Add formalization of probabilistic independence for families of sets
authorhoelzl
Tue, 17 May 2011 11:47:36 +0200
changeset 42861 16375b493b64
parent 42860 b02349e70d5a
child 42862 7d7627738e66
Add formalization of probabilistic independence for families of sets
src/HOL/IsaMakefile
src/HOL/Probability/Independent_Family.thy
src/HOL/Probability/Probability.thy
--- a/src/HOL/IsaMakefile	Thu May 19 19:58:07 2011 +0200
+++ b/src/HOL/IsaMakefile	Tue May 17 11:47:36 2011 +0200
@@ -1193,6 +1193,7 @@
   Probability/ex/Dining_Cryptographers.thy				\
   Probability/ex/Koepf_Duermuth_Countermeasure.thy			\
   Probability/Finite_Product_Measure.thy				\
+  Probability/Independent_Family.thy                                    \
   Probability/Infinite_Product_Measure.thy Probability/Information.thy	\
   Probability/Lebesgue_Integration.thy Probability/Lebesgue_Measure.thy \
   Probability/Measure.thy Probability/Probability_Measure.thy		\
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Independent_Family.thy	Tue May 17 11:47:36 2011 +0200
@@ -0,0 +1,312 @@
+(*  Title:      HOL/Probability/Independent_Family.thy
+    Author:     Johannes Hölzl, TU München
+*)
+
+header {* Independent families of events, event sets, and random variables *}
+
+theory Independent_Family
+  imports Probability_Measure
+begin
+
+definition (in prob_space)
+  "indep_events A I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j)))"
+
+definition (in prob_space)
+  "indep_sets F I \<longleftrightarrow> (\<forall>i\<in>I. F i \<subseteq> events) \<and> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow>
+    (\<forall>A\<in>(\<Pi> j\<in>J. F j). prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))))"
+
+definition (in prob_space)
+  "indep_sets2 A B \<longleftrightarrow> indep_sets (bool_case A B) UNIV"
+
+definition (in prob_space)
+  "indep_rv M' X I \<longleftrightarrow>
+    (\<forall>i\<in>I. random_variable (M' i) (X i)) \<and>
+    indep_sets (\<lambda>i. sigma_sets (space M) { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
+
+lemma (in prob_space) indep_sets_finite_index_sets:
+  "indep_sets F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J)"
+proof (intro iffI allI impI)
+  assume *: "\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J"
+  show "indep_sets F I" unfolding indep_sets_def
+  proof (intro conjI ballI allI impI)
+    fix i assume "i \<in> I"
+    with *[THEN spec, of "{i}"] show "F i \<subseteq> events"
+      by (auto simp: indep_sets_def)
+  qed (insert *, auto simp: indep_sets_def)
+qed (auto simp: indep_sets_def)
+
+lemma (in prob_space) indep_sets_mono_index:
+  "J \<subseteq> I \<Longrightarrow> indep_sets F I \<Longrightarrow> indep_sets F J"
+  unfolding indep_sets_def by auto
+
+lemma (in prob_space) indep_sets_mono_sets:
+  assumes indep: "indep_sets F I"
+  assumes mono: "\<And>i. i\<in>I \<Longrightarrow> G i \<subseteq> F i"
+  shows "indep_sets G I"
+proof -
+  have "(\<forall>i\<in>I. F i \<subseteq> events) \<Longrightarrow> (\<forall>i\<in>I. G i \<subseteq> events)"
+    using mono by auto
+  moreover have "\<And>A J. J \<subseteq> I \<Longrightarrow> A \<in> (\<Pi> j\<in>J. G j) \<Longrightarrow> A \<in> (\<Pi> j\<in>J. F j)"
+    using mono by (auto simp: Pi_iff)
+  ultimately show ?thesis
+    using indep by (auto simp: indep_sets_def)
+qed
+
+lemma (in prob_space) indep_setsI:
+  assumes "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events"
+    and "\<And>A J. J \<noteq> {} \<Longrightarrow> J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<forall>j\<in>J. A j \<in> F j) \<Longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
+  shows "indep_sets F I"
+  using assms unfolding indep_sets_def by (auto simp: Pi_iff)
+
+lemma (in prob_space) indep_setsD:
+  assumes "indep_sets F I" and "J \<subseteq> I" "J \<noteq> {}" "finite J" "\<forall>j\<in>J. A j \<in> F j"
+  shows "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
+  using assms unfolding indep_sets_def by auto
+
+lemma dynkin_systemI':
+  assumes 1: "\<And> A. A \<in> sets M \<Longrightarrow> A \<subseteq> space M"
+  assumes empty: "{} \<in> sets M"
+  assumes Diff: "\<And> A. A \<in> sets M \<Longrightarrow> space M - A \<in> sets M"
+  assumes 2: "\<And> A. disjoint_family A \<Longrightarrow> range A \<subseteq> sets M
+          \<Longrightarrow> (\<Union>i::nat. A i) \<in> sets M"
+  shows "dynkin_system M"
+proof -
+  from Diff[OF empty] have "space M \<in> sets M" by auto
+  from 1 this Diff 2 show ?thesis
+    by (intro dynkin_systemI) auto
+qed
+
+lemma (in prob_space) indep_sets_dynkin:
+  assumes indep: "indep_sets F I"
+  shows "indep_sets (\<lambda>i. sets (dynkin \<lparr> space = space M, sets = F i \<rparr>)) I"
+    (is "indep_sets ?F I")
+proof (subst indep_sets_finite_index_sets, intro allI impI ballI)
+  fix J assume "finite J" "J \<subseteq> I" "J \<noteq> {}"
+  with indep have "indep_sets F J"
+    by (subst (asm) indep_sets_finite_index_sets) auto
+  { fix J K assume "indep_sets F K"
+    let "?G S i" = "if i \<in> S then ?F i else F i"
+    assume "finite J" "J \<subseteq> K"
+    then have "indep_sets (?G J) K"
+    proof induct
+      case (insert j J)
+      moreover def G \<equiv> "?G J"
+      ultimately have G: "indep_sets G K" "\<And>i. i \<in> K \<Longrightarrow> G i \<subseteq> events" and "j \<in> K"
+        by (auto simp: indep_sets_def)
+      let ?D = "{E\<in>events. indep_sets (G(j := {E})) K }"
+      { fix X assume X: "X \<in> events"
+        assume indep: "\<And>J A. J \<noteq> {} \<Longrightarrow> J \<subseteq> K \<Longrightarrow> finite J \<Longrightarrow> j \<notin> J \<Longrightarrow> (\<forall>i\<in>J. A i \<in> G i)
+          \<Longrightarrow> prob ((\<Inter>i\<in>J. A i) \<inter> X) = prob X * (\<Prod>i\<in>J. prob (A i))"
+        have "indep_sets (G(j := {X})) K"
+        proof (rule indep_setsI)
+          fix i assume "i \<in> K" then show "(G(j:={X})) i \<subseteq> events"
+            using G X by auto
+        next
+          fix A J assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "\<forall>i\<in>J. A i \<in> (G(j := {X})) i"
+          show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
+          proof cases
+            assume "j \<in> J"
+            with J have "A j = X" by auto
+            show ?thesis
+            proof cases
+              assume "J = {j}" then show ?thesis by simp
+            next
+              assume "J \<noteq> {j}"
+              have "prob (\<Inter>i\<in>J. A i) = prob ((\<Inter>i\<in>J-{j}. A i) \<inter> X)"
+                using `j \<in> J` `A j = X` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
+              also have "\<dots> = prob X * (\<Prod>i\<in>J-{j}. prob (A i))"
+              proof (rule indep)
+                show "J - {j} \<noteq> {}" "J - {j} \<subseteq> K" "finite (J - {j})" "j \<notin> J - {j}"
+                  using J `J \<noteq> {j}` `j \<in> J` by auto
+                show "\<forall>i\<in>J - {j}. A i \<in> G i"
+                  using J by auto
+              qed
+              also have "\<dots> = prob (A j) * (\<Prod>i\<in>J-{j}. prob (A i))"
+                using `A j = X` by simp
+              also have "\<dots> = (\<Prod>i\<in>J. prob (A i))"
+                unfolding setprod.insert_remove[OF `finite J`, symmetric, of "\<lambda>i. prob  (A i)"]
+                using `j \<in> J` by (simp add: insert_absorb)
+              finally show ?thesis .
+            qed
+          next
+            assume "j \<notin> J"
+            with J have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
+            with J show ?thesis
+              by (intro indep_setsD[OF G(1)]) auto
+          qed
+        qed }
+      note indep_sets_insert = this
+      have "dynkin_system \<lparr> space = space M, sets = ?D \<rparr>"
+      proof (rule dynkin_systemI', simp_all, safe)
+        show "indep_sets (G(j := {{}})) K"
+          by (rule indep_sets_insert) auto
+      next
+        fix X assume X: "X \<in> events" and G': "indep_sets (G(j := {X})) K"
+        show "indep_sets (G(j := {space M - X})) K"
+        proof (rule indep_sets_insert)
+          fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
+          then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
+            using G by auto
+          have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
+              prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
+            using A_sets sets_into_space X `J \<noteq> {}`
+            by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
+          also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
+            using J `J \<noteq> {}` `j \<notin> J` A_sets X sets_into_space
+            by (auto intro!: finite_measure_Diff finite_INT split: split_if_asm)
+          finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
+              prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" .
+          moreover {
+            have "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
+              using J A `finite J` by (intro indep_setsD[OF G(1)]) auto
+            then have "prob (\<Inter>j\<in>J. A j) = prob (space M) * (\<Prod>i\<in>J. prob (A i))"
+              using prob_space by simp }
+          moreover {
+            have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = (\<Prod>i\<in>insert j J. prob ((A(j := X)) i))"
+              using J A `j \<in> K` by (intro indep_setsD[OF G']) auto
+            then have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = prob X * (\<Prod>i\<in>J. prob (A i))"
+              using `finite J` `j \<notin> J` by (auto intro!: setprod_cong) }
+          ultimately have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = (prob (space M) - prob X) * (\<Prod>i\<in>J. prob (A i))"
+            by (simp add: field_simps)
+          also have "\<dots> = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))"
+            using X A by (simp add: finite_measure_compl)
+          finally show "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" .
+        qed (insert X, auto)
+      next
+        fix F :: "nat \<Rightarrow> 'a set" assume disj: "disjoint_family F" and "range F \<subseteq> ?D"
+        then have F: "\<And>i. F i \<in> events" "\<And>i. indep_sets (G(j:={F i})) K" by auto
+        show "indep_sets (G(j := {\<Union>k. F k})) K"
+        proof (rule indep_sets_insert)
+          fix J A assume J: "j \<notin> J" "J \<noteq> {}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> G i"
+          then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
+            using G by auto
+          have "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
+            using `J \<noteq> {}` `j \<notin> J` `j \<in> K` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
+          moreover have "(\<lambda>k. prob (\<Inter>i\<in>insert j J. (A(j := F k)) i)) sums prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
+          proof (rule finite_measure_UNION)
+            show "disjoint_family (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i)"
+              using disj by (rule disjoint_family_on_bisimulation) auto
+            show "range (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i) \<subseteq> events"
+              using A_sets F `finite J` `J \<noteq> {}` `j \<notin> J` by (auto intro!: Int)
+          qed
+          moreover { fix k
+            from J A `j \<in> K` have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * (\<Prod>i\<in>J. prob (A i))"
+              by (subst indep_setsD[OF F(2)]) (auto intro!: setprod_cong split: split_if_asm)
+            also have "\<dots> = prob (F k) * prob (\<Inter>i\<in>J. A i)"
+              using J A `j \<in> K` by (subst indep_setsD[OF G(1)]) auto
+            finally have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * prob (\<Inter>i\<in>J. A i)" . }
+          ultimately have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)))"
+            by simp
+          moreover
+          have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * prob (\<Inter>i\<in>J. A i))"
+            using disj F(1) by (intro finite_measure_UNION sums_mult2) auto
+          then have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * (\<Prod>i\<in>J. prob (A i)))"
+            using J A `j \<in> K` by (subst indep_setsD[OF G(1), symmetric]) auto
+          ultimately
+          show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
+            by (auto dest!: sums_unique)
+        qed (insert F, auto)
+      qed (insert sets_into_space, auto)
+      then have mono: "sets (dynkin \<lparr>space = space M, sets = G j\<rparr>) \<subseteq>
+        sets \<lparr>space = space M, sets = {E \<in> events. indep_sets (G(j := {E})) K}\<rparr>"
+      proof (rule dynkin_system.dynkin_subset, simp_all, safe)
+        fix X assume "X \<in> G j"
+        then show "X \<in> events" using G `j \<in> K` by auto
+        from `indep_sets G K`
+        show "indep_sets (G(j := {X})) K"
+          by (rule indep_sets_mono_sets) (insert `X \<in> G j`, auto)
+      qed
+      have "indep_sets (G(j:=?D)) K"
+      proof (rule indep_setsI)
+        fix i assume "i \<in> K" then show "(G(j := ?D)) i \<subseteq> events"
+          using G(2) by auto
+      next
+        fix A J assume J: "J\<noteq>{}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> (G(j := ?D)) i"
+        show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
+        proof cases
+          assume "j \<in> J"
+          with A have indep: "indep_sets (G(j := {A j})) K" by auto
+          from J A show ?thesis
+            by (intro indep_setsD[OF indep]) auto
+        next
+          assume "j \<notin> J"
+          with J A have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
+          with J show ?thesis
+            by (intro indep_setsD[OF G(1)]) auto
+        qed
+      qed
+      then have "indep_sets (G(j:=sets (dynkin \<lparr>space = space M, sets = G j\<rparr>))) K"
+        by (rule indep_sets_mono_sets) (insert mono, auto)
+      then show ?case
+        by (rule indep_sets_mono_sets) (insert `j \<in> K` `j \<notin> J`, auto simp: G_def)
+    qed (insert `indep_sets F K`, simp) }
+  from this[OF `indep_sets F J` `finite J` subset_refl]
+  show "indep_sets (\<lambda>i. sets (dynkin \<lparr> space = space M, sets = F i \<rparr>)) J"
+    by (rule indep_sets_mono_sets) auto
+qed
+
+lemma (in prob_space) indep_sets_sigma:
+  assumes indep: "indep_sets F I"
+  assumes stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
+  shows "indep_sets (\<lambda>i. sets (sigma \<lparr> space = space M, sets = F i \<rparr>)) I"
+proof -
+  from indep_sets_dynkin[OF indep]
+  show ?thesis
+  proof (rule indep_sets_mono_sets, subst sigma_eq_dynkin, simp_all add: stable)
+    fix i assume "i \<in> I"
+    with indep have "F i \<subseteq> events" by (auto simp: indep_sets_def)
+    with sets_into_space show "F i \<subseteq> Pow (space M)" by auto
+  qed
+qed
+
+lemma (in prob_space) indep_sets_sigma_sets:
+  assumes "indep_sets F I"
+  assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
+  shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
+  using indep_sets_sigma[OF assms] by (simp add: sets_sigma)
+
+lemma (in prob_space) indep_sets2_eq:
+  "indep_sets2 A B \<longleftrightarrow> A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
+  unfolding indep_sets2_def
+proof (intro iffI ballI conjI)
+  assume indep: "indep_sets (bool_case A B) UNIV"
+  { fix a b assume "a \<in> A" "b \<in> B"
+    with indep_setsD[OF indep, of UNIV "bool_case a b"]
+    show "prob (a \<inter> b) = prob a * prob b"
+      unfolding UNIV_bool by (simp add: ac_simps) }
+  from indep show "A \<subseteq> events" "B \<subseteq> events"
+    unfolding indep_sets_def UNIV_bool by auto
+next
+  assume *: "A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
+  show "indep_sets (bool_case A B) UNIV"
+  proof (rule indep_setsI)
+    fix i show "(case i of True \<Rightarrow> A | False \<Rightarrow> B) \<subseteq> events"
+      using * by (auto split: bool.split)
+  next
+    fix J X assume "J \<noteq> {}" "J \<subseteq> UNIV" and X: "\<forall>j\<in>J. X j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
+    then have "J = {True} \<or> J = {False} \<or> J = {True,False}"
+      by (auto simp: UNIV_bool)
+    then show "prob (\<Inter>j\<in>J. X j) = (\<Prod>j\<in>J. prob (X j))"
+      using X * by auto
+  qed
+qed
+
+lemma (in prob_space) indep_sets2_sigma_sets:
+  assumes "indep_sets2 A B"
+  assumes A: "Int_stable \<lparr> space = space M, sets = A \<rparr>"
+  assumes B: "Int_stable \<lparr> space = space M, sets = B \<rparr>"
+  shows "indep_sets2 (sigma_sets (space M) A) (sigma_sets (space M) B)"
+proof -
+  have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
+  proof (rule indep_sets_sigma_sets)
+    show "indep_sets (bool_case A B) UNIV"
+      by (rule `indep_sets2 A B`[unfolded indep_sets2_def])
+    fix i show "Int_stable \<lparr>space = space M, sets = case i of True \<Rightarrow> A | False \<Rightarrow> B\<rparr>"
+      using A B by (cases i) auto
+  qed
+  then show ?thesis
+    unfolding indep_sets2_def
+    by (rule indep_sets_mono_sets) (auto split: bool.split)
+qed
+
+end
--- a/src/HOL/Probability/Probability.thy	Thu May 19 19:58:07 2011 +0200
+++ b/src/HOL/Probability/Probability.thy	Tue May 17 11:47:36 2011 +0200
@@ -4,6 +4,7 @@
   Lebesgue_Measure
   Probability_Measure
   Infinite_Product_Measure
+  Independent_Family
   Information
   "ex/Dining_Cryptographers"
   "ex/Koepf_Duermuth_Countermeasure"