the borel probability measure is easier to handle with {0 ..< 1} (coverable by disjoint intervals {_ ..< _})
--- a/src/HOL/Probability/Probability_Measure.thy Mon Jul 04 10:15:49 2011 +0200
+++ b/src/HOL/Probability/Probability_Measure.thy Mon Jul 04 10:23:46 2011 +0200
@@ -1107,43 +1107,44 @@
by (simp add: distribution_def prob_space vimage_Times comp_def measure_space_1)
qed
-subsection "Borel Measure on {0 .. 1}"
+subsection "Borel Measure on {0 ..< 1}"
definition pborel :: "real measure_space" where
- "pborel = lborel.restricted_space {0 .. 1}"
+ "pborel = lborel.restricted_space {0 ..< 1}"
lemma space_pborel[simp]:
- "space pborel = {0 .. 1}"
+ "space pborel = {0 ..< 1}"
unfolding pborel_def by auto
lemma sets_pborel:
- "A \<in> sets pborel \<longleftrightarrow> A \<in> sets borel \<and> A \<subseteq> { 0 .. 1}"
+ "A \<in> sets pborel \<longleftrightarrow> A \<in> sets borel \<and> A \<subseteq> { 0 ..< 1}"
unfolding pborel_def by auto
lemma in_pborel[intro, simp]:
- "A \<subseteq> {0 .. 1} \<Longrightarrow> A \<in> sets borel \<Longrightarrow> A \<in> sets pborel"
+ "A \<subseteq> {0 ..< 1} \<Longrightarrow> A \<in> sets borel \<Longrightarrow> A \<in> sets pborel"
unfolding pborel_def by auto
interpretation pborel: measure_space pborel
- using lborel.restricted_measure_space[of "{0 .. 1}"]
+ using lborel.restricted_measure_space[of "{0 ..< 1}"]
by (simp add: pborel_def)
interpretation pborel: prob_space pborel
by default (simp add: one_extreal_def pborel_def)
-lemma pborel_prob: "pborel.prob A = (if A \<in> sets borel \<and> A \<subseteq> {0 .. 1} then real (lborel.\<mu> A) else 0)"
+lemma pborel_prob: "pborel.prob A = (if A \<in> sets borel \<and> A \<subseteq> {0 ..< 1} then real (lborel.\<mu> A) else 0)"
unfolding pborel.\<mu>'_def by (auto simp: pborel_def)
lemma pborel_singelton[simp]: "pborel.prob {a} = 0"
by (auto simp: pborel_prob)
lemma
- shows pborel_atLeastAtMost[simp]: "pborel.\<mu>' {a .. b} = (if 0 \<le> a \<and> a \<le> b \<and> b \<le> 1 then b - a else 0)"
+ shows pborel_atLeastAtMost[simp]: "pborel.\<mu>' {a .. b} = (if 0 \<le> a \<and> a \<le> b \<and> b < 1 then b - a else 0)"
and pborel_atLeastLessThan[simp]: "pborel.\<mu>' {a ..< b} = (if 0 \<le> a \<and> a \<le> b \<and> b \<le> 1 then b - a else 0)"
- and pborel_greaterThanAtMost[simp]: "pborel.\<mu>' {a <.. b} = (if 0 \<le> a \<and> a \<le> b \<and> b \<le> 1 then b - a else 0)"
+ and pborel_greaterThanAtMost[simp]: "pborel.\<mu>' {a <.. b} = (if 0 \<le> a \<and> a \<le> b \<and> b < 1 then b - a else 0)"
and pborel_greaterThanLessThan[simp]: "pborel.\<mu>' {a <..< b} = (if 0 \<le> a \<and> a \<le> b \<and> b \<le> 1 then b - a else 0)"
- unfolding pborel_prob by (auto simp: atLeastLessThan_subseteq_atLeastAtMost_iff
- greaterThanAtMost_subseteq_atLeastAtMost_iff greaterThanLessThan_subseteq_atLeastAtMost_iff)
+ unfolding pborel_prob
+ by (auto simp: atLeastAtMost_subseteq_atLeastLessThan_iff
+ greaterThanAtMost_subseteq_atLeastLessThan_iff greaterThanLessThan_subseteq_atLeastLessThan_iff)
lemma pborel_lebesgue_measure:
"A \<in> sets pborel \<Longrightarrow> pborel.prob A = real (measure lebesgue A)"
@@ -1151,16 +1152,16 @@
lemma pborel_alt:
"pborel = sigma \<lparr>
- space = {0..1},
- sets = range (\<lambda>(x,y). {x..y} \<inter> {0..1}),
+ space = {0..<1},
+ sets = range (\<lambda>(x,y). {x..<y} \<inter> {0..<1}),
measure = measure lborel \<rparr>" (is "_ = ?R")
proof -
- have *: "{0..1::real} \<in> sets borel" by auto
- have **: "op \<inter> {0..1::real} ` range (\<lambda>(x, y). {x..y}) = range (\<lambda>(x,y). {x..y} \<inter> {0..1})"
+ have *: "{0..<1::real} \<in> sets borel" by auto
+ have **: "op \<inter> {0..<1::real} ` range (\<lambda>(x, y). {x..<y}) = range (\<lambda>(x,y). {x..<y} \<inter> {0..<1})"
unfolding image_image by (intro arg_cong[where f=range]) auto
- have "pborel = algebra.restricted_space (sigma \<lparr>space=UNIV, sets=range (\<lambda>(a, b). {a .. b :: real}),
- measure = measure pborel\<rparr>) {0 .. 1}"
- by (simp add: sigma_def lebesgue_def pborel_def borel_eq_atLeastAtMost lborel_def)
+ have "pborel = algebra.restricted_space (sigma \<lparr>space=UNIV, sets=range (\<lambda>(a, b). {a ..< b :: real}),
+ measure = measure pborel\<rparr>) {0 ..< 1}"
+ by (simp add: sigma_def lebesgue_def pborel_def borel_eq_atLeastLessThan lborel_def)
also have "\<dots> = ?R"
by (subst restricted_sigma)
(simp_all add: sets_sigma sigma_sets.Basic ** pborel_def image_eqI[of _ _ "(0,1)"])