--- a/src/HOL/NatSimprocs.thy Mon Jun 11 18:26:44 2007 +0200
+++ b/src/HOL/NatSimprocs.thy Mon Jun 11 18:28:15 2007 +0200
@@ -425,7 +425,9 @@
val add_frac_num = mk_meta_eq @{thm "add_frac_num"}
val add_num_frac = mk_meta_eq @{thm "add_num_frac"}
- fun prove_nz ss T t =
+ fun prove_nz ctxt =
+ let val ss = local_simpset_of ctxt
+ in fn T => fn t =>
let
val z = instantiate_cterm ([(zT,T)],[]) zr
val eq = instantiate_cterm ([(eqT,T)],[]) geq
@@ -434,20 +436,21 @@
(Thm.capply (Thm.capply eq t) z)))
in equal_elim (symmetric th) TrueI
end
+ end
- fun proc phi ss ct =
+ fun proc ctxt phi ss ct =
let
val ((x,y),(w,z)) =
(Thm.dest_binop #> (fn (a,b) => (Thm.dest_binop a, Thm.dest_binop b))) ct
val _ = map (HOLogic.dest_number o term_of) [x,y,z,w]
val T = ctyp_of_term x
- val [y_nz, z_nz] = map (prove_nz ss T) [y, z]
+ val [y_nz, z_nz] = map (prove_nz ctxt T) [y, z]
val th = instantiate' [SOME T] (map SOME [y,z,x,w]) add_frac_eq
in SOME (implies_elim (implies_elim th y_nz) z_nz)
end
handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE
- fun proc2 phi ss ct =
+ fun proc2 ctxt phi ss ct =
let
val (l,r) = Thm.dest_binop ct
val T = ctyp_of_term l
@@ -455,13 +458,13 @@
(Const(@{const_name "HOL.divide"},_)$_$_, _) =>
let val (x,y) = Thm.dest_binop l val z = r
val _ = map (HOLogic.dest_number o term_of) [x,y,z]
- val ynz = prove_nz ss T y
+ val ynz = prove_nz ctxt T y
in SOME (implies_elim (instantiate' [SOME T] (map SOME [y,x,z]) add_frac_num) ynz)
end
| (_, Const (@{const_name "HOL.divide"},_)$_$_) =>
let val (x,y) = Thm.dest_binop r val z = l
val _ = map (HOLogic.dest_number o term_of) [x,y,z]
- val ynz = prove_nz ss T y
+ val ynz = prove_nz ctxt T y
in SOME (implies_elim (instantiate' [SOME T] (map SOME [y,z,x]) add_num_frac) ynz)
end
| _ => NONE)
@@ -520,15 +523,15 @@
| _ => NONE)
handle TERM _ => NONE | CTERM _ => NONE | THM _ => NONE
-val add_frac_frac_simproc =
+fun add_frac_frac_simproc ctxt =
make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + (?w::?'a::field)/?z"}],
name = "add_frac_frac_simproc",
- proc = proc, identifier = []}
+ proc = proc ctxt, identifier = []}
-val add_frac_num_simproc =
+fun add_frac_num_simproc ctxt =
make_simproc {lhss = [@{cpat "(?x::?'a::field)/?y + ?z"}, @{cpat "?z + (?x::?'a::field)/?y"}],
name = "add_frac_num_simproc",
- proc = proc2, identifier = []}
+ proc = proc2 ctxt, identifier = []}
val ord_frac_simproc =
make_simproc
@@ -558,14 +561,15 @@
@{thm "diff_def"}, @{thm "minus_divide_left"},
@{thm "Numeral1_eq1_nat"}, @{thm "add_divide_distrib"} RS sym]
-val ss = HOL_basic_ss addsimps @{thms "Groebner_Basis.comp_arith"}
- addsimps ths addsimps comp_arith addsimps simp_thms
- addsimprocs field_cancel_numeral_factors
- addsimprocs [add_frac_frac_simproc, add_frac_num_simproc,
- ord_frac_simproc]
- addcongs [@{thm "if_weak_cong"}]
-val comp_conv = Simplifier.rewrite ss
+fun comp_conv ctxt = Simplifier.rewrite
+(HOL_basic_ss addsimps @{thms "Groebner_Basis.comp_arith"}
+ addsimps ths addsimps comp_arith addsimps simp_thms
+ addsimprocs field_cancel_numeral_factors
+ addsimprocs [add_frac_frac_simproc ctxt, add_frac_num_simproc ctxt,
+ ord_frac_simproc]
+ addcongs [@{thm "if_weak_cong"}])
+
fun numeral_is_const ct =
case term_of ct of