strengthened and renamed lemmas asym_if_irrefl_and_trans and asymp_if_irreflp_and_transp
authordesharna
Mon, 19 Dec 2022 08:44:18 +0100
changeset 76693 0fbe27cf295a
parent 76692 98880b2430ea
child 76694 2f8219460ac9
strengthened and renamed lemmas asym_if_irrefl_and_trans and asymp_if_irreflp_and_transp
NEWS
src/HOL/Relation.thy
--- a/NEWS	Mon Dec 19 08:37:03 2022 +0100
+++ b/NEWS	Mon Dec 19 08:44:18 2022 +0100
@@ -62,11 +62,11 @@
       antisymp_on_conversep[simp]
       antisymp_on_if_asymp_on
       antisymp_on_subset
-      asym_if_irrefl_and_trans
+      asym_on_iff_irrefl_on_if_trans
       asym_onD
       asym_onI
       asym_on_converse[simp]
-      asymp_if_irreflp_and_transp
+      asymp_on_iff_irreflp_on_if_transp
       asymp_onD
       asymp_onI
       asymp_on_asym_on_eq[pred_set_conv]
--- a/src/HOL/Relation.thy	Mon Dec 19 08:37:03 2022 +0100
+++ b/src/HOL/Relation.thy	Mon Dec 19 08:44:18 2022 +0100
@@ -665,11 +665,11 @@
 lemma transp_singleton [simp]: "transp (\<lambda>x y. x = a \<and> y = a)"
   by (simp add: transp_def)
 
-lemma asym_if_irrefl_and_trans: "irrefl R \<Longrightarrow> trans R \<Longrightarrow> asym R"
-  by (auto intro: asymI dest: transD irreflD)
+lemma asym_on_iff_irrefl_on_if_trans: "trans r \<Longrightarrow> asym_on A r \<longleftrightarrow> irrefl_on A r"
+  by (auto intro: irrefl_onI dest: transD asym_onD irrefl_onD)
 
-lemma asymp_if_irreflp_and_transp: "irreflp R \<Longrightarrow> transp R \<Longrightarrow> asymp R"
-  by (rule asym_if_irrefl_and_trans[to_pred])
+lemma asymp_on_iff_irreflp_on_if_transp: "transp R \<Longrightarrow> asymp_on A R \<longleftrightarrow> irreflp_on A R"
+  by (rule asym_on_iff_irrefl_on_if_trans[to_pred])
 
 context preorder
 begin