--- a/src/HOL/Library/Order_Relation.thy Fri Aug 10 16:19:51 2012 +0200
+++ b/src/HOL/Library/Order_Relation.thy Fri Aug 10 16:29:40 2012 +0200
@@ -71,9 +71,9 @@
lemma subset_Image_Image_iff:
"\<lbrakk> Preorder r; A \<subseteq> Field r; B \<subseteq> Field r\<rbrakk> \<Longrightarrow>
r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b,a):r)"
-apply(auto simp add: subset_eq preorder_on_def refl_on_def Image_def)
-apply metis
-by(metis trans_def)
+unfolding preorder_on_def refl_on_def Image_def
+apply (simp add: subset_eq)
+unfolding trans_def by fast
lemma subset_Image1_Image1_iff:
"\<lbrakk> Preorder r; a : Field r; b : Field r\<rbrakk> \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b,a):r"
--- a/src/HOL/Library/Zorn.thy Fri Aug 10 16:19:51 2012 +0200
+++ b/src/HOL/Library/Zorn.thy Fri Aug 10 16:29:40 2012 +0200
@@ -8,7 +8,7 @@
header {* Zorn's Lemma *}
theory Zorn
-imports Order_Relation Main
+imports Order_Relation
begin
(* Define globally? In Set.thy? *)
@@ -143,7 +143,7 @@
the subset relation!*}
lemma empty_set_mem_chain: "({} :: 'a set set) \<in> chain S"
-by (unfold chain_def chain_subset_def) auto
+ by (unfold chain_def chain_subset_def) simp
lemma super_subset_chain: "super S c \<subseteq> chain S"
by (unfold super_def) blast
@@ -152,13 +152,13 @@
by (unfold maxchain_def) blast
lemma mem_super_Ex: "c \<in> chain S - maxchain S ==> EX d. d \<in> super S c"
- by (unfold super_def maxchain_def) auto
+ by (unfold super_def maxchain_def) simp
lemma select_super:
"c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c): super S c"
apply (erule mem_super_Ex [THEN exE])
apply (rule someI2)
- apply auto
+ apply simp+
done
lemma select_not_equals:
@@ -286,7 +286,7 @@
proof (simp add:Chain_def, intro allI impI, elim conjE)
fix a b
assume "a \<in> Field r" "?B a \<in> C" "b \<in> Field r" "?B b \<in> C"
- hence "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" using 2 by auto
+ hence "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" using 2 by simp
thus "(a, b) \<in> r \<or> (b, a) \<in> r" using `Preorder r` `a:Field r` `b:Field r`
by (simp add:subset_Image1_Image1_iff)
qed
@@ -296,7 +296,7 @@
fix a B assume aB: "B:C" "a:B"
with 1 obtain x where "x:Field r" "B = r^-1 `` {x}" by auto
thus "(a,u) : r" using uA aB `Preorder r`
- by (auto simp add: preorder_on_def refl_on_def) (metis transD)
+ by (simp add: preorder_on_def refl_on_def) (rule transD, blast+)
qed
thus "EX u:Field r. ?P u" using `u:Field r` by blast
qed
@@ -326,8 +326,7 @@
lemma trans_init_seg_of:
"r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t"
-by(simp (no_asm_use) add: init_seg_of_def)
- (metis Domain_iff UnCI Un_absorb2 subset_trans)
+by (simp (no_asm_use) add: init_seg_of_def) (metis (no_types) in_mono order_trans)
lemma antisym_init_seg_of:
"r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r=s"
@@ -335,20 +334,17 @@
lemma Chain_init_seg_of_Union:
"R \<in> Chain init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R"
-by(auto simp add:init_seg_of_def Chain_def Ball_def) blast
+by(simp add: init_seg_of_def Chain_def Ball_def) blast
lemma chain_subset_trans_Union:
"chain\<^bsub>\<subseteq>\<^esub> R \<Longrightarrow> \<forall>r\<in>R. trans r \<Longrightarrow> trans(\<Union>R)"
-apply(auto simp add:chain_subset_def)
+apply(simp add:chain_subset_def)
apply(simp (no_asm_use) add:trans_def)
-apply (metis subsetD)
-done
+by (metis subsetD)
lemma chain_subset_antisym_Union:
"chain\<^bsub>\<subseteq>\<^esub> R \<Longrightarrow> \<forall>r\<in>R. antisym r \<Longrightarrow> antisym(\<Union>R)"
-apply(auto simp add:chain_subset_def antisym_def)
-apply (metis subsetD)
-done
+by (simp add:chain_subset_def antisym_def) (metis subsetD)
lemma chain_subset_Total_Union:
assumes "chain\<^bsub>\<subseteq>\<^esub> R" "\<forall>r\<in>R. Total r"
@@ -403,7 +399,7 @@
-- {*The initial segment relation on well-orders: *}
let ?WO = "{r::('a*'a)set. Well_order r}"
def I \<equiv> "init_seg_of \<inter> ?WO \<times> ?WO"
- have I_init: "I \<subseteq> init_seg_of" by(auto simp:I_def)
+ have I_init: "I \<subseteq> init_seg_of" by(simp add: I_def)
hence subch: "!!R. R : Chain I \<Longrightarrow> chain\<^bsub>\<subseteq>\<^esub> R"
by(auto simp:init_seg_of_def chain_subset_def Chain_def)
have Chain_wo: "!!R r. R \<in> Chain I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r"
@@ -437,7 +433,7 @@
by(simp add: Chain_init_seg_of_Union)
ultimately have "\<Union>R : ?WO \<and> (\<forall>r\<in>R. (r,\<Union>R) : I)"
using mono_Chain[OF I_init] `R \<in> Chain I`
- by(simp (no_asm) add:I_def del:Field_Union)(metis Chain_wo subsetD)
+ by(simp (no_asm) add:I_def del:Field_Union)(metis Chain_wo)
}
hence 1: "\<forall>R \<in> Chain I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r,u) : I" by (subst FI) blast
--{*Zorn's Lemma yields a maximal well-order m:*}
@@ -475,7 +471,7 @@
moreover have "wf(?m-Id)"
proof-
have "wf ?s" using `x \<notin> Field m`
- by(auto simp add:wf_eq_minimal Field_def Domain_unfold Domain_converse [symmetric]) metis
+ by(simp add:wf_eq_minimal Field_def Domain_unfold Domain_converse [symmetric]) metis
thus ?thesis using `wf(m-Id)` `x \<notin> Field m`
wf_subset[OF `wf ?s` Diff_subset]
by (fastforce intro!: wf_Un simp add: Un_Diff Field_def)