--- a/src/HOL/Analysis/Improper_Integral.thy Mon Jul 29 15:26:56 2024 +0200
+++ b/src/HOL/Analysis/Improper_Integral.thy Mon Jul 29 16:22:12 2024 +0100
@@ -959,8 +959,9 @@
by (simp add: dist_norm norm_minus_commute)
also have "... \<le> \<epsilon> * (b \<bullet> i - a \<bullet> i) / \<bar>v \<bullet> i - u \<bullet> i\<bar> / (4 * content (cbox a b))"
proof (intro mult_right_mono divide_left_mono divide_right_mono uvi)
- show "\<bar>v \<bullet> i - u \<bullet> i\<bar> > 0"
- using u_less_v [OF \<open>i \<in> Basis\<close>] by force
+ show "norm (v - u) * \<bar>v \<bullet> i - u \<bullet> i\<bar> > 0"
+ using u_less_v [OF \<open>i \<in> Basis\<close>]
+ by (auto simp: less_eq_real_def zero_less_mult_iff that)
show "\<epsilon> * (b \<bullet> i - a \<bullet> i) \<ge> 0"
using a_less_b \<open>0 < \<epsilon>\<close> \<open>i \<in> Basis\<close> by force
qed auto
--- a/src/HOL/Decision_Procs/Approximation_Bounds.thy Mon Jul 29 15:26:56 2024 +0200
+++ b/src/HOL/Decision_Procs/Approximation_Bounds.thy Mon Jul 29 16:22:12 2024 +0100
@@ -956,14 +956,13 @@
using bnds_sqrt'[of ?sxx prec] by auto
finally
have "sqrt (1 + x*x) \<le> ub_sqrt prec ?sxx" .
- hence \<dagger>: "?R \<le> ?fR" by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le)
+ hence "?R \<le> ?fR" by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le)
hence "0 < ?fR" and "0 < real_of_float ?fR" using \<open>0 < ?R\<close> by auto
have monotone: "?DIV \<le> x / ?R"
proof -
have "?DIV \<le> real_of_float x / ?fR" by (rule float_divl)
- also have "\<dots> \<le> x / ?R"
- by (simp add: \<dagger> assms divide_left_mono divisor_gt0)
+ also have "\<dots> \<le> x / ?R" by (rule divide_left_mono[OF \<open>?R \<le> ?fR\<close> \<open>0 \<le> real_of_float x\<close> mult_pos_pos[OF order_less_le_trans[OF divisor_gt0 \<open>?R \<le> real_of_float ?fR\<close>] divisor_gt0]])
finally show ?thesis .
qed
@@ -1082,16 +1081,16 @@
also have "\<dots> \<le> sqrt (1 + x*x)"
by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq truncate_down_le)
finally have "lb_sqrt prec ?sxx \<le> sqrt (1 + x*x)" .
- hence \<dagger>: "?fR \<le> ?R"
+ hence "?fR \<le> ?R"
by (auto simp: float_plus_down.rep_eq plus_down_def truncate_down_le)
- have monotone: "x / ?R \<le> (float_divr prec x ?fR)"
- proof -
have "0 < real_of_float ?fR"
by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq
intro!: truncate_down_ge1 lb_sqrt_lower_bound order_less_le_trans[OF zero_less_one]
truncate_down_nonneg add_nonneg_nonneg)
- then have "x / ?R \<le> x / ?fR"
- using \<dagger> assms divide_left_mono by blast
+ have monotone: "x / ?R \<le> (float_divr prec x ?fR)"
+ proof -
+ from divide_left_mono[OF \<open>?fR \<le> ?R\<close> \<open>0 \<le> real_of_float x\<close> mult_pos_pos[OF divisor_gt0 \<open>0 < real_of_float ?fR\<close>]]
+ have "x / ?R \<le> x / ?fR" .
also have "\<dots> \<le> ?DIV" by (rule float_divr)
finally show ?thesis .
qed
--- a/src/HOL/Fields.thy Mon Jul 29 15:26:56 2024 +0200
+++ b/src/HOL/Fields.thy Mon Jul 29 16:22:12 2024 +0100
@@ -949,7 +949,7 @@
by (auto simp: field_simps zero_less_mult_iff mult_strict_right_mono)
lemma divide_left_mono:
- "\<lbrakk>b \<le> a; 0 \<le> c; 0 < b\<rbrakk> \<Longrightarrow> c / a \<le> c / b"
+ "\<lbrakk>b \<le> a; 0 \<le> c; 0 < a*b\<rbrakk> \<Longrightarrow> c / a \<le> c / b"
by (auto simp: field_simps zero_less_mult_iff mult_right_mono)
lemma divide_strict_left_mono_neg:
@@ -1156,7 +1156,7 @@
lemma divide_right_mono_neg: "a \<le> b \<Longrightarrow> c \<le> 0 \<Longrightarrow> b / c \<le> a / c"
by (auto dest: divide_right_mono [of _ _ "- c"])
-lemma divide_left_mono_neg: "a \<le> b \<Longrightarrow> c \<le> 0 \<Longrightarrow> 0 < a \<Longrightarrow> c / a \<le> c / b"
+lemma divide_left_mono_neg: "a \<le> b \<Longrightarrow> c \<le> 0 \<Longrightarrow> 0 < a * b \<Longrightarrow> c / a \<le> c / b"
by (auto simp add: mult.commute dest: divide_left_mono [of _ _ "- c"])
lemma inverse_le_iff: "inverse a \<le> inverse b \<longleftrightarrow> (0 < a * b \<longrightarrow> b \<le> a) \<and> (a * b \<le> 0 \<longrightarrow> a \<le> b)"