adapt HOLCF to use Nat_Bijection library
authorhuffman
Wed, 10 Mar 2010 15:20:13 -0800
changeset 35701 0f5bf989da42
parent 35700 951974ce903e
child 35702 fb7a386a15cb
adapt HOLCF to use Nat_Bijection library
src/HOLCF/IsaMakefile
src/HOLCF/NatIso.thy
src/HOLCF/Universal.thy
--- a/src/HOLCF/IsaMakefile	Wed Mar 10 14:57:13 2010 -0800
+++ b/src/HOLCF/IsaMakefile	Wed Mar 10 15:20:13 2010 -0800
@@ -47,7 +47,6 @@
   HOLCF.thy \
   Lift.thy \
   LowerPD.thy \
-  NatIso.thy \
   One.thy \
   Pcpodef.thy \
   Pcpo.thy \
--- a/src/HOLCF/NatIso.thy	Wed Mar 10 14:57:13 2010 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,241 +0,0 @@
-(*  Title:      HOLCF/NatIso.thy
-    Author:     Brian Huffman
-*)
-
-header {* Isomorphisms of the Natural Numbers *}
-
-theory NatIso
-imports Parity
-begin
-
-subsection {* Isomorphism between naturals and sums of naturals *}
-
-primrec
-  sum2nat  :: "nat + nat \<Rightarrow> nat"
-where
-  "sum2nat (Inl a) = a + a"
-| "sum2nat (Inr b) = Suc (b + b)"
-
-primrec
-  nat2sum  :: "nat \<Rightarrow> nat + nat"
-where
-  "nat2sum 0 = Inl 0"
-| "nat2sum (Suc n) = (case nat2sum n of
-    Inl a \<Rightarrow> Inr a | Inr b \<Rightarrow> Inl (Suc b))"
-
-lemma nat2sum_sum2nat [simp]: "nat2sum (sum2nat x) = x"
-by (induct x, rule_tac [!] nat.induct, simp_all)
-
-lemma sum2nat_nat2sum [simp]: "sum2nat (nat2sum n) = n"
-by (induct n, auto split: sum.split)
-
-lemma inj_sum2nat: "inj sum2nat"
-by (rule inj_on_inverseI, rule nat2sum_sum2nat)
-
-lemma sum2nat_eq_iff [simp]: "sum2nat x = sum2nat y \<longleftrightarrow> x = y"
-by (rule inj_sum2nat [THEN inj_eq])
-
-lemma inj_nat2sum: "inj nat2sum"
-by (rule inj_on_inverseI, rule sum2nat_nat2sum)
-
-lemma nat2sum_eq_iff [simp]: "nat2sum x = nat2sum y \<longleftrightarrow> x = y"
-by (rule inj_nat2sum [THEN inj_eq])
-
-declare sum2nat.simps [simp del]
-declare nat2sum.simps [simp del]
-
-
-subsection {* Isomorphism between naturals and pairs of naturals *}
-
-function
-  prod2nat :: "nat \<times> nat \<Rightarrow> nat"
-where
-  "prod2nat (0, 0) = 0"
-| "prod2nat (0, Suc n) = Suc (prod2nat (n, 0))"
-| "prod2nat (Suc m, n) = Suc (prod2nat (m, Suc n))"
-by pat_completeness auto
-
-termination by (relation
-  "inv_image (measure id <*lex*> measure id) (\<lambda>(x, y). (x+y, x))") auto
-
-primrec
-  nat2prod :: "nat \<Rightarrow> nat \<times> nat"
-where
-  "nat2prod 0 = (0, 0)"
-| "nat2prod (Suc x) =
-    (case nat2prod x of (m, n) \<Rightarrow>
-      (case n of 0 \<Rightarrow> (0, Suc m) | Suc n \<Rightarrow> (Suc m, n)))"
-
-lemma nat2prod_prod2nat [simp]: "nat2prod (prod2nat x) = x"
-by (induct x, rule prod2nat.induct, simp_all)
-
-lemma prod2nat_nat2prod [simp]: "prod2nat (nat2prod n) = n"
-by (induct n, auto split: prod.split nat.split)
-
-lemma inj_prod2nat: "inj prod2nat"
-by (rule inj_on_inverseI, rule nat2prod_prod2nat)
-
-lemma prod2nat_eq_iff [simp]: "prod2nat x = prod2nat y \<longleftrightarrow> x = y"
-by (rule inj_prod2nat [THEN inj_eq])
-
-lemma inj_nat2prod: "inj nat2prod"
-by (rule inj_on_inverseI, rule prod2nat_nat2prod)
-
-lemma nat2prod_eq_iff [simp]: "nat2prod x = nat2prod y \<longleftrightarrow> x = y"
-by (rule inj_nat2prod [THEN inj_eq])
-
-subsubsection {* Ordering properties *}
-
-lemma fst_snd_le_prod2nat: "fst x \<le> prod2nat x \<and> snd x \<le> prod2nat x"
-by (induct x rule: prod2nat.induct) auto
-
-lemma fst_le_prod2nat: "fst x \<le> prod2nat x"
-by (rule fst_snd_le_prod2nat [THEN conjunct1])
-
-lemma snd_le_prod2nat: "snd x \<le> prod2nat x"
-by (rule fst_snd_le_prod2nat [THEN conjunct2])
-
-lemma le_prod2nat_1: "a \<le> prod2nat (a, b)"
-using fst_le_prod2nat [where x="(a, b)"] by simp
-
-lemma le_prod2nat_2: "b \<le> prod2nat (a, b)"
-using snd_le_prod2nat [where x="(a, b)"] by simp
-
-declare prod2nat.simps [simp del]
-declare nat2prod.simps [simp del]
-
-
-subsection {* Isomorphism between naturals and finite sets of naturals *}
-
-subsubsection {* Preliminaries *}
-
-lemma finite_vimage_Suc_iff: "finite (Suc -` F) \<longleftrightarrow> finite F"
-apply (safe intro!: finite_vimageI inj_Suc)
-apply (rule finite_subset [where B="insert 0 (Suc ` Suc -` F)"])
-apply (rule subsetI, case_tac x, simp, simp)
-apply (rule finite_insert [THEN iffD2])
-apply (erule finite_imageI)
-done
-
-lemma vimage_Suc_insert_0: "Suc -` insert 0 A = Suc -` A"
-by auto
-
-lemma vimage_Suc_insert_Suc:
-  "Suc -` insert (Suc n) A = insert n (Suc -` A)"
-by auto
-
-lemma even_nat_Suc_div_2: "even x \<Longrightarrow> Suc x div 2 = x div 2"
-by (simp only: numeral_2_eq_2 even_nat_plus_one_div_two)
-
-lemma div2_even_ext_nat:
-  "\<lbrakk>x div 2 = y div 2; even x = even y\<rbrakk> \<Longrightarrow> (x::nat) = y"
-apply (rule mod_div_equality [of x 2, THEN subst])
-apply (rule mod_div_equality [of y 2, THEN subst])
-apply (case_tac "even x")
-apply (simp add: numeral_2_eq_2 even_nat_equiv_def)
-apply (simp add: numeral_2_eq_2 odd_nat_equiv_def)
-done
-
-subsubsection {* From sets to naturals *}
-
-definition
-  set2nat :: "nat set \<Rightarrow> nat" where
-  "set2nat = setsum (op ^ 2)"
-
-lemma set2nat_empty [simp]: "set2nat {} = 0"
-by (simp add: set2nat_def)
-
-lemma set2nat_insert [simp]:
-  "\<lbrakk>finite A; n \<notin> A\<rbrakk> \<Longrightarrow> set2nat (insert n A) = 2^n + set2nat A"
-by (simp add: set2nat_def)
-
-lemma even_set2nat_iff: "finite A \<Longrightarrow> even (set2nat A) = (0 \<notin> A)"
-by (unfold set2nat_def, erule finite_induct, auto)
-
-lemma set2nat_vimage_Suc: "set2nat (Suc -` A) = set2nat A div 2"
-apply (case_tac "finite A")
-apply (erule finite_induct, simp)
-apply (case_tac x)
-apply (simp add: even_nat_Suc_div_2 even_set2nat_iff vimage_Suc_insert_0)
-apply (simp add: finite_vimageI add_commute vimage_Suc_insert_Suc)
-apply (simp add: set2nat_def finite_vimage_Suc_iff)
-done
-
-lemmas set2nat_div_2 = set2nat_vimage_Suc [symmetric]
-
-subsubsection {* From naturals to sets *}
-
-definition
-  nat2set :: "nat \<Rightarrow> nat set" where
-  "nat2set x = {n. odd (x div 2 ^ n)}"
-
-lemma nat2set_0 [simp]: "0 \<in> nat2set x \<longleftrightarrow> odd x"
-by (simp add: nat2set_def)
-
-lemma nat2set_Suc [simp]:
-  "Suc n \<in> nat2set x \<longleftrightarrow> n \<in> nat2set (x div 2)"
-by (simp add: nat2set_def div_mult2_eq)
-
-lemma nat2set_zero [simp]: "nat2set 0 = {}"
-by (simp add: nat2set_def)
-
-lemma nat2set_div_2: "nat2set (x div 2) = Suc -` nat2set x"
-by auto
-
-lemma nat2set_plus_power_2:
-  "n \<notin> nat2set z \<Longrightarrow> nat2set (2 ^ n + z) = insert n (nat2set z)"
- apply (induct n arbitrary: z, simp_all)
-  apply (rule set_ext, induct_tac x, simp, simp add: even_nat_Suc_div_2)
- apply (rule set_ext, induct_tac x, simp, simp add: add_commute)
-done
-
-lemma finite_nat2set [simp]: "finite (nat2set n)"
-apply (induct n rule: nat_less_induct)
-apply (case_tac "n = 0", simp)
-apply (drule_tac x="n div 2" in spec, simp)
-apply (simp add: nat2set_div_2)
-apply (simp add: finite_vimage_Suc_iff)
-done
-
-subsubsection {* Proof of isomorphism *}
-
-lemma set2nat_nat2set [simp]: "set2nat (nat2set n) = n"
-apply (induct n rule: nat_less_induct)
-apply (case_tac "n = 0", simp)
-apply (drule_tac x="n div 2" in spec, simp)
-apply (simp add: nat2set_div_2 set2nat_vimage_Suc)
-apply (erule div2_even_ext_nat)
-apply (simp add: even_set2nat_iff)
-done
-
-lemma nat2set_set2nat [simp]: "finite A \<Longrightarrow> nat2set (set2nat A) = A"
-apply (erule finite_induct, simp_all)
-apply (simp add: nat2set_plus_power_2)
-done
-
-lemma inj_nat2set: "inj nat2set"
-by (rule inj_on_inverseI, rule set2nat_nat2set)
-
-lemma nat2set_eq_iff [simp]: "nat2set x = nat2set y \<longleftrightarrow> x = y"
-by (rule inj_eq [OF inj_nat2set])
-
-lemma inj_on_set2nat: "inj_on set2nat (Collect finite)"
-by (rule inj_on_inverseI [where g="nat2set"], simp)
-
-lemma set2nat_eq_iff [simp]:
-  "\<lbrakk>finite A; finite B\<rbrakk> \<Longrightarrow> set2nat A = set2nat B \<longleftrightarrow> A = B"
-by (rule iffI, simp add: inj_onD [OF inj_on_set2nat], simp)
-
-subsubsection {* Ordering properties *}
-
-lemma nat_less_power2: "n < 2^n"
-by (induct n) simp_all
-
-lemma less_set2nat: "\<lbrakk>finite A; x \<in> A\<rbrakk> \<Longrightarrow> x < set2nat A"
-unfolding set2nat_def
-apply (rule order_less_le_trans [where y="setsum (op ^ 2) {x}"])
-apply (simp add: nat_less_power2)
-apply (erule setsum_mono2, simp, simp)
-done
-
-end
\ No newline at end of file
--- a/src/HOLCF/Universal.thy	Wed Mar 10 14:57:13 2010 -0800
+++ b/src/HOLCF/Universal.thy	Wed Mar 10 15:20:13 2010 -0800
@@ -3,7 +3,7 @@
 *)
 
 theory Universal
-imports CompactBasis NatIso
+imports CompactBasis Nat_Bijection
 begin
 
 subsection {* Basis datatype *}
@@ -13,7 +13,7 @@
 definition
   node :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis set \<Rightarrow> ubasis"
 where
-  "node i a S = Suc (prod2nat (i, prod2nat (a, set2nat S)))"
+  "node i a S = Suc (prod_encode (i, prod_encode (a, set_encode S)))"
 
 lemma node_not_0 [simp]: "node i a S \<noteq> 0"
 unfolding node_def by simp
@@ -24,30 +24,30 @@
 lemma node_inject [simp]:
   "\<lbrakk>finite S; finite T\<rbrakk>
     \<Longrightarrow> node i a S = node j b T \<longleftrightarrow> i = j \<and> a = b \<and> S = T"
-unfolding node_def by simp
+unfolding node_def by (simp add: prod_encode_eq set_encode_eq)
 
 lemma node_gt0: "i < node i a S"
 unfolding node_def less_Suc_eq_le
-by (rule le_prod2nat_1)
+by (rule le_prod_encode_1)
 
 lemma node_gt1: "a < node i a S"
 unfolding node_def less_Suc_eq_le
-by (rule order_trans [OF le_prod2nat_1 le_prod2nat_2])
+by (rule order_trans [OF le_prod_encode_1 le_prod_encode_2])
 
 lemma nat_less_power2: "n < 2^n"
 by (induct n) simp_all
 
 lemma node_gt2: "\<lbrakk>finite S; b \<in> S\<rbrakk> \<Longrightarrow> b < node i a S"
-unfolding node_def less_Suc_eq_le set2nat_def
-apply (rule order_trans [OF _ le_prod2nat_2])
-apply (rule order_trans [OF _ le_prod2nat_2])
+unfolding node_def less_Suc_eq_le set_encode_def
+apply (rule order_trans [OF _ le_prod_encode_2])
+apply (rule order_trans [OF _ le_prod_encode_2])
 apply (rule order_trans [where y="setsum (op ^ 2) {b}"])
 apply (simp add: nat_less_power2 [THEN order_less_imp_le])
 apply (erule setsum_mono2, simp, simp)
 done
 
-lemma eq_prod2nat_pairI:
-  "\<lbrakk>fst (nat2prod x) = a; snd (nat2prod x) = b\<rbrakk> \<Longrightarrow> x = prod2nat (a, b)"
+lemma eq_prod_encode_pairI:
+  "\<lbrakk>fst (prod_decode x) = a; snd (prod_decode x) = b\<rbrakk> \<Longrightarrow> x = prod_encode (a, b)"
 by (erule subst, erule subst, simp)
 
 lemma node_cases:
@@ -57,10 +57,10 @@
  apply (cases x)
   apply (erule 1)
  apply (rule 2)
-  apply (rule finite_nat2set)
+  apply (rule finite_set_decode)
  apply (simp add: node_def)
- apply (rule eq_prod2nat_pairI [OF refl])
- apply (rule eq_prod2nat_pairI [OF refl refl])
+ apply (rule eq_prod_encode_pairI [OF refl])
+ apply (rule eq_prod_encode_pairI [OF refl refl])
 done
 
 lemma node_induct: