--- a/src/ZF/ex/misc.ML Tue Jun 13 18:34:59 2000 +0200
+++ b/src/ZF/ex/misc.ML Tue Jun 13 18:36:06 2000 +0200
@@ -1,4 +1,4 @@
-(* Title: ZF/ex/misc
+(* Title: ZF/ex/misc.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
@@ -7,34 +7,32 @@
Composition of homomorphisms, Pastre's examples, ...
*)
-writeln"ZF/ex/misc";
-
-(*These two are cited in Benzmueller and Kohlhash's system description of LEO,
+(*These two are cited in Benzmueller and Kohlhase's system description of LEO,
CADE-15, 1998 (page 139-143) as theorems LEO could not prove.*)
Goal "(X = Y Un Z) <-> (Y<=X & Z<=X & (ALL V. Y<=V & Z<=V --> X<=V))";
by (blast_tac (claset() addSIs [equalityI]) 1);
-result();
+qed "";
(*the dual of the previous one*)
Goal "(X = Y Int Z) <-> (X<=Y & X<=Z & (ALL V. V<=Y & V<=Z --> V<=X))";
by (blast_tac (claset() addSIs [equalityI]) 1);
-result();
+qed "";
(*trivial example of term synthesis: apparently hard for some provers!*)
Goal "a ~= b ==> a:?X & b ~: ?X";
by (Blast_tac 1);
-result();
+qed "";
(*Nice Blast_tac benchmark. Proved in 0.3s; old tactics can't manage it!*)
Goal "ALL x:S. ALL y:S. x<=y ==> EX z. S <= {z}";
by (Blast_tac 1);
-result();
+qed "";
(*variant of the benchmark above*)
Goal "ALL x:S. Union(S) <= x ==> EX z. S <= {z}";
by (Blast_tac 1);
-result();
+qed "";
context Perm.thy;
@@ -44,7 +42,7 @@
Ellis Horwood, 53-100 (1979). *)
Goal "(ALL F. {x}: F --> {y}:F) --> (ALL A. x:A --> y:A)";
by (Best_tac 1);
-result();
+qed "";
(*** Composition of homomorphisms is a homomorphism ***)
@@ -68,7 +66,7 @@
\ J : hom(A,f,B,g) & K : hom(B,g,C,h) --> \
\ (K O J) : hom(A,f,C,h)";
by (asm_simp_tac (simpset() setloop (K Safe_tac)) 1);
-val comp_homs = result();
+qed "";
(*This version uses meta-level rewriting, safe_tac and asm_simp_tac*)
val [hom_def] = goal Perm.thy
@@ -89,7 +87,7 @@
Goalw [Pi_def, function_def]
"r: domain(r)->B <-> r <= domain(r)*B & (ALL X. r `` (r -`` X) <= X)";
by (Best_tac 1);
-result();
+qed "";
(**** From D Pastre. Automatic theorem proving in set theory.
@@ -191,5 +189,3 @@
by (Asm_simp_tac 1);
by (Blast_tac 1);
qed "Pow_Sigma_bij";
-
-writeln"Reached end of file.";