--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/Abs_State.thy Fri Apr 20 10:47:04 2012 +0200
@@ -0,0 +1,213 @@
+(* Author: Tobias Nipkow *)
+
+theory Abs_State
+imports Abs_Int0
+begin
+
+subsubsection "Welltypedness: wt"
+
+instantiation com :: vars
+begin
+
+fun vars_com :: "com \<Rightarrow> vname set" where
+"vars com.SKIP = {}" |
+"vars (x::=e) = {x} \<union> vars e" |
+"vars (c1;c2) = vars c1 \<union> vars c2" |
+"vars (IF b THEN c1 ELSE c2) = vars b \<union> vars c1 \<union> vars c2" |
+"vars (WHILE b DO c) = vars b \<union> vars c"
+
+instance ..
+
+end
+
+
+lemma finite_avars: "finite(vars(a::aexp))"
+by(induction a) simp_all
+
+lemma finite_bvars: "finite(vars(b::bexp))"
+by(induction b) (simp_all add: finite_avars)
+
+lemma finite_cvars: "finite(vars(c::com))"
+by(induction c) (simp_all add: finite_avars finite_bvars)
+
+
+class wt =
+fixes wt :: "'a \<Rightarrow> vname set \<Rightarrow> bool"
+
+
+instantiation acom :: (wt)wt
+begin
+
+definition wt_acom where
+"wt C X = (vars(strip C) \<subseteq> X \<and> (\<forall>a \<in> set(annos C). wt a X))"
+
+instance ..
+
+end
+
+
+instantiation option :: (wt)wt
+begin
+
+definition wt_option where
+"wt opt X = (case opt of None \<Rightarrow> True | Some x \<Rightarrow> wt x X)"
+
+lemma wt_simps[simp]: "wt None X" "wt (Some x) X = wt x X"
+by(simp_all add: wt_option_def)
+
+instance ..
+
+end
+
+class SL_top_wt = join + wt +
+fixes top :: "com \<Rightarrow> 'a" ("\<top>\<^bsub>_\<^esub>")
+assumes join_ge1 [simp]: "wt x X \<Longrightarrow> wt y X \<Longrightarrow> x \<sqsubseteq> x \<squnion> y"
+and join_ge2 [simp]: "wt x X \<Longrightarrow> wt y X \<Longrightarrow> y \<sqsubseteq> x \<squnion> y"
+and join_least[simp]: "x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<squnion> y \<sqsubseteq> z"
+and top[simp]: "wt x (vars c) \<Longrightarrow> x \<sqsubseteq> top c"
+and wt_top[simp]: "wt (top c) (vars c)"
+and wt_join[simp]: "wt x X \<Longrightarrow> wt y X \<Longrightarrow> wt (x \<squnion> y) X"
+
+
+instantiation option :: (SL_top_wt)SL_top_wt
+begin
+
+definition top_option where "top c = Some(top c)"
+
+instance proof
+ case goal1 thus ?case by(cases x, simp, cases y, simp_all)
+next
+ case goal2 thus ?case by(cases y, simp, cases x, simp_all)
+next
+ case goal3 thus ?case by(cases z, simp, cases y, simp, cases x, simp_all)
+next
+ case goal4 thus ?case by(cases x, simp_all add: top_option_def)
+next
+ case goal5 thus ?case by(simp add: top_option_def)
+next
+ case goal6 thus ?case by(simp add: wt_option_def split: option.splits)
+qed
+
+end
+
+
+subsection "Abstract State with Computable Ordering"
+
+hide_type st --"to avoid long names"
+
+text{* A concrete type of state with computable @{text"\<sqsubseteq>"}: *}
+
+datatype 'a st = FunDom "vname \<Rightarrow> 'a" "vname set"
+
+fun "fun" where "fun (FunDom f xs) = f"
+fun dom where "dom (FunDom f xs) = xs"
+
+definition "show_st S = (\<lambda>x. (x, fun S x)) ` dom S"
+
+value [code] "show_st (FunDom (\<lambda>x. 1::int) {''a'',''b''})"
+
+definition "show_acom = map_acom (Option.map show_st)"
+definition "show_acom_opt = Option.map show_acom"
+
+definition "update F x y = FunDom ((fun F)(x:=y)) (dom F)"
+
+lemma fun_update[simp]: "fun (update S x y) = (fun S)(x:=y)"
+by(rule ext)(auto simp: update_def)
+
+lemma dom_update[simp]: "dom (update S x y) = dom S"
+by(simp add: update_def)
+
+definition "\<gamma>_st \<gamma> F = {f. \<forall>x\<in>dom F. f x \<in> \<gamma>(fun F x)}"
+
+
+instantiation st :: (preord) preord
+begin
+
+definition le_st :: "'a st \<Rightarrow> 'a st \<Rightarrow> bool" where
+"F \<sqsubseteq> G = (dom F = dom G \<and> (\<forall>x \<in> dom F. fun F x \<sqsubseteq> fun G x))"
+
+instance
+proof
+ case goal2 thus ?case by(auto simp: le_st_def)(metis preord_class.le_trans)
+qed (auto simp: le_st_def)
+
+end
+
+instantiation st :: (join) join
+begin
+
+definition join_st :: "'a st \<Rightarrow> 'a st \<Rightarrow> 'a st" where
+"F \<squnion> G = FunDom (\<lambda>x. fun F x \<squnion> fun G x) (dom F)"
+
+instance ..
+
+end
+
+instantiation st :: (type) wt
+begin
+
+definition wt_st :: "'a st \<Rightarrow> vname set \<Rightarrow> bool" where
+"wt F X = (dom F = X)"
+
+instance ..
+
+end
+
+instantiation st :: (SL_top) SL_top_wt
+begin
+
+definition top_st where "top c = FunDom (\<lambda>x. \<top>) (vars c)"
+
+instance
+proof
+qed (auto simp: le_st_def join_st_def top_st_def wt_st_def)
+
+end
+
+
+lemma mono_fun: "F \<sqsubseteq> G \<Longrightarrow> x : dom F \<Longrightarrow> fun F x \<sqsubseteq> fun G x"
+by(auto simp: le_st_def)
+
+lemma mono_update[simp]:
+ "a1 \<sqsubseteq> a2 \<Longrightarrow> S1 \<sqsubseteq> S2 \<Longrightarrow> update S1 x a1 \<sqsubseteq> update S2 x a2"
+by(auto simp add: le_st_def update_def)
+
+
+locale Gamma = Val_abs where \<gamma>=\<gamma> for \<gamma> :: "'av::SL_top \<Rightarrow> val set"
+begin
+
+abbreviation \<gamma>\<^isub>f :: "'av st \<Rightarrow> state set"
+where "\<gamma>\<^isub>f == \<gamma>_st \<gamma>"
+
+abbreviation \<gamma>\<^isub>o :: "'av st option \<Rightarrow> state set"
+where "\<gamma>\<^isub>o == \<gamma>_option \<gamma>\<^isub>f"
+
+abbreviation \<gamma>\<^isub>c :: "'av st option acom \<Rightarrow> state set acom"
+where "\<gamma>\<^isub>c == map_acom \<gamma>\<^isub>o"
+
+lemma gamma_f_Top[simp]: "\<gamma>\<^isub>f (top c) = UNIV"
+by(auto simp: top_st_def \<gamma>_st_def)
+
+lemma gamma_o_Top[simp]: "\<gamma>\<^isub>o (top c) = UNIV"
+by (simp add: top_option_def)
+
+(* FIXME (maybe also le \<rightarrow> sqle?) *)
+
+lemma mono_gamma_f: "f \<sqsubseteq> g \<Longrightarrow> \<gamma>\<^isub>f f \<subseteq> \<gamma>\<^isub>f g"
+apply(simp add:\<gamma>_st_def subset_iff le_st_def split: if_splits)
+by (metis mono_gamma subsetD)
+
+lemma mono_gamma_o:
+ "S1 \<sqsubseteq> S2 \<Longrightarrow> \<gamma>\<^isub>o S1 \<subseteq> \<gamma>\<^isub>o S2"
+by(induction S1 S2 rule: le_option.induct)(simp_all add: mono_gamma_f)
+
+lemma mono_gamma_c: "C1 \<sqsubseteq> C2 \<Longrightarrow> \<gamma>\<^isub>c C1 \<le> \<gamma>\<^isub>c C2"
+by (induction C1 C2 rule: le_acom.induct) (simp_all add:mono_gamma_o)
+
+lemma in_gamma_option_iff:
+ "x : \<gamma>_option r u \<longleftrightarrow> (\<exists>u'. u = Some u' \<and> x : r u')"
+by (cases u) auto
+
+end
+
+end