--- a/src/HOL/IsaMakefile Fri Apr 27 05:53:37 2007 +0200
+++ b/src/HOL/IsaMakefile Fri Apr 27 14:21:23 2007 +0200
@@ -748,6 +748,7 @@
$(LOG)/HOL-Nominal-Examples.gz: $(OUT)/HOL-Nominal \
Nominal/Examples/ROOT.ML \
Nominal/Examples/CR.thy \
+ Nominal/Examples/CR_Takahashi.thy \
Nominal/Examples/Class.thy \
Nominal/Examples/Compile.thy \
Nominal/Examples/Fsub.thy \
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nominal/Examples/CR_Takahashi.thy Fri Apr 27 14:21:23 2007 +0200
@@ -0,0 +1,454 @@
+(* $Id$ *)
+
+theory CR_Takahashi
+imports Lam_Funs
+begin
+
+text {* The Church-Rosser proof from a paper by Masako Takahashi;
+ our formalisation follows with some slight exceptions the one
+ done by Randy Pollack and James McKinna from their 1993
+ TLCA-paper; the proof is simpler by using an auxiliary
+ reduction relation called complete development reduction.
+
+ Authors: Mathilde Arnaud and Christian Urban
+ *}
+
+lemma forget:
+ assumes asm: "x\<sharp>L"
+ shows "L[x::=P] = L"
+ using asm
+by (nominal_induct L avoiding: x P rule: lam.induct)
+ (auto simp add: abs_fresh fresh_atm)
+
+lemma fresh_fact:
+ fixes z::"name"
+ assumes asms: "z\<sharp>N" "z\<sharp>L"
+ shows "z\<sharp>(N[y::=L])"
+ using asms
+by (nominal_induct N avoiding: z y L rule: lam.induct)
+ (auto simp add: abs_fresh fresh_atm)
+
+lemma fresh_fact':
+ fixes a::"name"
+ assumes a: "a\<sharp>t2"
+ shows "a\<sharp>t1[a::=t2]"
+using a
+by (nominal_induct t1 avoiding: a t2 rule: lam.induct)
+ (auto simp add: abs_fresh fresh_atm)
+
+lemma substitution_lemma:
+ assumes asm: "x\<noteq>y" "x\<sharp>L"
+ shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
+ using asm
+by (nominal_induct M avoiding: x y N L rule: lam.induct)
+ (auto simp add: fresh_fact forget)
+
+section {* Beta Reduction *}
+
+inductive2
+ "Beta" :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>\<^isub>\<beta> _" [80,80] 80)
+where
+ b1[intro]: "s1\<longrightarrow>\<^isub>\<beta>s2 \<Longrightarrow> (App s1 t)\<longrightarrow>\<^isub>\<beta>(App s2 t)"
+ | b2[intro]: "s1\<longrightarrow>\<^isub>\<beta>s2 \<Longrightarrow> (App t s1)\<longrightarrow>\<^isub>\<beta>(App t s2)"
+ | b3[intro]: "s1\<longrightarrow>\<^isub>\<beta>s2 \<Longrightarrow> (Lam [a].s1)\<longrightarrow>\<^isub>\<beta> (Lam [a].s2)"
+ | b4[intro]: "a\<sharp>s2 \<Longrightarrow> (App (Lam [a].s1) s2)\<longrightarrow>\<^isub>\<beta>(s1[a::=s2])"
+
+equivariance Beta
+
+nominal_inductive Beta
+ by (simp_all add: abs_fresh fresh_fact')
+
+inductive2
+ "Beta_star" :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>\<^isub>\<beta>\<^sup>* _" [80,80] 80)
+where
+ bs1[intro, simp]: "M \<longrightarrow>\<^isub>\<beta>\<^sup>* M"
+ | bs2[intro]: "\<lbrakk>M1\<longrightarrow>\<^isub>\<beta>\<^sup>* M2; M2 \<longrightarrow>\<^isub>\<beta> M3\<rbrakk> \<Longrightarrow> M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
+
+equivariance Beta_star
+
+lemma beta_star_trans:
+ assumes a1: "M1\<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
+ and a2: "M2\<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
+ shows "M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
+using a2 a1
+by (induct) (auto)
+
+section {* One-Reduction *}
+
+inductive2
+ One :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>\<^isub>1 _" [80,80] 80)
+where
+ o1[intro!]: "M\<longrightarrow>\<^isub>1M"
+ | o2[simp,intro!]: "\<lbrakk>t1\<longrightarrow>\<^isub>1t2;s1\<longrightarrow>\<^isub>1s2\<rbrakk> \<Longrightarrow> (App t1 s1)\<longrightarrow>\<^isub>1(App t2 s2)"
+ | o3[simp,intro!]: "s1\<longrightarrow>\<^isub>1s2 \<Longrightarrow> (Lam [a].s1)\<longrightarrow>\<^isub>1(Lam [a].s2)"
+ | o4[simp,intro!]: "\<lbrakk>a\<sharp>(s1,s2); s1\<longrightarrow>\<^isub>1s2;t1\<longrightarrow>\<^isub>1t2\<rbrakk> \<Longrightarrow> (App (Lam [a].t1) s1)\<longrightarrow>\<^isub>1(t2[a::=s2])"
+
+equivariance One
+
+nominal_inductive One
+ by (simp_all add: abs_fresh fresh_fact')
+
+lemma one_subst_aux:
+ assumes a: "N\<longrightarrow>\<^isub>1N'"
+ shows "M[x::=N] \<longrightarrow>\<^isub>1 M[x::=N']"
+using a
+by (nominal_induct M avoiding: x N N' rule: lam.induct)
+ (auto simp add: fresh_prod fresh_atm)
+
+lemma one_subst:
+ assumes a: "M\<longrightarrow>\<^isub>1M'"
+ and b: "N\<longrightarrow>\<^isub>1N'"
+ shows "M[x::=N]\<longrightarrow>\<^isub>1M'[x::=N']"
+using a b
+by (nominal_induct M M' avoiding: N N' x rule: One.strong_induct)
+ (auto simp add: one_subst_aux substitution_lemma fresh_atm fresh_fact)
+
+inductive2
+ "One_star" :: "lam\<Rightarrow>lam\<Rightarrow>bool" (" _ \<longrightarrow>\<^isub>1\<^sup>* _" [80,80] 80)
+where
+ os1[intro, simp]: "M \<longrightarrow>\<^isub>1\<^sup>* M"
+ | os2[intro]: "\<lbrakk>M1\<longrightarrow>\<^isub>1\<^sup>* M2; M2 \<longrightarrow>\<^isub>1 M3\<rbrakk> \<Longrightarrow> M1 \<longrightarrow>\<^isub>1\<^sup>* M3"
+
+equivariance One_star
+
+lemma one_star_trans:
+ assumes a1: "M1\<longrightarrow>\<^isub>1\<^sup>* M2"
+ and a2: "M2\<longrightarrow>\<^isub>1\<^sup>* M3"
+ shows "M1\<longrightarrow>\<^isub>1\<^sup>* M3"
+using a2 a1
+by (induct) (auto)
+
+lemma one_fresh_preserv:
+ fixes a :: "name"
+ assumes a: "t\<longrightarrow>\<^isub>1s"
+ and b: "a\<sharp>t"
+ shows "a\<sharp>s"
+using a b
+by (nominal_induct avoiding: a rule: One.strong_induct)
+ (auto simp add: abs_fresh fresh_atm fresh_fact)
+
+lemma subst_rename:
+ assumes a: "c\<sharp>t1"
+ shows "t1[a::=t2] = ([(c,a)]\<bullet>t1)[c::=t2]"
+using a
+by (nominal_induct t1 avoiding: a c t2 rule: lam.induct)
+ (auto simp add: calc_atm fresh_atm abs_fresh)
+
+lemma one_var:
+ assumes a: "Var x \<longrightarrow>\<^isub>1 t"
+ shows "t = Var x"
+using a
+by - (ind_cases2 "Var x \<longrightarrow>\<^isub>1 t", simp)
+
+lemma one_abs:
+ fixes t :: "lam"
+ and t':: "lam"
+ and a :: "name"
+ assumes a: "(Lam [a].t)\<longrightarrow>\<^isub>1t'"
+ shows "\<exists>t''. t'=Lam [a].t'' \<and> t\<longrightarrow>\<^isub>1t''"
+ using a
+ apply -
+ apply(ind_cases2 "(Lam [a].t)\<longrightarrow>\<^isub>1t'")
+ apply(auto simp add: lam.inject alpha)
+ apply(rule_tac x="[(a,aa)]\<bullet>s2" in exI)
+ apply(rule conjI)
+ apply(perm_simp)
+ apply(simp add: fresh_left calc_atm)
+ apply(simp add: One.eqvt)
+ apply(simp add: one_fresh_preserv)
+done
+
+lemma one_app:
+ assumes a: "App t1 t2 \<longrightarrow>\<^isub>1 t'"
+ shows "(\<exists>s1 s2. t' = App s1 s2 \<and> t1 \<longrightarrow>\<^isub>1 s1 \<and> t2 \<longrightarrow>\<^isub>1 s2) \<or>
+ (\<exists>a s s1 s2. t1 = Lam [a].s \<and> a\<sharp>(t2,s2) \<and> t' = s1[a::=s2] \<and> s \<longrightarrow>\<^isub>1 s1 \<and> t2 \<longrightarrow>\<^isub>1 s2)"
+ using a
+ apply -
+ apply(ind_cases2 "App t1 t2 \<longrightarrow>\<^isub>1 t'")
+ apply(auto simp add: lam.distinct lam.inject)
+ done
+
+lemma one_red:
+ assumes a: "App (Lam [a].t1) t2 \<longrightarrow>\<^isub>1 M"
+ shows "(\<exists>s1 s2. M = App (Lam [a].s1) s2 \<and> t1 \<longrightarrow>\<^isub>1 s1 \<and> t2 \<longrightarrow>\<^isub>1 s2) \<or>
+ (\<exists>s1 s2. M = s1[a::=s2] \<and> t1 \<longrightarrow>\<^isub>1 s1 \<and> t2 \<longrightarrow>\<^isub>1 s2)"
+ using a
+ apply -
+ apply(ind_cases2 "App (Lam [a].t1) t2 \<longrightarrow>\<^isub>1 M")
+ apply(simp_all add: lam.inject)
+ apply(force)
+ apply(erule conjE)
+ apply(drule sym[of "Lam [a].t1"])
+ apply(simp)
+ apply(drule one_abs)
+ apply(erule exE)
+ apply(simp)
+ apply(force simp add: alpha)
+ apply(erule conjE)
+ apply(simp add: lam.inject alpha)
+ apply(erule disjE)
+ apply(simp)
+ apply(force)
+ apply(simp)
+ apply(rule disjI2)
+ apply(rule_tac x="[(a,aa)]\<bullet>t2a" in exI)
+ apply(rule_tac x="s2" in exI)
+ apply(auto)
+ apply(subgoal_tac "a\<sharp>t2a")(*A*)
+ apply(simp add: subst_rename)
+ (*A*)
+ apply(force intro: one_fresh_preserv)
+ apply(simp add: One.eqvt)
+ done
+
+text {* complete development reduction *}
+
+inductive2
+ cd1 :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ >c _" [80,80]80)
+where
+ cd1v[intro!]: "Var x >c Var x"
+ | cd1l[simp,intro!]: "s1 >c s2 \<Longrightarrow> Lam [a].s1 >c Lam[a].s2"
+ | cd1a[simp,intro!]: "\<lbrakk>\<not>(\<exists> a s. s1 = Lam [a].s); s1 >c s2; t1 >c t2\<rbrakk> \<Longrightarrow> App s1 t1 >c App s2 t2"
+ | cd1r[simp,intro!]: "\<lbrakk>a\<sharp>(s1,s2); s1 >c s2; t1 >c t2\<rbrakk> \<Longrightarrow> App (Lam [a].t1) s1 >c (t2[a::=s2])"
+
+(* FIXME: needs to be in nominal_inductive *)
+declare perm_pi_simp[eqvt_force]
+
+equivariance cd1
+
+nominal_inductive cd1
+ by (simp_all add: abs_fresh fresh_fact')
+
+lemma better_cd1r_intro[intro]:
+ assumes a: "s1 >c s2"
+ and b: "t1 >c t2"
+ shows "App (Lam [a].t1) s1 >c (t2[a::=s2])"
+proof -
+ obtain c::"name" where fs: "c\<sharp>(a,t1,s1,t2,s2)" by (rule exists_fresh, rule fin_supp,blast)
+ have eq1: "Lam [a].t1 = Lam [c].([(c,a)]\<bullet>t1)" using fs
+ by (rule_tac sym, auto simp add: lam.inject alpha fresh_prod fresh_atm)
+ have "App (Lam [a].t1) s1 = App (Lam [c].([(c,a)]\<bullet>t1)) s1"
+ using eq1 by simp
+ also have "\<dots> >c ([(c,a)]\<bullet>t2)[c::=s2]" using fs a b
+ by (rule_tac cd1r, simp_all add: cd1.eqvt)
+ also have "\<dots> = t2[a::=s2]" using fs
+ by (rule_tac subst_rename[symmetric], simp)
+ finally show "App (Lam [a].t1) s1 >c (t2[a::=s2])" by simp
+qed
+
+lemma cd1_fresh_preserve:
+ fixes a::"name"
+ assumes a: "a\<sharp>s1"
+ and b: "s1 >c s2"
+ shows "a\<sharp>s2"
+using b a
+by (induct) (auto simp add: abs_fresh fresh_fact fresh_fact')
+
+
+lemma cd1_lam:
+ fixes c::"'a::fs_name"
+ assumes a: "Lam [a].t >c t'"
+ shows "\<exists>s. t'=Lam [a].s \<and> t >c s"
+using a
+apply -
+apply(erule cd1.cases)
+apply(simp_all)
+apply(simp add: lam.inject)
+apply(simp add: alpha)
+apply(auto)
+apply(rule_tac x="[(a,aa)]\<bullet>s2" in exI)
+apply(perm_simp add: fresh_left cd1.eqvt cd1_fresh_preserve)
+done
+
+lemma develop_existence:
+ shows "\<exists>M'. M >c M'"
+by (nominal_induct M rule: lam.induct)
+ (auto dest!: cd1_lam)
+
+lemma triangle:
+ assumes a: "M >c M'"
+ and b: "M \<longrightarrow>\<^isub>1 M''"
+ shows "M'' \<longrightarrow>\<^isub>1 M'"
+using a b
+by (nominal_induct avoiding: M'' rule: cd1.strong_induct)
+ (auto dest!: one_var one_app one_abs one_red intro: one_subst)
+
+lemma diamond:
+ assumes a: "M1 \<longrightarrow>\<^isub>1 M2"
+ and b: "M1 \<longrightarrow>\<^isub>1 M3"
+ shows "\<exists>M4. M2 \<longrightarrow>\<^isub>1 M4 \<and> M3 \<longrightarrow>\<^isub>1 M4"
+proof -
+ obtain Mc where c: "M1 >c Mc" using develop_existence by blast
+ have "M2 \<longrightarrow>\<^isub>1 Mc" using a c by (simp add: triangle)
+ moreover
+ have "M3 \<longrightarrow>\<^isub>1 Mc" using b c by (simp add: triangle)
+ ultimately show "\<exists>M4. M2 \<longrightarrow>\<^isub>1 M4 \<and> M3 \<longrightarrow>\<^isub>1 M4" by blast
+qed
+
+lemma one_lam_cong:
+ assumes a: "t1\<longrightarrow>\<^isub>\<beta>\<^sup>*t2"
+ shows "(Lam [a].t1)\<longrightarrow>\<^isub>\<beta>\<^sup>*(Lam [a].t2)"
+ using a
+proof induct
+ case bs1 thus ?case by simp
+next
+ case (bs2 y z)
+ thus ?case by (blast dest: b3)
+qed
+
+lemma one_app_congL:
+ assumes a: "t1\<longrightarrow>\<^isub>\<beta>\<^sup>*t2"
+ shows "App t1 s\<longrightarrow>\<^isub>\<beta>\<^sup>* App t2 s"
+ using a
+proof induct
+ case bs1 thus ?case by simp
+next
+ case bs2 thus ?case by (blast dest: b1)
+qed
+
+lemma one_app_congR:
+ assumes a: "t1\<longrightarrow>\<^isub>\<beta>\<^sup>*t2"
+ shows "App s t1 \<longrightarrow>\<^isub>\<beta>\<^sup>* App s t2"
+using a
+proof induct
+ case bs1 thus ?case by simp
+next
+ case bs2 thus ?case by (blast dest: b2)
+qed
+
+lemma one_app_cong:
+ assumes a1: "t1\<longrightarrow>\<^isub>\<beta>\<^sup>*t2"
+ and a2: "s1\<longrightarrow>\<^isub>\<beta>\<^sup>*s2"
+ shows "App t1 s1\<longrightarrow>\<^isub>\<beta>\<^sup>* App t2 s2"
+proof -
+ have "App t1 s1 \<longrightarrow>\<^isub>\<beta>\<^sup>* App t2 s1" using a1 by (rule one_app_congL)
+ moreover
+ have "App t2 s1 \<longrightarrow>\<^isub>\<beta>\<^sup>* App t2 s2" using a2 by (rule one_app_congR)
+ ultimately show ?thesis by (rule beta_star_trans)
+qed
+
+lemma one_beta_star:
+ assumes a: "(t1\<longrightarrow>\<^isub>1t2)"
+ shows "(t1\<longrightarrow>\<^isub>\<beta>\<^sup>*t2)"
+ using a
+proof(nominal_induct rule: One.strong_induct)
+ case (o4 a s1 s2 t1 t2)
+ have vc: "a\<sharp>s1" "a\<sharp>s2" by fact
+ have a1: "t1\<longrightarrow>\<^isub>\<beta>\<^sup>*t2" and a2: "s1\<longrightarrow>\<^isub>\<beta>\<^sup>*s2" by fact
+ have c1: "(App (Lam [a].t2) s2) \<longrightarrow>\<^isub>\<beta> (t2 [a::= s2])" using vc by (simp add: b4)
+ from a1 a2 have c2: "App (Lam [a].t1 ) s1 \<longrightarrow>\<^isub>\<beta>\<^sup>* App (Lam [a].t2 ) s2"
+ by (blast intro!: one_app_cong one_lam_cong)
+ show ?case using c2 c1 by (blast intro: beta_star_trans)
+qed (auto intro!: one_app_cong one_lam_cong)
+
+lemma one_star_lam_cong:
+ assumes a: "t1\<longrightarrow>\<^isub>1\<^sup>*t2"
+ shows "(Lam [a].t1)\<longrightarrow>\<^isub>1\<^sup>* (Lam [a].t2)"
+ using a
+by (induct) (auto intro: one_star_trans)
+
+lemma one_star_app_congL:
+ assumes a: "t1\<longrightarrow>\<^isub>1\<^sup>*t2"
+ shows "App t1 s\<longrightarrow>\<^isub>1\<^sup>* App t2 s"
+ using a
+by (induct) (auto intro: one_star_trans)
+
+lemma one_star_app_congR:
+ assumes a: "t1\<longrightarrow>\<^isub>1\<^sup>*t2"
+ shows "App s t1 \<longrightarrow>\<^isub>1\<^sup>* App s t2"
+ using a
+by (induct) (auto intro: one_star_trans)
+
+lemma beta_one_star:
+ assumes a: "t1\<longrightarrow>\<^isub>\<beta>t2"
+ shows "t1\<longrightarrow>\<^isub>1\<^sup>*t2"
+ using a
+by (induct)
+ (auto intro!: one_star_app_congL one_star_app_congR one_star_lam_cong)
+
+lemma rectangle_for_one:
+ assumes a: "t\<longrightarrow>\<^isub>1\<^sup>*t1"
+ and b: "t\<longrightarrow>\<^isub>1t2"
+ shows "\<exists>t3. t1\<longrightarrow>\<^isub>1t3 \<and> t2\<longrightarrow>\<^isub>1\<^sup>*t3"
+ using a b
+proof (induct arbitrary: t2)
+ case os1 thus ?case by force
+next
+ case (os2 t s1 s2 t2)
+ have b: "s1 \<longrightarrow>\<^isub>1 s2" by fact
+ have h: "\<And>t2. t \<longrightarrow>\<^isub>1 t2 \<Longrightarrow> (\<exists>t3. s1 \<longrightarrow>\<^isub>1 t3 \<and> t2 \<longrightarrow>\<^isub>1\<^sup>* t3)" by fact
+ have c: "t \<longrightarrow>\<^isub>1 t2" by fact
+ show "\<exists>t3. s2 \<longrightarrow>\<^isub>1 t3 \<and> t2 \<longrightarrow>\<^isub>1\<^sup>* t3"
+ proof -
+ from c h have "\<exists>t3. s1 \<longrightarrow>\<^isub>1 t3 \<and> t2 \<longrightarrow>\<^isub>1\<^sup>* t3" by blast
+ then obtain t3 where c1: "s1 \<longrightarrow>\<^isub>1 t3" and c2: "t2 \<longrightarrow>\<^isub>1\<^sup>* t3" by blast
+ have "\<exists>t4. s2 \<longrightarrow>\<^isub>1 t4 \<and> t3 \<longrightarrow>\<^isub>1 t4" using b c1 by (blast intro: diamond)
+ thus ?thesis using c2 by (blast intro: one_star_trans)
+ qed
+qed
+
+lemma cr_for_one_star:
+ assumes a: "t\<longrightarrow>\<^isub>1\<^sup>*t2"
+ and b: "t\<longrightarrow>\<^isub>1\<^sup>*t1"
+ shows "\<exists>t3. t1\<longrightarrow>\<^isub>1\<^sup>*t3\<and>t2\<longrightarrow>\<^isub>1\<^sup>*t3"
+using a b
+proof (induct arbitrary: t1)
+ case (os1 t) then show ?case by force
+next
+ case (os2 t s1 s2 t1)
+ have c: "t \<longrightarrow>\<^isub>1\<^sup>* s1" by fact
+ have c': "t \<longrightarrow>\<^isub>1\<^sup>* t1" by fact
+ have d: "s1 \<longrightarrow>\<^isub>1 s2" by fact
+ have "t \<longrightarrow>\<^isub>1\<^sup>* t1 \<Longrightarrow> (\<exists>t3. t1 \<longrightarrow>\<^isub>1\<^sup>* t3 \<and> s1 \<longrightarrow>\<^isub>1\<^sup>* t3)" by fact
+ then obtain t3 where f1: "t1 \<longrightarrow>\<^isub>1\<^sup>* t3"
+ and f2: "s1 \<longrightarrow>\<^isub>1\<^sup>* t3" using c' by blast
+ from rectangle_for_one d f2 have "\<exists>t4. t3\<longrightarrow>\<^isub>1t4 \<and> s2\<longrightarrow>\<^isub>1\<^sup>*t4" by blast
+ then obtain t4 where g1: "t3\<longrightarrow>\<^isub>1t4"
+ and g2: "s2\<longrightarrow>\<^isub>1\<^sup>*t4" by blast
+ have "t1\<longrightarrow>\<^isub>1\<^sup>*t4" using f1 g1 by (blast intro: one_star_trans)
+ thus ?case using g2 by blast
+qed
+
+lemma beta_star_and_one_star:
+ shows "(M1\<longrightarrow>\<^isub>1\<^sup>*M2) = (M1\<longrightarrow>\<^isub>\<beta>\<^sup>*M2)"
+proof
+ assume "M1 \<longrightarrow>\<^isub>1\<^sup>* M2"
+ then show "M1\<longrightarrow>\<^isub>\<beta>\<^sup>*M2"
+ proof induct
+ case (os1 M1) thus "M1\<longrightarrow>\<^isub>\<beta>\<^sup>*M1" by simp
+ next
+ case (os2 M1 M2 M3)
+ have "M2\<longrightarrow>\<^isub>1M3" by fact
+ then have "M2\<longrightarrow>\<^isub>\<beta>\<^sup>*M3" by (rule one_beta_star)
+ moreover have "M1\<longrightarrow>\<^isub>\<beta>\<^sup>*M2" by fact
+ ultimately show "M1\<longrightarrow>\<^isub>\<beta>\<^sup>*M3" by (auto intro: beta_star_trans)
+ qed
+next
+ assume "M1 \<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
+ then show "M1\<longrightarrow>\<^isub>1\<^sup>*M2"
+ proof induct
+ case (bs1 M1) thus "M1\<longrightarrow>\<^isub>1\<^sup>*M1" by simp
+ next
+ case (bs2 M1 M2 M3)
+ have "M2\<longrightarrow>\<^isub>\<beta>M3" by fact
+ then have "M2\<longrightarrow>\<^isub>1\<^sup>*M3" by (rule beta_one_star)
+ moreover have "M1\<longrightarrow>\<^isub>1\<^sup>*M2" by fact
+ ultimately show "M1\<longrightarrow>\<^isub>1\<^sup>*M3" by (auto intro: one_star_trans)
+ qed
+qed
+
+lemma cr_for_beta_star:
+ assumes a1: "t\<longrightarrow>\<^isub>\<beta>\<^sup>*t1"
+ and a2: "t\<longrightarrow>\<^isub>\<beta>\<^sup>*t2"
+ shows "\<exists>t3. t1\<longrightarrow>\<^isub>\<beta>\<^sup>*t3\<and>t2\<longrightarrow>\<^isub>\<beta>\<^sup>*t3"
+proof -
+ from a1 have "t\<longrightarrow>\<^isub>1\<^sup>*t1" by (simp only: beta_star_and_one_star)
+ moreover
+ from a2 have "t\<longrightarrow>\<^isub>1\<^sup>*t2" by (simp only: beta_star_and_one_star)
+ ultimately have "\<exists>t3. t1\<longrightarrow>\<^isub>1\<^sup>*t3 \<and> t2\<longrightarrow>\<^isub>1\<^sup>*t3" by (blast intro: cr_for_one_star)
+ then obtain t3 where "t1\<longrightarrow>\<^isub>1\<^sup>*t3" and "t2\<longrightarrow>\<^isub>1\<^sup>*t3" by (blast intro: cr_for_one_star)
+ hence "t1\<longrightarrow>\<^isub>\<beta>\<^sup>*t3" and "t2\<longrightarrow>\<^isub>\<beta>\<^sup>*t3" by (simp_all only: beta_star_and_one_star)
+ then show "\<exists>t3. t1\<longrightarrow>\<^isub>\<beta>\<^sup>*t3\<and>t2\<longrightarrow>\<^isub>\<beta>\<^sup>*t3" by blast
+qed
+
+end