New theory for implementing finite sets by lists.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/ExecutableSet.thy Sun Sep 25 20:12:26 2005 +0200
@@ -0,0 +1,57 @@
+(* Title: HOL/Library/ExecutableSet.thy
+ ID: $Id$
+ Author: Stefan Berghofer, TU Muenchen
+*)
+
+header {* Implementation of finite sets by lists *}
+
+theory ExecutableSet
+imports Main
+begin
+
+lemma [code target: Set]: "(A = B) = (A \<subseteq> B \<and> B \<subseteq> A)"
+ by blast
+
+declare bex_triv_one_point1 [symmetric, standard, code]
+
+types_code
+ set ("_ list")
+attach (term_of) {*
+fun term_of_set f T [] = Const ("{}", Type ("set", [T]))
+ | term_of_set f T (x :: xs) = Const ("insert",
+ T --> Type ("set", [T]) --> Type ("set", [T])) $ f x $ term_of_set f T xs;
+*}
+attach (test) {*
+fun gen_set' aG i j = frequency
+ [(i, fn () => aG j :: gen_set' aG (i-1) j), (1, fn () => [])] ()
+and gen_set aG i = gen_set' aG i i;
+*}
+
+consts_code
+ "{}" ("[]")
+ "insert" ("(_ ins _)")
+ "op Un" ("(_ union _)")
+ "op Int" ("(_ inter _)")
+ "op -" :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" ("(_ \\\\ _)")
+ "image" ("\<module>image")
+attach {*
+fun image f S = distinct (map f S);
+*}
+ "UNION" ("\<module>UNION")
+attach {*
+fun UNION S f = Library.foldr Library.union (map f S, []);
+*}
+ "INTER" ("\<module>INTER")
+attach {*
+fun INTER S f = Library.foldr1 Library.inter (map f S);
+*}
+ "Bex" ("\<module>Bex")
+attach {*
+fun Bex S P = Library.exists P S;
+*}
+ "Ball" ("\<module>Ball")
+attach {*
+fun Ball S P = Library.forall P S;
+*}
+
+end