now permutations of quantifiers are allowed as well.
authornipkow
Mon, 17 Dec 2001 14:21:59 +0100
changeset 12523 0d8d5bf549b0
parent 12522 69971d68fe03
child 12524 66eb843b1d35
now permutations of quantifiers are allowed as well.
src/Provers/quantifier1.ML
--- a/src/Provers/quantifier1.ML	Mon Dec 17 13:25:18 2001 +0100
+++ b/src/Provers/quantifier1.ML	Mon Dec 17 14:21:59 2001 +0100
@@ -39,6 +39,7 @@
   (*rules*)
   val iff_reflection: thm (* P <-> Q ==> P == Q *)
   val iffI:  thm
+  val iff_trans: thm
   val conjI: thm
   val conjE: thm
   val impI:  thm
@@ -47,6 +48,9 @@
   val exE:   thm
   val uncurry: thm (* P --> Q --> R ==> P & Q --> R *)
   val iff_allI: thm (* !!x. P x <-> Q x ==> (!x. P x) = (!x. Q x) *)
+  val iff_exI: thm (* !!x. P x <-> Q x ==> (? x. P x) = (? x. Q x) *)
+  val all_comm: thm (* (!x y. P x y) = (!y x. P x y) *)
+  val ex_comm: thm (* (? x y. P x y) = (? y x. P x y) *)
 end;
 
 signature QUANTIFIER1 =
@@ -65,30 +69,39 @@
 open Data;
 
 (* FIXME: only test! *)
-fun def eq = case dest_eq eq of
+fun def xs eq =
+  let val n = length xs
+  in case dest_eq eq of
       Some(c,s,t) =>
-        s = Bound 0 andalso not(loose_bvar1(t,0)) orelse
-        t = Bound 0 andalso not(loose_bvar1(s,0))
-    | None => false;
+        s = Bound n andalso not(loose_bvar1(t,n)) orelse
+        t = Bound n andalso not(loose_bvar1(s,n))
+    | None => false
+  end;
 
-fun extract_conj t = case dest_conj t of None => None
+fun extract_conj xs t = case dest_conj t of None => None
     | Some(conj,P,Q) =>
-        (if def P then Some(P,Q) else
-         if def Q then Some(Q,P) else
-         (case extract_conj P of
-            Some(eq,P') => Some(eq, conj $ P' $ Q)
-          | None => (case extract_conj Q of
-                       Some(eq,Q') => Some(eq,conj $ P $ Q')
+        (if def xs P then Some(xs,P,Q) else
+         if def xs Q then Some(xs,Q,P) else
+         (case extract_conj xs P of
+            Some(xs,eq,P') => Some(xs,eq, conj $ P' $ Q)
+          | None => (case extract_conj xs Q of
+                       Some(xs,eq,Q') => Some(xs,eq,conj $ P $ Q')
                      | None => None)));
 
-fun extract_imp t = case dest_imp t of None => None
-    | Some(imp,P,Q) => if def P then Some(P,Q)
-                       else (case extract_conj P of
-                               Some(eq,P') => Some(eq, imp $ P' $ Q)
-                             | None => (case extract_imp Q of
+fun extract_imp xs t = case dest_imp t of None => None
+    | Some(imp,P,Q) => if def xs P then Some(xs,P,Q)
+                       else (case extract_conj xs P of
+                               Some(xs,eq,P') => Some(xs, eq, imp $ P' $ Q)
+                             | None => (case extract_imp xs Q of
                                           None => None
-                                        | Some(eq,Q') => Some(eq, imp$P$Q')));
-    
+                                        | Some(xs,eq,Q') =>
+                                            Some(xs,eq,imp$P$Q')));
+
+fun extract_quant extract q =
+  let fun exqu xs ((qC as Const(qa,_)) $ Abs(x,T,Q)) =
+            if qa = q then exqu ((qC,x,T)::xs) Q else None
+        | exqu xs P = extract xs P
+  in exqu end;
 
 fun prove_conv tac sg tu =
   let val meta_eq = cterm_of sg (Logic.mk_equals tu)
@@ -98,51 +111,73 @@
                   string_of_cterm meta_eq)
   end;
 
-(* Proves (? x. ... & x = t & ...) = (? x. x = t & ... & ...)
+fun qcomm_tac qcomm qI i = REPEAT_DETERM (rtac qcomm i THEN rtac qI i) 
+
+(* Proves (? x0..xn. ... & x0 = t & ...) = (? x1..xn x0. x0 = t & ... & ...)
    Better: instantiate exI
 *)
-val prove_one_point_ex_tac = rtac iffI 1 THEN
+local
+val excomm = ex_comm RS iff_trans
+in
+val prove_one_point_ex_tac = qcomm_tac excomm iff_exI 1 THEN rtac iffI 1 THEN
     ALLGOALS(EVERY'[etac exE, REPEAT_DETERM o (etac conjE), rtac exI,
-                    DEPTH_SOLVE_1 o (ares_tac [conjI])]);
+                    DEPTH_SOLVE_1 o (ares_tac [conjI])])
+end;
 
-(* Proves (! x. (... & x = t & ...) --> P x) =
-          (! x. x = t --> (... & ...) --> P x)
+(* Proves (! x0..xn. (... & x0 = t & ...) --> P x0) =
+          (! x1..xn x0. x0 = t --> (... & ...) --> P x0)
 *)
 local
 val tac = SELECT_GOAL
           (EVERY1[REPEAT o (dtac uncurry), REPEAT o (rtac impI), etac mp,
                   REPEAT o (etac conjE), REPEAT o (ares_tac [conjI])])
+val allcomm = all_comm RS iff_trans
 in
-val prove_one_point_all_tac = EVERY1[rtac iff_allI, rtac iffI, tac, tac]
+val prove_one_point_all_tac =
+      EVERY1[qcomm_tac allcomm iff_allI,rtac iff_allI, rtac iffI, tac, tac]
 end
 
-fun rearrange_all sg _ (F as all $ Abs(x,T, P)) =
-     (case extract_imp P of
+fun renumber l u (Bound i) = Bound(if i < l orelse i > u then i else
+                                   if i=u then l else i+1)
+  | renumber l u (s$t) = renumber l u s $ renumber l u t
+  | renumber l u (Abs(x,T,t)) = Abs(x,T,renumber (l+1) (u+1) t)
+  | renumber _ _ atom = atom;
+
+fun quantify qC x T xs P =
+  let fun quant [] P = P
+        | quant ((qC,x,T)::xs) P = quant xs (qC $ Abs(x,T,P))
+      val n = length xs
+      val Q = if n=0 then P else renumber 0 n P
+  in quant xs (qC $ Abs(x,T,Q)) end;
+
+fun rearrange_all sg _ (F as (all as Const(q,_)) $ Abs(x,T, P)) =
+     (case extract_quant extract_imp q [] P of
         None => None
-      | Some(eq,Q) =>
-          let val R = imp $ eq $ Q
-          in Some(prove_conv prove_one_point_all_tac sg (F,all$Abs(x,T,R))) end)
+      | Some(xs,eq,Q) =>
+          let val R = quantify all x T xs (imp $ eq $ Q)
+          in Some(prove_conv prove_one_point_all_tac sg (F,R)) end)
   | rearrange_all _ _ _ = None;
 
 fun rearrange_ball tac sg _ (F as Ball $ A $ Abs(x,T,P)) =
-     (case extract_imp P of
+     (case extract_imp [] P of
         None => None
-      | Some(eq,Q) =>
+      | Some(xs,eq,Q) => if not(null xs) then None else
           let val R = imp $ eq $ Q
           in Some(prove_conv tac sg (F,Ball $ A $ Abs(x,T,R))) end)
   | rearrange_ball _ _ _ _ = None;
 
-fun rearrange_ex sg _ (F as ex $ Abs(x,T,P)) =
-     (case extract_conj P of
+fun rearrange_ex sg _ (F as (ex as Const(q,_)) $ Abs(x,T,P)) =
+     (case extract_quant extract_conj q [] P of
         None => None
-      | Some(eq,Q) =>
-          Some(prove_conv prove_one_point_ex_tac sg (F,ex $ Abs(x,T,conj$eq$Q))))
+      | Some(xs,eq,Q) =>
+          let val R = quantify ex x T xs (conj $ eq $ Q)
+          in Some(prove_conv prove_one_point_ex_tac sg (F,R)) end)
   | rearrange_ex _ _ _ = None;
 
 fun rearrange_bex tac sg _ (F as Bex $ A $ Abs(x,T,P)) =
-     (case extract_conj P of
+     (case extract_conj [] P of
         None => None
-      | Some(eq,Q) =>
+      | Some(xs,eq,Q) => if not(null xs) then None else
           Some(prove_conv tac sg (F,Bex $ A $ Abs(x,T,conj$eq$Q))))
   | rearrange_bex _ _ _ _ = None;