--- a/src/ZF/Integ/Bin.ML Thu Sep 07 21:18:18 2000 +0200
+++ b/src/ZF/Integ/Bin.ML Thu Sep 07 21:21:07 2000 +0200
@@ -29,9 +29,10 @@
by (asm_simp_tac (simpset() addsimps bin.case_eqns) 1);
qed "NCons_BIT";
-val NCons_simps = [NCons_Pls_0, NCons_Pls_1,
- NCons_Min_0, NCons_Min_1,
- NCons_BIT];
+bind_thms ("NCons_simps",
+ [NCons_Pls_0, NCons_Pls_1,
+ NCons_Min_0, NCons_Min_1,
+ NCons_BIT]);
Addsimps NCons_simps;
--- a/src/ZF/Integ/EquivClass.ML Thu Sep 07 21:18:18 2000 +0200
+++ b/src/ZF/Integ/EquivClass.ML Thu Sep 07 21:21:07 2000 +0200
@@ -120,7 +120,7 @@
**)
(*Conversion rule*)
-val prems as [equivA,bcong,_] = goal EquivClass.thy
+val prems as [equivA,bcong,_] = goal (the_context ())
"[| equiv(A,r); congruent(r,b); a: A |] ==> (UN x:r``{a}. b(x)) = b(a)";
by (cut_facts_tac prems 1);
by (rtac ([refl RS UN_cong, UN_constant] MRS trans) 1);
@@ -165,7 +165,7 @@
by (Blast_tac 1);
qed "congruent2_implies_congruent";
-val equivA::prems = goalw EquivClass.thy [congruent_def]
+val equivA::prems = goalw (the_context ()) [congruent_def]
"[| equiv(A,r); congruent2(r,b); a: A |] ==> \
\ congruent(r, %x1. UN x2:r``{a}. b(x1,x2))";
by (cut_facts_tac (equivA::prems) 1);
@@ -178,7 +178,7 @@
by (Blast_tac 1);
qed "congruent2_implies_congruent_UN";
-val prems as equivA::_ = goal EquivClass.thy
+val prems as equivA::_ = goal (the_context ())
"[| equiv(A,r); congruent2(r,b); a1: A; a2: A |] \
\ ==> (UN x1:r``{a1}. UN x2:r``{a2}. b(x1,x2)) = b(a1,a2)";
by (cut_facts_tac prems 1);
--- a/src/ZF/Integ/Int.ML Thu Sep 07 21:18:18 2000 +0200
+++ b/src/ZF/Integ/Int.ML Thu Sep 07 21:21:07 2000 +0200
@@ -36,7 +36,7 @@
by (Fast_tac 1);
qed "intrelE_lemma";
-val [major,minor] = goal thy
+val [major,minor] = goal (the_context ())
"[| p: intrel; \
\ !!x1 y1 x2 y2. [| p = <<x1,y1>,<x2,y2>>; x1#+y2 = x2#+y1; \
\ x1: nat; y1: nat; x2: nat; y2: nat |] ==> Q |] \
@@ -69,7 +69,7 @@
add_0_right, add_succ_right];
Addcongs [conj_cong];
-val eq_intrelD = equiv_intrel RSN (2,eq_equiv_class);
+bind_thm ("eq_intrelD", equiv_intrel RSN (2,eq_equiv_class));
(** int_of: the injection from nat to int **)
@@ -486,7 +486,7 @@
qed "zadd_left_commute";
(*Integer addition is an AC operator*)
-val zadd_ac = [zadd_assoc, zadd_commute, zadd_left_commute];
+bind_thms ("zadd_ac", [zadd_assoc, zadd_commute, zadd_left_commute]);
Goalw [int_of_def] "$# (m #+ n) = ($#m) $+ ($#n)";
by (asm_simp_tac (simpset() addsimps [zadd]) 1);
@@ -643,7 +643,7 @@
qed "zmult_left_commute";
(*Integer multiplication is an AC operator*)
-val zmult_ac = [zmult_assoc, zmult_commute, zmult_left_commute];
+bind_thms ("zmult_ac", [zmult_assoc, zmult_commute, zmult_left_commute]);
Goalw [int_def]
"[| z1: int; z2: int; w: int |] \
@@ -664,8 +664,8 @@
zadd_zmult_distrib]) 1);
qed "zadd_zmult_distrib2";
-val int_typechecks =
- [int_of_type, zminus_type, zmagnitude_type, zadd_type, zmult_type];
+bind_thms ("int_typechecks",
+ [int_of_type, zminus_type, zmagnitude_type, zadd_type, zmult_type]);
(*** Subtraction laws ***)
@@ -680,20 +680,13 @@
qed "zminus_zdiff_eq";
Addsimps [zminus_zdiff_eq];
-Goal "$- (z $- y) = y $- z";
-by (simp_tac (simpset() addsimps [zdiff_def, zadd_commute])1);
-qed "zminus_zdiff_eq";
-Addsimps [zminus_zdiff_eq];
-
Goalw [zdiff_def] "(z1 $- z2) $* w = (z1 $* w) $- (z2 $* w)";
by (stac zadd_zmult_distrib 1);
by (simp_tac (simpset() addsimps [zmult_zminus]) 1);
qed "zdiff_zmult_distrib";
-val zmult_commute'= inst "z" "w" zmult_commute;
-
Goal "w $* (z1 $- z2) = (w $* z1) $- (w $* z2)";
-by (simp_tac (simpset() addsimps [zmult_commute',zdiff_zmult_distrib]) 1);
+by (simp_tac (simpset() addsimps [inst "z" "w" zmult_commute, zdiff_zmult_distrib]) 1);
qed "zdiff_zmult_distrib2";
Goal "x $+ (y $- z) = (x $+ y) $- z";