarrow> 
-    dom (lookup (Branch c t1 k v t2)) 
-    = Set.insert k (dom (lookup t1) \<union> dom (lookup t2))"
+typedef (open) ('a, 'b) rbt = "{t :: ('a\<Colon>linorder, 'b) RBT_Impl.rbt. is_rbt t}"
+  morphisms impl_of RBT
 proof -
-  assume "sorted (Branch c t1 k v t2)"
-  moreover from this have "sorted t1" "sorted t2" by simp_all
-  ultimately show ?thesis by (simp add: lookup_keys)
-qed
-
-lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup t))"
-proof (induct t)
-  case Empty then show ?case by simp
-next
-  case (Branch color t1 a b t2)
-  let ?A = "Set.insert a (dom (lookup t1) \<union> dom (lookup t2))"
-  have "dom (lookup (Branch color t1 a b t2)) \<subseteq> ?A" by (auto split: split_if_asm)
-  moreover from Branch have "finite (insert a (dom (lookup t1) \<union> dom (lookup t2)))" by simp
-  ultimately show ?case by (rule finite_subset)
-qed 
-
-lemma lookup_tree_less[simp]: "t |\<guillemotleft> k \<Longrightarrow> lookup t k = None" 
-by (induct t) auto
-
-lemma lookup_tree_greater[simp]: "k \<guillemotleft>| t \<Longrightarrow> lookup t k = None"
-by (induct t) auto
-
-lemma lookup_Empty: "lookup Empty = empty"
-by (rule ext) simp
-
-lemma map_of_entries:
-  "sorted t \<Longrightarrow> map_of (entries t) = lookup t"
-proof (induct t)
-  case Empty thus ?case by (simp add: lookup_Empty)
-next
-  case (Branch c t1 k v t2)
-  have "lookup (Branch c t1 k v t2) = lookup t2 ++ [k\<mapsto>v] ++ lookup t1"
-  proof (rule ext)
-    fix x
-    from Branch have SORTED: "sorted (Branch c t1 k v t2)" by simp
-    let ?thesis = "lookup (Branch c t1 k v t2) x = (lookup t2 ++ [k \<mapsto> v] ++ lookup t1) x"
-
-    have DOM_T1: "!!k'. k'\<in>dom (lookup t1) \<Longrightarrow> k>k'"
-    proof -
-      fix k'
-      from SORTED have "t1 |\<guillemotleft> k" by simp
-      with tree_less_prop have "\<forall>k'\<in>set (keys t1). k>k'" by auto
-      moreover assume "k'\<in>dom (lookup t1)"
-      ultimately show "k>k'" using lookup_keys SORTED by auto
-    qed
-    
-    have DOM_T2: "!!k'. k'\<in>dom (lookup t2) \<Longrightarrow> k<k'"
-    proof -
-      fix k'
-      from SORTED have "k \<guillemotleft>| t2" by simp
-      with tree_greater_prop have "\<forall>k'\<in>set (keys t2). k<k'" by auto
-      moreover assume "k'\<in>dom (lookup t2)"
-      ultimately show "k<k'" using lookup_keys SORTED by auto
-    qed
-    
-    {
-      assume C: "x<k"
-      hence "lookup (Branch c t1 k v t2) x = lookup t1 x" by simp
-      moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
-      moreover have "x\<notin>dom (lookup t2)" proof
-        assume "x\<in>dom (lookup t2)"
-        with DOM_T2 have "k<x" by blast
-        with C show False by simp
-      qed
-      ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
-    } moreover {
-      assume [simp]: "x=k"
-      hence "lookup (Branch c t1 k v t2) x = [k \<mapsto> v] x" by simp
-      moreover have "x\<notin>dom (lookup t1)" proof
-        assume "x\<in>dom (lookup t1)"
-        with DOM_T1 have "k>x" by blast
-        thus False by simp
-      qed
-      ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
-    } moreover {
-      assume C: "x>k"
-      hence "lookup (Branch c t1 k v t2) x = lookup t2 x" by (simp add: less_not_sym[of k x])
-      moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
-      moreover have "x\<notin>dom (lookup t1)" proof
-        assume "x\<in>dom (lookup t1)"
-        with DOM_T1 have "k>x" by simp
-        with C show False by simp
-      qed
-      ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
-    } ultimately show ?thesis using less_linear by blast
-  qed
-  also from Branch have "lookup t2 ++ [k \<mapsto> v] ++ lookup t1 = map_of (entries (Branch c t1 k v t2))" by simp
-  finally show ?case by simp
-qed
-
-lemma lookup_in_tree: "sorted t \<Longrightarrow> lookup t k = Some v \<longleftrightarrow> (k, v) \<in> set (entries t)"
-  by (simp add: map_of_entries [symmetric] distinct_entries)
-
-lemma set_entries_inject:
-  assumes sorted: "sorted t1" "sorted t2" 
-  shows "set (entries t1) = set (entries t2) \<longleftrightarrow> entries t1 = entries t2"
-proof -
-  from sorted have "distinct (map fst (entries t1))"
-    "distinct (map fst (entries t2))"
-    by (auto intro: distinct_entries)
-  with sorted show ?thesis
-    by (auto intro: map_sorted_distinct_set_unique sorted_entries simp add: distinct_map)
-qed
-
-lemma entries_eqI:
-  assumes sorted: "sorted t1" "sorted t2" 
-  assumes lookup: "lookup t1 = lookup t2"
-  shows "entries t1 = entries t2"
-proof -
-  from sorted lookup have "map_of (entries t1) = map_of (entries t2)"
-    by (simp add: map_of_entries)
-  with sorted have "set (entries t1) = set (entries t2)"
-    by (simp add: map_of_inject_set distinct_entries)
-  with sorted show ?thesis by (simp add: set_entries_inject)
+  have "RBT_Impl.Empty \<in> ?rbt" by simp
+  then show ?thesis ..
 qed
 
-lemma entries_lookup:
-  assumes "sorted t1" "sorted t2" 
-  shows "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2"
-  using assms by (auto intro: entries_eqI simp add: map_of_entries [symmetric])
-
-lemma lookup_from_in_tree: 
-  assumes "sorted t1" "sorted t2" 
-  and "\<And>v. (k\<Colon>'a\<Colon>linorder, v) \<in> set (entries t1) \<longleftrightarrow> (k, v) \<in> set (entries t2)" 
-  shows "lookup t1 k = lookup t2 k"
-proof -
-  from assms have "k \<in> dom (lookup t1) \<longleftrightarrow> k \<in> dom (lookup t2)"
-    by (simp add: keys_entries lookup_keys)
-  with assms show ?thesis by (auto simp add: lookup_in_tree [symmetric])
-qed
-
-
-subsubsection {* Red-black properties *}
-
-primrec color_of :: "('a, 'b) rbt \<Rightarrow> color"
-where
-  "color_of Empty = B"
-| "color_of (Branch c _ _ _ _) = c"
+lemma is_rbt_impl_of [simp, intro]:
+  "is_rbt (impl_of t)"
+  using impl_of [of t] by simp
 
-primrec bheight :: "('a,'b) rbt \<Rightarrow> nat"
-where
-  "bheight Empty = 0"
-| "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)"
-
-primrec inv1 :: "('a, 'b) rbt \<Rightarrow> bool"
-where
-  "inv1 Empty = True"
-| "inv1 (Branch c lt k v rt) \<longleftrightarrow> inv1 lt \<and> inv1 rt \<and> (c = B \<or> color_of lt = B \<and> color_of rt = B)"
+lemma rbt_eq:
+  "t1 = t2 \<longleftrightarrow> impl_of t1 = impl_of t2"
+  by (simp add: impl_of_inject)
 
-primrec inv1l :: "('a, 'b) rbt \<Rightarrow> bool" -- {* Weaker version *}
-where
-  "inv1l Empty = True"
-| "inv1l (Branch c l k v r) = (inv1 l \<and> inv1 r)"
-lemma [simp]: "inv1 t \<Longrightarrow> inv1l t" by (cases t) simp+
-
-primrec inv2 :: "('a, 'b) rbt \<Rightarrow> bool"
-where
-  "inv2 Empty = True"
-| "inv2 (Branch c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bheight lt = bheight rt)"
-
-definition is_rbt :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
-  "is_rbt t \<longleftrightarrow> inv1 t \<and> inv2 t \<and> color_of t = B \<and> sorted t"
-
-lemma is_rbt_sorted [simp]:
-  "is_rbt t \<Longrightarrow> sorted t" by (simp add: is_rbt_def)
-
-theorem Empty_is_rbt [simp]:
-  "is_rbt Empty" by (simp add: is_rbt_def)
+lemma [code abstype]:
+  "RBT (impl_of t) = t"
+  by (simp add: impl_of_inverse)
 
 
-subsection {* Insertion *}
-
-fun (* slow, due to massive case splitting *)
-  balance :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
-where
-  "balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
-  "balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
-  "balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
-  "balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
-  "balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
-  "balance a s t b = Branch B a s t b"
-
-lemma balance_inv1: "\<lbrakk>inv1l l; inv1l r\<rbrakk> \<Longrightarrow> inv1 (balance l k v r)" 
-  by (induct l k v r rule: balance.induct) auto
-
-lemma balance_bheight: "bheight l = bheight r \<Longrightarrow> bheight (balance l k v r) = Suc (bheight l)"
-  by (induct l k v r rule: balance.induct) auto
-
-lemma balance_inv2: 
-  assumes "inv2 l" "inv2 r" "bheight l = bheight r"
-  shows "inv2 (balance l k v r)"
-  using assms
-  by (induct l k v r rule: balance.induct) auto
-
-lemma balance_tree_greater[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)" 
-  by (induct a k x b rule: balance.induct) auto
-
-lemma balance_tree_less[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)"
-  by (induct a k x b rule: balance.induct) auto
+subsection {* Primitive operations *}
 
-lemma balance_sorted: 
-  fixes k :: "'a::linorder"
-  assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
-  shows "sorted (balance l k v r)"
-using assms proof (induct l k v r rule: balance.induct)
-  case ("2_2" a x w b y t c z s va vb vd vc)
-  hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" 
-    by (auto simp add: tree_ord_props)
-  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
-  with "2_2" show ?case by simp
-next
-  case ("3_2" va vb vd vc x w b y s c z)
-  from "3_2" have "x < y \<and> tree_less x (Branch B va vb vd vc)" 
-    by simp
-  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
-  with "3_2" show ?case by simp
-next
-  case ("3_3" x w b y s c z t va vb vd vc)
-  from "3_3" have "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
-  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
-  with "3_3" show ?case by simp
-next
-  case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc)
-  hence "x < y \<and> tree_less x (Branch B vd ve vg vf)" by simp
-  hence 1: "tree_less y (Branch B vd ve vg vf)" by (blast dest: tree_less_trans)
-  from "3_4" have "y < z \<and> tree_greater z (Branch B va vb vii vc)" by simp
-  hence "tree_greater y (Branch B va vb vii vc)" by (blast dest: tree_greater_trans)
-  with 1 "3_4" show ?case by simp
-next
-  case ("4_2" va vb vd vc x w b y s c z t dd)
-  hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
-  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
-  with "4_2" show ?case by simp
-next
-  case ("5_2" x w b y s c z t va vb vd vc)
-  hence "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
-  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
-  with "5_2" show ?case by simp
-next
-  case ("5_3" va vb vd vc x w b y s c z t)
-  hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
-  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
-  with "5_3" show ?case by simp
-next
-  case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf)
-  hence "x < y \<and> tree_less x (Branch B va vb vg vc)" by simp
-  hence 1: "tree_less y (Branch B va vb vg vc)" by (blast dest: tree_less_trans)
-  from "5_4" have "y < z \<and> tree_greater z (Branch B vd ve vii vf)" by simp
-  hence "tree_greater y (Branch B vd ve vii vf)" by (blast dest: tree_greater_trans)
-  with 1 "5_4" show ?case by simp
-qed simp+
-
-lemma entries_balance [simp]:
-  "entries (balance l k v r) = entries l @ (k, v) # entries r"
-  by (induct l k v r rule: balance.induct) auto
-
-lemma keys_balance [simp]: 
-  "keys (balance l k v r) = keys l @ k # keys r"
-  by (simp add: keys_def)
+definition lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b" where
+  [code]: "lookup t = RBT_Impl.lookup (impl_of t)"
 
-lemma balance_in_tree:  
-  "entry_in_tree k x (balance l v y r) \<longleftrightarrow> entry_in_tree k x l \<or> k = v \<and> x = y \<or> entry_in_tree k x r"
-  by (auto simp add: keys_def)
-
-lemma lookup_balance[simp]: 
-fixes k :: "'a::linorder"
-assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
-shows "lookup (balance l k v r) x = lookup (Branch B l k v r) x"
-by (rule lookup_from_in_tree) (auto simp:assms balance_in_tree balance_sorted)
-
-primrec paint :: "color \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
-where
-  "paint c Empty = Empty"
-| "paint c (Branch _ l k v r) = Branch c l k v r"
-
-lemma paint_inv1l[simp]: "inv1l t \<Longrightarrow> inv1l (paint c t)" by (cases t) auto
-lemma paint_inv1[simp]: "inv1l t \<Longrightarrow> inv1 (paint B t)" by (cases t) auto
-lemma paint_inv2[simp]: "inv2 t \<Longrightarrow> inv2 (paint c t)" by (cases t) auto
-lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto
-lemma paint_sorted[simp]: "sorted t \<Longrightarrow> sorted (paint c t)" by (cases t) auto
-lemma paint_in_tree[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto
-lemma paint_lookup[simp]: "lookup (paint c t) = lookup t" by (rule ext) (cases t, auto)
-lemma paint_tree_greater[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto
-lemma paint_tree_less[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto
-
-fun
-  ins :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
-where
-  "ins f k v Empty = Branch R Empty k v Empty" |
-  "ins f k v (Branch B l x y r) = (if k < x then balance (ins f k v l) x y r
-                               else if k > x then balance l x y (ins f k v r)
-                               else Branch B l x (f k y v) r)" |
-  "ins f k v (Branch R l x y r) = (if k < x then Branch R (ins f k v l) x y r
-                               else if k > x then Branch R l x y (ins f k v r)
-                               else Branch R l x (f k y v) r)"
-
-lemma ins_inv1_inv2: 
-  assumes "inv1 t" "inv2 t"
-  shows "inv2 (ins f k x t)" "bheight (ins f k x t) = bheight t" 
-  "color_of t = B \<Longrightarrow> inv1 (ins f k x t)" "inv1l (ins f k x t)"
-  using assms
-  by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight)
+definition empty :: "('a\<Colon>linorder, 'b) rbt" where
+  "empty = RBT RBT_Impl.Empty"
 
-lemma ins_tree_greater[simp]: "(v \<guillemotleft>| ins f k x t) = (v \<guillemotleft>| t \<and> k > v)"
-  by (induct f k x t rule: ins.induct) auto
-lemma ins_tree_less[simp]: "(ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)"
-  by (induct f k x t rule: ins.induct) auto
-lemma ins_sorted[simp]: "sorted t \<Longrightarrow> sorted (ins f k x t)"
-  by (induct f k x t rule: ins.induct) (auto simp: balance_sorted)
-
-lemma keys_ins: "set (keys (ins f k v t)) = { k } \<union> set (keys t)"
-  by (induct f k v t rule: ins.induct) auto
-
-lemma lookup_ins: 
-  fixes k :: "'a::linorder"
-  assumes "sorted t"
-  shows "lookup (ins f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
-                                                       | Some w \<Rightarrow> f k w v)) x"
-using assms by (induct f k v t rule: ins.induct) auto
-
-definition
-  insert_with_key :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
-where
-  "insert_with_key f k v t = paint B (ins f k v t)"
-
-lemma insertwk_sorted: "sorted t \<Longrightarrow> sorted (insert_with_key f k x t)"
-  by (auto simp: insert_with_key_def)
-
-theorem insertwk_is_rbt: 
-  assumes inv: "is_rbt t" 
-  shows "is_rbt (insert_with_key f k x t)"
-using assms
-unfolding insert_with_key_def is_rbt_def
-by (auto simp: ins_inv1_inv2)
-
-lemma lookup_insertwk: 
-  assumes "sorted t"
-  shows "lookup (insert_with_key f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
-                                                       | Some w \<Rightarrow> f k w v)) x"
-unfolding insert_with_key_def using assms
-by (simp add:lookup_ins)
-
-definition
-  insertw_def: "insert_with f = insert_with_key (\<lambda>_. f)"
-
-lemma insertw_sorted: "sorted t \<Longrightarrow> sorted (insert_with f k v t)" by (simp add: insertwk_sorted insertw_def)
-theorem insertw_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (insert_with f k v t)" by (simp add: insertwk_is_rbt insertw_def)
-
-lemma lookup_insertw:
-  assumes "is_rbt t"
-  shows "lookup (insert_with f k v t) = (lookup t)(k \<mapsto> (if k:dom (lookup t) then f (the (lookup t k)) v else v))"
-using assms
-unfolding insertw_def
-by (rule_tac ext) (cases "lookup t k", auto simp:lookup_insertwk dom_def)
+lemma impl_of_empty [code abstract]:
+  "impl_of empty = RBT_Impl.Empty"
+  by (simp add: empty_def RBT_inverse)
 
 definition insert :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
-  "insert = insert_with_key (\<lambda>_ _ nv. nv)"
+  "insert k v t = RBT (RBT_Impl.insert k v (impl_of t))"
+
+lemma impl_of_insert [code abstract]:
+  "impl_of (insert k v t) = RBT_Impl.insert k v (impl_of t)"
+  by (simp add: insert_def RBT_inverse)
+
+definition delete :: "'a\<Colon>linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
+  "delete k t = RBT (RBT_Impl.delete k (impl_of t))"
 
-lemma insert_sorted: "sorted t \<Longrightarrow> sorted (insert k v t)" by (simp add: insertwk_sorted insert_def)
-theorem insert_is_rbt [simp]: "is_rbt t \<Longrightarrow> is_rbt (insert k v t)" by (simp add: insertwk_is_rbt insert_def)
+lemma impl_of_delete [code abstract]:
+  "impl_of (delete k t) = RBT_Impl.delete k (impl_of t)"
+  by (simp add: delete_def RBT_inverse)
+
+definition entries :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a \<times> 'b) list" where
+  [code]: "entries t = RBT_Impl.entries (impl_of t)"
+
+definition keys :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a list" where
+  [code]: "keys t = RBT_Impl.keys (impl_of t)"
+
+definition bulkload :: "('a\<Colon>linorder \<times> 'b) list \<Rightarrow> ('a, 'b) rbt" where
+  "bulkload xs = RBT (RBT_Impl.bulkload xs)"
 
-lemma lookup_insert: 
-  assumes "is_rbt t"
-  shows "lookup (insert k v t) = (lookup t)(k\<mapsto>v)"
-unfolding insert_def
-using assms
-by (rule_tac ext) (simp add: lookup_insertwk split:option.split)
+lemma impl_of_bulkload [code abstract]:
+  "impl_of (bulkload xs) = RBT_Impl.bulkload xs"
+  by (simp add: bulkload_def RBT_inverse)
+
+definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
+  "map_entry k f t = RBT (RBT_Impl.map_entry k f (impl_of t))"
+
+lemma impl_of_map_entry [code abstract]:
+  "impl_of (map_entry k f t) = RBT_Impl.map_entry k f (impl_of t)"
+  by (simp add: map_entry_def RBT_inverse)
+
+definition map :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
+  "map f t = RBT (RBT_Impl.map f (impl_of t))"
+
+lemma impl_of_map [code abstract]:
+  "impl_of (map f t) = RBT_Impl.map f (impl_of t)"
+  by (simp add: map_def RBT_inverse)
+
+definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" where
+  [code]: "fold f t = RBT_Impl.fold f (impl_of t)"
+
+
+subsection {* Derived operations *}
+
+definition is_empty :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
+  [code]: "is_empty t = (case impl_of t of RBT_Impl.Empty \<Rightarrow> True | _ \<Rightarrow> False)"
 
 
-subsection {* Deletion *}
-
-lemma bheight_paintR'[simp]: "color_of t = B \<Longrightarrow> bheight (paint R t) = bheight t - 1"
-by (cases t rule: rbt_cases) auto
-
-fun
-  balance_left :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
-where
-  "balance_left (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" |
-  "balance_left bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" |
-  "balance_left bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" |
-  "balance_left t k x s = Empty"
+subsection {* Abstract lookup properties *}
 
-lemma balance_left_inv2_with_inv1:
-  assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt"
-  shows "bheight (balance_left lt k v rt) = bheight lt + 1"
-  and   "inv2 (balance_left lt k v rt)"
-using assms 
-by (induct lt k v rt rule: balance_left.induct) (auto simp: balance_inv2 balance_bheight)
-
-lemma balance_left_inv2_app: 
-  assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B"
-  shows "inv2 (balance_left lt k v rt)" 
-        "bheight (balance_left lt k v rt) = bheight rt"
-using assms 
-by (induct lt k v rt rule: balance_left.induct) (auto simp add: balance_inv2 balance_bheight)+ 
-
-lemma balance_left_inv1: "\<lbrakk>inv1l a; inv1 b; color_of b = B\<rbrakk> \<Longrightarrow> inv1 (balance_left a k x b)"
-  by (induct a k x b rule: balance_left.induct) (simp add: balance_inv1)+
-
-lemma balance_left_inv1l: "\<lbrakk> inv1l lt; inv1 rt \<rbrakk> \<Longrightarrow> inv1l (balance_left lt k x rt)"
-by (induct lt k x rt rule: balance_left.induct) (auto simp: balance_inv1)
+lemma lookup_RBT:
+  "is_rbt t \<Longrightarrow> lookup (RBT t) = RBT_Impl.lookup t"
+  by (simp add: lookup_def RBT_inverse)
 
-lemma balance_left_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balance_left l k v r)"
-apply (induct l k v r rule: balance_left.induct)
-apply (auto simp: balance_sorted)
-apply (unfold tree_greater_prop tree_less_prop)
-by force+
-
-lemma balance_left_tree_greater: 
-  fixes k :: "'a::order"
-  assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
-  shows "k \<guillemotleft>| balance_left a x t b"
-using assms 
-by (induct a x t b rule: balance_left.induct) auto
-
-lemma balance_left_tree_less: 
-  fixes k :: "'a::order"
-  assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
-  shows "balance_left a x t b |\<guillemotleft> k"
-using assms
-by (induct a x t b rule: balance_left.induct) auto
+lemma lookup_impl_of:
+  "RBT_Impl.lookup (impl_of t) = lookup t"
+  by (simp add: lookup_def)
 
-lemma balance_left_in_tree: 
-  assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r"
-  shows "entry_in_tree k v (balance_left l a b r) = (entry_in_tree k v l \<or> k = a \<and> v = b \<or> entry_in_tree k v r)"
-using assms 
-by (induct l k v r rule: balance_left.induct) (auto simp: balance_in_tree)
-
-fun
-  balance_right :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
-where
-  "balance_right a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" |
-  "balance_right (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" |
-  "balance_right (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" |
-  "balance_right t k x s = Empty"
-
-lemma balance_right_inv2_with_inv1:
-  assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt"
-  shows "inv2 (balance_right lt k v rt) \<and> bheight (balance_right lt k v rt) = bheight lt"
-using assms
-by (induct lt k v rt rule: balance_right.induct) (auto simp: balance_inv2 balance_bheight)
+lemma entries_impl_of:
+  "RBT_Impl.entries (impl_of t) = entries t"
+  by (simp add: entries_def)
 
-lemma balance_right_inv1: "\<lbrakk>inv1 a; inv1l b; color_of a = B\<rbrakk> \<Longrightarrow> inv1 (balance_right a k x b)"
-by (induct a k x b rule: balance_right.induct) (simp add: balance_inv1)+
-
-lemma balance_right_inv1l: "\<lbrakk> inv1 lt; inv1l rt \<rbrakk> \<Longrightarrow>inv1l (balance_right lt k x rt)"
-by (induct lt k x rt rule: balance_right.induct) (auto simp: balance_inv1)
-
-lemma balance_right_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balance_right l k v r)"
-apply (induct l k v r rule: balance_right.induct)
-apply (auto simp:balance_sorted)
-apply (unfold tree_less_prop tree_greater_prop)
-by force+
+lemma keys_impl_of:
+  "RBT_Impl.keys (impl_of t) = keys t"
+  by (simp add: keys_def)
 
-lemma balance_right_tree_greater: 
-  fixes k :: "'a::order"
-  assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
-  shows "k \<guillemotleft>| balance_right a x t b"
-using assms by (induct a x t b rule: balance_right.induct) auto
-
-lemma balance_right_tree_less: 
-  fixes k :: "'a::order"
-  assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
-  shows "balance_right a x t b |\<guillemotleft> k"
-using assms by (induct a x t b rule: balance_right.induct) auto
-
-lemma balance_right_in_tree:
-  assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r"
-  shows "entry_in_tree x y (balance_right l k v r) = (entry_in_tree x y l \<or> x = k \<and> y = v \<or> entry_in_tree x y r)"
-using assms by (induct l k v r rule: balance_right.induct) (auto simp: balance_in_tree)
+lemma lookup_empty [simp]:
+  "lookup empty = Map.empty"
+  by (simp add: empty_def lookup_RBT expand_fun_eq)
 
-fun
-  combine :: "('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
-where
-  "combine Empty x = x" 
-| "combine x Empty = x" 
-| "combine (Branch R a k x b) (Branch R c s y d) = (case (combine b c) of
-                                      Branch R b2 t z c2 \<Rightarrow> (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) |
-                                      bc \<Rightarrow> Branch R a k x (Branch R bc s y d))" 
-| "combine (Branch B a k x b) (Branch B c s y d) = (case (combine b c) of
-                                      Branch R b2 t z c2 \<Rightarrow> Branch R (Branch B a k x b2) t z (Branch B c2 s y d) |
-                                      bc \<Rightarrow> balance_left a k x (Branch B bc s y d))" 
-| "combine a (Branch R b k x c) = Branch R (combine a b) k x c" 
-| "combine (Branch R a k x b) c = Branch R a k x (combine b c)" 
-
-lemma combine_inv2:
-  assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt"
-  shows "bheight (combine lt rt) = bheight lt" "inv2 (combine lt rt)"
-using assms 
-by (induct lt rt rule: combine.induct) 
-   (auto simp: balance_left_inv2_app split: rbt.splits color.splits)
+lemma lookup_insert [simp]:
+  "lookup (insert k v t) = (lookup t)(k \<mapsto> v)"
+  by (simp add: insert_def lookup_RBT lookup_insert lookup_impl_of)
 
-lemma combine_inv1: 
-  assumes "inv1 lt" "inv1 rt"
-  shows "color_of lt = B \<Longrightarrow> color_of rt = B \<Longrightarrow> inv1 (combine lt rt)"
-         "inv1l (combine lt rt)"
-using assms 
-by (induct lt rt rule: combine.induct)
-   (auto simp: balance_left_inv1 split: rbt.splits color.splits)
+lemma lookup_delete [simp]:
+  "lookup (delete k t) = (lookup t)(k := None)"
+  by (simp add: delete_def lookup_RBT RBT_Impl.lookup_delete lookup_impl_of restrict_complement_singleton_eq)
 
-lemma combine_tree_greater[simp]: 
-  fixes k :: "'a::linorder"
-  assumes "k \<guillemotleft>| l" "k \<guillemotleft>| r" 
-  shows "k \<guillemotleft>| combine l r"
-using assms 
-by (induct l r rule: combine.induct)
-   (auto simp: balance_left_tree_greater split:rbt.splits color.splits)
-
-lemma combine_tree_less[simp]: 
-  fixes k :: "'a::linorder"
-  assumes "l |\<guillemotleft> k" "r |\<guillemotleft> k" 
-  shows "combine l r |\<guillemotleft> k"
-using assms 
-by (induct l r rule: combine.induct)
-   (auto simp: balance_left_tree_less split:rbt.splits color.splits)
+lemma map_of_entries [simp]:
+  "map_of (entries t) = lookup t"
+  by (simp add: entries_def map_of_entries lookup_impl_of)
 
-lemma combine_sorted: 
-  fixes k :: "'a::linorder"
-  assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
-  shows "sorted (combine l r)"
-using assms proof (induct l r rule: combine.induct)
-  case (3 a x v b c y w d)
-  hence ineqs: "a |\<guillemotleft> x" "x \<guillemotleft>| b" "b |\<guillemotleft> k" "k \<guillemotleft>| c" "c |\<guillemotleft> y" "y \<guillemotleft>| d"
-    by auto
-  with 3
-  show ?case
-    by (cases "combine b c" rule: rbt_cases)
-      (auto, (metis combine_tree_greater combine_tree_less ineqs ineqs tree_less_simps(2) tree_greater_simps(2) tree_greater_trans tree_less_trans)+)
-next
-  case (4 a x v b c y w d)
-  hence "x < k \<and> tree_greater k c" by simp
-  hence "tree_greater x c" by (blast dest: tree_greater_trans)
-  with 4 have 2: "tree_greater x (combine b c)" by (simp add: combine_tree_greater)
-  from 4 have "k < y \<and> tree_less k b" by simp
-  hence "tree_less y b" by (blast dest: tree_less_trans)
-  with 4 have 3: "tree_less y (combine b c)" by (simp add: combine_tree_less)
-  show ?case
-  proof (cases "combine b c" rule: rbt_cases)
-    case Empty
-    from 4 have "x < y \<and> tree_greater y d" by auto
-    hence "tree_greater x d" by (blast dest: tree_greater_trans)
-    with 4 Empty have "sorted a" and "sorted (Branch B Empty y w d)" and "tree_less x a" and "tree_greater x (Branch B Empty y w d)" by auto
-    with Empty show ?thesis by (simp add: balance_left_sorted)
-  next
-    case (Red lta va ka rta)
-    with 2 4 have "x < va \<and> tree_less x a" by simp
-    hence 5: "tree_less va a" by (blast dest: tree_less_trans)
-    from Red 3 4 have "va < y \<and> tree_greater y d" by simp
-    hence "tree_greater va d" by (blast dest: tree_greater_trans)
-    with Red 2 3 4 5 show ?thesis by simp
-  next
-    case (Black lta va ka rta)
-    from 4 have "x < y \<and> tree_greater y d" by auto
-    hence "tree_greater x d" by (blast dest: tree_greater_trans)
-    with Black 2 3 4 have "sorted a" and "sorted (Branch B (combine b c) y w d)" and "tree_less x a" and "tree_greater x (Branch B (combine b c) y w d)" by auto
-    with Black show ?thesis by (simp add: balance_left_sorted)
-  qed
-next
-  case (5 va vb vd vc b x w c)
-  hence "k < x \<and> tree_less k (Branch B va vb vd vc)" by simp
-  hence "tree_less x (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
-  with 5 show ?case by (simp add: combine_tree_less)
-next
-  case (6 a x v b va vb vd vc)
-  hence "x < k \<and> tree_greater k (Branch B va vb vd vc)" by simp
-  hence "tree_greater x (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
-  with 6 show ?case by (simp add: combine_tree_greater)
-qed simp+
+lemma entries_lookup:
+  "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2"
+  by (simp add: entries_def lookup_def entries_lookup)
+
+lemma lookup_bulkload [simp]:
+  "lookup (bulkload xs) = map_of xs"
+  by (simp add: bulkload_def lookup_RBT RBT_Impl.lookup_bulkload)
 
-lemma combine_in_tree: 
-  assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r"
-  shows "entry_in_tree k v (combine l r) = (entry_in_tree k v l \<or> entry_in_tree k v r)"
-using assms 
-proof (induct l r rule: combine.induct)
-  case (4 _ _ _ b c)
-  hence a: "bheight (combine b c) = bheight b" by (simp add: combine_inv2)
-  from 4 have b: "inv1l (combine b c)" by (simp add: combine_inv1)
+lemma lookup_map_entry [simp]:
+  "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))"
+  by (simp add: map_entry_def lookup_RBT lookup_map_entry lookup_impl_of)
 
-  show ?case
-  proof (cases "combine b c" rule: rbt_cases)
-    case Empty
-    with 4 a show ?thesis by (auto simp: balance_left_in_tree)
-  next
-    case (Red lta ka va rta)
-    with 4 show ?thesis by auto
-  next
-    case (Black lta ka va rta)
-    with a b 4  show ?thesis by (auto simp: balance_left_in_tree)
-  qed 
-qed (auto split: rbt.splits color.splits)
+lemma lookup_map [simp]:
+  "lookup (map f t) k = Option.map (f k) (lookup t k)"
+  by (simp add: map_def lookup_RBT lookup_map lookup_impl_of)
 
-fun
-  del_from_left :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
-  del_from_right :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
-  del :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
-where
-  "del x Empty = Empty" |
-  "del x (Branch c a y s b) = (if x < y then del_from_left x a y s b else (if x > y then del_from_right x a y s b else combine a b))" |
-  "del_from_left x (Branch B lt z v rt) y s b = balance_left (del x (Branch B lt z v rt)) y s b" |
-  "del_from_left x a y s b = Branch R (del x a) y s b" |
-  "del_from_right x a y s (Branch B lt z v rt) = balance_right a y s (del x (Branch B lt z v rt))" | 
-  "del_from_right x a y s b = Branch R a y s (del x b)"
+lemma fold_fold:
+  "fold f t = (\<lambda>s. foldl (\<lambda>s (k, v). f k v s) s (entries t))"
+  by (simp add: fold_def expand_fun_eq RBT_Impl.fold_def entries_impl_of)
 
-lemma 
-  assumes "inv2 lt" "inv1 lt"
-  shows
-  "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
-  inv2 (del_from_left x lt k v rt) \<and> bheight (del_from_left x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (del_from_left x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (del_from_left x lt k v rt))"
-  and "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
-  inv2 (del_from_right x lt k v rt) \<and> bheight (del_from_right x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (del_from_right x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (del_from_right x lt k v rt))"
-  and del_inv1_inv2: "inv2 (del x lt) \<and> (color_of lt = R \<and> bheight (del x lt) = bheight lt \<and> inv1 (del x lt) 
-  \<or> color_of lt = B \<and> bheight (del x lt) = bheight lt - 1 \<and> inv1l (del x lt))"
-using assms
-proof (induct x lt k v rt and x lt k v rt and x lt rule: del_from_left_del_from_right_del.induct)
-case (2 y c _ y')
-  have "y = y' \<or> y < y' \<or> y > y'" by auto
-  thus ?case proof (elim disjE)
-    assume "y = y'"
-    with 2 show ?thesis by (cases c) (simp add: combine_inv2 combine_inv1)+
-  next
-    assume "y < y'"
-    with 2 show ?thesis by (cases c) auto
-  next
-    assume "y' < y"
-    with 2 show ?thesis by (cases c) auto
-  qed
-next
-  case (3 y lt z v rta y' ss bb) 
-  thus ?case by (cases "color_of (Branch B lt z v rta) = B \<and> color_of bb = B") (simp add: balance_left_inv2_with_inv1 balance_left_inv1 balance_left_inv1l)+
-next
-  case (5 y a y' ss lt z v rta)
-  thus ?case by (cases "color_of a = B \<and> color_of (Branch B lt z v rta) = B") (simp add: balance_right_inv2_with_inv1 balance_right_inv1 balance_right_inv1l)+
-next
-  case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \<and> color_of Empty = B") simp+
-qed auto
+lemma is_empty_empty [simp]:
+  "is_empty t \<longleftrightarrow> t = empty"
+  by (simp add: rbt_eq is_empty_def impl_of_empty split: rbt.split)
 
-lemma 
-  del_from_left_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (del_from_left x lt k y rt)"
-  and del_from_right_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (del_from_right x lt k y rt)"
-  and del_tree_less: "tree_less v lt \<Longrightarrow> tree_less v (del x lt)"
-by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct) 
-   (auto simp: balance_left_tree_less balance_right_tree_less)
-
-lemma del_from_left_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (del_from_left x lt k y rt)"
-  and del_from_right_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (del_from_right x lt k y rt)"
-  and del_tree_greater: "tree_greater v lt \<Longrightarrow> tree_greater v (del x lt)"
-by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct)
-   (auto simp: balance_left_tree_greater balance_right_tree_greater)
-
-lemma "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (del_from_left x lt k y rt)"
-  and "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (del_from_right x lt k y rt)"
-  and del_sorted: "sorted lt \<Longrightarrow> sorted (del x lt)"
-proof (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct)
-  case (3 x lta zz v rta yy ss bb)
-  from 3 have "tree_less yy (Branch B lta zz v rta)" by simp
-  hence "tree_less yy (del x (Branch B lta zz v rta))" by (rule del_tree_less)
-  with 3 show ?case by (simp add: balance_left_sorted)
-next
-  case ("4_2" x vaa vbb vdd vc yy ss bb)
-  hence "tree_less yy (Branch R vaa vbb vdd vc)" by simp
-  hence "tree_less yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_less)
-  with "4_2" show ?case by simp
-next
-  case (5 x aa yy ss lta zz v rta) 
-  hence "tree_greater yy (Branch B lta zz v rta)" by simp
-  hence "tree_greater yy (del x (Branch B lta zz v rta))" by (rule del_tree_greater)
-  with 5 show ?case by (simp add: balance_right_sorted)
-next
-  case ("6_2" x aa yy ss vaa vbb vdd vc)
-  hence "tree_greater yy (Branch R vaa vbb vdd vc)" by simp
-  hence "tree_greater yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_greater)
-  with "6_2" show ?case by simp
-qed (auto simp: combine_sorted)
+lemma RBT_lookup_empty [simp]: (*FIXME*)
+  "RBT_Impl.lookup t = Map.empty \<longleftrightarrow> t = RBT_Impl.Empty"
+  by (cases t) (auto simp add: expand_fun_eq)
 
-lemma "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (del_from_left x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
-  and "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (del_from_right x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
-  and del_in_tree: "\<lbrakk>sorted t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> entry_in_tree k v (del x t) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v t))"
-proof (induct x lt kt y rt and x lt kt y rt and x t rule: del_from_left_del_from_right_del.induct)
-  case (2 xx c aa yy ss bb)
-  have "xx = yy \<or> xx < yy \<or> xx > yy" by auto
-  from this 2 show ?case proof (elim disjE)
-    assume "xx = yy"
-    with 2 show ?thesis proof (cases "xx = k")
-      case True
-      from 2 `xx = yy` `xx = k` have "sorted (Branch c aa yy ss bb) \<and> k = yy" by simp
-      hence "\<not> entry_in_tree k v aa" "\<not> entry_in_tree k v bb" by (auto simp: tree_less_nit tree_greater_prop)
-      with `xx = yy` 2 `xx = k` show ?thesis by (simp add: combine_in_tree)
-    qed (simp add: combine_in_tree)
-  qed simp+
-next    
-  case (3 xx lta zz vv rta yy ss bb)
-  def mt[simp]: mt == "Branch B lta zz vv rta"
-  from 3 have "inv2 mt \<and> inv1 mt" by simp
-  hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
-  with 3 have 4: "entry_in_tree k v (del_from_left xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> entry_in_tree k v mt \<or> (k = yy \<and> v = ss) \<or> entry_in_tree k v bb)" by (simp add: balance_left_in_tree)
-  thus ?case proof (cases "xx = k")
-    case True
-    from 3 True have "tree_greater yy bb \<and> yy > k" by simp
-    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
-    with 3 4 True show ?thesis by (auto simp: tree_greater_nit)
-  qed auto
-next
-  case ("4_1" xx yy ss bb)
-  show ?case proof (cases "xx = k")
-    case True
-    with "4_1" have "tree_greater yy bb \<and> k < yy" by simp
-    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
-    with "4_1" `xx = k` 
-   have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: tree_greater_nit)
-    thus ?thesis by auto
-  qed simp+
-next
-  case ("4_2" xx vaa vbb vdd vc yy ss bb)
-  thus ?case proof (cases "xx = k")
-    case True
-    with "4_2" have "k < yy \<and> tree_greater yy bb" by simp
-    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
-    with True "4_2" show ?thesis by (auto simp: tree_greater_nit)
-  qed auto
-next
-  case (5 xx aa yy ss lta zz vv rta)
-  def mt[simp]: mt == "Branch B lta zz vv rta"
-  from 5 have "inv2 mt \<and> inv1 mt" by simp
-  hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
-  with 5 have 3: "entry_in_tree k v (del_from_right xx aa yy ss mt) = (entry_in_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> entry_in_tree k v mt)" by (simp add: balance_right_in_tree)
-  thus ?case proof (cases "xx = k")
-    case True
-    from 5 True have "tree_less yy aa \<and> yy < k" by simp
-    hence "tree_less k aa" by (blast dest: tree_less_trans)
-    with 3 5 True show ?thesis by (auto simp: tree_less_nit)
-  qed auto
-next
-  case ("6_1" xx aa yy ss)
-  show ?case proof (cases "xx = k")
-    case True
-    with "6_1" have "tree_less yy aa \<and> k > yy" by simp
-    hence "tree_less k aa" by (blast dest: tree_less_trans)
-    with "6_1" `xx = k` show ?thesis by (auto simp: tree_less_nit)
-  qed simp
-next
-  case ("6_2" xx aa yy ss vaa vbb vdd vc)
-  thus ?case proof (cases "xx = k")
-    case True
-    with "6_2" have "k > yy \<and> tree_less yy aa" by simp
-    hence "tree_less k aa" by (blast dest: tree_less_trans)
-    with True "6_2" show ?thesis by (auto simp: tree_less_nit)
-  qed auto
-qed simp
+lemma lookup_empty_empty [simp]:
+  "lookup t = Map.empty \<longleftrightarrow> t = empty"
+  by (cases t) (simp add: empty_def lookup_def RBT_inject RBT_inverse)
+
+lemma sorted_keys [iff]:
+  "sorted (keys t)"
+  by (simp add: keys_def RBT_Impl.keys_def sorted_entries)
+
+lemma distinct_keys [iff]:
+  "distinct (keys t)"
+  by (simp add: keys_def RBT_Impl.keys_def distinct_entries)
 
 
-definition delete where
-  delete_def: "delete k t = paint B (del k t)"
+subsection {* Implementation of mappings *}
 
-theorem delete_is_rbt [simp]: assumes "is_rbt t" shows "is_rbt (delete k t)"
-proof -
-  from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto 
-  hence "inv2 (del k t) \<and> (color_of t = R \<and> bheight (del k t) = bheight t \<and> inv1 (del k t) \<or> color_of t = B \<and> bheight (del k t) = bheight t - 1 \<and> inv1l (del k t))" by (rule del_inv1_inv2)
-  hence "inv2 (del k t) \<and> inv1l (del k t)" by (cases "color_of t") auto
-  with assms show ?thesis
-    unfolding is_rbt_def delete_def
-    by (auto intro: paint_sorted del_sorted)
-qed
-
-lemma delete_in_tree: 
-  assumes "is_rbt t" 
-  shows "entry_in_tree k v (delete x t) = (x \<noteq> k \<and> entry_in_tree k v t)"
-  using assms unfolding is_rbt_def delete_def
-  by (auto simp: del_in_tree)
+definition Mapping :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) mapping" where
+  "Mapping t = Mapping.Mapping (lookup t)"
 
-lemma lookup_delete:
-  assumes is_rbt: "is_rbt t"
-  shows "lookup (delete k t) = (lookup t)|`(-{k})"
-proof
-  fix x
-  show "lookup (delete k t) x = (lookup t |` (-{k})) x" 
-  proof (cases "x = k")
-    assume "x = k" 
-    with is_rbt show ?thesis
-      by (cases "lookup (delete k t) k") (auto simp: lookup_in_tree delete_in_tree)
-  next
-    assume "x \<noteq> k"
-    thus ?thesis
-      by auto (metis is_rbt delete_is_rbt delete_in_tree is_rbt_sorted lookup_from_in_tree)
-  qed
-qed
+code_datatype Mapping
 
-
-subsection {* Union *}
+lemma lookup_Mapping [simp, code]:
+  "Mapping.lookup (Mapping t) = lookup t"
+  by (simp add: Mapping_def)
 
-primrec
-  union_with_key :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
-where
-  "union_with_key f t Empty = t"
-| "union_with_key f t (Branch c lt k v rt) = union_with_key f (union_with_key f (insert_with_key f k v t) lt) rt"
-
-lemma unionwk_sorted: "sorted lt \<Longrightarrow> sorted (union_with_key f lt rt)" 
-  by (induct rt arbitrary: lt) (auto simp: insertwk_sorted)
-theorem unionwk_is_rbt[simp]: "is_rbt lt \<Longrightarrow> is_rbt (union_with_key f lt rt)" 
-  by (induct rt arbitrary: lt) (simp add: insertwk_is_rbt)+
+lemma empty_Mapping [code]:
+  "Mapping.empty = Mapping empty"
+  by (rule mapping_eqI) simp
 
-definition
-  union_with where
-  "union_with f = union_with_key (\<lambda>_. f)"
-
-theorem unionw_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union_with f lt rt)" unfolding union_with_def by simp
-
-definition union where
-  "union = union_with_key (%_ _ rv. rv)"
-
-theorem union_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union lt rt)" unfolding union_def by simp
+lemma is_empty_Mapping [code]:
+  "Mapping.is_empty (Mapping t) \<longleftrightarrow> is_empty t"
+  by (simp add: rbt_eq Mapping.is_empty_empty Mapping_def)
 
-lemma union_Branch[simp]:
-  "union t (Branch c lt k v rt) = union (union (insert k v t) lt) rt"
-  unfolding union_def insert_def
-  by simp
+lemma insert_Mapping [code]:
+  "Mapping.update k v (Mapping t) = Mapping (insert k v t)"
+  by (rule mapping_eqI) simp
 
-lemma lookup_union:
-  assumes "is_rbt s" "sorted t"
-  shows "lookup (union s t) = lookup s ++ lookup t"
-using assms
-proof (induct t arbitrary: s)
-  case Empty thus ?case by (auto simp: union_def)
-next
-  case (Branch c l k v r s)
-  then have "sorted r" "sorted l" "l |\<guillemotleft> k" "k \<guillemotleft>| r" by auto
-
-  have meq: "lookup s(k \<mapsto> v) ++ lookup l ++ lookup r =
-    lookup s ++
-    (\<lambda>a. if a < k then lookup l a
-    else if k < a then lookup r a else Some v)" (is "?m1 = ?m2")
-  proof (rule ext)
-    fix a
+lemma delete_Mapping [code]:
+  "Mapping.delete k (Mapping xs) = Mapping (delete k xs)"
+  by (rule mapping_eqI) simp
 
-   have "k < a \<or> k = a \<or> k > a" by auto
-    thus "?m1 a = ?m2 a"
-    proof (elim disjE)
-      assume "k < a"
-      with `l |\<guillemotleft> k` have "l |\<guillemotleft> a" by (rule tree_less_trans)
-      with `k < a` show ?thesis
-        by (auto simp: map_add_def split: option.splits)
-    next
-      assume "k = a"
-      with `l |\<guillemotleft> k` `k \<guillemotleft>| r` 
-      show ?thesis by (auto simp: map_add_def)
-    next
-      assume "a < k"
-      from this `k \<guillemotleft>| r` have "a \<guillemotleft>| r" by (rule tree_greater_trans)
-      with `a < k` show ?thesis
-        by (auto simp: map_add_def split: option.splits)
-    qed
-  qed
+lemma keys_Mapping [code]:
+  "Mapping.keys (Mapping t) = set (keys t)"
+  by (simp add: keys_def Mapping_def Mapping.keys_def lookup_def lookup_keys)
 
-  from Branch have is_rbt: "is_rbt (RBT.union (RBT.insert k v s) l)"
-    by (auto intro: union_is_rbt insert_is_rbt)
-  with Branch have IHs:
-    "lookup (union (union (insert k v s) l) r) = lookup (union (insert k v s) l) ++ lookup r"
-    "lookup (union (insert k v s) l) = lookup (insert k v s) ++ lookup l"
-    by auto
-  
-  with meq show ?case
-    by (auto simp: lookup_insert[OF Branch(3)])
+lemma ordered_keys_Mapping [code]:
+  "Mapping.ordered_keys (Mapping t) = keys t"
+  by (rule sorted_distinct_set_unique) (simp_all add: ordered_keys_def keys_Mapping)
 
-qed
-
-
-subsection {* Modifying existing entries *}
-
-primrec
-  map_entry :: "'a\<Colon>linorder \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
-where
-  "map_entry k f Empty = Empty"
-| "map_entry k f (Branch c lt x v rt) =
-    (if k < x then Branch c (map_entry k f lt) x v rt
-    else if k > x then (Branch c lt x v (map_entry k f rt))
-    else Branch c lt x (f v) rt)"
+lemma Mapping_size_card_keys: (*FIXME*)
+  "Mapping.size m = card (Mapping.keys m)"
+  by (simp add: Mapping.size_def Mapping.keys_def)
 
-lemma map_entry_color_of: "color_of (map_entry k f t) = color_of t" by (induct t) simp+
-lemma map_entry_inv1: "inv1 (map_entry k f t) = inv1 t" by (induct t) (simp add: map_entry_color_of)+
-lemma map_entry_inv2: "inv2 (map_entry k f t) = inv2 t" "bheight (map_entry k f t) = bheight t" by (induct t) simp+
-lemma map_entry_tree_greater: "tree_greater a (map_entry k f t) = tree_greater a t" by (induct t) simp+
-lemma map_entry_tree_less: "tree_less a (map_entry k f t) = tree_less a t" by (induct t) simp+
-lemma map_entry_sorted: "sorted (map_entry k f t) = sorted t"
-  by (induct t) (simp_all add: map_entry_tree_less map_entry_tree_greater)
-
-theorem map_entry_is_rbt [simp]: "is_rbt (map_entry k f t) = is_rbt t" 
-unfolding is_rbt_def by (simp add: map_entry_inv2 map_entry_color_of map_entry_sorted map_entry_inv1 )
-
-theorem lookup_map_entry:
-  "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))"
-  by (induct t) (auto split: option.splits simp add: expand_fun_eq)
-
+lemma size_Mapping [code]:
+  "Mapping.size (Mapping t) = length (keys t)"
+  by (simp add: Mapping_size_card_keys keys_Mapping distinct_card)
 
-subsection {* Mapping all entries *}
-
-primrec
-  map :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'c) rbt"
-where
-  "map f Empty = Empty"
-| "map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)"
+lemma tabulate_Mapping [code]:
+  "Mapping.tabulate ks f = Mapping (bulkload (List.map (\<lambda>k. (k, f k)) ks))"
+  by (rule mapping_eqI) (simp add: map_of_map_restrict)
 
-lemma map_entries [simp]: "entries (map f t) = List.map (\<lambda>(k, v). (k, f k v)) (entries t)"
-  by (induct t) auto
-lemma map_keys [simp]: "keys (map f t) = keys t" by (simp add: keys_def split_def)
-lemma map_tree_greater: "tree_greater k (map f t) = tree_greater k t" by (induct t) simp+
-lemma map_tree_less: "tree_less k (map f t) = tree_less k t" by (induct t) simp+
-lemma map_sorted: "sorted (map f t) = sorted t"  by (induct t) (simp add: map_tree_less map_tree_greater)+
-lemma map_color_of: "color_of (map f t) = color_of t" by (induct t) simp+
-lemma map_inv1: "inv1 (map f t) = inv1 t" by (induct t) (simp add: map_color_of)+
-lemma map_inv2: "inv2 (map f t) = inv2 t" "bheight (map f t) = bheight t" by (induct t) simp+
-theorem map_is_rbt [simp]: "is_rbt (map f t) = is_rbt t" 
-unfolding is_rbt_def by (simp add: map_inv1 map_inv2 map_sorted map_color_of)
-
-theorem lookup_map: "lookup (map f t) x = Option.map (f x) (lookup t x)"
-  by (induct t) auto
-
-
-subsection {* Folding over entries *}
-
-definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" where
-  "fold f t s = foldl (\<lambda>s (k, v). f k v s) s (entries t)"
+lemma bulkload_Mapping [code]:
+  "Mapping.bulkload vs = Mapping (bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))"
+  by (rule mapping_eqI) (simp add: map_of_map_restrict expand_fun_eq)
 
-lemma fold_simps [simp, code]:
-  "fold f Empty = id"
-  "fold f (Branch c lt k v rt) = fold f rt \<circ> f k v \<circ> fold f lt"
-  by (simp_all add: fold_def expand_fun_eq)
-
-
-subsection {* Bulkloading a tree *}
-
-definition bulkload :: "('a \<times> 'b) list \<Rightarrow> ('a\<Colon>linorder, 'b) rbt" where
-  "bulkload xs = foldr (\<lambda>(k, v). RBT.insert k v) xs RBT.Empty"
-
-lemma bulkload_is_rbt [simp, intro]:
-  "is_rbt (bulkload xs)"
-  unfolding bulkload_def by (induct xs) auto
+lemma [code, code del]: "HOL.eq (x :: (_, _) mapping) y \<longleftrightarrow> x = y" by (fact eq_equals) (*FIXME*)
 
-lemma lookup_bulkload:
-  "RBT.lookup (bulkload xs) = map_of xs"
-proof -
-  obtain ys where "ys = rev xs" by simp
-  have "\<And>t. is_rbt t \<Longrightarrow>
-    RBT.lookup (foldl (\<lambda>t (k, v). RBT.insert k v t) t ys) = RBT.lookup t ++ map_of (rev ys)"
-      by (induct ys) (simp_all add: bulkload_def split_def RBT.lookup_insert)
-  from this Empty_is_rbt have
-    "RBT.lookup (foldl (\<lambda>t (k, v). RBT.insert k v t) RBT.Empty (rev xs)) = RBT.lookup RBT.Empty ++ map_of xs"
-     by (simp add: `ys = rev xs`)
-  then show ?thesis by (simp add: bulkload_def foldl_foldr lookup_Empty split_def)
-qed
+lemma eq_Mapping [code]:
+  "HOL.eq (Mapping t1) (Mapping t2) \<longleftrightarrow> entries t1 = entries t2"
+  by (simp add: eq Mapping_def entries_lookup)
 
-hide (open) const Empty insert delete entries bulkload lookup map_entry map fold union sorted
+hide (open) const impl_of lookup empty insert delete
+  entries keys bulkload map_entry map fold
 (*>*)
 
 text {* 
-  This theory defines purely functional red-black trees which can be
-  used as an efficient representation of finite maps.
+  This theory defines abstract red-black trees as an efficient
+  representation of finite maps, backed by the implementation
+  in @{theory RBT_Impl}.
 *}
 
-
 subsection {* Data type and invariant *}
 
 text {*
-  The type @{typ "('k, 'v) rbt"} denotes red-black trees with keys of
-  type @{typ "'k"} and values of type @{typ "'v"}. To function
-  properly, the key type musorted belong to the @{text "linorder"} class.
+  The type @{typ "('k, 'v) RBT_Impl.rbt"} denotes red-black trees with
+  keys of type @{typ "'k"} and values of type @{typ "'v"}. To function
+  properly, the key type musorted belong to the @{text "linorder"}
+  class.
 
   A value @{term t} of this type is a valid red-black tree if it
-  satisfies the invariant @{text "is_rbt t"}.
-  This theory provides lemmas to prove that the invariant is
-  satisfied throughout the computation.
+  satisfies the invariant @{text "is_rbt t"}.  The abstract type @{typ
+  "('k, 'v) rbt"} always obeys this invariant, and for this reason you
+  should only use this in our application.  Going back to @{typ "('k,
+  'v) RBT_Impl.rbt"} may be necessary in proofs if not yet proven
+  properties about the operations must be established.
 
   The interpretation function @{const "RBT.lookup"} returns the partial
   map represented by a red-black tree:
@@ -1106,15 +259,12 @@
   $O(\log n)$.  
 *}
 
-
 subsection {* Operations *}
 
-print_antiquotations
-
 text {*
   Currently, the following operations are supported:
 
-  @{term_type [display] "RBT.Empty"}
+  @{term_type [display] "RBT.empty"}
   Returns the empty tree. $O(1)$
 
   @{term_type [display] "RBT.insert"}
@@ -1137,9 +287,6 @@
 
   @{term_type [display] "RBT.fold"}
   Folds over all entries in a tree. $O(n)$
-
-  @{term_type [display] "RBT.union"}
-  Forms the union of two trees, preferring entries from the first one.
 *}
 
 
@@ -1173,8 +320,8 @@
 
 text {*
   \noindent
-  \underline{@{text "lookup_Empty"}}
-  @{thm [display] lookup_Empty}
+  \underline{@{text "lookup_empty"}}
+  @{thm [display] lookup_empty}
   \vspace{1ex}
 
   \noindent
@@ -1196,11 +343,6 @@
   \underline{@{text "lookup_map"}}
   @{thm [display] lookup_map}
   \vspace{1ex}
-
-  \noindent
-  \underline{@{text "lookup_union"}}
-  @{thm [display] lookup_union}
-  \vspace{1ex}
 *}
 
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/RBT_Impl.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -0,0 +1,1084 @@
+(*  Title:      RBT_Impl.thy
+    Author:     Markus Reiter, TU Muenchen
+    Author:     Alexander Krauss, TU Muenchen
+*)
+
+header {* Implementation of Red-Black Trees *}
+
+theory RBT_Impl
+imports Main
+begin
+
+text {*
+  For applications, you should use theory @{text RBT} which defines
+  an abstract type of red-black tree obeying the invariant.
+*}
+
+subsection {* Datatype of RB trees *}
+
+datatype color = R | B
+datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt"
+
+lemma rbt_cases:
+  obtains (Empty) "t = Empty" 
+  | (Red) l k v r where "t = Branch R l k v r" 
+  | (Black) l k v r where "t = Branch B l k v r"
+proof (cases t)
+  case Empty with that show thesis by blast
+next
+  case (Branch c) with that show thesis by (cases c) blast+
+qed
+
+subsection {* Tree properties *}
+
+subsubsection {* Content of a tree *}
+
+primrec entries :: "('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list"
+where 
+  "entries Empty = []"
+| "entries (Branch _ l k v r) = entries l @ (k,v) # entries r"
+
+abbreviation (input) entry_in_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
+where
+  "entry_in_tree k v t \<equiv> (k, v) \<in> set (entries t)"
+
+definition keys :: "('a, 'b) rbt \<Rightarrow> 'a list" where
+  "keys t = map fst (entries t)"
+
+lemma keys_simps [simp, code]:
+  "keys Empty = []"
+  "keys (Branch c l k v r) = keys l @ k # keys r"
+  by (simp_all add: keys_def)
+
+lemma entry_in_tree_keys:
+  assumes "(k, v) \<in> set (entries t)"
+  shows "k \<in> set (keys t)"
+proof -
+  from assms have "fst (k, v) \<in> fst ` set (entries t)" by (rule imageI)
+  then show ?thesis by (simp add: keys_def)
+qed
+
+lemma keys_entries:
+  "k \<in> set (keys t) \<longleftrightarrow> (\<exists>v. (k, v) \<in> set (entries t))"
+  by (auto intro: entry_in_tree_keys) (auto simp add: keys_def)
+
+
+subsubsection {* Search tree properties *}
+
+definition tree_less :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
+where
+  tree_less_prop: "tree_less k t \<longleftrightarrow> (\<forall>x\<in>set (keys t). x < k)"
+
+abbreviation tree_less_symbol (infix "|\<guillemotleft>" 50)
+where "t |\<guillemotleft> x \<equiv> tree_less x t"
+
+definition tree_greater :: "'a\<Colon>order \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool" (infix "\<guillemotleft>|" 50) 
+where
+  tree_greater_prop: "tree_greater k t = (\<forall>x\<in>set (keys t). k < x)"
+
+lemma tree_less_simps [simp]:
+  "tree_less k Empty = True"
+  "tree_less k (Branch c lt kt v rt) \<longleftrightarrow> kt < k \<and> tree_less k lt \<and> tree_less k rt"
+  by (auto simp add: tree_less_prop)
+
+lemma tree_greater_simps [simp]:
+  "tree_greater k Empty = True"
+  "tree_greater k (Branch c lt kt v rt) \<longleftrightarrow> k < kt \<and> tree_greater k lt \<and> tree_greater k rt"
+  by (auto simp add: tree_greater_prop)
+
+lemmas tree_ord_props = tree_less_prop tree_greater_prop
+
+lemmas tree_greater_nit = tree_greater_prop entry_in_tree_keys
+lemmas tree_less_nit = tree_less_prop entry_in_tree_keys
+
+lemma tree_less_eq_trans: "l |\<guillemotleft> u \<Longrightarrow> u \<le> v \<Longrightarrow> l |\<guillemotleft> v"
+  and tree_less_trans: "t |\<guillemotleft> x \<Longrightarrow> x < y \<Longrightarrow> t |\<guillemotleft> y"
+  and tree_greater_eq_trans: "u \<le> v \<Longrightarrow> v \<guillemotleft>| r \<Longrightarrow> u \<guillemotleft>| r"
+  and tree_greater_trans: "x < y \<Longrightarrow> y \<guillemotleft>| t \<Longrightarrow> x \<guillemotleft>| t"
+  by (auto simp: tree_ord_props)
+
+primrec sorted :: "('a::linorder, 'b) rbt \<Rightarrow> bool"
+where
+  "sorted Empty = True"
+| "sorted (Branch c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> sorted l \<and> sorted r)"
+
+lemma sorted_entries:
+  "sorted t \<Longrightarrow> List.sorted (List.map fst (entries t))"
+by (induct t) 
+  (force simp: sorted_append sorted_Cons tree_ord_props 
+      dest!: entry_in_tree_keys)+
+
+lemma distinct_entries:
+  "sorted t \<Longrightarrow> distinct (List.map fst (entries t))"
+by (induct t) 
+  (force simp: sorted_append sorted_Cons tree_ord_props 
+      dest!: entry_in_tree_keys)+
+
+
+subsubsection {* Tree lookup *}
+
+primrec lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
+where
+  "lookup Empty k = None"
+| "lookup (Branch _ l x y r) k = (if k < x then lookup l k else if x < k then lookup r k else Some y)"
+
+lemma lookup_keys: "sorted t \<Longrightarrow> dom (lookup t) = set (keys t)"
+  by (induct t) (auto simp: dom_def tree_greater_prop tree_less_prop)
+
+lemma dom_lookup_Branch: 
+  "sorted (Branch c t1 k v t2) \<Longrightarrow> 
+    dom (lookup (Branch c t1 k v t2)) 
+    = Set.insert k (dom (lookup t1) \<union> dom (lookup t2))"
+proof -
+  assume "sorted (Branch c t1 k v t2)"
+  moreover from this have "sorted t1" "sorted t2" by simp_all
+  ultimately show ?thesis by (simp add: lookup_keys)
+qed
+
+lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup t))"
+proof (induct t)
+  case Empty then show ?case by simp
+next
+  case (Branch color t1 a b t2)
+  let ?A = "Set.insert a (dom (lookup t1) \<union> dom (lookup t2))"
+  have "dom (lookup (Branch color t1 a b t2)) \<subseteq> ?A" by (auto split: split_if_asm)
+  moreover from Branch have "finite (insert a (dom (lookup t1) \<union> dom (lookup t2)))" by simp
+  ultimately show ?case by (rule finite_subset)
+qed 
+
+lemma lookup_tree_less[simp]: "t |\<guillemotleft> k \<Longrightarrow> lookup t k = None" 
+by (induct t) auto
+
+lemma lookup_tree_greater[simp]: "k \<guillemotleft>| t \<Longrightarrow> lookup t k = None"
+by (induct t) auto
+
+lemma lookup_Empty: "lookup Empty = empty"
+by (rule ext) simp
+
+lemma map_of_entries:
+  "sorted t \<Longrightarrow> map_of (entries t) = lookup t"
+proof (induct t)
+  case Empty thus ?case by (simp add: lookup_Empty)
+next
+  case (Branch c t1 k v t2)
+  have "lookup (Branch c t1 k v t2) = lookup t2 ++ [k\<mapsto>v] ++ lookup t1"
+  proof (rule ext)
+    fix x
+    from Branch have SORTED: "sorted (Branch c t1 k v t2)" by simp
+    let ?thesis = "lookup (Branch c t1 k v t2) x = (lookup t2 ++ [k \<mapsto> v] ++ lookup t1) x"
+
+    have DOM_T1: "!!k'. k'\<in>dom (lookup t1) \<Longrightarrow> k>k'"
+    proof -
+      fix k'
+      from SORTED have "t1 |\<guillemotleft> k" by simp
+      with tree_less_prop have "\<forall>k'\<in>set (keys t1). k>k'" by auto
+      moreover assume "k'\<in>dom (lookup t1)"
+      ultimately show "k>k'" using lookup_keys SORTED by auto
+    qed
+    
+    have DOM_T2: "!!k'. k'\<in>dom (lookup t2) \<Longrightarrow> k<k'"
+    proof -
+      fix k'
+      from SORTED have "k \<guillemotleft>| t2" by simp
+      with tree_greater_prop have "\<forall>k'\<in>set (keys t2). k<k'" by auto
+      moreover assume "k'\<in>dom (lookup t2)"
+      ultimately show "k<k'" using lookup_keys SORTED by auto
+    qed
+    
+    {
+      assume C: "x<k"
+      hence "lookup (Branch c t1 k v t2) x = lookup t1 x" by simp
+      moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
+      moreover have "x\<notin>dom (lookup t2)" proof
+        assume "x\<in>dom (lookup t2)"
+        with DOM_T2 have "k<x" by blast
+        with C show False by simp
+      qed
+      ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
+    } moreover {
+      assume [simp]: "x=k"
+      hence "lookup (Branch c t1 k v t2) x = [k \<mapsto> v] x" by simp
+      moreover have "x\<notin>dom (lookup t1)" proof
+        assume "x\<in>dom (lookup t1)"
+        with DOM_T1 have "k>x" by blast
+        thus False by simp
+      qed
+      ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
+    } moreover {
+      assume C: "x>k"
+      hence "lookup (Branch c t1 k v t2) x = lookup t2 x" by (simp add: less_not_sym[of k x])
+      moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp
+      moreover have "x\<notin>dom (lookup t1)" proof
+        assume "x\<in>dom (lookup t1)"
+        with DOM_T1 have "k>x" by simp
+        with C show False by simp
+      qed
+      ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps)
+    } ultimately show ?thesis using less_linear by blast
+  qed
+  also from Branch have "lookup t2 ++ [k \<mapsto> v] ++ lookup t1 = map_of (entries (Branch c t1 k v t2))" by simp
+  finally show ?case by simp
+qed
+
+lemma lookup_in_tree: "sorted t \<Longrightarrow> lookup t k = Some v \<longleftrightarrow> (k, v) \<in> set (entries t)"
+  by (simp add: map_of_entries [symmetric] distinct_entries)
+
+lemma set_entries_inject:
+  assumes sorted: "sorted t1" "sorted t2" 
+  shows "set (entries t1) = set (entries t2) \<longleftrightarrow> entries t1 = entries t2"
+proof -
+  from sorted have "distinct (map fst (entries t1))"
+    "distinct (map fst (entries t2))"
+    by (auto intro: distinct_entries)
+  with sorted show ?thesis
+    by (auto intro: map_sorted_distinct_set_unique sorted_entries simp add: distinct_map)
+qed
+
+lemma entries_eqI:
+  assumes sorted: "sorted t1" "sorted t2" 
+  assumes lookup: "lookup t1 = lookup t2"
+  shows "entries t1 = entries t2"
+proof -
+  from sorted lookup have "map_of (entries t1) = map_of (entries t2)"
+    by (simp add: map_of_entries)
+  with sorted have "set (entries t1) = set (entries t2)"
+    by (simp add: map_of_inject_set distinct_entries)
+  with sorted show ?thesis by (simp add: set_entries_inject)
+qed
+
+lemma entries_lookup:
+  assumes "sorted t1" "sorted t2" 
+  shows "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2"
+  using assms by (auto intro: entries_eqI simp add: map_of_entries [symmetric])
+
+lemma lookup_from_in_tree: 
+  assumes "sorted t1" "sorted t2" 
+  and "\<And>v. (k\<Colon>'a\<Colon>linorder, v) \<in> set (entries t1) \<longleftrightarrow> (k, v) \<in> set (entries t2)" 
+  shows "lookup t1 k = lookup t2 k"
+proof -
+  from assms have "k \<in> dom (lookup t1) \<longleftrightarrow> k \<in> dom (lookup t2)"
+    by (simp add: keys_entries lookup_keys)
+  with assms show ?thesis by (auto simp add: lookup_in_tree [symmetric])
+qed
+
+
+subsubsection {* Red-black properties *}
+
+primrec color_of :: "('a, 'b) rbt \<Rightarrow> color"
+where
+  "color_of Empty = B"
+| "color_of (Branch c _ _ _ _) = c"
+
+primrec bheight :: "('a,'b) rbt \<Rightarrow> nat"
+where
+  "bheight Empty = 0"
+| "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)"
+
+primrec inv1 :: "('a, 'b) rbt \<Rightarrow> bool"
+where
+  "inv1 Empty = True"
+| "inv1 (Branch c lt k v rt) \<longleftrightarrow> inv1 lt \<and> inv1 rt \<and> (c = B \<or> color_of lt = B \<and> color_of rt = B)"
+
+primrec inv1l :: "('a, 'b) rbt \<Rightarrow> bool" -- {* Weaker version *}
+where
+  "inv1l Empty = True"
+| "inv1l (Branch c l k v r) = (inv1 l \<and> inv1 r)"
+lemma [simp]: "inv1 t \<Longrightarrow> inv1l t" by (cases t) simp+
+
+primrec inv2 :: "('a, 'b) rbt \<Rightarrow> bool"
+where
+  "inv2 Empty = True"
+| "inv2 (Branch c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bheight lt = bheight rt)"
+
+definition is_rbt :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
+  "is_rbt t \<longleftrightarrow> inv1 t \<and> inv2 t \<and> color_of t = B \<and> sorted t"
+
+lemma is_rbt_sorted [simp]:
+  "is_rbt t \<Longrightarrow> sorted t" by (simp add: is_rbt_def)
+
+theorem Empty_is_rbt [simp]:
+  "is_rbt Empty" by (simp add: is_rbt_def)
+
+
+subsection {* Insertion *}
+
+fun (* slow, due to massive case splitting *)
+  balance :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+  "balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" |
+  "balance a s t b = Branch B a s t b"
+
+lemma balance_inv1: "\<lbrakk>inv1l l; inv1l r\<rbrakk> \<Longrightarrow> inv1 (balance l k v r)" 
+  by (induct l k v r rule: balance.induct) auto
+
+lemma balance_bheight: "bheight l = bheight r \<Longrightarrow> bheight (balance l k v r) = Suc (bheight l)"
+  by (induct l k v r rule: balance.induct) auto
+
+lemma balance_inv2: 
+  assumes "inv2 l" "inv2 r" "bheight l = bheight r"
+  shows "inv2 (balance l k v r)"
+  using assms
+  by (induct l k v r rule: balance.induct) auto
+
+lemma balance_tree_greater[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)" 
+  by (induct a k x b rule: balance.induct) auto
+
+lemma balance_tree_less[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)"
+  by (induct a k x b rule: balance.induct) auto
+
+lemma balance_sorted: 
+  fixes k :: "'a::linorder"
+  assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+  shows "sorted (balance l k v r)"
+using assms proof (induct l k v r rule: balance.induct)
+  case ("2_2" a x w b y t c z s va vb vd vc)
+  hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" 
+    by (auto simp add: tree_ord_props)
+  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
+  with "2_2" show ?case by simp
+next
+  case ("3_2" va vb vd vc x w b y s c z)
+  from "3_2" have "x < y \<and> tree_less x (Branch B va vb vd vc)" 
+    by simp
+  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
+  with "3_2" show ?case by simp
+next
+  case ("3_3" x w b y s c z t va vb vd vc)
+  from "3_3" have "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
+  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
+  with "3_3" show ?case by simp
+next
+  case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc)
+  hence "x < y \<and> tree_less x (Branch B vd ve vg vf)" by simp
+  hence 1: "tree_less y (Branch B vd ve vg vf)" by (blast dest: tree_less_trans)
+  from "3_4" have "y < z \<and> tree_greater z (Branch B va vb vii vc)" by simp
+  hence "tree_greater y (Branch B va vb vii vc)" by (blast dest: tree_greater_trans)
+  with 1 "3_4" show ?case by simp
+next
+  case ("4_2" va vb vd vc x w b y s c z t dd)
+  hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
+  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
+  with "4_2" show ?case by simp
+next
+  case ("5_2" x w b y s c z t va vb vd vc)
+  hence "y < z \<and> tree_greater z (Branch B va vb vd vc)" by simp
+  hence "tree_greater y (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
+  with "5_2" show ?case by simp
+next
+  case ("5_3" va vb vd vc x w b y s c z t)
+  hence "x < y \<and> tree_less x (Branch B va vb vd vc)" by simp
+  hence "tree_less y (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
+  with "5_3" show ?case by simp
+next
+  case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf)
+  hence "x < y \<and> tree_less x (Branch B va vb vg vc)" by simp
+  hence 1: "tree_less y (Branch B va vb vg vc)" by (blast dest: tree_less_trans)
+  from "5_4" have "y < z \<and> tree_greater z (Branch B vd ve vii vf)" by simp
+  hence "tree_greater y (Branch B vd ve vii vf)" by (blast dest: tree_greater_trans)
+  with 1 "5_4" show ?case by simp
+qed simp+
+
+lemma entries_balance [simp]:
+  "entries (balance l k v r) = entries l @ (k, v) # entries r"
+  by (induct l k v r rule: balance.induct) auto
+
+lemma keys_balance [simp]: 
+  "keys (balance l k v r) = keys l @ k # keys r"
+  by (simp add: keys_def)
+
+lemma balance_in_tree:  
+  "entry_in_tree k x (balance l v y r) \<longleftrightarrow> entry_in_tree k x l \<or> k = v \<and> x = y \<or> entry_in_tree k x r"
+  by (auto simp add: keys_def)
+
+lemma lookup_balance[simp]: 
+fixes k :: "'a::linorder"
+assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+shows "lookup (balance l k v r) x = lookup (Branch B l k v r) x"
+by (rule lookup_from_in_tree) (auto simp:assms balance_in_tree balance_sorted)
+
+primrec paint :: "color \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+  "paint c Empty = Empty"
+| "paint c (Branch _ l k v r) = Branch c l k v r"
+
+lemma paint_inv1l[simp]: "inv1l t \<Longrightarrow> inv1l (paint c t)" by (cases t) auto
+lemma paint_inv1[simp]: "inv1l t \<Longrightarrow> inv1 (paint B t)" by (cases t) auto
+lemma paint_inv2[simp]: "inv2 t \<Longrightarrow> inv2 (paint c t)" by (cases t) auto
+lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto
+lemma paint_sorted[simp]: "sorted t \<Longrightarrow> sorted (paint c t)" by (cases t) auto
+lemma paint_in_tree[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto
+lemma paint_lookup[simp]: "lookup (paint c t) = lookup t" by (rule ext) (cases t, auto)
+lemma paint_tree_greater[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto
+lemma paint_tree_less[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto
+
+fun
+  ins :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+  "ins f k v Empty = Branch R Empty k v Empty" |
+  "ins f k v (Branch B l x y r) = (if k < x then balance (ins f k v l) x y r
+                               else if k > x then balance l x y (ins f k v r)
+                               else Branch B l x (f k y v) r)" |
+  "ins f k v (Branch R l x y r) = (if k < x then Branch R (ins f k v l) x y r
+                               else if k > x then Branch R l x y (ins f k v r)
+                               else Branch R l x (f k y v) r)"
+
+lemma ins_inv1_inv2: 
+  assumes "inv1 t" "inv2 t"
+  shows "inv2 (ins f k x t)" "bheight (ins f k x t) = bheight t" 
+  "color_of t = B \<Longrightarrow> inv1 (ins f k x t)" "inv1l (ins f k x t)"
+  using assms
+  by (induct f k x t rule: ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight)
+
+lemma ins_tree_greater[simp]: "(v \<guillemotleft>| ins f k x t) = (v \<guillemotleft>| t \<and> k > v)"
+  by (induct f k x t rule: ins.induct) auto
+lemma ins_tree_less[simp]: "(ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)"
+  by (induct f k x t rule: ins.induct) auto
+lemma ins_sorted[simp]: "sorted t \<Longrightarrow> sorted (ins f k x t)"
+  by (induct f k x t rule: ins.induct) (auto simp: balance_sorted)
+
+lemma keys_ins: "set (keys (ins f k v t)) = { k } \<union> set (keys t)"
+  by (induct f k v t rule: ins.induct) auto
+
+lemma lookup_ins: 
+  fixes k :: "'a::linorder"
+  assumes "sorted t"
+  shows "lookup (ins f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
+                                                       | Some w \<Rightarrow> f k w v)) x"
+using assms by (induct f k v t rule: ins.induct) auto
+
+definition
+  insert_with_key :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+  "insert_with_key f k v t = paint B (ins f k v t)"
+
+lemma insertwk_sorted: "sorted t \<Longrightarrow> sorted (insert_with_key f k x t)"
+  by (auto simp: insert_with_key_def)
+
+theorem insertwk_is_rbt: 
+  assumes inv: "is_rbt t" 
+  shows "is_rbt (insert_with_key f k x t)"
+using assms
+unfolding insert_with_key_def is_rbt_def
+by (auto simp: ins_inv1_inv2)
+
+lemma lookup_insertwk: 
+  assumes "sorted t"
+  shows "lookup (insert_with_key f k v t) x = ((lookup t)(k |-> case lookup t k of None \<Rightarrow> v 
+                                                       | Some w \<Rightarrow> f k w v)) x"
+unfolding insert_with_key_def using assms
+by (simp add:lookup_ins)
+
+definition
+  insertw_def: "insert_with f = insert_with_key (\<lambda>_. f)"
+
+lemma insertw_sorted: "sorted t \<Longrightarrow> sorted (insert_with f k v t)" by (simp add: insertwk_sorted insertw_def)
+theorem insertw_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (insert_with f k v t)" by (simp add: insertwk_is_rbt insertw_def)
+
+lemma lookup_insertw:
+  assumes "is_rbt t"
+  shows "lookup (insert_with f k v t) = (lookup t)(k \<mapsto> (if k:dom (lookup t) then f (the (lookup t k)) v else v))"
+using assms
+unfolding insertw_def
+by (rule_tac ext) (cases "lookup t k", auto simp:lookup_insertwk dom_def)
+
+definition insert :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
+  "insert = insert_with_key (\<lambda>_ _ nv. nv)"
+
+lemma insert_sorted: "sorted t \<Longrightarrow> sorted (insert k v t)" by (simp add: insertwk_sorted insert_def)
+theorem insert_is_rbt [simp]: "is_rbt t \<Longrightarrow> is_rbt (insert k v t)" by (simp add: insertwk_is_rbt insert_def)
+
+lemma lookup_insert: 
+  assumes "is_rbt t"
+  shows "lookup (insert k v t) = (lookup t)(k\<mapsto>v)"
+unfolding insert_def
+using assms
+by (rule_tac ext) (simp add: lookup_insertwk split:option.split)
+
+
+subsection {* Deletion *}
+
+lemma bheight_paintR'[simp]: "color_of t = B \<Longrightarrow> bheight (paint R t) = bheight t - 1"
+by (cases t rule: rbt_cases) auto
+
+fun
+  balance_left :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+  "balance_left (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" |
+  "balance_left bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" |
+  "balance_left bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" |
+  "balance_left t k x s = Empty"
+
+lemma balance_left_inv2_with_inv1:
+  assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt"
+  shows "bheight (balance_left lt k v rt) = bheight lt + 1"
+  and   "inv2 (balance_left lt k v rt)"
+using assms 
+by (induct lt k v rt rule: balance_left.induct) (auto simp: balance_inv2 balance_bheight)
+
+lemma balance_left_inv2_app: 
+  assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B"
+  shows "inv2 (balance_left lt k v rt)" 
+        "bheight (balance_left lt k v rt) = bheight rt"
+using assms 
+by (induct lt k v rt rule: balance_left.induct) (auto simp add: balance_inv2 balance_bheight)+ 
+
+lemma balance_left_inv1: "\<lbrakk>inv1l a; inv1 b; color_of b = B\<rbrakk> \<Longrightarrow> inv1 (balance_left a k x b)"
+  by (induct a k x b rule: balance_left.induct) (simp add: balance_inv1)+
+
+lemma balance_left_inv1l: "\<lbrakk> inv1l lt; inv1 rt \<rbrakk> \<Longrightarrow> inv1l (balance_left lt k x rt)"
+by (induct lt k x rt rule: balance_left.induct) (auto simp: balance_inv1)
+
+lemma balance_left_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balance_left l k v r)"
+apply (induct l k v r rule: balance_left.induct)
+apply (auto simp: balance_sorted)
+apply (unfold tree_greater_prop tree_less_prop)
+by force+
+
+lemma balance_left_tree_greater: 
+  fixes k :: "'a::order"
+  assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
+  shows "k \<guillemotleft>| balance_left a x t b"
+using assms 
+by (induct a x t b rule: balance_left.induct) auto
+
+lemma balance_left_tree_less: 
+  fixes k :: "'a::order"
+  assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
+  shows "balance_left a x t b |\<guillemotleft> k"
+using assms
+by (induct a x t b rule: balance_left.induct) auto
+
+lemma balance_left_in_tree: 
+  assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r"
+  shows "entry_in_tree k v (balance_left l a b r) = (entry_in_tree k v l \<or> k = a \<and> v = b \<or> entry_in_tree k v r)"
+using assms 
+by (induct l k v r rule: balance_left.induct) (auto simp: balance_in_tree)
+
+fun
+  balance_right :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+  "balance_right a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" |
+  "balance_right (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" |
+  "balance_right (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" |
+  "balance_right t k x s = Empty"
+
+lemma balance_right_inv2_with_inv1:
+  assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt"
+  shows "inv2 (balance_right lt k v rt) \<and> bheight (balance_right lt k v rt) = bheight lt"
+using assms
+by (induct lt k v rt rule: balance_right.induct) (auto simp: balance_inv2 balance_bheight)
+
+lemma balance_right_inv1: "\<lbrakk>inv1 a; inv1l b; color_of a = B\<rbrakk> \<Longrightarrow> inv1 (balance_right a k x b)"
+by (induct a k x b rule: balance_right.induct) (simp add: balance_inv1)+
+
+lemma balance_right_inv1l: "\<lbrakk> inv1 lt; inv1l rt \<rbrakk> \<Longrightarrow>inv1l (balance_right lt k x rt)"
+by (induct lt k x rt rule: balance_right.induct) (auto simp: balance_inv1)
+
+lemma balance_right_sorted: "\<lbrakk> sorted l; sorted r; tree_less k l; tree_greater k r \<rbrakk> \<Longrightarrow> sorted (balance_right l k v r)"
+apply (induct l k v r rule: balance_right.induct)
+apply (auto simp:balance_sorted)
+apply (unfold tree_less_prop tree_greater_prop)
+by force+
+
+lemma balance_right_tree_greater: 
+  fixes k :: "'a::order"
+  assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" 
+  shows "k \<guillemotleft>| balance_right a x t b"
+using assms by (induct a x t b rule: balance_right.induct) auto
+
+lemma balance_right_tree_less: 
+  fixes k :: "'a::order"
+  assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" 
+  shows "balance_right a x t b |\<guillemotleft> k"
+using assms by (induct a x t b rule: balance_right.induct) auto
+
+lemma balance_right_in_tree:
+  assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r"
+  shows "entry_in_tree x y (balance_right l k v r) = (entry_in_tree x y l \<or> x = k \<and> y = v \<or> entry_in_tree x y r)"
+using assms by (induct l k v r rule: balance_right.induct) (auto simp: balance_in_tree)
+
+fun
+  combine :: "('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+  "combine Empty x = x" 
+| "combine x Empty = x" 
+| "combine (Branch R a k x b) (Branch R c s y d) = (case (combine b c) of
+                                      Branch R b2 t z c2 \<Rightarrow> (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) |
+                                      bc \<Rightarrow> Branch R a k x (Branch R bc s y d))" 
+| "combine (Branch B a k x b) (Branch B c s y d) = (case (combine b c) of
+                                      Branch R b2 t z c2 \<Rightarrow> Branch R (Branch B a k x b2) t z (Branch B c2 s y d) |
+                                      bc \<Rightarrow> balance_left a k x (Branch B bc s y d))" 
+| "combine a (Branch R b k x c) = Branch R (combine a b) k x c" 
+| "combine (Branch R a k x b) c = Branch R a k x (combine b c)" 
+
+lemma combine_inv2:
+  assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt"
+  shows "bheight (combine lt rt) = bheight lt" "inv2 (combine lt rt)"
+using assms 
+by (induct lt rt rule: combine.induct) 
+   (auto simp: balance_left_inv2_app split: rbt.splits color.splits)
+
+lemma combine_inv1: 
+  assumes "inv1 lt" "inv1 rt"
+  shows "color_of lt = B \<Longrightarrow> color_of rt = B \<Longrightarrow> inv1 (combine lt rt)"
+         "inv1l (combine lt rt)"
+using assms 
+by (induct lt rt rule: combine.induct)
+   (auto simp: balance_left_inv1 split: rbt.splits color.splits)
+
+lemma combine_tree_greater[simp]: 
+  fixes k :: "'a::linorder"
+  assumes "k \<guillemotleft>| l" "k \<guillemotleft>| r" 
+  shows "k \<guillemotleft>| combine l r"
+using assms 
+by (induct l r rule: combine.induct)
+   (auto simp: balance_left_tree_greater split:rbt.splits color.splits)
+
+lemma combine_tree_less[simp]: 
+  fixes k :: "'a::linorder"
+  assumes "l |\<guillemotleft> k" "r |\<guillemotleft> k" 
+  shows "combine l r |\<guillemotleft> k"
+using assms 
+by (induct l r rule: combine.induct)
+   (auto simp: balance_left_tree_less split:rbt.splits color.splits)
+
+lemma combine_sorted: 
+  fixes k :: "'a::linorder"
+  assumes "sorted l" "sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r"
+  shows "sorted (combine l r)"
+using assms proof (induct l r rule: combine.induct)
+  case (3 a x v b c y w d)
+  hence ineqs: "a |\<guillemotleft> x" "x \<guillemotleft>| b" "b |\<guillemotleft> k" "k \<guillemotleft>| c" "c |\<guillemotleft> y" "y \<guillemotleft>| d"
+    by auto
+  with 3
+  show ?case
+    by (cases "combine b c" rule: rbt_cases)
+      (auto, (metis combine_tree_greater combine_tree_less ineqs ineqs tree_less_simps(2) tree_greater_simps(2) tree_greater_trans tree_less_trans)+)
+next
+  case (4 a x v b c y w d)
+  hence "x < k \<and> tree_greater k c" by simp
+  hence "tree_greater x c" by (blast dest: tree_greater_trans)
+  with 4 have 2: "tree_greater x (combine b c)" by (simp add: combine_tree_greater)
+  from 4 have "k < y \<and> tree_less k b" by simp
+  hence "tree_less y b" by (blast dest: tree_less_trans)
+  with 4 have 3: "tree_less y (combine b c)" by (simp add: combine_tree_less)
+  show ?case
+  proof (cases "combine b c" rule: rbt_cases)
+    case Empty
+    from 4 have "x < y \<and> tree_greater y d" by auto
+    hence "tree_greater x d" by (blast dest: tree_greater_trans)
+    with 4 Empty have "sorted a" and "sorted (Branch B Empty y w d)" and "tree_less x a" and "tree_greater x (Branch B Empty y w d)" by auto
+    with Empty show ?thesis by (simp add: balance_left_sorted)
+  next
+    case (Red lta va ka rta)
+    with 2 4 have "x < va \<and> tree_less x a" by simp
+    hence 5: "tree_less va a" by (blast dest: tree_less_trans)
+    from Red 3 4 have "va < y \<and> tree_greater y d" by simp
+    hence "tree_greater va d" by (blast dest: tree_greater_trans)
+    with Red 2 3 4 5 show ?thesis by simp
+  next
+    case (Black lta va ka rta)
+    from 4 have "x < y \<and> tree_greater y d" by auto
+    hence "tree_greater x d" by (blast dest: tree_greater_trans)
+    with Black 2 3 4 have "sorted a" and "sorted (Branch B (combine b c) y w d)" and "tree_less x a" and "tree_greater x (Branch B (combine b c) y w d)" by auto
+    with Black show ?thesis by (simp add: balance_left_sorted)
+  qed
+next
+  case (5 va vb vd vc b x w c)
+  hence "k < x \<and> tree_less k (Branch B va vb vd vc)" by simp
+  hence "tree_less x (Branch B va vb vd vc)" by (blast dest: tree_less_trans)
+  with 5 show ?case by (simp add: combine_tree_less)
+next
+  case (6 a x v b va vb vd vc)
+  hence "x < k \<and> tree_greater k (Branch B va vb vd vc)" by simp
+  hence "tree_greater x (Branch B va vb vd vc)" by (blast dest: tree_greater_trans)
+  with 6 show ?case by (simp add: combine_tree_greater)
+qed simp+
+
+lemma combine_in_tree: 
+  assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r"
+  shows "entry_in_tree k v (combine l r) = (entry_in_tree k v l \<or> entry_in_tree k v r)"
+using assms 
+proof (induct l r rule: combine.induct)
+  case (4 _ _ _ b c)
+  hence a: "bheight (combine b c) = bheight b" by (simp add: combine_inv2)
+  from 4 have b: "inv1l (combine b c)" by (simp add: combine_inv1)
+
+  show ?case
+  proof (cases "combine b c" rule: rbt_cases)
+    case Empty
+    with 4 a show ?thesis by (auto simp: balance_left_in_tree)
+  next
+    case (Red lta ka va rta)
+    with 4 show ?thesis by auto
+  next
+    case (Black lta ka va rta)
+    with a b 4  show ?thesis by (auto simp: balance_left_in_tree)
+  qed 
+qed (auto split: rbt.splits color.splits)
+
+fun
+  del_from_left :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
+  del_from_right :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
+  del :: "('a\<Colon>linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+  "del x Empty = Empty" |
+  "del x (Branch c a y s b) = (if x < y then del_from_left x a y s b else (if x > y then del_from_right x a y s b else combine a b))" |
+  "del_from_left x (Branch B lt z v rt) y s b = balance_left (del x (Branch B lt z v rt)) y s b" |
+  "del_from_left x a y s b = Branch R (del x a) y s b" |
+  "del_from_right x a y s (Branch B lt z v rt) = balance_right a y s (del x (Branch B lt z v rt))" | 
+  "del_from_right x a y s b = Branch R a y s (del x b)"
+
+lemma 
+  assumes "inv2 lt" "inv1 lt"
+  shows
+  "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
+  inv2 (del_from_left x lt k v rt) \<and> bheight (del_from_left x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (del_from_left x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (del_from_left x lt k v rt))"
+  and "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow>
+  inv2 (del_from_right x lt k v rt) \<and> bheight (del_from_right x lt k v rt) = bheight lt \<and> (color_of lt = B \<and> color_of rt = B \<and> inv1 (del_from_right x lt k v rt) \<or> (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (del_from_right x lt k v rt))"
+  and del_inv1_inv2: "inv2 (del x lt) \<and> (color_of lt = R \<and> bheight (del x lt) = bheight lt \<and> inv1 (del x lt) 
+  \<or> color_of lt = B \<and> bheight (del x lt) = bheight lt - 1 \<and> inv1l (del x lt))"
+using assms
+proof (induct x lt k v rt and x lt k v rt and x lt rule: del_from_left_del_from_right_del.induct)
+case (2 y c _ y')
+  have "y = y' \<or> y < y' \<or> y > y'" by auto
+  thus ?case proof (elim disjE)
+    assume "y = y'"
+    with 2 show ?thesis by (cases c) (simp add: combine_inv2 combine_inv1)+
+  next
+    assume "y < y'"
+    with 2 show ?thesis by (cases c) auto
+  next
+    assume "y' < y"
+    with 2 show ?thesis by (cases c) auto
+  qed
+next
+  case (3 y lt z v rta y' ss bb) 
+  thus ?case by (cases "color_of (Branch B lt z v rta) = B \<and> color_of bb = B") (simp add: balance_left_inv2_with_inv1 balance_left_inv1 balance_left_inv1l)+
+next
+  case (5 y a y' ss lt z v rta)
+  thus ?case by (cases "color_of a = B \<and> color_of (Branch B lt z v rta) = B") (simp add: balance_right_inv2_with_inv1 balance_right_inv1 balance_right_inv1l)+
+next
+  case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \<and> color_of Empty = B") simp+
+qed auto
+
+lemma 
+  del_from_left_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (del_from_left x lt k y rt)"
+  and del_from_right_tree_less: "\<lbrakk>tree_less v lt; tree_less v rt; k < v\<rbrakk> \<Longrightarrow> tree_less v (del_from_right x lt k y rt)"
+  and del_tree_less: "tree_less v lt \<Longrightarrow> tree_less v (del x lt)"
+by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct) 
+   (auto simp: balance_left_tree_less balance_right_tree_less)
+
+lemma del_from_left_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (del_from_left x lt k y rt)"
+  and del_from_right_tree_greater: "\<lbrakk>tree_greater v lt; tree_greater v rt; k > v\<rbrakk> \<Longrightarrow> tree_greater v (del_from_right x lt k y rt)"
+  and del_tree_greater: "tree_greater v lt \<Longrightarrow> tree_greater v (del x lt)"
+by (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct)
+   (auto simp: balance_left_tree_greater balance_right_tree_greater)
+
+lemma "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (del_from_left x lt k y rt)"
+  and "\<lbrakk>sorted lt; sorted rt; tree_less k lt; tree_greater k rt\<rbrakk> \<Longrightarrow> sorted (del_from_right x lt k y rt)"
+  and del_sorted: "sorted lt \<Longrightarrow> sorted (del x lt)"
+proof (induct x lt k y rt and x lt k y rt and x lt rule: del_from_left_del_from_right_del.induct)
+  case (3 x lta zz v rta yy ss bb)
+  from 3 have "tree_less yy (Branch B lta zz v rta)" by simp
+  hence "tree_less yy (del x (Branch B lta zz v rta))" by (rule del_tree_less)
+  with 3 show ?case by (simp add: balance_left_sorted)
+next
+  case ("4_2" x vaa vbb vdd vc yy ss bb)
+  hence "tree_less yy (Branch R vaa vbb vdd vc)" by simp
+  hence "tree_less yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_less)
+  with "4_2" show ?case by simp
+next
+  case (5 x aa yy ss lta zz v rta) 
+  hence "tree_greater yy (Branch B lta zz v rta)" by simp
+  hence "tree_greater yy (del x (Branch B lta zz v rta))" by (rule del_tree_greater)
+  with 5 show ?case by (simp add: balance_right_sorted)
+next
+  case ("6_2" x aa yy ss vaa vbb vdd vc)
+  hence "tree_greater yy (Branch R vaa vbb vdd vc)" by simp
+  hence "tree_greater yy (del x (Branch R vaa vbb vdd vc))" by (rule del_tree_greater)
+  with "6_2" show ?case by simp
+qed (auto simp: combine_sorted)
+
+lemma "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (del_from_left x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
+  and "\<lbrakk>sorted lt; sorted rt; tree_less kt lt; tree_greater kt rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (del_from_right x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))"
+  and del_in_tree: "\<lbrakk>sorted t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> entry_in_tree k v (del x t) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v t))"
+proof (induct x lt kt y rt and x lt kt y rt and x t rule: del_from_left_del_from_right_del.induct)
+  case (2 xx c aa yy ss bb)
+  have "xx = yy \<or> xx < yy \<or> xx > yy" by auto
+  from this 2 show ?case proof (elim disjE)
+    assume "xx = yy"
+    with 2 show ?thesis proof (cases "xx = k")
+      case True
+      from 2 `xx = yy` `xx = k` have "sorted (Branch c aa yy ss bb) \<and> k = yy" by simp
+      hence "\<not> entry_in_tree k v aa" "\<not> entry_in_tree k v bb" by (auto simp: tree_less_nit tree_greater_prop)
+      with `xx = yy` 2 `xx = k` show ?thesis by (simp add: combine_in_tree)
+    qed (simp add: combine_in_tree)
+  qed simp+
+next    
+  case (3 xx lta zz vv rta yy ss bb)
+  def mt[simp]: mt == "Branch B lta zz vv rta"
+  from 3 have "inv2 mt \<and> inv1 mt" by simp
+  hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
+  with 3 have 4: "entry_in_tree k v (del_from_left xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> entry_in_tree k v mt \<or> (k = yy \<and> v = ss) \<or> entry_in_tree k v bb)" by (simp add: balance_left_in_tree)
+  thus ?case proof (cases "xx = k")
+    case True
+    from 3 True have "tree_greater yy bb \<and> yy > k" by simp
+    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
+    with 3 4 True show ?thesis by (auto simp: tree_greater_nit)
+  qed auto
+next
+  case ("4_1" xx yy ss bb)
+  show ?case proof (cases "xx = k")
+    case True
+    with "4_1" have "tree_greater yy bb \<and> k < yy" by simp
+    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
+    with "4_1" `xx = k` 
+   have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: tree_greater_nit)
+    thus ?thesis by auto
+  qed simp+
+next
+  case ("4_2" xx vaa vbb vdd vc yy ss bb)
+  thus ?case proof (cases "xx = k")
+    case True
+    with "4_2" have "k < yy \<and> tree_greater yy bb" by simp
+    hence "tree_greater k bb" by (blast dest: tree_greater_trans)
+    with True "4_2" show ?thesis by (auto simp: tree_greater_nit)
+  qed auto
+next
+  case (5 xx aa yy ss lta zz vv rta)
+  def mt[simp]: mt == "Branch B lta zz vv rta"
+  from 5 have "inv2 mt \<and> inv1 mt" by simp
+  hence "inv2 (del xx mt) \<and> (color_of mt = R \<and> bheight (del xx mt) = bheight mt \<and> inv1 (del xx mt) \<or> color_of mt = B \<and> bheight (del xx mt) = bheight mt - 1 \<and> inv1l (del xx mt))" by (blast dest: del_inv1_inv2)
+  with 5 have 3: "entry_in_tree k v (del_from_right xx aa yy ss mt) = (entry_in_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> entry_in_tree k v mt)" by (simp add: balance_right_in_tree)
+  thus ?case proof (cases "xx = k")
+    case True
+    from 5 True have "tree_less yy aa \<and> yy < k" by simp
+    hence "tree_less k aa" by (blast dest: tree_less_trans)
+    with 3 5 True show ?thesis by (auto simp: tree_less_nit)
+  qed auto
+next
+  case ("6_1" xx aa yy ss)
+  show ?case proof (cases "xx = k")
+    case True
+    with "6_1" have "tree_less yy aa \<and> k > yy" by simp
+    hence "tree_less k aa" by (blast dest: tree_less_trans)
+    with "6_1" `xx = k` show ?thesis by (auto simp: tree_less_nit)
+  qed simp
+next
+  case ("6_2" xx aa yy ss vaa vbb vdd vc)
+  thus ?case proof (cases "xx = k")
+    case True
+    with "6_2" have "k > yy \<and> tree_less yy aa" by simp
+    hence "tree_less k aa" by (blast dest: tree_less_trans)
+    with True "6_2" show ?thesis by (auto simp: tree_less_nit)
+  qed auto
+qed simp
+
+
+definition delete where
+  delete_def: "delete k t = paint B (del k t)"
+
+theorem delete_is_rbt [simp]: assumes "is_rbt t" shows "is_rbt (delete k t)"
+proof -
+  from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto 
+  hence "inv2 (del k t) \<and> (color_of t = R \<and> bheight (del k t) = bheight t \<and> inv1 (del k t) \<or> color_of t = B \<and> bheight (del k t) = bheight t - 1 \<and> inv1l (del k t))" by (rule del_inv1_inv2)
+  hence "inv2 (del k t) \<and> inv1l (del k t)" by (cases "color_of t") auto
+  with assms show ?thesis
+    unfolding is_rbt_def delete_def
+    by (auto intro: paint_sorted del_sorted)
+qed
+
+lemma delete_in_tree: 
+  assumes "is_rbt t" 
+  shows "entry_in_tree k v (delete x t) = (x \<noteq> k \<and> entry_in_tree k v t)"
+  using assms unfolding is_rbt_def delete_def
+  by (auto simp: del_in_tree)
+
+lemma lookup_delete:
+  assumes is_rbt: "is_rbt t"
+  shows "lookup (delete k t) = (lookup t)|`(-{k})"
+proof
+  fix x
+  show "lookup (delete k t) x = (lookup t |` (-{k})) x" 
+  proof (cases "x = k")
+    assume "x = k" 
+    with is_rbt show ?thesis
+      by (cases "lookup (delete k t) k") (auto simp: lookup_in_tree delete_in_tree)
+  next
+    assume "x \<noteq> k"
+    thus ?thesis
+      by auto (metis is_rbt delete_is_rbt delete_in_tree is_rbt_sorted lookup_from_in_tree)
+  qed
+qed
+
+
+subsection {* Union *}
+
+primrec
+  union_with_key :: "('a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
+where
+  "union_with_key f t Empty = t"
+| "union_with_key f t (Branch c lt k v rt) = union_with_key f (union_with_key f (insert_with_key f k v t) lt) rt"
+
+lemma unionwk_sorted: "sorted lt \<Longrightarrow> sorted (union_with_key f lt rt)" 
+  by (induct rt arbitrary: lt) (auto simp: insertwk_sorted)
+theorem unionwk_is_rbt[simp]: "is_rbt lt \<Longrightarrow> is_rbt (union_with_key f lt rt)" 
+  by (induct rt arbitrary: lt) (simp add: insertwk_is_rbt)+
+
+definition
+  union_with where
+  "union_with f = union_with_key (\<lambda>_. f)"
+
+theorem unionw_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union_with f lt rt)" unfolding union_with_def by simp
+
+definition union where
+  "union = union_with_key (%_ _ rv. rv)"
+
+theorem union_is_rbt: "is_rbt lt \<Longrightarrow> is_rbt (union lt rt)" unfolding union_def by simp
+
+lemma union_Branch[simp]:
+  "union t (Branch c lt k v rt) = union (union (insert k v t) lt) rt"
+  unfolding union_def insert_def
+  by simp
+
+lemma lookup_union:
+  assumes "is_rbt s" "sorted t"
+  shows "lookup (union s t) = lookup s ++ lookup t"
+using assms
+proof (induct t arbitrary: s)
+  case Empty thus ?case by (auto simp: union_def)
+next
+  case (Branch c l k v r s)
+  then have "sorted r" "sorted l" "l |\<guillemotleft> k" "k \<guillemotleft>| r" by auto
+
+  have meq: "lookup s(k \<mapsto> v) ++ lookup l ++ lookup r =
+    lookup s ++
+    (\<lambda>a. if a < k then lookup l a
+    else if k < a then lookup r a else Some v)" (is "?m1 = ?m2")
+  proof (rule ext)
+    fix a
+
+   have "k < a \<or> k = a \<or> k > a" by auto
+    thus "?m1 a = ?m2 a"
+    proof (elim disjE)
+      assume "k < a"
+      with `l |\<guillemotleft> k` have "l |\<guillemotleft> a" by (rule tree_less_trans)
+      with `k < a` show ?thesis
+        by (auto simp: map_add_def split: option.splits)
+    next
+      assume "k = a"
+      with `l |\<guillemotleft> k` `k \<guillemotleft>| r` 
+      show ?thesis by (auto simp: map_add_def)
+    next
+      assume "a < k"
+      from this `k \<guillemotleft>| r` have "a \<guillemotleft>| r" by (rule tree_greater_trans)
+      with `a < k` show ?thesis
+        by (auto simp: map_add_def split: option.splits)
+    qed
+  qed
+
+  from Branch have is_rbt: "is_rbt (RBT_Impl.union (RBT_Impl.insert k v s) l)"
+    by (auto intro: union_is_rbt insert_is_rbt)
+  with Branch have IHs:
+    "lookup (union (union (insert k v s) l) r) = lookup (union (insert k v s) l) ++ lookup r"
+    "lookup (union (insert k v s) l) = lookup (insert k v s) ++ lookup l"
+    by auto
+  
+  with meq show ?case
+    by (auto simp: lookup_insert[OF Branch(3)])
+
+qed
+
+
+subsection {* Modifying existing entries *}
+
+primrec
+  map_entry :: "'a\<Colon>linorder \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
+where
+  "map_entry k f Empty = Empty"
+| "map_entry k f (Branch c lt x v rt) =
+    (if k < x then Branch c (map_entry k f lt) x v rt
+    else if k > x then (Branch c lt x v (map_entry k f rt))
+    else Branch c lt x (f v) rt)"
+
+lemma map_entry_color_of: "color_of (map_entry k f t) = color_of t" by (induct t) simp+
+lemma map_entry_inv1: "inv1 (map_entry k f t) = inv1 t" by (induct t) (simp add: map_entry_color_of)+
+lemma map_entry_inv2: "inv2 (map_entry k f t) = inv2 t" "bheight (map_entry k f t) = bheight t" by (induct t) simp+
+lemma map_entry_tree_greater: "tree_greater a (map_entry k f t) = tree_greater a t" by (induct t) simp+
+lemma map_entry_tree_less: "tree_less a (map_entry k f t) = tree_less a t" by (induct t) simp+
+lemma map_entry_sorted: "sorted (map_entry k f t) = sorted t"
+  by (induct t) (simp_all add: map_entry_tree_less map_entry_tree_greater)
+
+theorem map_entry_is_rbt [simp]: "is_rbt (map_entry k f t) = is_rbt t" 
+unfolding is_rbt_def by (simp add: map_entry_inv2 map_entry_color_of map_entry_sorted map_entry_inv1 )
+
+theorem lookup_map_entry:
+  "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))"
+  by (induct t) (auto split: option.splits simp add: expand_fun_eq)
+
+
+subsection {* Mapping all entries *}
+
+primrec
+  map :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'c) rbt"
+where
+  "map f Empty = Empty"
+| "map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)"
+
+lemma map_entries [simp]: "entries (map f t) = List.map (\<lambda>(k, v). (k, f k v)) (entries t)"
+  by (induct t) auto
+lemma map_keys [simp]: "keys (map f t) = keys t" by (simp add: keys_def split_def)
+lemma map_tree_greater: "tree_greater k (map f t) = tree_greater k t" by (induct t) simp+
+lemma map_tree_less: "tree_less k (map f t) = tree_less k t" by (induct t) simp+
+lemma map_sorted: "sorted (map f t) = sorted t"  by (induct t) (simp add: map_tree_less map_tree_greater)+
+lemma map_color_of: "color_of (map f t) = color_of t" by (induct t) simp+
+lemma map_inv1: "inv1 (map f t) = inv1 t" by (induct t) (simp add: map_color_of)+
+lemma map_inv2: "inv2 (map f t) = inv2 t" "bheight (map f t) = bheight t" by (induct t) simp+
+theorem map_is_rbt [simp]: "is_rbt (map f t) = is_rbt t" 
+unfolding is_rbt_def by (simp add: map_inv1 map_inv2 map_sorted map_color_of)
+
+theorem lookup_map: "lookup (map f t) x = Option.map (f x) (lookup t x)"
+  by (induct t) auto
+
+
+subsection {* Folding over entries *}
+
+definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" where
+  "fold f t s = foldl (\<lambda>s (k, v). f k v s) s (entries t)"
+
+lemma fold_simps [simp, code]:
+  "fold f Empty = id"
+  "fold f (Branch c lt k v rt) = fold f rt \<circ> f k v \<circ> fold f lt"
+  by (simp_all add: fold_def expand_fun_eq)
+
+
+subsection {* Bulkloading a tree *}
+
+definition bulkload :: "('a \<times> 'b) list \<Rightarrow> ('a\<Colon>linorder, 'b) rbt" where
+  "bulkload xs = foldr (\<lambda>(k, v). insert k v) xs Empty"
+
+lemma bulkload_is_rbt [simp, intro]:
+  "is_rbt (bulkload xs)"
+  unfolding bulkload_def by (induct xs) auto
+
+lemma lookup_bulkload:
+  "lookup (bulkload xs) = map_of xs"
+proof -
+  obtain ys where "ys = rev xs" by simp
+  have "\<And>t. is_rbt t \<Longrightarrow>
+    lookup (foldl (\<lambda>t (k, v). insert k v t) t ys) = lookup t ++ map_of (rev ys)"
+      by (induct ys) (simp_all add: bulkload_def split_def lookup_insert)
+  from this Empty_is_rbt have
+    "lookup (foldl (\<lambda>t (k, v). insert k v t) Empty (rev xs)) = lookup Empty ++ map_of xs"
+     by (simp add: `ys = rev xs`)
+  then show ?thesis by (simp add: bulkload_def foldl_foldr lookup_Empty split_def)
+qed
+
+hide (open) const Empty insert delete entries keys bulkload lookup map_entry map fold union sorted
+
+end
--- a/src/HOL/Library/Table.thy	Fri Apr 16 15:49:13 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,229 +0,0 @@
-(* Author: Florian Haftmann, TU Muenchen *)
-
-header {* Tables: finite mappings implemented by red-black trees *}
-
-theory Table
-imports Main RBT Mapping
-begin
-
-subsection {* Type definition *}
-
-typedef (open) ('a, 'b) table = "{t :: ('a\<Colon>linorder, 'b) rbt. is_rbt t}"
-  morphisms tree_of Table
-proof -
-  have "RBT.Empty \<in> ?table" by simp
-  then show ?thesis ..
-qed
-
-lemma is_rbt_tree_of [simp, intro]:
-  "is_rbt (tree_of t)"
-  using tree_of [of t] by simp
-
-lemma table_eq:
-  "t1 = t2 \<longleftrightarrow> tree_of t1 = tree_of t2"
-  by (simp add: tree_of_inject)
-
-lemma [code abstype]:
-  "Table (tree_of t) = t"
-  by (simp add: tree_of_inverse)
-
-
-subsection {* Primitive operations *}
-
-definition lookup :: "('a\<Colon>linorder, 'b) table \<Rightarrow> 'a \<rightharpoonup> 'b" where
-  [code]: "lookup t = RBT.lookup (tree_of t)"
-
-definition empty :: "('a\<Colon>linorder, 'b) table" where
-  "empty = Table RBT.Empty"
-
-lemma tree_of_empty [code abstract]:
-  "tree_of empty = RBT.Empty"
-  by (simp add: empty_def Table_inverse)
-
-definition update :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) table \<Rightarrow> ('a, 'b) table" where
-  "update k v t = Table (RBT.insert k v (tree_of t))"
-
-lemma tree_of_update [code abstract]:
-  "tree_of (update k v t) = RBT.insert k v (tree_of t)"
-  by (simp add: update_def Table_inverse)
-
-definition delete :: "'a\<Colon>linorder \<Rightarrow> ('a, 'b) table \<Rightarrow> ('a, 'b) table" where
-  "delete k t = Table (RBT.delete k (tree_of t))"
-
-lemma tree_of_delete [code abstract]:
-  "tree_of (delete k t) = RBT.delete k (tree_of t)"
-  by (simp add: delete_def Table_inverse)
-
-definition entries :: "('a\<Colon>linorder, 'b) table \<Rightarrow> ('a \<times> 'b) list" where
-  [code]: "entries t = RBT.entries (tree_of t)"
-
-definition keys :: "('a\<Colon>linorder, 'b) table \<Rightarrow> 'a list" where
-  [code]: "keys t = RBT.keys (tree_of t)"
-
-definition bulkload :: "('a\<Colon>linorder \<times> 'b) list \<Rightarrow> ('a, 'b) table" where
-  "bulkload xs = Table (RBT.bulkload xs)"
-
-lemma tree_of_bulkload [code abstract]:
-  "tree_of (bulkload xs) = RBT.bulkload xs"
-  by (simp add: bulkload_def Table_inverse)
-
-definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) table \<Rightarrow> ('a, 'b) table" where
-  "map_entry k f t = Table (RBT.map_entry k f (tree_of t))"
-
-lemma tree_of_map_entry [code abstract]:
-  "tree_of (map_entry k f t) = RBT.map_entry k f (tree_of t)"
-  by (simp add: map_entry_def Table_inverse)
-
-definition map :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) table \<Rightarrow> ('a, 'b) table" where
-  "map f t = Table (RBT.map f (tree_of t))"
-
-lemma tree_of_map [code abstract]:
-  "tree_of (map f t) = RBT.map f (tree_of t)"
-  by (simp add: map_def Table_inverse)
-
-definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a\<Colon>linorder, 'b) table \<Rightarrow> 'c \<Rightarrow> 'c" where
-  [code]: "fold f t = RBT.fold f (tree_of t)"
-
-
-subsection {* Derived operations *}
-
-definition is_empty :: "('a\<Colon>linorder, 'b) table \<Rightarrow> bool" where
-  [code]: "is_empty t = (case tree_of t of RBT.Empty \<Rightarrow> True | _ \<Rightarrow> False)"
-
-
-subsection {* Abstract lookup properties *}
-
-lemma lookup_Table:
-  "is_rbt t \<Longrightarrow> lookup (Table t) = RBT.lookup t"
-  by (simp add: lookup_def Table_inverse)
-
-lemma lookup_tree_of:
-  "RBT.lookup (tree_of t) = lookup t"
-  by (simp add: lookup_def)
-
-lemma entries_tree_of:
-  "RBT.entries (tree_of t) = entries t"
-  by (simp add: entries_def)
-
-lemma keys_tree_of:
-  "RBT.keys (tree_of t) = keys t"
-  by (simp add: keys_def)
-
-lemma lookup_empty [simp]:
-  "lookup empty = Map.empty"
-  by (simp add: empty_def lookup_Table expand_fun_eq)
-
-lemma lookup_update [simp]:
-  "lookup (update k v t) = (lookup t)(k \<mapsto> v)"
-  by (simp add: update_def lookup_Table lookup_insert lookup_tree_of)
-
-lemma lookup_delete [simp]:
-  "lookup (delete k t) = (lookup t)(k := None)"
-  by (simp add: delete_def lookup_Table RBT.lookup_delete lookup_tree_of restrict_complement_singleton_eq)
-
-lemma map_of_entries [simp]:
-  "map_of (entries t) = lookup t"
-  by (simp add: entries_def map_of_entries lookup_tree_of)
-
-lemma entries_lookup:
-  "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2"
-  by (simp add: entries_def lookup_def entries_lookup)
-
-lemma lookup_bulkload [simp]:
-  "lookup (bulkload xs) = map_of xs"
-  by (simp add: bulkload_def lookup_Table RBT.lookup_bulkload)
-
-lemma lookup_map_entry [simp]:
-  "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))"
-  by (simp add: map_entry_def lookup_Table lookup_map_entry lookup_tree_of)
-
-lemma lookup_map [simp]:
-  "lookup (map f t) k = Option.map (f k) (lookup t k)"
-  by (simp add: map_def lookup_Table lookup_map lookup_tree_of)
-
-lemma fold_fold:
-  "fold f t = (\<lambda>s. foldl (\<lambda>s (k, v). f k v s) s (entries t))"
-  by (simp add: fold_def expand_fun_eq RBT.fold_def entries_tree_of)
-
-lemma is_empty_empty [simp]:
-  "is_empty t \<longleftrightarrow> t = empty"
-  by (simp add: table_eq is_empty_def tree_of_empty split: rbt.split)
-
-lemma RBT_lookup_empty [simp]: (*FIXME*)
-  "RBT.lookup t = Map.empty \<longleftrightarrow> t = RBT.Empty"
-  by (cases t) (auto simp add: expand_fun_eq)
-
-lemma lookup_empty_empty [simp]:
-  "lookup t = Map.empty \<longleftrightarrow> t = empty"
-  by (cases t) (simp add: empty_def lookup_def Table_inject Table_inverse)
-
-lemma sorted_keys [iff]:
-  "sorted (keys t)"
-  by (simp add: keys_def RBT.keys_def sorted_entries)
-
-lemma distinct_keys [iff]:
-  "distinct (keys t)"
-  by (simp add: keys_def RBT.keys_def distinct_entries)
-
-
-subsection {* Implementation of mappings *}
-
-definition Mapping :: "('a\<Colon>linorder, 'b) table \<Rightarrow> ('a, 'b) mapping" where
-  "Mapping t = Mapping.Mapping (lookup t)"
-
-code_datatype Mapping
-
-lemma lookup_Mapping [simp, code]:
-  "Mapping.lookup (Mapping t) = lookup t"
-  by (simp add: Mapping_def)
-
-lemma empty_Mapping [code]:
-  "Mapping.empty = Mapping empty"
-  by (rule mapping_eqI) simp
-
-lemma is_empty_Mapping [code]:
-  "Mapping.is_empty (Mapping t) \<longleftrightarrow> is_empty t"
-  by (simp add: table_eq Mapping.is_empty_empty Mapping_def)
-
-lemma update_Mapping [code]:
-  "Mapping.update k v (Mapping t) = Mapping (update k v t)"
-  by (rule mapping_eqI) simp
-
-lemma delete_Mapping [code]:
-  "Mapping.delete k (Mapping xs) = Mapping (delete k xs)"
-  by (rule mapping_eqI) simp
-
-lemma keys_Mapping [code]:
-  "Mapping.keys (Mapping t) = set (keys t)"
-  by (simp add: keys_def Mapping_def Mapping.keys_def lookup_def lookup_keys)
-
-lemma ordered_keys_Mapping [code]:
-  "Mapping.ordered_keys (Mapping t) = keys t"
-  by (rule sorted_distinct_set_unique) (simp_all add: ordered_keys_def keys_Mapping)
-
-lemma Mapping_size_card_keys: (*FIXME*)
-  "Mapping.size m = card (Mapping.keys m)"
-  by (simp add: Mapping.size_def Mapping.keys_def)
-
-lemma size_Mapping [code]:
-  "Mapping.size (Mapping t) = length (keys t)"
-  by (simp add: Mapping_size_card_keys keys_Mapping distinct_card)
-
-lemma tabulate_Mapping [code]:
-  "Mapping.tabulate ks f = Mapping (bulkload (List.map (\<lambda>k. (k, f k)) ks))"
-  by (rule mapping_eqI) (simp add: map_of_map_restrict)
-
-lemma bulkload_Mapping [code]:
-  "Mapping.bulkload vs = Mapping (bulkload (List.map (\<lambda>n. (n, vs ! n)) [0..<length vs]))"
-  by (rule mapping_eqI) (simp add: map_of_map_restrict expand_fun_eq)
-
-lemma [code, code del]: "HOL.eq (x :: (_, _) mapping) y \<longleftrightarrow> x = y" by (fact eq_equals) (*FIXME*)
-
-lemma eq_Mapping [code]:
-  "HOL.eq (Mapping t1) (Mapping t2) \<longleftrightarrow> entries t1 = entries t2"
-  by (simp add: eq Mapping_def entries_lookup)
-
-hide (open) const tree_of lookup empty update delete
-  entries keys bulkload map_entry map fold
-
-end
--- a/src/HOL/List.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/List.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -513,6 +513,17 @@
     (cases zs, simp_all)
 qed
 
+lemma list_induct4 [consumes 3, case_names Nil Cons]:
+  "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow>
+   P [] [] [] [] \<Longrightarrow> (\<And>x xs y ys z zs w ws. length xs = length ys \<Longrightarrow>
+   length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow> P xs ys zs ws \<Longrightarrow>
+   P (x#xs) (y#ys) (z#zs) (w#ws)) \<Longrightarrow> P xs ys zs ws"
+proof (induct xs arbitrary: ys zs ws)
+  case Nil then show ?case by simp
+next
+  case (Cons x xs ys zs ws) then show ?case by ((cases ys, simp_all), (cases zs,simp_all)) (cases ws, simp_all)
+qed
+
 lemma list_induct2': 
   "\<lbrakk> P [] [];
   \<And>x xs. P (x#xs) [];
--- a/src/HOL/Statespace/state_fun.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Statespace/state_fun.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -193,7 +193,7 @@
 
              (* mk_updterm returns 
               *  - (orig-term-skeleton,simplified-term-skeleton, vars, b)
-              *     where boolean b tells if a simplification has occured.
+              *     where boolean b tells if a simplification has occurred.
                     "orig-term-skeleton = simplified-term-skeleton" is
               *     the desired simplification rule.
               * The algorithm first walks down the updates to the seed-state while
--- a/src/HOL/Statespace/state_space.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Statespace/state_space.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -478,6 +478,21 @@
     Type (name, Ts) => (Ts, name)
   | T => error ("Bad parent statespace specification: " ^ Syntax.string_of_typ ctxt T));
 
+fun read_typ ctxt raw_T env =
+  let
+    val ctxt' = fold (Variable.declare_typ o TFree) env ctxt;
+    val T = Syntax.read_typ ctxt' raw_T;
+    val env' = OldTerm.add_typ_tfrees (T, env);
+  in (T, env') end;
+
+fun cert_typ ctxt raw_T env =
+  let
+    val thy = ProofContext.theory_of ctxt;
+    val T = Type.no_tvars (Sign.certify_typ thy raw_T)
+      handle TYPE (msg, _, _) => error msg;
+    val env' = OldTerm.add_typ_tfrees (T, env);
+  in (T, env') end;
+
 fun gen_define_statespace prep_typ state_space args name parents comps thy =
   let (* - args distinct
          - only args may occur in comps and parent-instantiations
@@ -500,7 +515,7 @@
 
         val (Ts',env') = fold_map (prep_typ ctxt) Ts env
             handle ERROR msg => cat_error msg
-                    ("The error(s) above occured in parent statespace specification "
+                    ("The error(s) above occurred in parent statespace specification "
                     ^ quote pname);
         val err_insts = if length args <> length Ts' then
             ["number of type instantiation(s) does not match arguments of parent statespace "
@@ -539,7 +554,7 @@
 
     fun prep_comp (n,T) env =
       let val (T', env') = prep_typ ctxt T env handle ERROR msg =>
-       cat_error msg ("The error(s) above occured in component " ^ quote n)
+       cat_error msg ("The error(s) above occurred in component " ^ quote n)
       in ((n,T'), env') end;
 
     val (comps',env') = fold_map prep_comp comps env;
@@ -579,8 +594,8 @@
   end
   handle ERROR msg => cat_error msg ("Failed to define statespace " ^ quote name);
 
-val define_statespace = gen_define_statespace Record.read_typ NONE;
-val define_statespace_i = gen_define_statespace Record.cert_typ;
+val define_statespace = gen_define_statespace read_typ NONE;
+val define_statespace_i = gen_define_statespace cert_typ;
 
 
 (*** parse/print - translations ***)
--- a/src/HOL/Tools/Datatype/datatype.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Tools/Datatype/datatype.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -682,7 +682,7 @@
             (constrs @ [(c, map (dtyp_of_typ new_dts) cargs')],
               constr_syntax' @ [(cname, mx')], sorts'')
           end handle ERROR msg => cat_error msg
-           ("The error above occured in constructor " ^ quote (Binding.str_of cname) ^
+           ("The error above occurred in constructor " ^ quote (Binding.str_of cname) ^
             " of datatype " ^ quote (Binding.str_of tname));
 
         val (constrs', constr_syntax', sorts') =
--- a/src/HOL/Tools/record.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Tools/record.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -54,9 +54,9 @@
   val print_records: theory -> unit
   val read_typ: Proof.context -> string -> (string * sort) list -> typ * (string * sort) list
   val cert_typ: Proof.context -> typ -> (string * sort) list -> typ * (string * sort) list
-  val add_record: bool -> string list * binding -> (typ list * string) option ->
+  val add_record: bool -> (string * sort) list * binding -> (typ list * string) option ->
     (binding * typ * mixfix) list -> theory -> theory
-  val add_record_cmd: bool -> string list * binding -> string option ->
+  val add_record_cmd: bool -> (string * string option) list * binding -> string option ->
     (binding * string * mixfix) list -> theory -> theory
   val setup: theory -> theory
 end;
@@ -64,7 +64,8 @@
 
 signature ISO_TUPLE_SUPPORT =
 sig
-  val add_iso_tuple_type: bstring * string list -> typ * typ -> theory -> (term * term) * theory
+  val add_iso_tuple_type: bstring * (string * sort) list ->
+    typ * typ -> theory -> (term * term) * theory
   val mk_cons_tuple: term * term -> term
   val dest_cons_tuple: term -> term * term
   val iso_tuple_intros_tac: int -> tactic
@@ -742,7 +743,7 @@
                     val varifyT = varifyT midx;
                     val vartypes = map varifyT types;
 
-                    val subst = fold (Sign.typ_match thy) (vartypes ~~ argtypes) Vartab.empty
+                    val subst = Type.raw_matches (vartypes, argtypes) Vartab.empty
                       handle Type.TYPE_MATCH => err "type is no proper record (extension)";
                     val alphas' =
                       map (Syntax.term_of_typ (! Syntax.show_sorts) o Envir.norm_type subst o varifyT)
@@ -872,11 +873,10 @@
                           apfst (Sign.extern_const thy) f :: map (apfst Long_Name.base_name) fs;
                         val (args', more) = split_last args;
                         val alphavars = map varifyT (but_last alphas);
-                        val subst = fold (Sign.typ_match thy) (alphavars ~~ args') Vartab.empty;
+                        val subst = Type.raw_matches (alphavars, args') Vartab.empty;
                         val fields'' = (map o apsnd) (Envir.norm_type subst o varifyT) fields';
                       in fields'' @ strip_fields more end
-                      handle Type.TYPE_MATCH => [("", T)]
-                        | Library.UnequalLengths => [("", T)])
+                      handle Type.TYPE_MATCH => [("", T)])
                   | _ => [("", T)])
               | _ => [("", T)])
           | _ => [("", T)])
@@ -900,19 +900,18 @@
     val midx = maxidx_of_typ T;
     val varifyT = varifyT midx;
 
-    fun mk_type_abbr subst name alphas =
-      let val abbrT = Type (name, map (fn a => varifyT (TFree (a, HOLogic.typeS))) alphas) in
-        Syntax.term_of_typ (! Syntax.show_sorts) (Envir.norm_type subst abbrT)
-      end;
-
-    fun match rT T = Sign.typ_match thy (varifyT rT, T) Vartab.empty;
+    fun mk_type_abbr subst name args =
+      let val abbrT = Type (name, map (varifyT o TFree) args)
+      in Syntax.term_of_typ (! Syntax.show_sorts) (Envir.norm_type subst abbrT) end;
+
+    fun match rT T = Type.raw_match (varifyT rT, T) Vartab.empty;
   in
     if ! print_record_type_abbr then
       (case last_extT T of
         SOME (name, _) =>
           if name = last_ext then
             let val subst = match schemeT T in
-              if HOLogic.is_unitT (Envir.norm_type subst (varifyT (TFree (zeta, HOLogic.typeS))))
+              if HOLogic.is_unitT (Envir.norm_type subst (varifyT (TFree zeta)))
               then mk_type_abbr subst abbr alphas
               else mk_type_abbr subst (suffix schemeN abbr) (alphas @ [zeta])
             end handle Type.TYPE_MATCH => record_type_tr' ctxt tm
@@ -1639,11 +1638,10 @@
     val fields_moreTs = fieldTs @ [moreT];
 
     val alphas_zeta = alphas @ [zeta];
-    val alphas_zetaTs = map (fn a => TFree (a, HOLogic.typeS)) alphas_zeta;
 
     val ext_binding = Binding.name (suffix extN base_name);
     val ext_name = suffix extN name;
-    val extT = Type (suffix ext_typeN name, alphas_zetaTs);
+    val extT = Type (suffix ext_typeN name, map TFree alphas_zeta);
     val ext_type = fields_moreTs ---> extT;
 
 
@@ -1846,10 +1844,8 @@
 
 (* record_definition *)
 
-fun record_definition (args, binding) parent (parents: parent_info list) raw_fields thy =
+fun record_definition (alphas, binding) parent (parents: parent_info list) raw_fields thy =
   let
-    val alphas = map fst args;
-
     val name = Sign.full_name thy binding;
     val full = Sign.full_name_path thy (Binding.name_of binding); (* FIXME Binding.qualified (!?) *)
 
@@ -1869,7 +1865,7 @@
     val fields = map (apfst full) bfields;
     val names = map fst fields;
     val types = map snd fields;
-    val alphas_fields = fold Term.add_tfree_namesT types [];
+    val alphas_fields = fold Term.add_tfreesT types [];
     val alphas_ext = inter (op =) alphas_fields alphas;
     val len = length fields;
     val variants =
@@ -1885,9 +1881,8 @@
     val all_vars = parent_vars @ vars;
     val all_named_vars = (parent_names ~~ parent_vars) @ named_vars;
 
-
-    val zeta = Name.variant alphas "'z";
-    val moreT = TFree (zeta, HOLogic.typeS);
+    val zeta = (Name.variant (map #1 alphas) "'z", HOLogic.typeS);
+    val moreT = TFree zeta;
     val more = Free (moreN, moreT);
     val full_moreN = full (Binding.name moreN);
     val bfields_more = bfields @ [(Binding.name moreN, moreT)];
@@ -1978,8 +1973,8 @@
 
     (*record (scheme) type abbreviation*)
     val recordT_specs =
-      [(Binding.suffix_name schemeN binding, alphas @ [zeta], rec_schemeT0, NoSyn),
-        (binding, alphas, recT0, NoSyn)];
+      [(Binding.suffix_name schemeN binding, map #1 (alphas @ [zeta]), rec_schemeT0, NoSyn),
+        (binding, map #1 alphas, recT0, NoSyn)];
 
     val ext_defs = ext_def :: map #ext_def parents;
 
@@ -2349,7 +2344,7 @@
            ((Binding.name "iffs", iffs), [iff_add])];
 
     val info =
-      make_record_info args parent fields extension
+      make_record_info alphas parent fields extension
         ext_induct ext_inject ext_surjective ext_split ext_def
         sel_convs' upd_convs' sel_defs' upd_defs' fold_congs' unfold_congs' splits' derived_defs'
         surjective' equality' induct_scheme' induct' cases_scheme' cases' simps' iffs';
@@ -2371,10 +2366,25 @@
 
 (* add_record *)
 
-(*We do all preparations and error checks here, deferring the real
-  work to record_definition.*)
-fun gen_add_record prep_typ prep_raw_parent quiet_mode
-    (params, binding) raw_parent raw_fields thy =
+local
+
+fun read_parent NONE ctxt = (NONE, ctxt)
+  | read_parent (SOME raw_T) ctxt =
+      (case ProofContext.read_typ_abbrev ctxt raw_T of
+        Type (name, Ts) => (SOME (Ts, name), fold Variable.declare_typ Ts ctxt)
+      | T => error ("Bad parent record specification: " ^ Syntax.string_of_typ ctxt T));
+
+fun prep_field prep (x, T, mx) = (x, prep T, mx)
+  handle ERROR msg =>
+    cat_error msg ("The error(s) above occurred in record field " ^ quote (Binding.str_of x));
+
+fun read_field raw_field ctxt =
+  let val field as (_, T, _) = prep_field (Syntax.read_typ ctxt) raw_field
+  in (field, Variable.declare_typ T ctxt) end;
+
+in
+
+fun add_record quiet_mode (params, binding) raw_parent raw_fields thy =
   let
     val _ = Theory.requires thy "Record" "record definitions";
     val _ =
@@ -2382,40 +2392,19 @@
       else writeln ("Defining record " ^ quote (Binding.str_of binding) ^ " ...");
 
     val ctxt = ProofContext.init thy;
-
-
-    (* parents *)
-
-    fun prep_inst T = fst (cert_typ ctxt T []);
-
-    val parent = Option.map (apfst (map prep_inst) o prep_raw_parent ctxt) raw_parent
-      handle ERROR msg => cat_error msg ("The error(s) above in parent record specification");
+    fun cert_typ T = Type.no_tvars (ProofContext.cert_typ ctxt T)
+      handle TYPE (msg, _, _) => error msg;
+
+
+    (* specification *)
+
+    val parent = Option.map (apfst (map cert_typ)) raw_parent
+      handle ERROR msg =>
+        cat_error msg ("The error(s) above occurred in parent record specification");
+    val parent_args = (case parent of SOME (Ts, _) => Ts | NONE => []);
     val parents = add_parents thy parent [];
 
-    val init_env =
-      (case parent of
-        NONE => []
-      | SOME (types, _) => fold Term.add_tfreesT types []);
-
-
-    (* fields *)
-
-    fun prep_field (x, raw_T, mx) env =
-      let
-        val (T, env') =
-          prep_typ ctxt raw_T env handle ERROR msg =>
-            cat_error msg ("The error(s) above occured in record field " ^ quote (Binding.str_of x));
-      in ((x, T, mx), env') end;
-
-    val (bfields, envir) = fold_map prep_field raw_fields init_env;
-    val envir_names = map fst envir;
-
-
-    (* args *)
-
-    val defaultS = Sign.defaultS thy;
-    val args = map (fn x => (x, AList.lookup (op =) envir x |> the_default defaultS)) params;
-
+    val bfields = map (prep_field cert_typ) raw_fields;
 
     (* errors *)
 
@@ -2424,15 +2413,12 @@
       if is_none (get_record thy name) then []
       else ["Duplicate definition of record " ^ quote name];
 
-    val err_dup_parms =
-      (case duplicates (op =) params of
+    val spec_frees = fold Term.add_tfreesT (parent_args @ map #2 bfields) [];
+    val err_extra_frees =
+      (case subtract (op =) params spec_frees of
         [] => []
-      | dups => ["Duplicate parameter(s) " ^ commas dups]);
-
-    val err_extra_frees =
-      (case subtract (op =) params envir_names of
-        [] => []
-      | extras => ["Extra free type variable(s) " ^ commas extras]);
+      | extras => ["Extra free type variable(s) " ^
+          commas (map (Syntax.string_of_typ ctxt o TFree) extras)]);
 
     val err_no_fields = if null bfields then ["No fields present"] else [];
 
@@ -2445,23 +2431,25 @@
       if forall (not_equal moreN o Binding.name_of o #1) bfields then []
       else ["Illegal field name " ^ quote moreN];
 
-    val err_dup_sorts =
-      (case duplicates (op =) envir_names of
-        [] => []
-      | dups => ["Inconsistent sort constraints for " ^ commas dups]);
-
     val errs =
-      err_dup_record @ err_dup_parms @ err_extra_frees @ err_no_fields @
-      err_dup_fields @ err_bad_fields @ err_dup_sorts;
-
+      err_dup_record @ err_extra_frees @ err_no_fields @ err_dup_fields @ err_bad_fields;
     val _ = if null errs then () else error (cat_lines errs);
   in
-    thy |> record_definition (args, binding) parent parents bfields
+    thy |> record_definition (params, binding) parent parents bfields
   end
   handle ERROR msg => cat_error msg ("Failed to define record " ^ quote (Binding.str_of binding));
 
-val add_record = gen_add_record cert_typ (K I);
-val add_record_cmd = gen_add_record read_typ read_raw_parent;
+fun add_record_cmd quiet_mode (raw_params, binding) raw_parent raw_fields thy =
+  let
+    val ctxt = ProofContext.init thy;
+    val params = map (apsnd (Typedecl.read_constraint ctxt)) raw_params;
+    val ctxt1 = fold (Variable.declare_typ o TFree) params ctxt;
+    val (parent, ctxt2) = read_parent raw_parent ctxt1;
+    val (fields, ctxt3) = fold_map read_field raw_fields ctxt2;
+    val params' = map (ProofContext.check_tfree ctxt3) params;
+  in thy |> add_record quiet_mode (params', binding) parent fields end;
+
+end;
 
 
 (* setup theory *)
@@ -2479,7 +2467,7 @@
 
 val _ =
   OuterSyntax.command "record" "define extensible record" K.thy_decl
-    (P.type_args -- P.binding --
+    (P.type_args_constrained -- P.binding --
       (P.$$$ "=" |-- Scan.option (P.typ --| P.$$$ "+") -- Scan.repeat1 P.const_binding)
     >> (fn (x, (y, z)) => Toplevel.theory (add_record_cmd false x y z)));
 
--- a/src/HOL/Tools/typecopy.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Tools/typecopy.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -8,7 +8,7 @@
 sig
   type info = { vs: (string * sort) list, constr: string, typ: typ,
     inject: thm, proj: string * typ, proj_def: thm }
-  val typecopy: binding * string list -> typ -> (binding * binding) option
+  val typecopy: binding * (string * sort) list -> typ -> (binding * binding) option
     -> theory -> (string * info) * theory
   val get_info: theory -> string -> info option
   val interpretation: (string -> theory -> theory) -> theory -> theory
@@ -52,8 +52,8 @@
 fun typecopy (raw_tyco, raw_vs) raw_ty constr_proj thy =
   let
     val ty = Sign.certify_typ thy raw_ty;
-    val vs =
-      AList.make (the_default HOLogic.typeS o AList.lookup (op =) (Term.add_tfreesT ty [])) raw_vs;
+    val ctxt = ProofContext.init thy |> Variable.declare_typ ty;
+    val vs = map (ProofContext.check_tfree ctxt) raw_vs;
     val tac = Tactic.rtac UNIV_witness 1;
     fun add_info tyco (({ abs_type = ty_abs, rep_type = ty_rep, Abs_name = c_abs,
           Rep_name = c_rep, ...}, { Abs_inject = inject, Abs_inverse = inverse, ... })
@@ -80,8 +80,7 @@
         end
   in
     thy
-    |> Typedef.add_typedef_global false (SOME raw_tyco)
-      (raw_tyco, map (fn (v, _) => (v, dummyS)) vs, NoSyn)   (* FIXME keep constraints!? *)
+    |> Typedef.add_typedef_global false (SOME raw_tyco) (raw_tyco, vs, NoSyn)
       (HOLogic.mk_UNIV ty) (Option.map swap constr_proj) tac
     |-> (fn (tyco, info) => add_info tyco info)
   end;
--- a/src/HOL/Tools/typedef.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/Tools/typedef.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -135,9 +135,9 @@
 
     (* rhs *)
 
-    val (_, tmp_lthy) = lthy |> Typedecl.predeclare_constraints (tname, raw_args, mx);
-    val set = prep_term tmp_lthy raw_set;
-    val tmp_lthy' = tmp_lthy |> Variable.declare_constraints set;
+    val tmp_ctxt = lthy |> fold (Variable.declare_typ o TFree) raw_args;
+    val set = prep_term tmp_ctxt raw_set;
+    val tmp_ctxt' = tmp_ctxt |> Variable.declare_term set;
 
     val setT = Term.fastype_of set;
     val oldT = HOLogic.dest_setT setT handle TYPE _ =>
@@ -149,7 +149,7 @@
 
     (* lhs *)
 
-    val args = map (fn (a, _) => (a, ProofContext.default_sort tmp_lthy' (a, ~1))) raw_args;
+    val args = map (ProofContext.check_tfree tmp_ctxt') raw_args;
     val (newT, typedecl_lthy) = lthy
       |> Typedecl.typedecl (tname, args, mx)
       ||> Variable.declare_term set;
--- a/src/HOL/ex/Codegenerator_Candidates.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOL/ex/Codegenerator_Candidates.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -20,8 +20,8 @@
   "~~/src/HOL/Number_Theory/Primes"
   Product_ord
   "~~/src/HOL/ex/Records"
+  RBT
   SetsAndFunctions
-  Table
   While_Combinator
   Word
 begin
--- a/src/HOLCF/Domain.thy	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOLCF/Domain.thy	Fri Apr 16 15:49:46 2010 +0200
@@ -149,8 +149,8 @@
   cfcomp2 sfst_defined_iff ssnd_defined_iff
 
 lemmas take_con_rules =
-  ID1 ssum_map_sinl' ssum_map_sinr' ssum_map_strict
-  sprod_map_spair' sprod_map_strict u_map_up u_map_strict
+  ssum_map_sinl' ssum_map_sinr' sprod_map_spair' u_map_up
+  deflation_strict deflation_ID ID1 cfcomp2
 
 use "Tools/cont_consts.ML"
 use "Tools/cont_proc.ML"
--- a/src/HOLCF/Tools/Domain/domain_theorems.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOLCF/Tools/Domain/domain_theorems.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -184,8 +184,7 @@
       val rhs = con_app2 con one_rhs args;
       val goal = mk_trp (lhs === rhs);
       val rules =
-          [ax_abs_iso]
-          @ @{thms take_con_rules ID1 cfcomp2 deflation_strict}
+          [ax_abs_iso] @ @{thms take_con_rules}
           @ take_Suc_thms @ deflation_thms @ deflation_take_thms;
       val tacs = [simp_tac (HOL_basic_ss addsimps rules) 1];
     in pg con_appls goal (K tacs) end;
--- a/src/HOLCF/Tools/pcpodef.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOLCF/Tools/pcpodef.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -169,18 +169,18 @@
     val _ = Theory.requires thy "Pcpodef" "pcpodefs";
 
     (*rhs*)
-    val (_, tmp_lthy) =
-      thy |> Theory.copy |> Theory_Target.init NONE
-      |> Typedecl.predeclare_constraints (tname, raw_args, mx);
-    val set = prep_term tmp_lthy raw_set;
-    val tmp_lthy' = tmp_lthy |> Variable.declare_constraints set;
+    val tmp_ctxt =
+      ProofContext.init thy
+      |> fold (Variable.declare_typ o TFree) raw_args;
+    val set = prep_term tmp_ctxt raw_set;
+    val tmp_ctxt' = tmp_ctxt |> Variable.declare_term set;
 
     val setT = Term.fastype_of set;
     val oldT = HOLogic.dest_setT setT handle TYPE _ =>
-      error ("Not a set type: " ^ quote (Syntax.string_of_typ tmp_lthy setT));
+      error ("Not a set type: " ^ quote (Syntax.string_of_typ tmp_ctxt setT));
 
     (*lhs*)
-    val lhs_tfrees = map (fn (a, _) => (a, ProofContext.default_sort tmp_lthy' (a, ~1))) raw_args;
+    val lhs_tfrees = map (ProofContext.check_tfree tmp_ctxt') raw_args;
     val full_tname = Sign.full_name thy tname;
     val newT = Type (full_tname, map TFree lhs_tfrees);
 
--- a/src/HOLCF/Tools/repdef.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/HOLCF/Tools/repdef.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -64,18 +64,18 @@
     val _ = Theory.requires thy "Representable" "repdefs";
 
     (*rhs*)
-    val (_, tmp_lthy) =
-      thy |> Theory.copy |> Theory_Target.init NONE
-      |> Typedecl.predeclare_constraints (tname, raw_args, mx);
-    val defl = prep_term tmp_lthy raw_defl;
-    val tmp_lthy = tmp_lthy |> Variable.declare_constraints defl;
+    val tmp_ctxt =
+      ProofContext.init thy
+      |> fold (Variable.declare_typ o TFree) raw_args;
+    val defl = prep_term tmp_ctxt raw_defl;
+    val tmp_ctxt = tmp_ctxt |> Variable.declare_constraints defl;
 
     val deflT = Term.fastype_of defl;
     val _ = if deflT = @{typ "udom alg_defl"} then ()
-            else error ("Not type udom alg_defl: " ^ quote (Syntax.string_of_typ tmp_lthy deflT));
+            else error ("Not type udom alg_defl: " ^ quote (Syntax.string_of_typ tmp_ctxt deflT));
 
     (*lhs*)
-    val lhs_tfrees = map (fn (a, _) => (a, ProofContext.default_sort tmp_lthy (a, ~1))) raw_args;
+    val lhs_tfrees = map (ProofContext.check_tfree tmp_ctxt) raw_args;
     val lhs_sorts = map snd lhs_tfrees;
     val full_tname = Sign.full_name thy tname;
     val newT = Type (full_tname, map TFree lhs_tfrees);
--- a/src/Pure/General/path.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/General/path.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -1,7 +1,8 @@
 (*  Title:      Pure/General/path.ML
     Author:     Markus Wenzel, TU Muenchen
 
-Abstract algebra of file paths (external encoding in Unix style).
+Abstract algebra of file paths: basic POSIX notation, extended by
+named roots (e.g. //foo) and variables (e.g. $BAR).
 *)
 
 signature PATH =
@@ -10,6 +11,7 @@
   val is_current: T -> bool
   val current: T
   val root: T
+  val named_root: string -> T
   val parent: T
   val basic: string -> T
   val variable: string -> T
@@ -31,10 +33,15 @@
 structure Path: PATH =
 struct
 
-
 (* path elements *)
 
-datatype elem = Root | Parent | Basic of string | Variable of string;
+datatype elem =
+  Root of string |
+  Basic of string |
+  Variable of string |
+  Parent;
+
+local
 
 fun err_elem msg chs = error (msg ^ " path element specification: " ^ quote (implode chs));
 
@@ -46,16 +53,18 @@
         [] => chs
       | bads => err_elem ("Illegal character(s) " ^ commas_quote bads ^ " in") chs);
 
+in
+
+val root_elem = Root o implode o check_elem;
 val basic_elem = Basic o implode o check_elem;
 val variable_elem = Variable o implode o check_elem;
 
-fun is_var (Variable _) = true
-  | is_var _ = false;
+end;
 
 
 (* type path *)
 
-datatype T = Path of elem list;
+datatype T = Path of elem list;    (*reversed elements*)
 
 fun rep (Path xs) = xs;
 
@@ -63,13 +72,16 @@
   | is_current _ = false;
 
 val current = Path [];
-val root = Path [Root];
-val parent = Path [Parent];
+val root = Path [Root ""];
+fun named_root s = Path [root_elem (explode s)];
 fun basic s = Path [basic_elem (explode s)];
 fun variable s = Path [variable_elem (explode s)];
+val parent = Path [Parent];
 
-fun is_absolute (Path (Root :: _)) = true
-  | is_absolute _ = false;
+fun is_absolute (Path xs) =
+  (case try List.last xs of
+    SOME (Root _) => true
+  | _ => false);
 
 fun is_basic (Path [Basic _]) = true
   | is_basic _ = false;
@@ -77,37 +89,42 @@
 
 (* append and norm *)
 
-(*append non-normal path (2n arg) to reversed normal one, result is normal*)
-fun rev_app xs [] = rev xs
-  | rev_app _ (Root :: ys) = rev_app [Root] ys
-  | rev_app (x :: xs) (Parent :: ys) =
-      if x = Parent orelse is_var x then rev_app (Parent :: x :: xs) ys
-      else if x = Root then rev_app (x :: xs) ys
-      else rev_app xs ys
-  | rev_app xs (y :: ys) = rev_app (y :: xs) ys;
+fun apply (y as Root _) _ = [y]
+  | apply Parent (xs as (Root _ :: _)) = xs
+  | apply Parent (Basic _ :: rest) = rest
+  | apply y xs = y :: xs;
 
-fun append (Path xs) (Path ys) = Path (rev_app (rev xs) ys);
+fun append (Path xs) (Path ys) = Path (fold_rev apply ys xs);
 fun appends paths = Library.foldl (uncurry append) (current, paths);
 val make = appends o map basic;
-fun norm path = rev_app [] path;
+
+fun norm elems = fold_rev apply elems [];
 
 
 (* implode *)
 
-fun implode_elem Root = ""
-  | implode_elem Parent = ".."
+local
+
+fun implode_elem (Root "") = ""
+  | implode_elem (Root s) = "//" ^ s
   | implode_elem (Basic s) = s
-  | implode_elem (Variable s) = "$" ^ s;
+  | implode_elem (Variable s) = "$" ^ s
+  | implode_elem Parent = "..";
+
+in
 
 fun implode_path (Path []) = "."
-  | implode_path (Path (Root :: xs)) = "/" ^ space_implode "/" (map implode_elem xs)
-  | implode_path (Path xs) = space_implode "/" (map implode_elem xs);
+  | implode_path (Path [Root ""]) = "/"
+  | implode_path (Path xs) = space_implode "/" (rev (map implode_elem xs));
+
+end;
 
 
 (* explode *)
 
-fun explode_elem "" = Root
-  | explode_elem ".." = Parent
+local
+
+fun explode_elem ".." = Parent
   | explode_elem "~" = Variable "HOME"
   | explode_elem "~~" = Variable "ISABELLE_HOME"
   | explode_elem s =
@@ -115,28 +132,35 @@
         "$" :: cs => variable_elem cs
       | cs => basic_elem cs);
 
-val explode_elems = map explode_elem o filter_out (fn c => c = "" orelse c = ".");
+val explode_elems =
+  rev o map explode_elem o filter_out (fn c => c = "" orelse c = ".");
+
+in
 
-fun explode_path str = Path (norm
-  (case space_explode "/" str of
-    "" :: ss => Root :: explode_elems ss
-  | ss => explode_elems ss));
+fun explode_path str =
+  let val (roots, raw_elems) =
+    (case take_prefix (equal "") (space_explode "/" str) |>> length of
+      (0, es) => ([], es)
+    | (1, es) => ([Root ""], es)
+    | (_, []) => ([Root ""], [])
+    | (_, e :: es) => ([root_elem (explode e)], es))
+  in Path (norm (explode_elems raw_elems @ roots)) end;
+
+end;
 
 
 (* base element *)
 
-fun split_path f (path as Path xs) =
-  (case try split_last xs of
-    SOME (prfx, Basic s) => f (prfx, s)
-  | _ => error ("Cannot split path into dir/base: " ^ quote (implode_path path)));
+fun split_path f (Path (Basic s :: xs)) = f (Path xs, s)
+  | split_path _ path = error ("Cannot split path into dir/base: " ^ quote (implode_path path));
 
-val dir = split_path (fn (prfx, _) => Path prfx);
+val dir = split_path #1;
 val base = split_path (fn (_, s) => Path [Basic s]);
 
-fun ext "" path = path
-  | ext e path = split_path (fn (prfx, s) => append (Path prfx) (basic (s ^ "." ^ e))) path;
+fun ext "" = I
+  | ext e = split_path (fn (prfx, s) => append prfx (basic (s ^ "." ^ e)));
 
-val split_ext = split_path (fn (prfx, s) => apfst (append (Path prfx))
+val split_ext = split_path (fn (prfx, s) => apfst (append prfx)
   (case take_suffix (fn c => c <> ".") (explode s) of
     ([], _) => (Path [Basic s], "")
   | (cs, e) => (Path [Basic (implode (take (length cs - 1) cs))], implode e)));
@@ -144,14 +168,20 @@
 
 (* expand variables *)
 
+local
+
 fun eval (Variable s) =
-    (case getenv s of
-      "" => error ("Undefined Isabelle environment variable: " ^ quote s)
-    | path => rep (explode_path path))
+      (case getenv s of
+        "" => error ("Undefined Isabelle environment variable: " ^ quote s)
+      | path => rep (explode_path path))
   | eval x = [x];
 
+in
+
 val expand = rep #> maps eval #> norm #> Path;
 
+end;
+
 
 (* source position *)
 
@@ -163,3 +193,4 @@
 val explode = explode_path;
 
 end;
+
--- a/src/Pure/Isar/proof_context.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/Isar/proof_context.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -62,6 +62,8 @@
   val read_const_proper: Proof.context -> bool -> string -> term
   val read_const: Proof.context -> bool -> string -> term
   val allow_dummies: Proof.context -> Proof.context
+  val check_tvar: Proof.context -> indexname * sort -> indexname * sort
+  val check_tfree: Proof.context -> string * sort -> string * sort
   val decode_term: Proof.context -> term -> term
   val standard_infer_types: Proof.context -> term list -> term list
   val read_term_pattern: Proof.context -> string -> term
@@ -606,19 +608,26 @@
 
 (* types *)
 
-fun get_sort ctxt def_sort raw_env =
+fun get_sort ctxt raw_env =
   let
     val tsig = tsig_of ctxt;
 
     fun eq ((xi, S), (xi', S')) =
       Term.eq_ix (xi, xi') andalso Type.eq_sort tsig (S, S');
     val env = distinct eq raw_env;
-    val _ = (case duplicates (eq_fst (op =)) env of [] => ()
+    val _ =
+      (case duplicates (eq_fst (op =)) env of
+        [] => ()
       | dups => error ("Inconsistent sort constraints for type variable(s) "
           ^ commas_quote (map (Term.string_of_vname' o fst) dups)));
 
+    fun lookup xi =
+      (case AList.lookup (op =) env xi of
+        NONE => NONE
+      | SOME S => if S = dummyS then NONE else SOME S);
+
     fun get xi =
-      (case (AList.lookup (op =) env xi, def_sort xi) of
+      (case (lookup xi, Variable.def_sort ctxt xi) of
         (NONE, NONE) => Type.defaultS tsig
       | (NONE, SOME S) => S
       | (SOME S, NONE) => S
@@ -629,6 +638,9 @@
             " for type variable " ^ quote (Term.string_of_vname' xi)));
   in get end;
 
+fun check_tvar ctxt (xi, S) = (xi, get_sort ctxt [(xi, S)] xi);
+fun check_tfree ctxt (x, S) = apfst fst (check_tvar ctxt ((x, ~1), S));
+
 local
 
 fun intern_skolem ctxt def_type x =
@@ -647,7 +659,7 @@
 in
 
 fun term_context ctxt =
-  {get_sort = get_sort ctxt (Variable.def_sort ctxt),
+  {get_sort = get_sort ctxt,
    map_const = fn a => ((true, #1 (Term.dest_Const (read_const_proper ctxt false a)))
      handle ERROR _ => (false, Consts.intern (consts_of ctxt) a)),
    map_free = intern_skolem ctxt (Variable.def_type ctxt false)};
@@ -731,9 +743,8 @@
 
 fun parse_typ ctxt text =
   let
-    val get_sort = get_sort ctxt (Variable.def_sort ctxt);
     val (syms, pos) = Syntax.parse_token Markup.typ text;
-    val T = Syntax.standard_parse_typ ctxt (syn_of ctxt) get_sort (syms, pos)
+    val T = Syntax.standard_parse_typ ctxt (syn_of ctxt) (get_sort ctxt) (syms, pos)
       handle ERROR msg => cat_error msg ("Failed to parse type" ^ Position.str_of pos);
   in T end;
 
--- a/src/Pure/Isar/typedecl.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/Isar/typedecl.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -7,8 +7,7 @@
 signature TYPEDECL =
 sig
   val read_constraint: Proof.context -> string option -> sort
-  val predeclare_constraints: binding * (string * sort) list * mixfix ->
-    local_theory -> string * local_theory
+  val basic_typedecl: binding * int * mixfix -> local_theory -> string * local_theory
   val typedecl: binding * (string * sort) list * mixfix -> local_theory -> typ * local_theory
   val typedecl_global: binding * (string * sort) list * mixfix -> theory -> typ * theory
 end;
@@ -16,6 +15,12 @@
 structure Typedecl: TYPEDECL =
 struct
 
+(* constraints *)
+
+fun read_constraint _ NONE = dummyS
+  | read_constraint ctxt (SOME s) = Syntax.read_sort ctxt s;
+
+
 (* primitives *)
 
 fun object_logic_arity name thy =
@@ -33,26 +38,15 @@
   end;
 
 
-(* syntactic version -- useful for internalizing additional types/terms beforehand *)
-
-fun read_constraint _ NONE = dummyS
-  | read_constraint ctxt (SOME s) = Syntax.read_sort ctxt s;
-
-fun predeclare_constraints (b, raw_args, mx) =
-  basic_typedecl (b, length raw_args, mx) ##>
-  fold (Variable.declare_constraints o Logic.mk_type o TFree) raw_args;
-
-
-(* regular version -- without dependencies on type parameters of the context *)
+(* regular typedecl -- without dependencies on type parameters of the context *)
 
 fun typedecl (b, raw_args, mx) lthy =
   let
     fun err msg = error (msg ^ " in type declaration " ^ quote (Binding.str_of b));
 
     val _ = has_duplicates (eq_fst op =) raw_args andalso err "Duplicate parameters";
-    val args = raw_args
-      |> map (fn (a, S) => (a, if S = dummyS then ProofContext.default_sort lthy (a, ~1) else S));
-    val T = Type (Local_Theory.full_name lthy b, map TFree args);
+    val args = map (TFree o ProofContext.check_tfree lthy) raw_args;
+    val T = Type (Local_Theory.full_name lthy b, args);
 
     val bad_args =
       #2 (Term.dest_Type (Logic.type_map (singleton (Variable.polymorphic lthy)) T))
--- a/src/Pure/ML-Systems/polyml.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/ML-Systems/polyml.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -66,3 +66,6 @@
   use_text context (1, "pp") false
     ("PolyML.addPrettyPrinter (fn _ => fn _ => ml_pretty o Pretty.to_ML o (" ^ pp ^ "))");
 
+val ml_make_string =
+  "(fn x => Pretty.string_of (Pretty.from_ML (pretty_ml (PolyML.prettyRepresentation (x, get_print_depth ())))))";
+
--- a/src/Pure/ML-Systems/polyml_common.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/ML-Systems/polyml_common.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -55,7 +55,7 @@
 fun ml_prompts p1 p2 = (PolyML.Compiler.prompt1 := p1; PolyML.Compiler.prompt2 := p2);
 
 
-(* print depth *)
+(* toplevel printing *)
 
 local
   val depth = Unsynchronized.ref 10;
@@ -66,6 +66,8 @@
 
 val error_depth = PolyML.error_depth;
 
+val ml_make_string = "PolyML.makestring";
+
 
 
 (** interrupts **)
--- a/src/Pure/ML-Systems/smlnj.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/ML-Systems/smlnj.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -61,6 +61,8 @@
     Control.Print.printLength := dest_int n);
 end;
 
+val ml_make_string = "(fn _ => \"?\")";
+
 
 (*prompts*)
 fun ml_prompts p1 p2 =
--- a/src/Pure/ML/ml_antiquote.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/ML/ml_antiquote.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -59,6 +59,8 @@
 
 structure P = OuterParse;
 
+val _ = inline "make_string" (Scan.succeed ml_make_string);
+
 val _ = value "binding"
   (Scan.lift (P.position Args.name) >> (fn name => ML_Syntax.atomic (ML_Syntax.make_binding name)));
 
--- a/src/Pure/ML/ml_env.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/ML/ml_env.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -9,6 +9,7 @@
   val inherit: Context.generic -> Context.generic -> Context.generic
   val name_space: ML_Name_Space.T
   val local_context: use_context
+  val check_functor: string -> unit
 end
 
 structure ML_Env: ML_ENV =
@@ -88,5 +89,11 @@
   print = writeln,
   error = error};
 
+val is_functor = is_some o #lookupFunct name_space;
+
+fun check_functor name =
+  if not (is_functor "Table") (*mask dummy version of name_space*) orelse is_functor name then ()
+  else error ("Unknown ML functor: " ^ quote name);
+
 end;
 
--- a/src/Pure/ProofGeneral/proof_general_pgip.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/ProofGeneral/proof_general_pgip.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -955,7 +955,7 @@
            end)
         | _ => raise PGIP "Invalid PGIP packet received")
      handle PGIP msg =>
-            (Output.error_msg ((msg ^ "\nPGIP error occured in XML text below:\n") ^
+            (Output.error_msg ((msg ^ "\nPGIP error occurred in XML text below:\n") ^
                                (XML.string_of xml));
              true))
 
--- a/src/Pure/System/isabelle_system.scala	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/System/isabelle_system.scala	Fri Apr 16 15:49:46 2010 +0200
@@ -88,31 +88,39 @@
 
   /* expand_path */
 
+  private val Root = new Regex("(//+[^/]*|/)(.*)")
+  private val Only_Root = new Regex("//+[^/]*|/")
+
   def expand_path(isabelle_path: String): String =
   {
     val result_path = new StringBuilder
-    def init(path: String)
+    def init(path: String): String =
     {
-      if (path.startsWith("/")) {
-        result_path.clear
-        result_path += '/'
+      path match {
+        case Root(root, rest) =>
+          result_path.clear
+          result_path ++= root
+          rest
+        case _ => path
       }
     }
     def append(path: String)
     {
-      init(path)
-      for (p <- path.split("/") if p != "" && p != ".") {
+      val rest = init(path)
+      for (p <- rest.split("/") if p != "" && p != ".") {
         if (p == "..") {
           val result = result_path.toString
-          val i = result.lastIndexOf("/")
-          if (result == "")
-            result_path ++= ".."
-          else if (result.substring(i + 1) == "..")
-            result_path ++= "/.."
-          else if (i < 1)
-            result_path.length = i + 1
-          else
-            result_path.length = i
+          if (!Only_Root.pattern.matcher(result).matches) {
+            val i = result.lastIndexOf("/")
+            if (result == "")
+              result_path ++= ".."
+            else if (result.substring(i + 1) == "..")
+              result_path ++= "/.."
+            else if (i < 0)
+              result_path.length = 0
+            else
+              result_path.length = i
+          }
         }
         else {
           val len = result_path.length
@@ -122,8 +130,8 @@
         }
       }
     }
-    init(isabelle_path)
-    for (p <- isabelle_path.split("/")) {
+    val rest = init(isabelle_path)
+    for (p <- rest.split("/")) {
       if (p.startsWith("$")) append(getenv_strict(p.substring(1)))
       else if (p == "~") append(getenv_strict("HOME"))
       else if (p == "~~") append(getenv_strict("ISABELLE_HOME"))
--- a/src/Pure/System/standard_system.scala	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/System/standard_system.scala	Fri Apr 16 15:49:46 2010 +0200
@@ -162,6 +162,7 @@
   /* jvm_path */
 
   private val Cygdrive = new Regex("/cygdrive/([a-zA-Z])($|/.*)")
+  private val Named_Root = new Regex("//+([^/]*)(.*)")
 
   def jvm_path(posix_path: String): String =
     if (Platform.is_windows) {
@@ -171,6 +172,11 @@
           case Cygdrive(drive, rest) =>
             result_path ++= (drive + ":" + File.separator)
             rest
+          case Named_Root(root, rest) =>
+            result_path ++= File.separator
+            result_path ++= File.separator
+            result_path ++= root
+            rest
           case path if path.startsWith("/") =>
             result_path ++= platform_root
             path
--- a/src/Pure/Thy/thy_output.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/Thy/thy_output.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -599,7 +599,7 @@
 val _ = ml_text "ML" (fn txt => "fn _ => (" ^ txt ^ ");");
 val _ = ml_text "ML_type" (fn txt => "val _ = NONE : (" ^ txt ^ ") option;");
 val _ = ml_text "ML_struct" (fn txt => "functor XXX() = struct structure XX = " ^ txt ^ " end;");
-val _ = ml_text "ML_functor" (K "");  (*no check!*)
+val _ = ml_text "ML_functor" (fn txt => "ML_Env.check_functor " ^ ML_Syntax.print_string txt);
 val _ = ml_text "ML_text" (K "");
 
 end;
--- a/src/Pure/sign.ML	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Pure/sign.ML	Fri Apr 16 15:49:46 2010 +0200
@@ -346,15 +346,12 @@
 
 (* add type constructors *)
 
-val type_syntax = Syntax.mark_type oo full_name;
+fun type_syntax thy (b, n, mx) = (Syntax.mark_type (full_name thy b), Syntax.make_type n, mx);
 
 fun add_types types thy = thy |> map_sign (fn (naming, syn, tsig, consts) =>
   let
-    val syn' =
-      Syntax.update_type_gram true Syntax.mode_default
-        (map (fn (a, n, mx) => (type_syntax thy a, Syntax.make_type n, mx)) types) syn;
-    val decls = map (fn (a, n, _) => (a, n)) types;
-    val tsig' = fold (Type.add_type naming) decls tsig;
+    val syn' = Syntax.update_type_gram true Syntax.mode_default (map (type_syntax thy) types) syn;
+    val tsig' = fold (fn (a, n, _) => Type.add_type naming (a, n)) types tsig;
   in (naming, syn', tsig', consts) end);
 
 
@@ -373,9 +370,8 @@
     let
       val ctxt = ProofContext.init thy;
       val syn' =
-        Syntax.update_type_gram true Syntax.mode_default
-          [(type_syntax thy b, Syntax.make_type (length vs), mx)] syn;
-      val abbr = (b, vs, certify_typ_mode Type.mode_syntax thy (parse_typ ctxt rhs))
+        Syntax.update_type_gram true Syntax.mode_default [type_syntax thy (b, length vs, mx)] syn;
+      val abbr = (b, vs, parse_typ ctxt rhs)
         handle ERROR msg => cat_error msg ("in type abbreviation " ^ quote (Binding.str_of b));
       val tsig' = Type.add_abbrev naming abbr tsig;
     in (naming, syn', tsig', consts) end);
--- a/src/Tools/jEdit/README_BUILD	Fri Apr 16 15:49:13 2010 +0200
+++ b/src/Tools/jEdit/README_BUILD	Fri Apr 16 15:49:46 2010 +0200
@@ -15,9 +15,6 @@
 
 * jEdit 4.3.1 (final)
   http://www.jedit.org/
-
-  
-
   Netbeans Project "jEdit": install official sources as ./contrib/jEdit/.
 
 * jEdit plugins: