Changed format of realizers / correctness proofs.
authorberghofe
Wed, 27 Nov 2002 17:06:47 +0100
changeset 13725 12404b452034
parent 13724 06ded8d18d02
child 13726 9550a6f4ed4a
Changed format of realizers / correctness proofs.
src/HOL/Extraction.thy
src/HOL/Tools/datatype_realizer.ML
src/HOL/Tools/inductive_realizer.ML
--- a/src/HOL/Extraction.thy	Mon Nov 25 20:32:29 2002 +0100
+++ b/src/HOL/Extraction.thy	Wed Nov 27 17:06:47 2002 +0100
@@ -13,7 +13,31 @@
 subsection {* Setup *}
 
 ML_setup {*
+fun realizes_set_proc (Const ("realizes", Type ("fun", [Type ("Null", []), _])) $ r $
+      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
+        (Var (ixn, U), ts) => Some (list_comb (Var (ixn, binder_types U @
+           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
+      | (Free (s, U), ts) => Some (list_comb (Free (s, binder_types U @
+           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
+      | _ => None)
+  | realizes_set_proc (Const ("realizes", Type ("fun", [T, _])) $ r $
+      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
+        (Var (ixn, U), ts) => Some (list_comb (Var (ixn, T :: binder_types U @
+           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
+      | (Free (s, U), ts) => Some (list_comb (Free (s, T :: binder_types U @
+           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
+      | _ => None)
+  | realizes_set_proc _ = None;
+
+fun mk_realizes_set r rT s (setT as Type ("set", [elT])) =
+  Abs ("x", elT, Const ("realizes", rT --> HOLogic.boolT --> HOLogic.boolT) $
+    incr_boundvars 1 r $ (Const ("op :", elT --> setT --> HOLogic.boolT) $
+      Bound 0 $ incr_boundvars 1 s));
+
   Context.>> (fn thy => thy |>
+    Extraction.add_types
+      [("bool", ([], None)),
+       ("set", ([realizes_set_proc], Some mk_realizes_set))] |>
     Extraction.set_preprocessor (fn sg =>
       Proofterm.rewrite_proof_notypes
         ([], ("HOL/elim_cong", RewriteHOLProof.elim_cong) ::
@@ -189,223 +213,214 @@
   "P x y \<Longrightarrow> P (fst (x, y)) (snd (x, y))" by simp
 
 realizers
-  impI (P, Q): "\<lambda>P Q pq. pq"
+  impI (P, Q): "\<lambda>pq. pq"
     "\<Lambda>P Q pq (h: _). allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
 
   impI (P): "Null"
     "\<Lambda>P Q (h: _). allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
 
-  impI (Q): "\<lambda>P Q q. q" "\<Lambda>P Q q. impI \<cdot> _ \<cdot> _"
+  impI (Q): "\<lambda>q. q" "\<Lambda>P Q q. impI \<cdot> _ \<cdot> _"
 
-  impI: "Null" "\<Lambda>P Q. impI \<cdot> _ \<cdot> _"
+  impI: "Null" "impI"
 
-  mp (P, Q): "\<lambda>P Q pq. pq"
+  mp (P, Q): "\<lambda>pq. pq"
     "\<Lambda>P Q pq (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
 
   mp (P): "Null"
     "\<Lambda>P Q (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
 
-  mp (Q): "\<lambda>P Q q. q" "\<Lambda>P Q q. mp \<cdot> _ \<cdot> _"
+  mp (Q): "\<lambda>q. q" "\<Lambda>P Q q. mp \<cdot> _ \<cdot> _"
 
-  mp: "Null" "\<Lambda>P Q. mp \<cdot> _ \<cdot> _"
+  mp: "Null" "mp"
 
-  allI (P): "\<lambda>P p. p" "\<Lambda>P p. allI \<cdot> _"
+  allI (P): "\<lambda>p. p" "\<Lambda>P p. allI \<cdot> _"
 
-  allI: "Null" "\<Lambda>P. allI \<cdot> _"
+  allI: "Null" "allI"
 
-  spec (P): "\<lambda>P x p. p x" "\<Lambda>P x p. spec \<cdot> _ \<cdot> x"
+  spec (P): "\<lambda>x p. p x" "\<Lambda>P x p. spec \<cdot> _ \<cdot> x"
 
-  spec: "Null" "\<Lambda>P x. spec \<cdot> _ \<cdot> x"
+  spec: "Null" "spec"
 
-  exI (P): "\<lambda>P x p. (x, p)" "\<Lambda>P. exI_realizer \<cdot> _"
+  exI (P): "\<lambda>x p. (x, p)" "\<Lambda>P. exI_realizer \<cdot> _"
 
-  exI: "\<lambda>P x. x" "\<Lambda>P x (h: _). h"
+  exI: "\<lambda>x. x" "\<Lambda>P x (h: _). h"
 
-  exE (P, Q): "\<lambda>P Q p pq. pq (fst p) (snd p)"
+  exE (P, Q): "\<lambda>p pq. pq (fst p) (snd p)"
     "\<Lambda>P Q p (h1: _) pq (h2: _). h2 \<cdot> (fst p) \<cdot> (snd p) \<bullet> h1"
 
   exE (P): "Null"
     "\<Lambda>P Q p (h1: _) (h2: _). h2 \<cdot> (fst p) \<cdot> (snd p) \<bullet> h1"
 
-  exE (Q): "\<lambda>P Q x pq. pq x"
+  exE (Q): "\<lambda>x pq. pq x"
     "\<Lambda>P Q x (h1: _) pq (h2: _). h2 \<cdot> x \<bullet> h1"
 
   exE: "Null"
     "\<Lambda>P Q x (h1: _) (h2: _). h2 \<cdot> x \<bullet> h1"
 
-  conjI (P, Q): "\<lambda>P Q p q. (p, q)"
-    "\<Lambda>P Q p (h: _) q. conjI_realizer \<cdot>
-       (\<lambda>p. realizes p P) \<cdot> p \<cdot> (\<lambda>q. realizes q Q) \<cdot> q \<bullet> h"
+  conjI (P, Q): "Pair"
+    "\<Lambda>P Q p (h: _) q. conjI_realizer \<cdot> P \<cdot> p \<cdot> Q \<cdot> q \<bullet> h"
 
-  conjI (P): "\<lambda>P Q p. p"
+  conjI (P): "\<lambda>p. p"
     "\<Lambda>P Q p. conjI \<cdot> _ \<cdot> _"
 
-  conjI (Q): "\<lambda>P Q q. q"
+  conjI (Q): "\<lambda>q. q"
     "\<Lambda>P Q (h: _) q. conjI \<cdot> _ \<cdot> _ \<bullet> h"
 
-  conjI: "Null"
-    "\<Lambda>P Q. conjI \<cdot> _ \<cdot> _"
+  conjI: "Null" "conjI"
 
-  conjunct1 (P, Q): "\<lambda>P Q. fst"
+  conjunct1 (P, Q): "fst"
     "\<Lambda>P Q pq. conjunct1 \<cdot> _ \<cdot> _"
 
-  conjunct1 (P): "\<lambda>P Q p. p"
+  conjunct1 (P): "\<lambda>p. p"
     "\<Lambda>P Q p. conjunct1 \<cdot> _ \<cdot> _"
 
   conjunct1 (Q): "Null"
     "\<Lambda>P Q q. conjunct1 \<cdot> _ \<cdot> _"
 
-  conjunct1: "Null"
-    "\<Lambda>P Q. conjunct1 \<cdot> _ \<cdot> _"
+  conjunct1: "Null" "conjunct1"
 
-  conjunct2 (P, Q): "\<lambda>P Q. snd"
+  conjunct2 (P, Q): "snd"
     "\<Lambda>P Q pq. conjunct2 \<cdot> _ \<cdot> _"
 
   conjunct2 (P): "Null"
     "\<Lambda>P Q p. conjunct2 \<cdot> _ \<cdot> _"
 
-  conjunct2 (Q): "\<lambda>P Q p. p"
+  conjunct2 (Q): "\<lambda>p. p"
     "\<Lambda>P Q p. conjunct2 \<cdot> _ \<cdot> _"
 
-  conjunct2: "Null"
-    "\<Lambda>P Q. conjunct2 \<cdot> _ \<cdot> _"
+  conjunct2: "Null" "conjunct2"
+
+  disjI1 (P, Q): "Inl"
+    "\<Lambda>P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_1 \<cdot> P \<cdot> _ \<cdot> p)"
 
-  disjI1 (P, Q): "\<lambda>P Q. Inl"
-    "\<Lambda>P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_1 \<cdot> (\<lambda>p. realizes p P) \<cdot> _ \<cdot> p)"
+  disjI1 (P): "Some"
+    "\<Lambda>P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> P \<cdot> p)"
 
-  disjI1 (P): "\<lambda>P Q. Some"
-    "\<Lambda>P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> (\<lambda>p. realizes p P) \<cdot> p)"
-
-  disjI1 (Q): "\<lambda>P Q. None"
+  disjI1 (Q): "None"
     "\<Lambda>P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
 
-  disjI1: "\<lambda>P Q. Left"
+  disjI1: "Left"
     "\<Lambda>P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_1 \<cdot> _ \<cdot> _)"
 
-  disjI2 (P, Q): "\<lambda>Q P. Inr"
-    "\<Lambda>Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_2 \<cdot> _ \<cdot> (\<lambda>q. realizes q Q) \<cdot> q)"
+  disjI2 (P, Q): "Inr"
+    "\<Lambda>Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_2 \<cdot> _ \<cdot> Q \<cdot> q)"
 
-  disjI2 (P): "\<lambda>Q P. None"
+  disjI2 (P): "None"
     "\<Lambda>Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
 
-  disjI2 (Q): "\<lambda>Q P. Some"
-    "\<Lambda>Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> (\<lambda>q. realizes q Q) \<cdot> q)"
+  disjI2 (Q): "Some"
+    "\<Lambda>Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> Q \<cdot> q)"
 
-  disjI2: "\<lambda>Q P. Right"
+  disjI2: "Right"
     "\<Lambda>Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_2 \<cdot> _ \<cdot> _)"
 
-  disjE (P, Q, R): "\<lambda>P Q R pq pr qr.
+  disjE (P, Q, R): "\<lambda>pq pr qr.
      (case pq of Inl p \<Rightarrow> pr p | Inr q \<Rightarrow> qr q)"
     "\<Lambda>P Q R pq (h1: _) pr (h2: _) qr.
-       disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes r R) \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
+       disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
 
-  disjE (Q, R): "\<lambda>P Q R pq pr qr.
+  disjE (Q, R): "\<lambda>pq pr qr.
      (case pq of None \<Rightarrow> pr | Some q \<Rightarrow> qr q)"
     "\<Lambda>P Q R pq (h1: _) pr (h2: _) qr.
-       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes r R) \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
+       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
 
-  disjE (P, R): "\<lambda>P Q R pq pr qr.
+  disjE (P, R): "\<lambda>pq pr qr.
      (case pq of None \<Rightarrow> qr | Some p \<Rightarrow> pr p)"
     "\<Lambda>P Q R pq (h1: _) pr (h2: _) qr (h3: _).
-       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes r R) \<cdot> qr \<cdot> pr \<bullet> h1 \<bullet> h3 \<bullet> h2"
+       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> qr \<cdot> pr \<bullet> h1 \<bullet> h3 \<bullet> h2"
 
-  disjE (R): "\<lambda>P Q R pq pr qr.
+  disjE (R): "\<lambda>pq pr qr.
      (case pq of Left \<Rightarrow> pr | Right \<Rightarrow> qr)"
     "\<Lambda>P Q R pq (h1: _) pr (h2: _) qr.
-       disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes r R) \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
+       disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
 
   disjE (P, Q): "Null"
-    "\<Lambda>P Q R pq. disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes Null R) \<cdot> _ \<cdot> _"
+    "\<Lambda>P Q R pq. disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
 
   disjE (Q): "Null"
-    "\<Lambda>P Q R pq. disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes Null R) \<cdot> _ \<cdot> _"
+    "\<Lambda>P Q R pq. disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
 
   disjE (P): "Null"
     "\<Lambda>P Q R pq (h1: _) (h2: _) (h3: _).
-       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes Null R) \<cdot> _ \<cdot> _ \<bullet> h1 \<bullet> h3 \<bullet> h2"
+       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _ \<bullet> h1 \<bullet> h3 \<bullet> h2"
 
   disjE: "Null"
-    "\<Lambda>P Q R pq. disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>r. realizes Null R) \<cdot> _ \<cdot> _"
+    "\<Lambda>P Q R pq. disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
 
-  FalseE (P): "\<lambda>P. arbitrary"
+  FalseE (P): "arbitrary"
     "\<Lambda>P. FalseE \<cdot> _"
 
-  FalseE: "Null"
-    "\<Lambda>P. FalseE \<cdot> _"
+  FalseE: "Null" "FalseE"
 
   notI (P): "Null"
     "\<Lambda>P (h: _). allI \<cdot> _ \<bullet> (\<Lambda>x. notI \<cdot> _ \<bullet> (h \<cdot> x))"
 
-  notI: "Null"
-    "\<Lambda>P. notI \<cdot> _"
+  notI: "Null" "notI"
 
-  notE (P, R): "\<lambda>P R p. arbitrary"
+  notE (P, R): "\<lambda>p. arbitrary"
     "\<Lambda>P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
 
   notE (P): "Null"
     "\<Lambda>P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
 
-  notE (R): "\<lambda>P R. arbitrary"
-    "\<Lambda>P R. notE \<cdot> _ \<cdot> _"
-
-  notE: "Null"
+  notE (R): "arbitrary"
     "\<Lambda>P R. notE \<cdot> _ \<cdot> _"
 
-  subst (P): "\<lambda>s t P ps. ps"
-    "\<Lambda>s t P (h: _) ps. subst \<cdot> s \<cdot> t \<cdot> (\<lambda>x. realizes ps (P x)) \<bullet> h"
+  notE: "Null" "notE"
 
-  subst: "Null"
-    "\<Lambda>s t P. subst \<cdot> s \<cdot> t \<cdot> (\<lambda>x. realizes Null (P x))"
+  subst (P): "\<lambda>s t ps. ps"
+    "\<Lambda>s t P (h: _) ps. subst \<cdot> s \<cdot> t \<cdot> P ps \<bullet> h"
 
-  iffD1 (P, Q): "\<lambda>Q P. fst"
+  subst: "Null" "subst"
+
+  iffD1 (P, Q): "fst"
     "\<Lambda>Q P pq (h: _) p.
        mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
 
-  iffD1 (P): "\<lambda>Q P p. p"
+  iffD1 (P): "\<lambda>p. p"
     "\<Lambda>Q P p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h)"
 
   iffD1 (Q): "Null"
     "\<Lambda>Q P q1 (h: _) q2.
        mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
 
-  iffD1: "Null"
-    "\<Lambda>Q P. iffD1 \<cdot> _ \<cdot> _"
+  iffD1: "Null" "iffD1"
 
-  iffD2 (P, Q): "\<lambda>P Q. snd"
+  iffD2 (P, Q): "snd"
     "\<Lambda>P Q pq (h: _) q.
        mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
 
-  iffD2 (P): "\<lambda>P Q p. p"
+  iffD2 (P): "\<lambda>p. p"
     "\<Lambda>P Q p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h)"
 
   iffD2 (Q): "Null"
     "\<Lambda>P Q q1 (h: _) q2.
        mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
 
-  iffD2: "Null"
-    "\<Lambda>P Q. iffD2 \<cdot> _ \<cdot> _"
+  iffD2: "Null" "iffD2"
 
-  iffI (P, Q): "\<lambda>P Q pq qp. (pq, qp)"
+  iffI (P, Q): "Pair"
     "\<Lambda>P Q pq (h1 : _) qp (h2 : _). conjI_realizer \<cdot>
-       (\<lambda>pq. \<forall>x. realizes x P \<longrightarrow> realizes (pq x) Q) \<cdot> pq \<cdot>
-       (\<lambda>qp. \<forall>x. realizes x Q \<longrightarrow> realizes (qp x) P) \<cdot> qp \<bullet>
+       (\<lambda>pq. \<forall>x. P x \<longrightarrow> Q (pq x)) \<cdot> pq \<cdot>
+       (\<lambda>qp. \<forall>x. Q x \<longrightarrow> P (qp x)) \<cdot> qp \<bullet>
        (allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
        (allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
 
-  iffI (P): "\<lambda>P Q p. p"
+  iffI (P): "\<lambda>p. p"
     "\<Lambda>P Q (h1 : _) p (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
        (allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
        (impI \<cdot> _ \<cdot> _ \<bullet> h2)"
 
-  iffI (Q): "\<lambda>P Q q. q"
+  iffI (Q): "\<lambda>q. q"
     "\<Lambda>P Q q (h1 : _) (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
        (impI \<cdot> _ \<cdot> _ \<bullet> h1) \<bullet>
        (allI \<cdot> _ \<bullet> (\<Lambda>x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
 
-  iffI: "Null"
-    "\<Lambda>P Q. iffI \<cdot> _ \<cdot> _"
+  iffI: "Null" "iffI"
 
+(*
   classical: "Null"
     "\<Lambda>P. classical \<cdot> _"
+*)
 
 end
--- a/src/HOL/Tools/datatype_realizer.ML	Mon Nov 25 20:32:29 2002 +0100
+++ b/src/HOL/Tools/datatype_realizer.ML	Wed Nov 27 17:06:47 2002 +0100
@@ -36,6 +36,9 @@
 
 fun is_unit t = snd (strip_type (fastype_of t)) = HOLogic.unitT;
 
+fun tname_of (Type (s, _)) = s
+  | tname_of _ = "";
+
 fun mk_realizes T = Const ("realizes", T --> HOLogic.boolT --> HOLogic.boolT);
 
 fun make_ind sorts ({descr, rec_names, rec_rewrites, induction, ...} : datatype_info) (is, thy) =
@@ -135,19 +138,15 @@
         ((space_implode "_" (ind_name :: vs @ ["correctness"]), thm), [])
       |>> Theory.add_path (NameSpace.pack (if_none path []));
 
-    val inst = map (fn ((((i, _), s), T), U) => ((s, 0), if i mem is then
-        Abs ("r", U, Abs ("x", T, mk_realizes U $ Bound 1 $
-          (Var ((s, 0), T --> HOLogic.boolT) $ Bound 0)))
-      else Abs ("x", T, mk_realizes Extraction.nullT $ Extraction.nullt $
-        (Var ((s, 0), T --> HOLogic.boolT) $
-          Bound 0)))) (descr ~~ pnames ~~ map Type.varifyT recTs ~~
-            map Type.varifyT rec_result_Ts);
+    val ivs = Drule.vars_of_terms
+      [Logic.varify (DatatypeProp.make_ind [descr] sorts)];
+    val rvs = Drule.vars_of_terms [prop_of thm'];
+    val ivs1 = map Var (filter_out (fn (_, T) =>
+      tname_of (body_type T) mem ["set", "bool"]) ivs);
+    val ivs2 = map (fn (ixn, _) => Var (ixn, the (assoc (rvs, ixn)))) ivs;
 
-    val ivs = map Var (Drule.vars_of_terms
-      [Logic.varify (DatatypeProp.make_ind [descr] sorts)]);
-
-    val prf = foldr forall_intr_prf (ivs,
-      prf_subst_vars inst (foldr (fn ((f, p), prf) =>
+    val prf = foldr forall_intr_prf (ivs2,
+      foldr (fn ((f, p), prf) =>
         (case head_of (strip_abs_body f) of
            Free (s, T) =>
              let val T' = Type.varifyT T
@@ -156,10 +155,10 @@
              end
          | _ => AbsP ("H", Some p, prf)))
            (rec_fns ~~ prems_of thm, Proofterm.proof_combP
-             (prf_of thm', map PBound (length prems - 1 downto 0)))));
+             (prf_of thm', map PBound (length prems - 1 downto 0))));
 
     val r' = if null is then r else Logic.varify (foldr (uncurry lambda)
-      (map Logic.unvarify ivs @ filter_out is_unit
+      (map Logic.unvarify ivs1 @ filter_out is_unit
         (map (head_of o strip_abs_body) rec_fns), r));
 
   in Extraction.add_realizers_i [(ind_name, (vs, r', prf))] thy' end;
@@ -211,24 +210,19 @@
       |> PureThy.store_thm ((exh_name ^ "_P_correctness", thm), [])
       |>> Theory.add_path (NameSpace.pack (if_none path []));
 
-    val P = Var (("P", 0), HOLogic.boolT);
+    val P = Var (("P", 0), rT' --> HOLogic.boolT);
     val prf = forall_intr_prf (y, forall_intr_prf (P,
-      prf_subst_vars [(("P", 0), Abs ("r", rT',
-        mk_realizes rT' $ Bound 0 $ P))] (foldr (fn ((p, r), prf) =>
-          forall_intr_prf (Logic.varify r, AbsP ("H", Some (Logic.varify p),
-            prf))) (prems ~~ rs, Proofterm.proof_combP (prf_of thm',
-              map PBound (length prems - 1 downto 0))))));
+      foldr (fn ((p, r), prf) =>
+        forall_intr_prf (Logic.varify r, AbsP ("H", Some (Logic.varify p),
+          prf))) (prems ~~ rs, Proofterm.proof_combP (prf_of thm',
+            map PBound (length prems - 1 downto 0)))));
     val r' = Logic.varify (Abs ("y", Type.varifyT T,
-      Abs ("P", HOLogic.boolT, list_abs (map dest_Free rs, list_comb (r,
-        map Bound ((length rs - 1 downto 0) @ [length rs + 1]))))));
-
-    val prf' = forall_intr_prf (y, forall_intr_prf (P, prf_subst_vars
-      [(("P", 0), mk_realizes Extraction.nullT $ Extraction.nullt $ P)]
-        (prf_of exhaustion)));
+      list_abs (map dest_Free rs, list_comb (r,
+        map Bound ((length rs - 1 downto 0) @ [length rs])))));
 
   in Extraction.add_realizers_i
     [(exh_name, (["P"], r', prf)),
-     (exh_name, ([], Extraction.nullt, prf'))] thy'
+     (exh_name, ([], Extraction.nullt, prf_of exhaustion))] thy'
   end;
 
 
--- a/src/HOL/Tools/inductive_realizer.ML	Mon Nov 25 20:32:29 2002 +0100
+++ b/src/HOL/Tools/inductive_realizer.ML	Wed Nov 27 17:06:47 2002 +0100
@@ -69,22 +69,7 @@
     map constr_of_intr intrs)
   end;
 
-fun gen_realizes (Const ("realizes", Type ("fun", [T, _])) $ t $
-      (Const ("op :", Type ("fun", [U, _])) $ x $ Var (ixn, _))) =
-        Var (ixn, [T, U] ---> HOLogic.boolT) $ t $ x
-  | gen_realizes (Const ("op :", Type ("fun", [U, _])) $ x $ Var (ixn, _)) =
-      Var (ixn, U --> HOLogic.boolT) $ x
-  | gen_realizes (bla as Const ("realizes", Type ("fun", [T, _])) $ t $ P) =
-      if T = Extraction.nullT then P
-      else (case strip_comb P of
-          (Var (ixn, U), ts) => list_comb (Var (ixn, T --> U), t :: ts)
-        | _ => error "gen_realizes: variable expected")
-  | gen_realizes (t $ u) = gen_realizes t $ gen_realizes u
-  | gen_realizes (Abs (s, T, t)) = Abs (s, T, gen_realizes t)
-  | gen_realizes t = t;
-
 fun mk_rlz T = Const ("realizes", [T, HOLogic.boolT] ---> HOLogic.boolT);
-fun mk_rlz' T = Const ("realizes", [T, propT] ---> propT);
 
 (** turn "P" into "%r x. realizes r (P x)" or "%r x. realizes r (x : P)" **)
 
@@ -268,30 +253,26 @@
 
 fun mk_realizer thy vs params ((rule, rrule), rt) =
   let
-    val prems = prems_of rule;
+    val prems = prems_of rule ~~ prems_of rrule;
+    val rvs = map fst (relevant_vars (prop_of rule));
     val xs = rev (Term.add_vars ([], prop_of rule));
-    val rs = gen_rems (op = o pairself fst)
-      (rev (Term.add_vars ([], prop_of rrule)), xs);
+    val vs1 = map Var (filter_out (fn ((a, _), _) => a mem rvs) xs);
+    val rlzvs = rev (Term.add_vars ([], prop_of rrule));
+    val vs2 = map (fn (ixn, _) => Var (ixn, the (assoc (rlzvs, ixn)))) xs;
+    val rs = gen_rems (op = o pairself fst) (rlzvs, xs);
 
     fun mk_prf _ [] prf = prf
-      | mk_prf rs (prem :: prems) prf =
-          let val T = Extraction.etype_of thy vs [] prem
-          in if T = Extraction.nullT
-            then AbsP ("H", Some (mk_rlz' T $ Extraction.nullt $ prem),
-              mk_prf rs prems prf)
-            else forall_intr_prf (Var (hd rs), AbsP ("H", Some (mk_rlz' T $
-              Var (hd rs) $ prem), mk_prf (tl rs) prems prf))
-          end;
-
-    val subst = map (fn v as (ixn, _) => (ixn, gen_rvar vs (Var v))) xs;
-    val prf = Proofterm.map_proof_terms
-      (subst_vars ([], subst)) I (prf_of rrule);
+      | mk_prf rs ((prem, rprem) :: prems) prf =
+          if Extraction.etype_of thy vs [] prem = Extraction.nullT
+          then AbsP ("H", Some rprem, mk_prf rs prems prf)
+          else forall_intr_prf (Var (hd rs), AbsP ("H", Some rprem,
+            mk_prf (tl rs) prems prf));
 
   in (Thm.name_of_thm rule, (vs,
     if rt = Extraction.nullt then rt else
-      foldr (uncurry lambda) (map Var xs, rt),
-    foldr forall_intr_prf (map Var xs, mk_prf rs prems (Proofterm.proof_combP
-      (prf, map PBound (length prems - 1 downto 0))))))
+      foldr (uncurry lambda) (vs1, rt),
+    foldr forall_intr_prf (vs2, mk_prf rs prems (Proofterm.proof_combP
+      (prf_of rrule, map PBound (length prems - 1 downto 0))))))
   end;
 
 fun add_rule (rss, r) =
@@ -348,10 +329,10 @@
         end
       else ((recs, dummies), replicate (length rs) Extraction.nullt))
         ((get #rec_thms dt_info, dummies), rss);
-    val rintrs = map (fn (intr, c) => Pattern.eta_contract (gen_realizes
+    val rintrs = map (fn (intr, c) => Pattern.eta_contract
       (Extraction.realizes_of thy2 vs
         c (prop_of (forall_intr_list (map (cterm_of (sign_of thy2) o Var)
-          (rev (Term.add_vars ([], prop_of intr)) \\ params')) intr)))))
+          (rev (Term.add_vars ([], prop_of intr)) \\ params')) intr))))
             (intrs ~~ flat constrss);
     val rlzsets = distinct (map (fn rintr => snd (HOLogic.dest_mem
       (HOLogic.dest_Trueprop (Logic.strip_assums_concl rintr)))) rintrs);
@@ -377,8 +358,8 @@
       let
         val r = indrule_realizer thy induct raw_induct rsets params'
           (vs @ Ps) rec_names rss intrs dummies;
-        val rlz = strip_all (Logic.unvarify (gen_realizes
-          (Extraction.realizes_of thy (vs @ Ps) r (prop_of induct))));
+        val rlz = strip_all (Logic.unvarify
+          (Extraction.realizes_of thy (vs @ Ps) r (prop_of induct)));
         val rews = map mk_meta_eq
           (fst_conv :: snd_conv :: get #rec_thms dt_info);
         val thm = simple_prove_goal_cterm (cterm_of (sign_of thy) rlz) (fn prems =>
@@ -416,8 +397,8 @@
                [Abs ("x", HOLogic.unitT, Const ("arbitrary", body_type T))]
              else []) @
             map Bound ((length prems - 1 downto 0) @ [length prems])));
-        val rlz = strip_all (Logic.unvarify (gen_realizes
-          (Extraction.realizes_of thy (vs @ Ps) r (prop_of elim))));
+        val rlz = strip_all (Logic.unvarify
+          (Extraction.realizes_of thy (vs @ Ps) r (prop_of elim)));
         val rews = map mk_meta_eq case_thms;
         val thm = simple_prove_goal_cterm (cterm_of (sign_of thy) rlz) (fn prems =>
           [cut_facts_tac [hd prems] 1,