author | paulson |
Fri, 05 Mar 2004 15:30:49 +0100 | |
changeset 14439 | 0f626a712456 |
parent 14438 | 6b41e98931f8 |
child 14440 | 3d6ed7eedfc8 |
--- a/src/HOL/Algebra/abstract/Ring.thy Fri Mar 05 15:26:14 2004 +0100 +++ b/src/HOL/Algebra/abstract/Ring.thy Fri Mar 05 15:30:49 2004 +0100 @@ -129,7 +129,7 @@ proof (induct n) case 0 show ?case by simp next - case Suc thus ?case by (simp add: assoc) + case Suc thus ?case by (simp add: plus_ac0.assoc) qed lemma natsum_cong [cong]: