tidied using modern infix form
authorpaulson
Fri, 22 Oct 1999 17:04:19 +0200
changeset 7912 0e42be14f136
parent 7911 b8dee46d778a
child 7913 86be2946bb0b
tidied using modern infix form
src/HOL/Relation.thy
--- a/src/HOL/Relation.thy	Thu Oct 21 19:00:25 1999 +0200
+++ b/src/HOL/Relation.thy	Fri Oct 22 17:04:19 1999 +0200
@@ -6,21 +6,20 @@
 
 Relation = Prod +
 
-consts
-  O            :: "[('b * 'c)set, ('a * 'b)set] => ('a * 'c)set" (infixr 60)
-  converse     :: "('a*'b) set => ('b*'a) set"     ("(_^-1)" [1000] 999)
-  "^^"         :: "[('a*'b) set,'a set] => 'b set" (infixl 90)
-  
-defs
-  comp_def         "r O s == {(x,z). ? y. (x,y):s & (y,z):r}"
-  converse_def     "r^-1 == {(y,x). (x,y):r}"
-  Image_def        "r ^^ s == {y. ? x:s. (x,y):r}"
-  
 constdefs
-  Id     :: "('a * 'a)set"                 (*the identity relation*)
-      "Id == {p. ? x. p = (x,x)}"
+  converse :: "('a*'b) set => ('b*'a) set"               ("(_^-1)" [1000] 999)
+    "r^-1 == {(y,x). (x,y):r}"
+
+  comp  :: "[('b * 'c)set, ('a * 'b)set] => ('a * 'c)set"  (infixr "O" 60)
+    "r O s == {(x,z). ? y. (x,y):s & (y,z):r}"
 
-  diag   :: "'a set => ('a * 'a)set"
+  Image :: "[('a*'b) set,'a set] => 'b set"                (infixl "^^" 90)
+    "r ^^ s == {y. ? x:s. (x,y):r}"
+
+  Id    :: "('a * 'a)set"                            (*the identity relation*)
+    "Id == {p. ? x. p = (x,x)}"
+
+  diag  :: "'a set => ('a * 'a)set"          (*diagonal: identity over a set*)
     "diag(A) == UN x:A. {(x,x)}"
   
   Domain :: "('a*'b) set => 'a set"