Terms are now defined using the new datatype package.
--- a/src/HOL/Induct/Term.ML Fri Oct 23 12:55:36 1998 +0200
+++ b/src/HOL/Induct/Term.ML Fri Oct 23 12:56:13 1998 +0200
@@ -1,169 +1,30 @@
-(* Title: HOL/ex/Term
+(* Title: HOL/Induct/Term.ML
ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1992 University of Cambridge
+ Author: Stefan Berghofer, TU Muenchen
+ Copyright 1998 TU Muenchen
-Terms over a given alphabet -- function applications; illustrates list functor
- (essentially the same type as in Trees & Forests)
+Terms over a given alphabet -- function applications
*)
-(** Monotonicity and unfolding of the function **)
-
-Goal "term(A) = A <*> list(term(A))";
-by (fast_tac (claset() addSIs term.intrs
- addEs [term.elim]) 1);
-qed "term_unfold";
-
-(*This justifies using term in other recursive type definitions*)
-Goalw term.defs "A<=B ==> term(A) <= term(B)";
-by (REPEAT (ares_tac ([lfp_mono, list_mono] @ basic_monos) 1));
-qed "term_mono";
-
-(** Type checking -- term creates well-founded sets **)
-
-Goalw term.defs "term(sexp) <= sexp";
-by (rtac lfp_lowerbound 1);
-by (fast_tac (claset() addIs [sexp.SconsI, list_sexp RS subsetD]) 1);
-qed "term_sexp";
-
-(* A <= sexp ==> term(A) <= sexp *)
-bind_thm ("term_subset_sexp", ([term_mono, term_sexp] MRS subset_trans));
-
-
-(** Elimination -- structural induction on the set term(A) **)
+(** a simple theorem about composition of substitutions **)
-(*Induction for the set term(A) *)
-val [major,minor] = goal Term.thy
- "[| M: term(A); \
-\ !!x zs. [| x: A; zs: list(term(A)); zs: list({x. R(x)}) \
-\ |] ==> R (Scons x zs) \
-\ |] ==> R(M)";
-by (rtac (major RS term.induct) 1);
-by (REPEAT (eresolve_tac ([minor] @
- ([Int_lower1,Int_lower2] RL [list_mono RS subsetD])) 1));
-(*Proof could also use mono_Int RS subsetD RS IntE *)
-qed "Term_induct";
-
-(*Induction on term(A) followed by induction on list *)
-val major::prems = goal Term.thy
- "[| M: term(A); \
-\ !!x. [| x: A |] ==> R (Scons x NIL); \
-\ !!x z zs. [| x: A; z: term(A); zs: list(term(A)); R (Scons x zs) \
-\ |] ==> R (Scons x (CONS z zs)) \
-\ |] ==> R(M)";
-by (rtac (major RS Term_induct) 1);
-by (etac list.induct 1);
-by (REPEAT (ares_tac prems 1));
-qed "Term_induct2";
-
-(*** Structural Induction on the abstract type 'a term ***)
-
-val Rep_term_in_sexp =
- Rep_term RS (range_Leaf_subset_sexp RS term_subset_sexp RS subsetD);
+Goal "(subst_term ((subst_term f1) o f2) t) = \
+ \ (subst_term f1 (subst_term f2 t)) & \
+ \ (subst_term_list ((subst_term f1) o f2) ts) = \
+ \ (subst_term_list f1 (subst_term_list f2 ts))";
+by (mutual_induct_tac ["t", "ts"] 1);
+by (ALLGOALS Asm_full_simp_tac);
+qed "subst_comp";
-(*Induction for the abstract type 'a term*)
-val prems = goalw Term.thy [App_def,Rep_Tlist_def,Abs_Tlist_def]
- "[| !!x ts. (ALL t: set ts. R t) ==> R(App x ts) \
-\ |] ==> R(t)";
-by (rtac (Rep_term_inverse RS subst) 1); (*types force good instantiation*)
-by (res_inst_tac [("P","Rep_term(t) : sexp")] conjunct2 1);
-by (rtac (Rep_term RS Term_induct) 1);
-by (REPEAT (ares_tac [conjI, sexp.SconsI, term_subset_sexp RS
- list_subset_sexp, range_Leaf_subset_sexp] 1
- ORELSE etac rev_subsetD 1));
-by (eres_inst_tac [("A1","term(?u)"), ("f1","Rep_term"), ("g1","Abs_term")]
- (Abs_map_inverse RS subst) 1);
-by (rtac (range_Leaf_subset_sexp RS term_subset_sexp) 1);
-by (etac Abs_term_inverse 1);
-by (etac rangeE 1);
-by (hyp_subst_tac 1);
-by (resolve_tac prems 1);
-by (etac list.induct 1);
-by (etac CollectE 2);
-by (stac Abs_map_CONS 2);
-by (etac conjunct1 2);
-by (etac rev_subsetD 2);
-by (rtac list_subset_sexp 2);
-by (ALLGOALS Asm_simp_tac);
-by (ALLGOALS Fast_tac);
-qed "term_induct";
-
-(*Induction for the abstract type 'a term*)
-val prems = goal Term.thy
- "[| !!x. R(App x Nil); \
-\ !!x t ts. R(App x ts) ==> R(App x (t#ts)) \
-\ |] ==> R(t)";
-by (rtac term_induct 1); (*types force good instantiation*)
-by (etac rev_mp 1);
-by (rtac list_induct2 1); (*types force good instantiation*)
-by (ALLGOALS (asm_simp_tac (simpset() addsimps prems)));
-qed "term_induct2";
-
-(*Perform induction on xs. *)
-fun term_ind2_tac a i =
- EVERY [res_inst_tac [("t",a)] term_induct2 i,
- rename_last_tac a ["1","s"] (i+1)];
-
-
-
-(*** Term_rec -- by wf recursion on pred_sexp ***)
-
-Goal "(%M. Term_rec M d) = wfrec (trancl pred_sexp) \
- \ (%g. Split(%x y. d x y (Abs_map g y)))";
-by (simp_tac (HOL_ss addsimps [Term_rec_def]) 1);
-bind_thm("Term_rec_unfold", (wf_pred_sexp RS wf_trancl) RS
- ((result() RS eq_reflection) RS def_wfrec));
+(**** alternative induction rule ****)
-(*---------------------------------------------------------------------------
- * Old:
- * val Term_rec_unfold =
- * wf_pred_sexp RS wf_trancl RS (Term_rec_def RS def_wfrec);
- *---------------------------------------------------------------------------*)
-
-(** conversion rules **)
-
-val [prem] = goal Term.thy
- "N: list(term(A)) ==> \
-\ !M. (N,M): pred_sexp^+ --> \
-\ Abs_map (cut h (pred_sexp^+) M) N = \
-\ Abs_map h N";
-by (rtac (prem RS list.induct) 1);
-by (Simp_tac 1);
-by (strip_tac 1);
-by (etac (pred_sexp_CONS_D RS conjE) 1);
-by (asm_simp_tac (simpset() addsimps [trancl_pred_sexpD1]) 1);
-qed "Abs_map_lemma";
-
-val [prem1,prem2,A_subset_sexp] = goal Term.thy
- "[| M: sexp; N: list(term(A)); A<=sexp |] ==> \
-\ Term_rec (Scons M N) d = d M N (Abs_map (%Z. Term_rec Z d) N)";
-by (rtac (Term_rec_unfold RS trans) 1);
-by (simp_tac (HOL_ss addsimps
- [Split,
- prem2 RS Abs_map_lemma RS spec RS mp, pred_sexpI2 RS r_into_trancl,
- prem1, prem2 RS rev_subsetD, list_subset_sexp,
- term_subset_sexp, A_subset_sexp]) 1);
-qed "Term_rec";
-
-(*** term_rec -- by Term_rec ***)
-
-local
- val Rep_map_type1 = read_instantiate_sg (sign_of Term.thy)
- [("f","Rep_term")] Rep_map_type;
- val Rep_Tlist = Rep_term RS Rep_map_type1;
- val Rep_Term_rec = range_Leaf_subset_sexp RSN (2,Rep_Tlist RSN(2,Term_rec));
-
- (*Now avoids conditional rewriting with the premise N: list(term(A)),
- since A will be uninstantiated and will cause rewriting to fail. *)
- val term_rec_ss = HOL_ss
- addsimps [Rep_Tlist RS (rangeI RS term.APP_I RS Abs_term_inverse),
- Rep_term_in_sexp, Rep_Term_rec, Rep_term_inverse, inj_Leaf,
- inv_f_f, Abs_Rep_map, map_ident2, sexp.LeafI]
-in
-
-val term_rec = prove_goalw Term.thy
- [term_rec_def, App_def, Rep_Tlist_def, Abs_Tlist_def]
- "term_rec (App f ts) d = d f ts (map (%t. term_rec t d) ts)"
- (fn _ => [simp_tac term_rec_ss 1])
-
-end;
+bind_thm ("term_induct2", prove_goal thy
+ "[| !!v. P (Var v); \
+ \ !!f ts. list_all P ts ==> P (App f ts) |] ==> \
+ \ P t & list_all P ts"
+ (fn prems =>
+ [mutual_induct_tac ["t", "ts"] 1,
+ resolve_tac prems 1,
+ resolve_tac prems 1,
+ atac 1,
+ ALLGOALS Asm_simp_tac]) RS conjunct1);
--- a/src/HOL/Induct/Term.thy Fri Oct 23 12:55:36 1998 +0200
+++ b/src/HOL/Induct/Term.thy Fri Oct 23 12:56:13 1998 +0200
@@ -1,55 +1,31 @@
-(* Title: HOL/ex/Term
+(* Title: HOL/Induct/Term.thy
ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1992 University of Cambridge
+ Author: Stefan Berghofer, TU Muenchen
+ Copyright 1998 TU Muenchen
-Terms over a given alphabet -- function applications; illustrates list functor
- (essentially the same type as in Trees & Forests)
-
-There is no constructor APP because it is simply Scons
+Terms over a given alphabet -- function applications
*)
-Term = SList +
+Term = Main +
-types 'a term
+datatype
+ ('a, 'b) term = Var 'a
+ | App 'b ((('a, 'b) term) list)
-arities term :: (term)term
+
+(** substitution function on terms **)
consts
- term :: 'a item set => 'a item set
- Rep_term :: 'a term => 'a item
- Abs_term :: 'a item => 'a term
- Rep_Tlist :: 'a term list => 'a item
- Abs_Tlist :: 'a item => 'a term list
- App :: ['a, ('a term)list] => 'a term
- Term_rec :: ['a item, ['a item , 'a item, 'b list]=>'b] => 'b
- term_rec :: ['a term, ['a ,'a term list, 'b list]=>'b] => 'b
-
-inductive "term(A)"
- intrs
- APP_I "[| M: A; N : list(term(A)) |] ==> Scons M N : term(A)"
- monos list_mono
-
-defs
- (*defining abstraction/representation functions for term list...*)
- Rep_Tlist_def "Rep_Tlist == Rep_map(Rep_term)"
- Abs_Tlist_def "Abs_Tlist == Abs_map(Abs_term)"
+ subst_term :: "['a => ('a, 'b) term, ('a, 'b) term] => ('a, 'b) term"
+ subst_term_list ::
+ "['a => ('a, 'b) term, ('a, 'b) term list] => ('a, 'b) term list"
- (*defining the abstract constants*)
- App_def "App a ts == Abs_term(Scons (Leaf a) (Rep_Tlist ts))"
-
- (*list recursion*)
- Term_rec_def
- "Term_rec M d == wfrec (trancl pred_sexp)
- (%g. Split(%x y. d x y (Abs_map g y))) M"
+primrec
+ "subst_term f (Var a) = f a"
+ "subst_term f (App b ts) = App b (subst_term_list f ts)"
- term_rec_def
- "term_rec t d ==
- Term_rec (Rep_term t) (%x y r. d (inv Leaf x) (Abs_Tlist(y)) r)"
+ "subst_term_list f [] = []"
+ "subst_term_list f (t # ts) =
+ subst_term f t # subst_term_list f ts"
-rules
- (*faking a type definition for term...*)
- Rep_term "Rep_term(n): term(range(Leaf))"
- Rep_term_inverse "Abs_term(Rep_term(t)) = t"
- Abs_term_inverse "M: term(range(Leaf)) ==> Rep_term(Abs_term(M)) = M"
end