--- a/src/HOL/Product_Type.thy Tue May 04 21:03:50 2010 -0700
+++ b/src/HOL/Product_Type.thy Tue May 04 21:04:04 2010 -0700
@@ -416,7 +416,7 @@
by (simp add: split_def id_def)
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
- -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity Datatype. *}
+ -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
by (rule ext) auto
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
@@ -752,7 +752,7 @@
text {*
@{term prod_fun} --- action of the product functor upon
- Datatypes.
+ functions.
*}
definition prod_fun :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
--- a/src/HOL/Wellfounded.thy Tue May 04 21:03:50 2010 -0700
+++ b/src/HOL/Wellfounded.thy Tue May 04 21:04:04 2010 -0700
@@ -667,7 +667,7 @@
apply blast
done
-text {* Measure Datatypes into @{typ nat} *}
+text {* Measure functions into @{typ nat} *}
definition measure :: "('a => nat) => ('a * 'a)set"
where "measure == inv_image less_than"
@@ -707,7 +707,7 @@
"[| trans R1; trans R2 |] ==> trans (R1 <*lex*> R2)"
by (unfold trans_def lex_prod_def, blast)
-text {* lexicographic combinations with measure Datatypes *}
+text {* lexicographic combinations with measure functions *}
definition
mlex_prod :: "('a \<Rightarrow> nat) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" (infixr "<*mlex*>" 80)