use 'smt2' in SMT examples as much as currently possible
authorblanchet
Thu, 13 Mar 2014 13:18:13 +0100
changeset 56079 175ac95720d4
parent 56078 624faeda77b5
child 56080 f8ed378ec457
use 'smt2' in SMT examples as much as currently possible
src/HOL/ROOT
src/HOL/SMT_Examples/SMT_Examples.certs
src/HOL/SMT_Examples/SMT_Examples.certs2
src/HOL/SMT_Examples/SMT_Examples.thy
src/HOL/SMT_Examples/SMT_Tests.thy
src/HOL/SMT_Examples/SMT_Word_Examples.certs
src/HOL/SMT_Examples/SMT_Word_Examples.certs2
src/HOL/SMT_Examples/SMT_Word_Examples.thy
--- a/src/HOL/ROOT	Thu Mar 13 13:18:13 2014 +0100
+++ b/src/HOL/ROOT	Thu Mar 13 13:18:13 2014 +0100
@@ -777,7 +777,8 @@
     "Boogie_Dijkstra.certs"
     "Boogie_Max.certs"
     "SMT_Examples.certs"
-    "SMT_Word_Examples.certs"
+    "SMT_Examples.certs2"
+    "SMT_Word_Examples.certs2"
     "VCC_Max.certs"
 
 session "HOL-SPARK" (main) in "SPARK" = "HOL-Word" +
--- a/src/HOL/SMT_Examples/SMT_Examples.certs	Thu Mar 13 13:18:13 2014 +0100
+++ b/src/HOL/SMT_Examples/SMT_Examples.certs	Thu Mar 13 13:18:13 2014 +0100
@@ -1,669 +1,3 @@
-23d01cdabb599769b54210e40617eea3d6c91e30 8 0
-#2 := false
-#1 := true
-#7 := (not true)
-#29 := (iff #7 false)
-#30 := [rewrite]: #29
-#28 := [asserted]: #7
-[mp #28 #30]: false
-unsat
-22e23526a38d50ce23abbe4dbfb697891cbcd840 22 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#9 := (not #8)
-#10 := (or #8 #9)
-#11 := (not #10)
-#40 := (iff #11 false)
-#1 := true
-#35 := (not true)
-#38 := (iff #35 false)
-#39 := [rewrite]: #38
-#36 := (iff #11 #35)
-#33 := (iff #10 true)
-#34 := [rewrite]: #33
-#37 := [monotonicity #34]: #36
-#41 := [trans #37 #39]: #40
-#32 := [asserted]: #11
-[mp #32 #41]: false
-unsat
-121552dd328e0993a2c6099c592d9c3db7fff190 28 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#1 := true
-#9 := (and #8 true)
-#10 := (iff #9 #8)
-#11 := (not #10)
-#46 := (iff #11 false)
-#41 := (not true)
-#44 := (iff #41 false)
-#45 := [rewrite]: #44
-#42 := (iff #11 #41)
-#39 := (iff #10 true)
-#34 := (iff #8 #8)
-#37 := (iff #34 true)
-#38 := [rewrite]: #37
-#35 := (iff #10 #34)
-#33 := [rewrite]: #10
-#36 := [monotonicity #33]: #35
-#40 := [trans #36 #38]: #39
-#43 := [monotonicity #40]: #42
-#47 := [trans #43 #45]: #46
-#32 := [asserted]: #11
-[mp #32 #47]: false
-unsat
-263480c8c5909524c36f6198f60c623fbcfc953d 41 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f4 :: S1
-#9 := f4
-#10 := (= f4 f1)
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#11 := (or #8 #10)
-#64 := (iff #11 false)
-#59 := (or false false)
-#62 := (iff #59 false)
-#63 := [rewrite]: #62
-#60 := (iff #11 #59)
-#57 := (iff #10 false)
-#48 := (not #10)
-#12 := (not #8)
-#13 := (and #11 #12)
-#37 := (not #13)
-#38 := (or #37 #10)
-#41 := (not #38)
-#14 := (implies #13 #10)
-#15 := (not #14)
-#42 := (iff #15 #41)
-#39 := (iff #14 #38)
-#40 := [rewrite]: #39
-#43 := [monotonicity #40]: #42
-#36 := [asserted]: #15
-#46 := [mp #36 #43]: #41
-#49 := [not-or-elim #46]: #48
-#58 := [iff-false #49]: #57
-#55 := (iff #8 false)
-#44 := [not-or-elim #46]: #13
-#47 := [and-elim #44]: #12
-#56 := [iff-false #47]: #55
-#61 := [monotonicity #56 #58]: #60
-#65 := [trans #61 #63]: #64
-#45 := [and-elim #44]: #11
-[mp #45 #65]: false
-unsat
-79d9d246dd9d27e03e8f1ea895e790f3a4420bfd 55 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-decl f5 :: S1
-#12 := f5
-#13 := (= f5 f1)
-#16 := (and #8 #13)
-decl f4 :: S1
-#9 := f4
-#10 := (= f4 f1)
-#15 := (and #13 #10)
-#17 := (or #15 #16)
-#18 := (implies #8 #17)
-#19 := (or #18 #8)
-#11 := (and #8 #10)
-#14 := (or #11 #13)
-#20 := (implies #14 #19)
-#21 := (not #20)
-#71 := (iff #21 false)
-#43 := (not #8)
-#44 := (or #43 #17)
-#47 := (or #44 #8)
-#53 := (not #14)
-#54 := (or #53 #47)
-#59 := (not #54)
-#69 := (iff #59 false)
-#1 := true
-#64 := (not true)
-#67 := (iff #64 false)
-#68 := [rewrite]: #67
-#65 := (iff #59 #64)
-#62 := (iff #54 true)
-#63 := [rewrite]: #62
-#66 := [monotonicity #63]: #65
-#70 := [trans #66 #68]: #69
-#60 := (iff #21 #59)
-#57 := (iff #20 #54)
-#50 := (implies #14 #47)
-#55 := (iff #50 #54)
-#56 := [rewrite]: #55
-#51 := (iff #20 #50)
-#48 := (iff #19 #47)
-#45 := (iff #18 #44)
-#46 := [rewrite]: #45
-#49 := [monotonicity #46]: #48
-#52 := [monotonicity #49]: #51
-#58 := [trans #52 #56]: #57
-#61 := [monotonicity #58]: #60
-#72 := [trans #61 #70]: #71
-#42 := [asserted]: #21
-[mp #42 #72]: false
-unsat
-050883983ebe99dc3b7f24a011b1724b1b2c4dd9 33 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f6 :: S1
-#14 := f6
-#15 := (= f6 f1)
-decl f5 :: S1
-#12 := f5
-#13 := (= f5 f1)
-#16 := (and #13 #15)
-decl f4 :: S1
-#9 := f4
-#10 := (= f4 f1)
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#11 := (and #8 #10)
-#17 := (or #11 #16)
-#18 := (implies #17 #17)
-#19 := (not #18)
-#48 := (iff #19 false)
-#1 := true
-#43 := (not true)
-#46 := (iff #43 false)
-#47 := [rewrite]: #46
-#44 := (iff #19 #43)
-#41 := (iff #18 true)
-#42 := [rewrite]: #41
-#45 := [monotonicity #42]: #44
-#49 := [trans #45 #47]: #48
-#40 := [asserted]: #19
-[mp #40 #49]: false
-unsat
-8575241c64c02491d277f6598ca57e576f5a6b45 60 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#9 := (iff #8 #8)
-#10 := (iff #9 #8)
-#11 := (iff #10 #8)
-#12 := (iff #11 #8)
-#13 := (iff #12 #8)
-#14 := (iff #13 #8)
-#15 := (iff #14 #8)
-#16 := (iff #15 #8)
-#17 := (iff #16 #8)
-#18 := (not #17)
-#78 := (iff #18 false)
-#1 := true
-#73 := (not true)
-#76 := (iff #73 false)
-#77 := [rewrite]: #76
-#74 := (iff #18 #73)
-#71 := (iff #17 true)
-#40 := (iff #9 true)
-#41 := [rewrite]: #40
-#69 := (iff #17 #9)
-#42 := (iff true #8)
-#45 := (iff #42 #8)
-#46 := [rewrite]: #45
-#66 := (iff #16 #42)
-#64 := (iff #15 true)
-#62 := (iff #15 #9)
-#59 := (iff #14 #42)
-#57 := (iff #13 true)
-#55 := (iff #13 #9)
-#52 := (iff #12 #42)
-#50 := (iff #11 true)
-#48 := (iff #11 #9)
-#43 := (iff #10 #42)
-#44 := [monotonicity #41]: #43
-#47 := [trans #44 #46]: #11
-#49 := [monotonicity #47]: #48
-#51 := [trans #49 #41]: #50
-#53 := [monotonicity #51]: #52
-#54 := [trans #53 #46]: #13
-#56 := [monotonicity #54]: #55
-#58 := [trans #56 #41]: #57
-#60 := [monotonicity #58]: #59
-#61 := [trans #60 #46]: #15
-#63 := [monotonicity #61]: #62
-#65 := [trans #63 #41]: #64
-#67 := [monotonicity #65]: #66
-#68 := [trans #67 #46]: #17
-#70 := [monotonicity #68]: #69
-#72 := [trans #70 #41]: #71
-#75 := [monotonicity #72]: #74
-#79 := [trans #75 #77]: #78
-#39 := [asserted]: #18
-[mp #39 #79]: false
-unsat
-8434421285df70a7e1728b19173d86303151090b 165 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f6 :: S1
-#13 := f6
-#14 := (= f6 f1)
-decl f5 :: S1
-#11 := f5
-#12 := (= f5 f1)
-decl f4 :: S1
-#9 := f4
-#10 := (= f4 f1)
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#75 := (or #8 #10 #12 #14)
-#215 := (iff #75 false)
-#210 := (or false false false false)
-#213 := (iff #210 false)
-#214 := [rewrite]: #213
-#211 := (iff #75 #210)
-#167 := (iff #14 false)
-#119 := (not #14)
-#122 := (or #119 #12)
-#175 := (iff #122 #119)
-#170 := (or #119 false)
-#173 := (iff #170 #119)
-#174 := [rewrite]: #173
-#171 := (iff #122 #170)
-#168 := (iff #12 false)
-#25 := (not #12)
-decl f11 :: S1
-#43 := f11
-#44 := (= f11 f1)
-#45 := (not #44)
-#46 := (and #44 #45)
-decl f10 :: S1
-#40 := f10
-#41 := (= f10 f1)
-#47 := (or #41 #46)
-#42 := (not #41)
-#48 := (and #42 #47)
-#49 := (or #12 #48)
-#50 := (not #49)
-#150 := (iff #50 #25)
-#148 := (iff #49 #12)
-#143 := (or #12 false)
-#146 := (iff #143 #12)
-#147 := [rewrite]: #146
-#144 := (iff #49 #143)
-#141 := (iff #48 false)
-#136 := (and #42 #41)
-#139 := (iff #136 false)
-#140 := [rewrite]: #139
-#137 := (iff #48 #136)
-#134 := (iff #47 #41)
-#129 := (or #41 false)
-#132 := (iff #129 #41)
-#133 := [rewrite]: #132
-#130 := (iff #47 #129)
-#126 := (iff #46 false)
-#128 := [rewrite]: #126
-#131 := [monotonicity #128]: #130
-#135 := [trans #131 #133]: #134
-#138 := [monotonicity #135]: #137
-#142 := [trans #138 #140]: #141
-#145 := [monotonicity #142]: #144
-#149 := [trans #145 #147]: #148
-#151 := [monotonicity #149]: #150
-#125 := [asserted]: #50
-#154 := [mp #125 #151]: #25
-#169 := [iff-false #154]: #168
-#172 := [monotonicity #169]: #171
-#176 := [trans #172 #174]: #175
-#37 := (or #14 false)
-#38 := (not #37)
-#39 := (or #38 #12)
-#123 := (iff #39 #122)
-#120 := (iff #38 #119)
-#116 := (iff #37 #14)
-#118 := [rewrite]: #116
-#121 := [monotonicity #118]: #120
-#124 := [monotonicity #121]: #123
-#115 := [asserted]: #39
-#127 := [mp #115 #124]: #122
-#166 := [mp #127 #176]: #119
-#177 := [iff-false #166]: #167
-#165 := (iff #10 false)
-#109 := (not #10)
-#112 := (or #109 #12)
-#183 := (iff #112 #109)
-#178 := (or #109 false)
-#181 := (iff #178 #109)
-#182 := [rewrite]: #181
-#179 := (iff #112 #178)
-#180 := [monotonicity #169]: #179
-#184 := [trans #180 #182]: #183
-decl f9 :: S1
-#30 := f9
-#31 := (= f9 f1)
-#32 := (not #31)
-#33 := (or #31 #32)
-#34 := (and #10 #33)
-#35 := (not #34)
-#36 := (or #35 #12)
-#113 := (iff #36 #112)
-#110 := (iff #35 #109)
-#107 := (iff #34 #10)
-#1 := true
-#102 := (and #10 true)
-#105 := (iff #102 #10)
-#106 := [rewrite]: #105
-#103 := (iff #34 #102)
-#99 := (iff #33 true)
-#101 := [rewrite]: #99
-#104 := [monotonicity #101]: #103
-#108 := [trans #104 #106]: #107
-#111 := [monotonicity #108]: #110
-#114 := [monotonicity #111]: #113
-#98 := [asserted]: #36
-#117 := [mp #98 #114]: #112
-#164 := [mp #117 #184]: #109
-#185 := [iff-false #164]: #165
-#163 := (iff #8 false)
-#92 := (not #8)
-#95 := (or #92 #10)
-#191 := (iff #95 #92)
-#186 := (or #92 false)
-#189 := (iff #186 #92)
-#190 := [rewrite]: #189
-#187 := (iff #95 #186)
-#188 := [monotonicity #185]: #187
-#192 := [trans #188 #190]: #191
-#26 := (and #12 #25)
-#27 := (or #8 #26)
-#28 := (not #27)
-#29 := (or #28 #10)
-#96 := (iff #29 #95)
-#93 := (iff #28 #92)
-#90 := (iff #27 #8)
-#85 := (or #8 false)
-#88 := (iff #85 #8)
-#89 := [rewrite]: #88
-#86 := (iff #27 #85)
-#79 := (iff #26 false)
-#84 := [rewrite]: #79
-#87 := [monotonicity #84]: #86
-#91 := [trans #87 #89]: #90
-#94 := [monotonicity #91]: #93
-#97 := [monotonicity #94]: #96
-#74 := [asserted]: #29
-#100 := [mp #74 #97]: #95
-#162 := [mp #100 #192]: #92
-#193 := [iff-false #162]: #163
-#212 := [monotonicity #193 #185 #169 #177]: #211
-#216 := [trans #212 #214]: #215
-#15 := (or #12 #14)
-#16 := (or #10 #15)
-#17 := (or #8 #16)
-#76 := (iff #17 #75)
-#77 := [rewrite]: #76
-#72 := [asserted]: #17
-#78 := [mp #72 #77]: #75
-[mp #78 #216]: false
-unsat
-2571c5d0e3c2bb55fd62ced2ec0c2fd2a4870074 59 0
-#2 := false
-decl f3 :: (-> S3 S2 S2)
-decl f6 :: S2
-#16 := f6
-decl f4 :: (-> S4 S2 S3)
-decl f7 :: S2
-#19 := f7
-decl f5 :: S4
-#7 := f5
-#21 := (f4 f5 f7)
-#22 := (f3 #21 f6)
-#18 := (f4 f5 f6)
-#20 := (f3 #18 f7)
-#23 := (= #20 #22)
-#57 := (not #23)
-#17 := (= f6 f6)
-#24 := (and #17 #23)
-#25 := (not #24)
-#58 := (iff #25 #57)
-#55 := (iff #24 #23)
-#1 := true
-#50 := (and true #23)
-#53 := (iff #50 #23)
-#54 := [rewrite]: #53
-#51 := (iff #24 #50)
-#48 := (iff #17 true)
-#49 := [rewrite]: #48
-#52 := [monotonicity #49]: #51
-#56 := [trans #52 #54]: #55
-#59 := [monotonicity #56]: #58
-#47 := [asserted]: #25
-#62 := [mp #47 #59]: #57
-#8 := (:var 1 S2)
-#10 := (:var 0 S2)
-#12 := (f4 f5 #10)
-#13 := (f3 #12 #8)
-#546 := (pattern #13)
-#9 := (f4 f5 #8)
-#11 := (f3 #9 #10)
-#545 := (pattern #11)
-#14 := (= #11 #13)
-#547 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #545 #546) #14)
-#15 := (forall (vars (?v0 S2) (?v1 S2)) #14)
-#550 := (iff #15 #547)
-#548 := (iff #14 #14)
-#549 := [refl]: #548
-#551 := [quant-intro #549]: #550
-#70 := (~ #15 #15)
-#68 := (~ #14 #14)
-#69 := [refl]: #68
-#71 := [nnf-pos #69]: #70
-#46 := [asserted]: #15
-#61 := [mp~ #46 #71]: #15
-#552 := [mp #61 #551]: #547
-#130 := (not #547)
-#216 := (or #130 #23)
-#131 := [quant-inst #16 #19]: #216
-[unit-resolution #131 #552 #62]: false
-unsat
-53042978396971446eabf6039172bd47071e3fd3 67 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: (-> Int S1)
-decl ?v0!0 :: Int
-#55 := ?v0!0
-#56 := (f3 ?v0!0)
-#57 := (= #56 f1)
-#58 := (not #57)
-decl ?v1!1 :: Int
-#66 := ?v1!1
-#67 := (f3 ?v1!1)
-#68 := (= #67 f1)
-#69 := (or #57 #68)
-#70 := (not #69)
-#86 := (and #57 #70)
-#63 := (not #58)
-#76 := (and #63 #70)
-#87 := (iff #76 #86)
-#84 := (iff #63 #57)
-#85 := [rewrite]: #84
-#88 := [monotonicity #85]: #87
-#7 := (:var 0 Int)
-#8 := (f3 #7)
-#9 := (= #8 f1)
-#10 := (:var 1 Int)
-#11 := (f3 #10)
-#12 := (= #11 f1)
-#13 := (or #12 #9)
-#14 := (forall (vars (?v1 Int)) #13)
-#39 := (not #9)
-#40 := (or #39 #14)
-#43 := (forall (vars (?v0 Int)) #40)
-#46 := (not #43)
-#79 := (~ #46 #76)
-#50 := (or #57 #9)
-#52 := (forall (vars (?v1 Int)) #50)
-#59 := (or #58 #52)
-#60 := (not #59)
-#77 := (~ #60 #76)
-#71 := (not #52)
-#72 := (~ #71 #70)
-#73 := [sk]: #72
-#64 := (~ #63 #63)
-#65 := [refl]: #64
-#78 := [nnf-neg #65 #73]: #77
-#61 := (~ #46 #60)
-#62 := [sk]: #61
-#80 := [trans #62 #78]: #79
-#15 := (implies #9 #14)
-#16 := (forall (vars (?v0 Int)) #15)
-#17 := (not #16)
-#47 := (iff #17 #46)
-#44 := (iff #16 #43)
-#41 := (iff #15 #40)
-#42 := [rewrite]: #41
-#45 := [quant-intro #42]: #44
-#48 := [monotonicity #45]: #47
-#38 := [asserted]: #17
-#51 := [mp #38 #48]: #46
-#81 := [mp~ #51 #80]: #76
-#82 := [mp #81 #88]: #86
-#89 := [and-elim #82]: #70
-#90 := [not-or-elim #89]: #58
-#83 := [and-elim #82]: #57
-[unit-resolution #83 #90]: false
-unsat
-a69a9e8c5e31ec6b9da4cf96f47b52cf6b9404d9 117 0
-#2 := false
-decl f3 :: (-> S3 S2 S1)
-#10 := (:var 0 S2)
-decl f4 :: (-> S4 S1 S3)
-decl f6 :: S1
-#16 := f6
-decl f5 :: S4
-#7 := f5
-#17 := (f4 f5 f6)
-#18 := (f3 #17 #10)
-#573 := (pattern #18)
-decl f1 :: S1
-#3 := f1
-#19 := (= #18 f1)
-#76 := (not #19)
-#574 := (forall (vars (?v0 S2)) (:pat #573) #76)
-decl f7 :: S2
-#21 := f7
-#22 := (f3 #17 f7)
-#23 := (= #22 f1)
-#150 := (= f6 f1)
-#151 := (iff #23 #150)
-#8 := (:var 1 S1)
-#9 := (f4 f5 #8)
-#11 := (f3 #9 #10)
-#566 := (pattern #11)
-#13 := (= #8 f1)
-#12 := (= #11 f1)
-#14 := (iff #12 #13)
-#567 := (forall (vars (?v0 S1) (?v1 S2)) (:pat #566) #14)
-#15 := (forall (vars (?v0 S1) (?v1 S2)) #14)
-#570 := (iff #15 #567)
-#568 := (iff #14 #14)
-#569 := [refl]: #568
-#571 := [quant-intro #569]: #570
-#62 := (~ #15 #15)
-#60 := (~ #14 #14)
-#61 := [refl]: #60
-#63 := [nnf-pos #61]: #62
-#46 := [asserted]: #15
-#53 := [mp~ #46 #63]: #15
-#572 := [mp #53 #571]: #567
-#152 := (not #567)
-#228 := (or #152 #151)
-#561 := [quant-inst #16 #21]: #228
-#237 := [unit-resolution #561 #572]: #151
-decl ?v0!0 :: S2
-#66 := ?v0!0
-#67 := (f3 #17 ?v0!0)
-#68 := (= #67 f1)
-#236 := (iff #68 #150)
-#238 := (or #152 #236)
-#229 := [quant-inst #16 #66]: #238
-#227 := [unit-resolution #229 #572]: #236
-#240 := (not #236)
-#199 := (or #240 #150)
-#55 := (not #23)
-#215 := [hypothesis]: #55
-#83 := (or #68 #23)
-#79 := (forall (vars (?v0 S2)) #76)
-#82 := (or #79 #55)
-#84 := (and #83 #82)
-#20 := (exists (vars (?v0 S2)) #19)
-#48 := (not #20)
-#49 := (iff #48 #23)
-#85 := (~ #49 #84)
-#57 := (~ #23 #23)
-#65 := [refl]: #57
-#64 := (~ #55 #55)
-#56 := [refl]: #64
-#80 := (~ #48 #79)
-#77 := (~ #76 #76)
-#78 := [refl]: #77
-#81 := [nnf-neg #78]: #80
-#73 := (not #48)
-#74 := (~ #73 #68)
-#69 := (~ #20 #68)
-#70 := [sk]: #69
-#75 := [nnf-neg #70]: #74
-#86 := [nnf-pos #75 #81 #56 #65]: #85
-#24 := (iff #20 #23)
-#25 := (not #24)
-#50 := (iff #25 #49)
-#51 := [rewrite]: #50
-#47 := [asserted]: #25
-#54 := [mp #47 #51]: #49
-#87 := [mp~ #54 #86]: #84
-#90 := [and-elim #87]: #83
-#557 := [unit-resolution #90 #215]: #68
-#243 := (not #68)
-#222 := (or #240 #243 #150)
-#558 := [def-axiom]: #222
-#541 := [unit-resolution #558 #557]: #199
-#203 := [unit-resolution #541 #227]: #150
-#241 := (not #150)
-#562 := (not #151)
-#204 := (or #562 #241)
-#563 := (or #562 #23 #241)
-#564 := [def-axiom]: #563
-#205 := [unit-resolution #564 #215]: #204
-#206 := [unit-resolution #205 #203 #237]: false
-#543 := [lemma #206]: #23
-#579 := (or #574 #55)
-#580 := (iff #82 #579)
-#577 := (iff #79 #574)
-#575 := (iff #76 #76)
-#576 := [refl]: #575
-#578 := [quant-intro #576]: #577
-#581 := [monotonicity #578]: #580
-#91 := [and-elim #87]: #82
-#582 := [mp #91 #581]: #579
-#242 := [unit-resolution #582 #543]: #574
-#555 := (not #574)
-#214 := (or #555 #55)
-#219 := [quant-inst #21]: #214
-[unit-resolution #219 #543 #242]: false
-unsat
 d97439af6f5bc7794ab403d0f6cc318d103016a1 1288 0
 #2 := false
 decl f1 :: S1
@@ -1953,6 +1287,124 @@
 #1532 := [unit-resolution #769 #1531]: #20
 [unit-resolution #606 #1532 #1528]: false
 unsat
+a69a9e8c5e31ec6b9da4cf96f47b52cf6b9404d9 117 0
+#2 := false
+decl f3 :: (-> S3 S2 S1)
+#10 := (:var 0 S2)
+decl f4 :: (-> S4 S1 S3)
+decl f6 :: S1
+#16 := f6
+decl f5 :: S4
+#7 := f5
+#17 := (f4 f5 f6)
+#18 := (f3 #17 #10)
+#573 := (pattern #18)
+decl f1 :: S1
+#3 := f1
+#19 := (= #18 f1)
+#76 := (not #19)
+#574 := (forall (vars (?v0 S2)) (:pat #573) #76)
+decl f7 :: S2
+#21 := f7
+#22 := (f3 #17 f7)
+#23 := (= #22 f1)
+#150 := (= f6 f1)
+#151 := (iff #23 #150)
+#8 := (:var 1 S1)
+#9 := (f4 f5 #8)
+#11 := (f3 #9 #10)
+#566 := (pattern #11)
+#13 := (= #8 f1)
+#12 := (= #11 f1)
+#14 := (iff #12 #13)
+#567 := (forall (vars (?v0 S1) (?v1 S2)) (:pat #566) #14)
+#15 := (forall (vars (?v0 S1) (?v1 S2)) #14)
+#570 := (iff #15 #567)
+#568 := (iff #14 #14)
+#569 := [refl]: #568
+#571 := [quant-intro #569]: #570
+#62 := (~ #15 #15)
+#60 := (~ #14 #14)
+#61 := [refl]: #60
+#63 := [nnf-pos #61]: #62
+#46 := [asserted]: #15
+#53 := [mp~ #46 #63]: #15
+#572 := [mp #53 #571]: #567
+#152 := (not #567)
+#228 := (or #152 #151)
+#561 := [quant-inst #16 #21]: #228
+#237 := [unit-resolution #561 #572]: #151
+decl ?v0!0 :: S2
+#66 := ?v0!0
+#67 := (f3 #17 ?v0!0)
+#68 := (= #67 f1)
+#236 := (iff #68 #150)
+#238 := (or #152 #236)
+#229 := [quant-inst #16 #66]: #238
+#227 := [unit-resolution #229 #572]: #236
+#240 := (not #236)
+#199 := (or #240 #150)
+#55 := (not #23)
+#215 := [hypothesis]: #55
+#83 := (or #68 #23)
+#79 := (forall (vars (?v0 S2)) #76)
+#82 := (or #79 #55)
+#84 := (and #83 #82)
+#20 := (exists (vars (?v0 S2)) #19)
+#48 := (not #20)
+#49 := (iff #48 #23)
+#85 := (~ #49 #84)
+#57 := (~ #23 #23)
+#65 := [refl]: #57
+#64 := (~ #55 #55)
+#56 := [refl]: #64
+#80 := (~ #48 #79)
+#77 := (~ #76 #76)
+#78 := [refl]: #77
+#81 := [nnf-neg #78]: #80
+#73 := (not #48)
+#74 := (~ #73 #68)
+#69 := (~ #20 #68)
+#70 := [sk]: #69
+#75 := [nnf-neg #70]: #74
+#86 := [nnf-pos #75 #81 #56 #65]: #85
+#24 := (iff #20 #23)
+#25 := (not #24)
+#50 := (iff #25 #49)
+#51 := [rewrite]: #50
+#47 := [asserted]: #25
+#54 := [mp #47 #51]: #49
+#87 := [mp~ #54 #86]: #84
+#90 := [and-elim #87]: #83
+#557 := [unit-resolution #90 #215]: #68
+#243 := (not #68)
+#222 := (or #240 #243 #150)
+#558 := [def-axiom]: #222
+#541 := [unit-resolution #558 #557]: #199
+#203 := [unit-resolution #541 #227]: #150
+#241 := (not #150)
+#562 := (not #151)
+#204 := (or #562 #241)
+#563 := (or #562 #23 #241)
+#564 := [def-axiom]: #563
+#205 := [unit-resolution #564 #215]: #204
+#206 := [unit-resolution #205 #203 #237]: false
+#543 := [lemma #206]: #23
+#579 := (or #574 #55)
+#580 := (iff #82 #579)
+#577 := (iff #79 #574)
+#575 := (iff #76 #76)
+#576 := [refl]: #575
+#578 := [quant-intro #576]: #577
+#581 := [monotonicity #578]: #580
+#91 := [and-elim #87]: #82
+#582 := [mp #91 #581]: #579
+#242 := [unit-resolution #582 #543]: #574
+#555 := (not #574)
+#214 := (or #555 #55)
+#219 := [quant-inst #21]: #214
+[unit-resolution #219 #543 #242]: false
+unsat
 fdf61e060f49731790f4d6c8f9b26c21349c60b3 117 0
 #2 := false
 decl f1 :: S1
@@ -2071,6716 +1523,6 @@
 #603 := [unit-resolution #271 #618]: #602
 [unit-resolution #603 #601 #297]: false
 unsat
-5c792581e65682628e5c59ca9f3f8801e6aeba72 61 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: (-> S2 S1)
-decl f4 :: S2
-#7 := f4
-#8 := (f3 f4)
-#9 := (= #8 f1)
-decl f5 :: S2
-#18 := f5
-#19 := (f3 f5)
-#20 := (= #19 f1)
-#45 := (not #9)
-#46 := (or #45 #20)
-#49 := (not #46)
-#21 := (implies #9 #20)
-#22 := (not #21)
-#50 := (iff #22 #49)
-#47 := (iff #21 #46)
-#48 := [rewrite]: #47
-#51 := [monotonicity #48]: #50
-#44 := [asserted]: #22
-#54 := [mp #44 #51]: #49
-#52 := [not-or-elim #54]: #9
-#10 := (:var 0 S2)
-#11 := (f3 #10)
-#550 := (pattern #11)
-#12 := (= #11 f1)
-#15 := (not #12)
-#551 := (forall (vars (?v0 S2)) (:pat #550) #15)
-#16 := (forall (vars (?v0 S2)) #15)
-#554 := (iff #16 #551)
-#552 := (iff #15 #15)
-#553 := [refl]: #552
-#555 := [quant-intro #553]: #554
-#13 := (exists (vars (?v0 S2)) #12)
-#14 := (not #13)
-#60 := (~ #14 #16)
-#63 := (~ #15 #15)
-#64 := [refl]: #63
-#72 := [nnf-neg #64]: #60
-#17 := (if #9 #14 #16)
-#70 := (iff #17 #14)
-#1 := true
-#65 := (if true #14 #16)
-#68 := (iff #65 #14)
-#69 := [rewrite]: #68
-#66 := (iff #17 #65)
-#61 := (iff #9 true)
-#62 := [iff-true #52]: #61
-#67 := [monotonicity #62]: #66
-#71 := [trans #67 #69]: #70
-#43 := [asserted]: #17
-#59 := [mp #43 #71]: #14
-#57 := [mp~ #59 #72]: #16
-#556 := [mp #57 #555]: #551
-#135 := (not #551)
-#221 := (or #135 #45)
-#136 := [quant-inst #7]: #221
-[unit-resolution #136 #556 #52]: false
-unsat
-0ce3a745d60cdbf0fe26b07c5e76de09d459dd25 17 0
-#2 := false
-#7 := 3::Int
-#8 := (= 3::Int 3::Int)
-#9 := (not #8)
-#38 := (iff #9 false)
-#1 := true
-#33 := (not true)
-#36 := (iff #33 false)
-#37 := [rewrite]: #36
-#34 := (iff #9 #33)
-#31 := (iff #8 true)
-#32 := [rewrite]: #31
-#35 := [monotonicity #32]: #34
-#39 := [trans #35 #37]: #38
-#30 := [asserted]: #9
-[mp #30 #39]: false
-unsat
-1532b1dde71eb42ca0a012bb62d9bbadf37fa326 17 0
-#2 := false
-#7 := 3::Real
-#8 := (= 3::Real 3::Real)
-#9 := (not #8)
-#38 := (iff #9 false)
-#1 := true
-#33 := (not true)
-#36 := (iff #33 false)
-#37 := [rewrite]: #36
-#34 := (iff #9 #33)
-#31 := (iff #8 true)
-#32 := [rewrite]: #31
-#35 := [monotonicity #32]: #34
-#39 := [trans #35 #37]: #38
-#30 := [asserted]: #9
-[mp #30 #39]: false
-unsat
-94425abeeb45b838fcb1ab9c8323796e36a681e5 26 0
-#2 := false
-#10 := 4::Int
-#8 := 1::Int
-#7 := 3::Int
-#9 := (+ 3::Int 1::Int)
-#11 := (= #9 4::Int)
-#12 := (not #11)
-#47 := (iff #12 false)
-#1 := true
-#42 := (not true)
-#45 := (iff #42 false)
-#46 := [rewrite]: #45
-#43 := (iff #12 #42)
-#40 := (iff #11 true)
-#35 := (= 4::Int 4::Int)
-#38 := (iff #35 true)
-#39 := [rewrite]: #38
-#36 := (iff #11 #35)
-#34 := [rewrite]: #11
-#37 := [monotonicity #34]: #36
-#41 := [trans #37 #39]: #40
-#44 := [monotonicity #41]: #43
-#48 := [trans #44 #46]: #47
-#33 := [asserted]: #12
-[mp #33 #48]: false
-unsat
-673f00f23a414ea8ab1557752d859ea787c89c1b 41 0
-#2 := false
-decl f3 :: Int
-#7 := f3
-decl f5 :: Int
-#9 := f5
-#12 := (+ f5 f3)
-decl f4 :: Int
-#8 := f4
-#13 := (+ f4 #12)
-#10 := (+ f4 f5)
-#11 := (+ f3 #10)
-#14 := (= #11 #13)
-#15 := (not #14)
-#59 := (iff #15 false)
-#1 := true
-#54 := (not true)
-#57 := (iff #54 false)
-#58 := [rewrite]: #57
-#55 := (iff #15 #54)
-#52 := (iff #14 true)
-#47 := (= #11 #11)
-#50 := (iff #47 true)
-#51 := [rewrite]: #50
-#48 := (iff #14 #47)
-#45 := (= #13 #11)
-#37 := (+ f3 f5)
-#40 := (+ f4 #37)
-#43 := (= #40 #11)
-#44 := [rewrite]: #43
-#41 := (= #13 #40)
-#38 := (= #12 #37)
-#39 := [rewrite]: #38
-#42 := [monotonicity #39]: #41
-#46 := [trans #42 #44]: #45
-#49 := [monotonicity #46]: #48
-#53 := [trans #49 #51]: #52
-#56 := [monotonicity #53]: #55
-#60 := [trans #56 #58]: #59
-#36 := [asserted]: #15
-[mp #36 #60]: false
-unsat
-1f5e59fc26e6d68939e39d2fe658ebc1a264f509 35 0
-#2 := false
-#8 := 3::Int
-#9 := 8::Int
-#10 := (<= 3::Int 8::Int)
-#11 := (if #10 8::Int 3::Int)
-#7 := 5::Int
-#12 := (< 5::Int #11)
-#13 := (not #12)
-#58 := (iff #13 false)
-#1 := true
-#53 := (not true)
-#56 := (iff #53 false)
-#57 := [rewrite]: #56
-#54 := (iff #13 #53)
-#51 := (iff #12 true)
-#46 := (< 5::Int 8::Int)
-#49 := (iff #46 true)
-#50 := [rewrite]: #49
-#47 := (iff #12 #46)
-#44 := (= #11 8::Int)
-#39 := (if true 8::Int 3::Int)
-#42 := (= #39 8::Int)
-#43 := [rewrite]: #42
-#40 := (= #11 #39)
-#37 := (iff #10 true)
-#38 := [rewrite]: #37
-#41 := [monotonicity #38]: #40
-#45 := [trans #41 #43]: #44
-#48 := [monotonicity #45]: #47
-#52 := [trans #48 #50]: #51
-#55 := [monotonicity #52]: #54
-#59 := [trans #55 #57]: #58
-#34 := [asserted]: #13
-[mp #34 #59]: false
-unsat
-e7f019160a38d08774f8a2e816f96aa54c924fba 216 0
-#2 := false
-#10 := 0::Real
-decl f4 :: Real
-#8 := f4
-#43 := -1::Real
-#45 := (* -1::Real f4)
-decl f3 :: Real
-#7 := f3
-#44 := (* -1::Real f3)
-#46 := (+ #44 #45)
-#9 := (+ f3 f4)
-#71 := (>= #9 0::Real)
-#78 := (if #71 #9 #46)
-#153 := (* -1::Real #78)
-#181 := (+ #46 #153)
-#183 := (>= #181 0::Real)
-#134 := (= #46 #78)
-#72 := (not #71)
-#95 := (>= f4 0::Real)
-#96 := (not #95)
-#154 := (+ #9 #153)
-#156 := (>= #154 0::Real)
-#133 := (= #9 #78)
-#197 := (not #134)
-#192 := (not #183)
-#163 := [hypothesis]: #95
-#193 := (or #192 #96)
-#184 := [hypothesis]: #183
-#102 := (if #95 f4 #45)
-#114 := (* -1::Real #102)
-#83 := (>= f3 0::Real)
-#90 := (if #83 f3 #44)
-#113 := (* -1::Real #90)
-#115 := (+ #113 #114)
-#116 := (+ #78 #115)
-#117 := (<= #116 0::Real)
-#122 := (not #117)
-#18 := (- f4)
-#17 := (< f4 0::Real)
-#19 := (if #17 #18 f4)
-#15 := (- f3)
-#14 := (< f3 0::Real)
-#16 := (if #14 #15 f3)
-#20 := (+ #16 #19)
-#12 := (- #9)
-#11 := (< #9 0::Real)
-#13 := (if #11 #12 #9)
-#21 := (<= #13 #20)
-#22 := (not #21)
-#125 := (iff #22 #122)
-#59 := (if #17 #45 f4)
-#54 := (if #14 #44 f3)
-#62 := (+ #54 #59)
-#49 := (if #11 #46 #9)
-#65 := (<= #49 #62)
-#68 := (not #65)
-#123 := (iff #68 #122)
-#120 := (iff #65 #117)
-#107 := (+ #90 #102)
-#110 := (<= #78 #107)
-#118 := (iff #110 #117)
-#119 := [rewrite]: #118
-#111 := (iff #65 #110)
-#108 := (= #62 #107)
-#105 := (= #59 #102)
-#99 := (if #96 #45 f4)
-#103 := (= #99 #102)
-#104 := [rewrite]: #103
-#100 := (= #59 #99)
-#97 := (iff #17 #96)
-#98 := [rewrite]: #97
-#101 := [monotonicity #98]: #100
-#106 := [trans #101 #104]: #105
-#93 := (= #54 #90)
-#84 := (not #83)
-#87 := (if #84 #44 f3)
-#91 := (= #87 #90)
-#92 := [rewrite]: #91
-#88 := (= #54 #87)
-#85 := (iff #14 #84)
-#86 := [rewrite]: #85
-#89 := [monotonicity #86]: #88
-#94 := [trans #89 #92]: #93
-#109 := [monotonicity #94 #106]: #108
-#81 := (= #49 #78)
-#75 := (if #72 #46 #9)
-#79 := (= #75 #78)
-#80 := [rewrite]: #79
-#76 := (= #49 #75)
-#73 := (iff #11 #72)
-#74 := [rewrite]: #73
-#77 := [monotonicity #74]: #76
-#82 := [trans #77 #80]: #81
-#112 := [monotonicity #82 #109]: #111
-#121 := [trans #112 #119]: #120
-#124 := [monotonicity #121]: #123
-#69 := (iff #22 #68)
-#66 := (iff #21 #65)
-#63 := (= #20 #62)
-#60 := (= #19 #59)
-#57 := (= #18 #45)
-#58 := [rewrite]: #57
-#61 := [monotonicity #58]: #60
-#55 := (= #16 #54)
-#52 := (= #15 #44)
-#53 := [rewrite]: #52
-#56 := [monotonicity #53]: #55
-#64 := [monotonicity #56 #61]: #63
-#50 := (= #13 #49)
-#47 := (= #12 #46)
-#48 := [rewrite]: #47
-#51 := [monotonicity #48]: #50
-#67 := [monotonicity #51 #64]: #66
-#70 := [monotonicity #67]: #69
-#126 := [trans #70 #124]: #125
-#42 := [asserted]: #22
-#127 := [mp #42 #126]: #122
-#147 := (+ f4 #114)
-#148 := (<= #147 0::Real)
-#141 := (= f4 #102)
-#143 := (or #96 #141)
-#144 := [def-axiom]: #143
-#172 := [unit-resolution #144 #163]: #141
-#173 := (not #141)
-#174 := (or #173 #148)
-#175 := [th-lemma arith triangle-eq]: #174
-#176 := [unit-resolution #175 #172]: #148
-#152 := (+ #44 #113)
-#155 := (<= #152 0::Real)
-#130 := (= #44 #90)
-#178 := (or #84 #96)
-#150 := (+ f3 #113)
-#151 := (<= #150 0::Real)
-#129 := (= f3 #90)
-#157 := [hypothesis]: #83
-#137 := (or #84 #129)
-#138 := [def-axiom]: #137
-#158 := [unit-resolution #138 #157]: #129
-#159 := (not #129)
-#160 := (or #159 #151)
-#161 := [th-lemma arith triangle-eq]: #160
-#162 := [unit-resolution #161 #158]: #151
-#164 := (or #71 #84 #96)
-#165 := [th-lemma arith assign-bounds -1 -1]: #164
-#166 := [unit-resolution #165 #157 #163]: #71
-#135 := (or #72 #133)
-#136 := [def-axiom]: #135
-#167 := [unit-resolution #136 #166]: #133
-#168 := (not #133)
-#169 := (or #168 #156)
-#170 := [th-lemma arith triangle-eq]: #169
-#171 := [unit-resolution #170 #167]: #156
-#177 := [th-lemma arith farkas 1 -1 -1 1 #176 #171 #127 #162]: false
-#179 := [lemma #177]: #178
-#185 := [unit-resolution #179 #163]: #84
-#139 := (or #83 #130)
-#140 := [def-axiom]: #139
-#186 := [unit-resolution #140 #185]: #130
-#187 := (not #130)
-#188 := (or #187 #155)
-#189 := [th-lemma arith triangle-eq]: #188
-#190 := [unit-resolution #189 #186]: #155
-#191 := [th-lemma arith farkas 2 -1 -1 1 1 #163 #190 #176 #127 #184]: false
-#194 := [lemma #191]: #193
-#202 := [unit-resolution #194 #163]: #192
-#198 := (or #197 #183)
-#195 := [hypothesis]: #192
-#196 := [hypothesis]: #134
-#199 := [th-lemma arith triangle-eq]: #198
-#200 := [unit-resolution #199 #196 #195]: false
-#201 := [lemma #200]: #198
-#203 := [unit-resolution #201 #202]: #197
-#131 := (or #71 #134)
-#132 := [def-axiom]: #131
-#204 := [unit-resolution #132 #203]: #71
-#205 := [unit-resolution #136 #204]: #133
-#206 := [unit-resolution #170 #205]: #156
-#207 := [th-lemma arith farkas 2 1 1 1 1 #185 #190 #176 #127 #206]: false
-#208 := [lemma #207]: #96
-#149 := (+ #45 #114)
-#180 := (<= #149 0::Real)
-#142 := (= #45 #102)
-#145 := (or #95 #142)
-#146 := [def-axiom]: #145
-#213 := [unit-resolution #146 #208]: #142
-#214 := (not #142)
-#215 := (or #214 #180)
-#216 := [th-lemma arith triangle-eq]: #215
-#217 := [unit-resolution #216 #213]: #180
-#219 := (not #156)
-#220 := (not #151)
-#221 := (or #219 #220)
-#211 := [hypothesis]: #151
-#212 := [hypothesis]: #156
-#218 := [th-lemma arith farkas 2 1 1 1 1 #208 #217 #127 #212 #211]: false
-#222 := [lemma #218]: #221
-#227 := [unit-resolution #222 #162]: #219
-#223 := [hypothesis]: #219
-#224 := [hypothesis]: #133
-#225 := [unit-resolution #170 #224 #223]: false
-#226 := [lemma #225]: #169
-#228 := [unit-resolution #226 #227]: #168
-#229 := [unit-resolution #136 #228]: #72
-#230 := [unit-resolution #132 #229]: #134
-#231 := [unit-resolution #201 #230]: #183
-#232 := [th-lemma arith farkas 1/2 -1/2 -1/2 1/2 1 #231 #162 #217 #127 #157]: false
-#233 := [lemma #232]: #84
-#234 := (or #72 #83 #95)
-#235 := [th-lemma arith assign-bounds 1 1]: #234
-#236 := [unit-resolution #235 #233 #208]: #72
-#237 := [unit-resolution #132 #236]: #134
-#238 := [unit-resolution #201 #237]: #183
-#239 := [unit-resolution #140 #233]: #130
-#240 := [unit-resolution #189 #239]: #155
-[th-lemma arith farkas -1 -1 1 1 #240 #217 #127 #238]: false
-unsat
-9e5f324cc33eb4abf1be11d977dfdec45557ae46 42 0
-#2 := false
-decl f3 :: (-> S1 S2)
-decl f1 :: S1
-#3 := f1
-#12 := (f3 f1)
-decl f2 :: S1
-#4 := f2
-#8 := 3::Int
-#7 := 2::Int
-#9 := (< 2::Int 3::Int)
-#10 := (if #9 f1 f2)
-#11 := (f3 #10)
-#13 := (= #11 #12)
-#14 := (not #13)
-#60 := (iff #14 false)
-#1 := true
-#55 := (not true)
-#58 := (iff #55 false)
-#59 := [rewrite]: #58
-#56 := (iff #14 #55)
-#53 := (iff #13 true)
-#48 := (= #12 #12)
-#51 := (iff #48 true)
-#52 := [rewrite]: #51
-#49 := (iff #13 #48)
-#45 := (= #10 f1)
-#40 := (if true f1 f2)
-#43 := (= #40 f1)
-#44 := [rewrite]: #43
-#41 := (= #10 #40)
-#38 := (iff #9 true)
-#39 := [rewrite]: #38
-#42 := [monotonicity #39]: #41
-#46 := [trans #42 #44]: #45
-#47 := [monotonicity #46]: #13
-#50 := [monotonicity #47]: #49
-#54 := [trans #50 #52]: #53
-#57 := [monotonicity #54]: #56
-#61 := [trans #57 #59]: #60
-#35 := [asserted]: #14
-[mp #35 #61]: false
-unsat
-cc322c3513bba37f77e905b379b26c79239b69a4 49 0
-#2 := false
-#12 := 1::Int
-decl f3 :: Int
-#8 := f3
-#13 := (< f3 1::Int)
-#9 := 3::Int
-#10 := (+ f3 3::Int)
-#7 := 4::Int
-#11 := (<= 4::Int #10)
-#14 := (or #11 #13)
-#15 := (not #14)
-#69 := (iff #15 false)
-#37 := (+ 3::Int f3)
-#40 := (<= 4::Int #37)
-#43 := (or #40 #13)
-#46 := (not #43)
-#67 := (iff #46 false)
-#1 := true
-#62 := (not true)
-#65 := (iff #62 false)
-#66 := [rewrite]: #65
-#63 := (iff #46 #62)
-#60 := (iff #43 true)
-#51 := (>= f3 1::Int)
-#52 := (not #51)
-#55 := (or #51 #52)
-#58 := (iff #55 true)
-#59 := [rewrite]: #58
-#56 := (iff #43 #55)
-#53 := (iff #13 #52)
-#54 := [rewrite]: #53
-#49 := (iff #40 #51)
-#50 := [rewrite]: #49
-#57 := [monotonicity #50 #54]: #56
-#61 := [trans #57 #59]: #60
-#64 := [monotonicity #61]: #63
-#68 := [trans #64 #66]: #67
-#47 := (iff #15 #46)
-#44 := (iff #14 #43)
-#41 := (iff #11 #40)
-#38 := (= #10 #37)
-#39 := [rewrite]: #38
-#42 := [monotonicity #39]: #41
-#45 := [monotonicity #42]: #44
-#48 := [monotonicity #45]: #47
-#70 := [trans #48 #68]: #69
-#36 := [asserted]: #15
-[mp #36 #70]: false
-unsat
-75c4589e7d7ab0bf262babccc302883b71f9a923 63 0
-#2 := false
-#14 := 0::Int
-decl f4 :: Int
-#10 := f4
-#49 := -1::Int
-#52 := (* -1::Int f4)
-decl f3 :: Int
-#8 := f3
-#53 := (+ f3 #52)
-#70 := (>= #53 0::Int)
-#94 := (iff #70 false)
-#51 := -4::Int
-#87 := (>= -4::Int 0::Int)
-#86 := (iff #87 false)
-#93 := [rewrite]: #86
-#88 := (iff #70 #87)
-#54 := (= #53 -4::Int)
-#11 := 4::Int
-#12 := (+ f3 4::Int)
-#13 := (= f4 #12)
-#56 := (iff #13 #54)
-#39 := (+ 4::Int f3)
-#46 := (= f4 #39)
-#50 := (iff #46 #54)
-#55 := [rewrite]: #50
-#47 := (iff #13 #46)
-#44 := (= #12 #39)
-#45 := [rewrite]: #44
-#48 := [monotonicity #45]: #47
-#57 := [trans #48 #55]: #56
-#38 := [asserted]: #13
-#58 := [mp #38 #57]: #54
-#85 := [monotonicity #58]: #88
-#95 := [trans #85 #93]: #94
-#15 := (- f4 f3)
-#16 := (< 0::Int #15)
-#17 := (not #16)
-#81 := (iff #17 #70)
-#60 := (* -1::Int f3)
-#61 := (+ #60 f4)
-#64 := (< 0::Int #61)
-#67 := (not #64)
-#79 := (iff #67 #70)
-#71 := (not #70)
-#74 := (not #71)
-#77 := (iff #74 #70)
-#78 := [rewrite]: #77
-#75 := (iff #67 #74)
-#72 := (iff #64 #71)
-#73 := [rewrite]: #72
-#76 := [monotonicity #73]: #75
-#80 := [trans #76 #78]: #79
-#68 := (iff #17 #67)
-#65 := (iff #16 #64)
-#62 := (= #15 #61)
-#63 := [rewrite]: #62
-#66 := [monotonicity #63]: #65
-#69 := [monotonicity #66]: #68
-#82 := [trans #69 #80]: #81
-#59 := [asserted]: #17
-#83 := [mp #59 #82]: #70
-[mp #83 #95]: false
-unsat
-31769d5312feac1587c3f744c5c881fb2d86e85f 35 0
-#2 := false
-#9 := 5::Int
-#7 := 2::Int
-#8 := (+ 2::Int 2::Int)
-#10 := (= #8 5::Int)
-#11 := (not #10)
-#12 := (not #11)
-#56 := (iff #12 false)
-#1 := true
-#51 := (not true)
-#54 := (iff #51 false)
-#55 := [rewrite]: #54
-#52 := (iff #12 #51)
-#49 := (iff #11 true)
-#44 := (not false)
-#47 := (iff #44 true)
-#48 := [rewrite]: #47
-#45 := (iff #11 #44)
-#42 := (iff #10 false)
-#34 := 4::Int
-#37 := (= 4::Int 5::Int)
-#40 := (iff #37 false)
-#41 := [rewrite]: #40
-#38 := (iff #10 #37)
-#35 := (= #8 4::Int)
-#36 := [rewrite]: #35
-#39 := [monotonicity #36]: #38
-#43 := [trans #39 #41]: #42
-#46 := [monotonicity #43]: #45
-#50 := [trans #46 #48]: #49
-#53 := [monotonicity #50]: #52
-#57 := [trans #53 #55]: #56
-#33 := [asserted]: #12
-[mp #33 #57]: false
-unsat
-f8ba8c3ed7f7c7d5e49139b62e145fc6eee338f1 45 0
-#2 := false
-#14 := 4::Real
-decl f4 :: Real
-#11 := f4
-#10 := 7::Real
-#12 := (* 7::Real f4)
-decl f3 :: Real
-#8 := f3
-#7 := 3::Real
-#9 := (* 3::Real f3)
-#13 := (+ #9 #12)
-#48 := (>= #13 4::Real)
-#46 := (not #48)
-#15 := (< #13 4::Real)
-#47 := (iff #15 #46)
-#44 := [rewrite]: #47
-#41 := [asserted]: #15
-#45 := [mp #41 #44]: #46
-#16 := 2::Real
-#17 := (* 2::Real f3)
-#50 := (<= #17 3::Real)
-#51 := (not #50)
-#18 := (< 3::Real #17)
-#52 := (iff #18 #51)
-#53 := [rewrite]: #52
-#42 := [asserted]: #18
-#54 := [mp #42 #53]: #51
-#19 := 0::Real
-#58 := (>= f4 0::Real)
-#20 := (< f4 0::Real)
-#21 := (not #20)
-#65 := (iff #21 #58)
-#56 := (not #58)
-#60 := (not #56)
-#63 := (iff #60 #58)
-#64 := [rewrite]: #63
-#61 := (iff #21 #60)
-#57 := (iff #20 #56)
-#59 := [rewrite]: #57
-#62 := [monotonicity #59]: #61
-#66 := [trans #62 #64]: #65
-#43 := [asserted]: #21
-#67 := [mp #43 #66]: #58
-[th-lemma arith farkas 7 3/2 1 #67 #54 #45]: false
-unsat
-c61600e5a5dab4b2c2864caededa0b50f81df696 59 0
-#2 := false
-#19 := (not false)
-decl f4 :: Int
-#11 := f4
-#7 := 0::Int
-#15 := (<= 0::Int f4)
-#16 := (not #15)
-#17 := (or #16 #15)
-#9 := 1::Int
-#10 := (- 1::Int)
-#12 := (* #10 f4)
-decl f3 :: Int
-#8 := f3
-#13 := (+ f3 #12)
-#14 := (<= 0::Int #13)
-#18 := (or #14 #17)
-#20 := (iff #18 #19)
-#21 := (not #20)
-#77 := (iff #21 false)
-#1 := true
-#72 := (not true)
-#75 := (iff #72 false)
-#76 := [rewrite]: #75
-#73 := (iff #21 #72)
-#70 := (iff #20 true)
-#65 := (iff true true)
-#68 := (iff #65 true)
-#69 := [rewrite]: #68
-#66 := (iff #20 #65)
-#63 := (iff #19 true)
-#64 := [rewrite]: #63
-#61 := (iff #18 true)
-#42 := -1::Int
-#45 := (* -1::Int f4)
-#48 := (+ f3 #45)
-#51 := (<= 0::Int #48)
-#56 := (or #51 true)
-#59 := (iff #56 true)
-#60 := [rewrite]: #59
-#57 := (iff #18 #56)
-#54 := (iff #17 true)
-#55 := [rewrite]: #54
-#52 := (iff #14 #51)
-#49 := (= #13 #48)
-#46 := (= #12 #45)
-#43 := (= #10 -1::Int)
-#44 := [rewrite]: #43
-#47 := [monotonicity #44]: #46
-#50 := [monotonicity #47]: #49
-#53 := [monotonicity #50]: #52
-#58 := [monotonicity #53 #55]: #57
-#62 := [trans #58 #60]: #61
-#67 := [monotonicity #62 #64]: #66
-#71 := [trans #67 #69]: #70
-#74 := [monotonicity #71]: #73
-#78 := [trans #74 #76]: #77
-#41 := [asserted]: #21
-[mp #41 #78]: false
-unsat
-7f98d11cd70eeb0eb4aea9722e1648cd3cfdbe2c 439 0
-#2 := false
-decl f4 :: Int
-#8 := f4
-decl f3 :: Int
-#7 := f3
-#20 := (= f3 f4)
-#287 := (not #20)
-#24 := (= f4 f3)
-#312 := (not #24)
-#499 := (iff #312 #287)
-#458 := (iff #24 #20)
-#459 := [commutativity]: #458
-#500 := [monotonicity #459]: #499
-decl f5 :: Int
-#10 := f5
-#30 := (= f5 f4)
-#13 := (= f4 f5)
-#493 := (iff #13 #30)
-#491 := (iff #30 #13)
-#492 := [commutativity]: #491
-#494 := [symm #492]: #493
-#18 := (= f3 f5)
-#238 := (not #18)
-#28 := (= f5 f3)
-#337 := (not #28)
-#485 := (iff #337 #238)
-#483 := (iff #28 #18)
-#484 := [commutativity]: #483
-#486 := [monotonicity #484]: #485
-#55 := 0::Int
-#77 := -1::Int
-#102 := (* -1::Int f4)
-#103 := (+ f3 #102)
-#104 := (<= #103 0::Int)
-#105 := (not #104)
-#118 := (>= #103 0::Int)
-#78 := (* -1::Int f5)
-#96 := (+ f4 #78)
-#95 := (>= #96 0::Int)
-#94 := (not #95)
-#261 := (not #13)
-#435 := [hypothesis]: #261
-#127 := (<= #96 0::Int)
-#474 := (or #18 #13)
-#441 := [hypothesis]: #238
-#447 := (or #104 #18 #13)
-#436 := [hypothesis]: #105
-#300 := (or #127 #104)
-#128 := (not #127)
-#134 := (and #128 #105)
-#216 := (not #134)
-#309 := (iff #216 #300)
-#301 := (not #300)
-#304 := (not #301)
-#307 := (iff #304 #300)
-#308 := [rewrite]: #307
-#305 := (iff #216 #304)
-#302 := (iff #134 #301)
-#303 := [rewrite]: #302
-#306 := [monotonicity #303]: #305
-#310 := [trans #306 #308]: #309
-#37 := (and #30 #24)
-#79 := (+ f3 #78)
-#80 := (<= #79 0::Int)
-#81 := (not #80)
-#84 := (and #13 #81)
-#88 := (>= #79 0::Int)
-#87 := (not #88)
-#91 := (and #24 #87)
-#99 := (and #94 #81)
-#108 := (and #105 #28)
-#111 := (and #105 #87)
-#114 := (and #30 #105)
-#117 := (not #118)
-#121 := (and #28 #117)
-#124 := (and #81 #117)
-#131 := (and #128 #24)
-#137 := (and #20 #94)
-#140 := (and #18 #128)
-#143 := (and #87 #128)
-#146 := (and #117 #13)
-#149 := (and #117 #94)
-#197 := (or #149 #146 #143 #140 #137 #134 #131 #124 #121 #114 #111 #108 #99 #91 #84 #37)
-#202 := (not #197)
-#26 := (< f5 f3)
-#36 := (and #13 #26)
-#38 := (or #36 #37)
-#15 := (< f3 f5)
-#35 := (and #24 #15)
-#39 := (or #35 #38)
-#11 := (< f4 f5)
-#34 := (and #11 #26)
-#40 := (or #34 #39)
-#22 := (< f4 f3)
-#33 := (and #22 #28)
-#41 := (or #33 #40)
-#32 := (and #22 #15)
-#42 := (or #32 #41)
-#31 := (and #30 #22)
-#43 := (or #31 #42)
-#9 := (< f3 f4)
-#29 := (and #28 #9)
-#44 := (or #29 #43)
-#27 := (and #26 #9)
-#45 := (or #27 #44)
-#16 := (< f5 f4)
-#25 := (and #16 #24)
-#46 := (or #25 #45)
-#23 := (and #16 #22)
-#47 := (or #23 #46)
-#21 := (and #20 #11)
-#48 := (or #21 #47)
-#19 := (and #18 #16)
-#49 := (or #19 #48)
-#17 := (and #15 #16)
-#50 := (or #17 #49)
-#14 := (and #9 #13)
-#51 := (or #14 #50)
-#12 := (and #9 #11)
-#52 := (or #12 #51)
-#53 := (not #52)
-#203 := (iff #53 #202)
-#200 := (iff #52 #197)
-#152 := (or #84 #37)
-#155 := (or #91 #152)
-#158 := (or #99 #155)
-#161 := (or #108 #158)
-#164 := (or #111 #161)
-#167 := (or #114 #164)
-#170 := (or #121 #167)
-#173 := (or #124 #170)
-#176 := (or #131 #173)
-#179 := (or #134 #176)
-#182 := (or #137 #179)
-#185 := (or #140 #182)
-#188 := (or #143 #185)
-#191 := (or #146 #188)
-#194 := (or #149 #191)
-#198 := (iff #194 #197)
-#199 := [rewrite]: #198
-#195 := (iff #52 #194)
-#192 := (iff #51 #191)
-#189 := (iff #50 #188)
-#186 := (iff #49 #185)
-#183 := (iff #48 #182)
-#180 := (iff #47 #179)
-#177 := (iff #46 #176)
-#174 := (iff #45 #173)
-#171 := (iff #44 #170)
-#168 := (iff #43 #167)
-#165 := (iff #42 #164)
-#162 := (iff #41 #161)
-#159 := (iff #40 #158)
-#156 := (iff #39 #155)
-#153 := (iff #38 #152)
-#85 := (iff #36 #84)
-#82 := (iff #26 #81)
-#83 := [rewrite]: #82
-#86 := [monotonicity #83]: #85
-#154 := [monotonicity #86]: #153
-#92 := (iff #35 #91)
-#89 := (iff #15 #87)
-#90 := [rewrite]: #89
-#93 := [monotonicity #90]: #92
-#157 := [monotonicity #93 #154]: #156
-#100 := (iff #34 #99)
-#97 := (iff #11 #94)
-#98 := [rewrite]: #97
-#101 := [monotonicity #98 #83]: #100
-#160 := [monotonicity #101 #157]: #159
-#109 := (iff #33 #108)
-#106 := (iff #22 #105)
-#107 := [rewrite]: #106
-#110 := [monotonicity #107]: #109
-#163 := [monotonicity #110 #160]: #162
-#112 := (iff #32 #111)
-#113 := [monotonicity #107 #90]: #112
-#166 := [monotonicity #113 #163]: #165
-#115 := (iff #31 #114)
-#116 := [monotonicity #107]: #115
-#169 := [monotonicity #116 #166]: #168
-#122 := (iff #29 #121)
-#119 := (iff #9 #117)
-#120 := [rewrite]: #119
-#123 := [monotonicity #120]: #122
-#172 := [monotonicity #123 #169]: #171
-#125 := (iff #27 #124)
-#126 := [monotonicity #83 #120]: #125
-#175 := [monotonicity #126 #172]: #174
-#132 := (iff #25 #131)
-#129 := (iff #16 #128)
-#130 := [rewrite]: #129
-#133 := [monotonicity #130]: #132
-#178 := [monotonicity #133 #175]: #177
-#135 := (iff #23 #134)
-#136 := [monotonicity #130 #107]: #135
-#181 := [monotonicity #136 #178]: #180
-#138 := (iff #21 #137)
-#139 := [monotonicity #98]: #138
-#184 := [monotonicity #139 #181]: #183
-#141 := (iff #19 #140)
-#142 := [monotonicity #130]: #141
-#187 := [monotonicity #142 #184]: #186
-#144 := (iff #17 #143)
-#145 := [monotonicity #90 #130]: #144
-#190 := [monotonicity #145 #187]: #189
-#147 := (iff #14 #146)
-#148 := [monotonicity #120]: #147
-#193 := [monotonicity #148 #190]: #192
-#150 := (iff #12 #149)
-#151 := [monotonicity #120 #98]: #150
-#196 := [monotonicity #151 #193]: #195
-#201 := [trans #196 #199]: #200
-#204 := [monotonicity #201]: #203
-#74 := [asserted]: #53
-#205 := [mp #74 #204]: #202
-#217 := [not-or-elim #205]: #216
-#311 := [mp #217 #310]: #300
-#437 := [unit-resolution #311 #436]: #127
-#438 := (or #13 #128 #94)
-#439 := [th-lemma arith triangle-eq]: #438
-#440 := [unit-resolution #439 #437 #435]: #94
-#363 := (or #104 #88)
-#226 := (not #111)
-#372 := (iff #226 #363)
-#364 := (not #363)
-#367 := (not #364)
-#370 := (iff #367 #363)
-#371 := [rewrite]: #370
-#368 := (iff #226 #367)
-#365 := (iff #111 #364)
-#366 := [rewrite]: #365
-#369 := [monotonicity #366]: #368
-#373 := [trans #369 #371]: #372
-#227 := [not-or-elim #205]: #226
-#374 := [mp #227 #373]: #363
-#442 := [unit-resolution #374 #436]: #88
-#443 := (or #18 #81 #87)
-#444 := [th-lemma arith triangle-eq]: #443
-#445 := [unit-resolution #444 #442 #441]: #81
-#387 := (or #95 #80)
-#230 := (not #99)
-#396 := (iff #230 #387)
-#388 := (not #387)
-#391 := (not #388)
-#394 := (iff #391 #387)
-#395 := [rewrite]: #394
-#392 := (iff #230 #391)
-#389 := (iff #99 #388)
-#390 := [rewrite]: #389
-#393 := [monotonicity #390]: #392
-#397 := [trans #393 #395]: #396
-#231 := [not-or-elim #205]: #230
-#398 := [mp #231 #397]: #387
-#446 := [unit-resolution #398 #445 #440]: false
-#448 := [lemma #446]: #447
-#466 := [unit-resolution #448 #441 #435]: #104
-#464 := (or #80 #13 #105)
-#460 := (iff #20 #24)
-#461 := [symm #459]: #460
-#453 := [hypothesis]: #104
-#449 := [hypothesis]: #81
-#325 := (or #80 #118)
-#220 := (not #124)
-#334 := (iff #220 #325)
-#326 := (not #325)
-#329 := (not #326)
-#332 := (iff #329 #325)
-#333 := [rewrite]: #332
-#330 := (iff #220 #329)
-#327 := (iff #124 #326)
-#328 := [rewrite]: #327
-#331 := [monotonicity #328]: #330
-#335 := [trans #331 #333]: #334
-#221 := [not-or-elim #205]: #220
-#336 := [mp #221 #335]: #325
-#454 := [unit-resolution #336 #449]: #118
-#455 := (or #20 #105 #117)
-#456 := [th-lemma arith triangle-eq]: #455
-#457 := [unit-resolution #456 #454 #453]: #20
-#462 := [mp #457 #461]: #24
-#450 := [unit-resolution #398 #449]: #95
-#451 := [unit-resolution #439 #450 #435]: #128
-#313 := (or #127 #312)
-#218 := (not #131)
-#322 := (iff #218 #313)
-#314 := (not #313)
-#317 := (not #314)
-#320 := (iff #317 #313)
-#321 := [rewrite]: #320
-#318 := (iff #218 #317)
-#315 := (iff #131 #314)
-#316 := [rewrite]: #315
-#319 := [monotonicity #316]: #318
-#323 := [trans #319 #321]: #322
-#219 := [not-or-elim #205]: #218
-#324 := [mp #219 #323]: #313
-#452 := [unit-resolution #324 #451]: #312
-#463 := [unit-resolution #452 #462]: false
-#465 := [lemma #463]: #464
-#467 := [unit-resolution #465 #466 #435]: #80
-#468 := [unit-resolution #444 #467 #441]: #87
-#250 := (or #88 #127)
-#210 := (not #143)
-#239 := (iff #210 #250)
-#247 := (not #250)
-#246 := (not #247)
-#241 := (iff #246 #250)
-#242 := [rewrite]: #241
-#243 := (iff #210 #246)
-#248 := (iff #143 #247)
-#245 := [rewrite]: #248
-#244 := [monotonicity #245]: #243
-#240 := [trans #244 #242]: #239
-#211 := [not-or-elim #205]: #210
-#76 := [mp #211 #240]: #250
-#469 := [unit-resolution #76 #468]: #127
-#470 := [unit-resolution #439 #469 #435]: #94
-#271 := (or #118 #95)
-#206 := (not #149)
-#266 := (iff #206 #271)
-#272 := (not #271)
-#269 := (not #272)
-#268 := (iff #269 #271)
-#265 := [rewrite]: #268
-#270 := (iff #206 #269)
-#273 := (iff #149 #272)
-#274 := [rewrite]: #273
-#267 := [monotonicity #274]: #270
-#263 := [trans #267 #265]: #266
-#207 := [not-or-elim #205]: #206
-#264 := [mp #207 #263]: #271
-#471 := [unit-resolution #264 #470]: #118
-#288 := (or #287 #95)
-#214 := (not #137)
-#297 := (iff #214 #288)
-#289 := (not #288)
-#292 := (not #289)
-#295 := (iff #292 #288)
-#296 := [rewrite]: #295
-#293 := (iff #214 #292)
-#290 := (iff #137 #289)
-#291 := [rewrite]: #290
-#294 := [monotonicity #291]: #293
-#298 := [trans #294 #296]: #297
-#215 := [not-or-elim #205]: #214
-#299 := [mp #215 #298]: #288
-#472 := [unit-resolution #299 #470]: #287
-#473 := [unit-resolution #456 #472 #471 #466]: false
-#475 := [lemma #473]: #474
-#476 := [unit-resolution #475 #435]: #18
-#275 := (or #238 #127)
-#212 := (not #140)
-#284 := (iff #212 #275)
-#276 := (not #275)
-#279 := (not #276)
-#282 := (iff #279 #275)
-#283 := [rewrite]: #282
-#280 := (iff #212 #279)
-#277 := (iff #140 #276)
-#278 := [rewrite]: #277
-#281 := [monotonicity #278]: #280
-#285 := [trans #281 #283]: #284
-#213 := [not-or-elim #205]: #212
-#286 := [mp #213 #285]: #275
-#477 := [unit-resolution #286 #476]: #127
-#478 := [unit-resolution #439 #477 #435]: #94
-#479 := [unit-resolution #264 #478]: #118
-#480 := [unit-resolution #299 #478]: #287
-#481 := [unit-resolution #456 #480 #479]: #105
-#375 := (or #104 #337)
-#228 := (not #108)
-#384 := (iff #228 #375)
-#376 := (not #375)
-#379 := (not #376)
-#382 := (iff #379 #375)
-#383 := [rewrite]: #382
-#380 := (iff #228 #379)
-#377 := (iff #108 #376)
-#378 := [rewrite]: #377
-#381 := [monotonicity #378]: #380
-#385 := [trans #381 #383]: #384
-#229 := [not-or-elim #205]: #228
-#386 := [mp #229 #385]: #375
-#482 := [unit-resolution #386 #481]: #337
-#487 := [mp #482 #486]: #238
-#488 := [unit-resolution #476 #487]: false
-#489 := [lemma #488]: #13
-#495 := [mp #489 #494]: #30
-#350 := (not #30)
-#423 := (or #350 #312)
-#236 := (not #37)
-#432 := (iff #236 #423)
-#424 := (not #423)
-#427 := (not #424)
-#430 := (iff #427 #423)
-#431 := [rewrite]: #430
-#428 := (iff #236 #427)
-#425 := (iff #37 #424)
-#426 := [rewrite]: #425
-#429 := [monotonicity #426]: #428
-#433 := [trans #429 #431]: #432
-#237 := [not-or-elim #205]: #236
-#434 := [mp #237 #433]: #423
-#498 := [unit-resolution #434 #495]: #312
-#501 := [mp #498 #500]: #287
-#262 := (or #118 #261)
-#208 := (not #146)
-#251 := (iff #208 #262)
-#259 := (not #262)
-#258 := (not #259)
-#253 := (iff #258 #262)
-#254 := [rewrite]: #253
-#255 := (iff #208 #258)
-#260 := (iff #146 #259)
-#257 := [rewrite]: #260
-#256 := [monotonicity #257]: #255
-#252 := [trans #256 #254]: #251
-#209 := [not-or-elim #205]: #208
-#249 := [mp #209 #252]: #262
-#490 := [unit-resolution #249 #489]: #118
-#351 := (or #350 #104)
-#224 := (not #114)
-#360 := (iff #224 #351)
-#352 := (not #351)
-#355 := (not #352)
-#358 := (iff #355 #351)
-#359 := [rewrite]: #358
-#356 := (iff #224 #355)
-#353 := (iff #114 #352)
-#354 := [rewrite]: #353
-#357 := [monotonicity #354]: #356
-#361 := [trans #357 #359]: #360
-#225 := [not-or-elim #205]: #224
-#362 := [mp #225 #361]: #351
-#496 := [unit-resolution #362 #495]: #104
-#497 := [unit-resolution #456 #496 #490]: #20
-[unit-resolution #497 #501]: false
-unsat
-70bd6436662c1fd4b8c8a6f696914593051990e6 52 0
-#2 := false
-#11 := 1::Real
-decl f3 :: Real
-#7 := f3
-#9 := 2::Real
-#10 := (* 2::Real f3)
-#12 := (+ #10 1::Real)
-#8 := (+ f3 f3)
-#13 := (< #8 #12)
-#14 := (or false #13)
-#15 := (or #13 #14)
-#16 := (not #15)
-#72 := (iff #16 false)
-#40 := (+ 1::Real #10)
-#43 := (< #10 #40)
-#60 := (not #43)
-#70 := (iff #60 false)
-#1 := true
-#65 := (not true)
-#68 := (iff #65 false)
-#69 := [rewrite]: #68
-#66 := (iff #60 #65)
-#63 := (iff #43 true)
-#64 := [rewrite]: #63
-#67 := [monotonicity #64]: #66
-#71 := [trans #67 #69]: #70
-#61 := (iff #16 #60)
-#58 := (iff #15 #43)
-#53 := (or #43 #43)
-#56 := (iff #53 #43)
-#57 := [rewrite]: #56
-#54 := (iff #15 #53)
-#51 := (iff #14 #43)
-#46 := (or false #43)
-#49 := (iff #46 #43)
-#50 := [rewrite]: #49
-#47 := (iff #14 #46)
-#44 := (iff #13 #43)
-#41 := (= #12 #40)
-#42 := [rewrite]: #41
-#38 := (= #8 #10)
-#39 := [rewrite]: #38
-#45 := [monotonicity #39 #42]: #44
-#48 := [monotonicity #45]: #47
-#52 := [trans #48 #50]: #51
-#55 := [monotonicity #45 #52]: #54
-#59 := [trans #55 #57]: #58
-#62 := [monotonicity #59]: #61
-#73 := [trans #62 #71]: #72
-#37 := [asserted]: #16
-[mp #37 #73]: false
-unsat
-6e7ef563e385e00340c905e5fb44172a278ff733 2215 0
-#2 := false
-decl f12 :: Int
-#52 := f12
-decl f5 :: Int
-#13 := f5
-#64 := (= f5 f12)
-#9 := 0::Int
-#97 := -1::Int
-#235 := (* -1::Int f12)
-#733 := (+ f5 #235)
-#735 := (>= #733 0::Int)
-decl f10 :: Int
-#40 := f10
-#201 := (* -1::Int f10)
-#394 := (>= f10 0::Int)
-#401 := (if #394 f10 #201)
-#412 := (* -1::Int #401)
-#746 := (+ f10 #412)
-#748 := (>= #746 0::Int)
-#916 := (not #748)
-decl f11 :: Int
-#46 := f11
-#218 := (* -1::Int f11)
-#365 := (>= f11 0::Int)
-#372 := (if #365 f11 #218)
-#383 := (* -1::Int #372)
-#743 := (+ f11 #383)
-#745 := (>= #743 0::Int)
-#717 := (= f11 #372)
-#899 := (not #735)
-#900 := [hypothesis]: #899
-#1902 := (or #365 #735)
-decl f4 :: Int
-#8 := f4
-#98 := (* -1::Int f4)
-#568 := (>= f4 0::Int)
-#575 := (if #568 f4 #98)
-#586 := (* -1::Int #575)
-#985 := (+ f4 #586)
-#986 := (<= #985 0::Int)
-#1269 := (not #986)
-#888 := (<= #746 0::Int)
-#709 := (= f10 #401)
-#366 := (not #365)
-#1202 := [hypothesis]: #366
-#1880 := (or #394 #735 #365)
-#655 := (= f4 #575)
-decl f3 :: Int
-#7 := f3
-#116 := (* -1::Int f3)
-#539 := (>= f3 0::Int)
-#546 := (if #539 f3 #116)
-#557 := (* -1::Int #546)
-#761 := (+ f3 #557)
-#762 := (<= #761 0::Int)
-#669 := (= f3 #546)
-#1863 := (or #539 #365 #735)
-#395 := (not #394)
-decl f6 :: Int
-#16 := f6
-#510 := (>= f6 0::Int)
-#511 := (not #510)
-decl f9 :: Int
-#34 := f9
-#184 := (* -1::Int f9)
-#423 := (>= f9 0::Int)
-#430 := (if #423 f9 #184)
-#441 := (* -1::Int #430)
-#749 := (+ f9 #441)
-#751 := (>= #749 0::Int)
-#701 := (= f9 #430)
-#1430 := (>= #985 0::Int)
-#1498 := (not #1430)
-#587 := (+ f5 #586)
-#588 := (+ f3 #587)
-#649 := (<= #588 0::Int)
-#589 := (= #588 0::Int)
-decl f13 :: Int
-#58 := f13
-#65 := (= f4 f13)
-#66 := (and #64 #65)
-#336 := (>= f12 0::Int)
-#343 := (if #336 f12 #235)
-#354 := (* -1::Int #343)
-#355 := (+ f13 #354)
-#356 := (+ f11 #355)
-#357 := (= #356 0::Int)
-#362 := (not #357)
-#384 := (+ f12 #383)
-#385 := (+ f10 #384)
-#386 := (= #385 0::Int)
-#391 := (not #386)
-#413 := (+ f11 #412)
-#414 := (+ f9 #413)
-#415 := (= #414 0::Int)
-#420 := (not #415)
-#442 := (+ f10 #441)
-decl f8 :: Int
-#28 := f8
-#443 := (+ f8 #442)
-#444 := (= #443 0::Int)
-#449 := (not #444)
-#167 := (* -1::Int f8)
-#452 := (>= f8 0::Int)
-#459 := (if #452 f8 #167)
-#470 := (* -1::Int #459)
-#471 := (+ f9 #470)
-decl f7 :: Int
-#22 := f7
-#472 := (+ f7 #471)
-#473 := (= #472 0::Int)
-#478 := (not #473)
-#150 := (* -1::Int f7)
-#481 := (>= f7 0::Int)
-#488 := (if #481 f7 #150)
-#499 := (* -1::Int #488)
-#500 := (+ f8 #499)
-#501 := (+ f6 #500)
-#502 := (= #501 0::Int)
-#507 := (not #502)
-#133 := (* -1::Int f6)
-#517 := (if #510 f6 #133)
-#528 := (* -1::Int #517)
-#529 := (+ f7 #528)
-#530 := (+ f3 #529)
-#531 := (= #530 0::Int)
-#536 := (not #531)
-#558 := (+ f6 #557)
-#559 := (+ f4 #558)
-#560 := (= #559 0::Int)
-#565 := (not #560)
-#594 := (not #589)
-#624 := (or #594 #565 #536 #507 #478 #449 #420 #391 #362 #66)
-#629 := (not #624)
-#60 := (- f12)
-#59 := (< f12 0::Int)
-#61 := (if #59 #60 f12)
-#62 := (- #61 f11)
-#63 := (= f13 #62)
-#67 := (implies #63 #66)
-#54 := (- f11)
-#53 := (< f11 0::Int)
-#55 := (if #53 #54 f11)
-#56 := (- #55 f10)
-#57 := (= f12 #56)
-#68 := (implies #57 #67)
-#48 := (- f10)
-#47 := (< f10 0::Int)
-#49 := (if #47 #48 f10)
-#50 := (- #49 f9)
-#51 := (= f11 #50)
-#69 := (implies #51 #68)
-#42 := (- f9)
-#41 := (< f9 0::Int)
-#43 := (if #41 #42 f9)
-#44 := (- #43 f8)
-#45 := (= f10 #44)
-#70 := (implies #45 #69)
-#36 := (- f8)
-#35 := (< f8 0::Int)
-#37 := (if #35 #36 f8)
-#38 := (- #37 f7)
-#39 := (= f9 #38)
-#71 := (implies #39 #70)
-#30 := (- f7)
-#29 := (< f7 0::Int)
-#31 := (if #29 #30 f7)
-#32 := (- #31 f6)
-#33 := (= f8 #32)
-#72 := (implies #33 #71)
-#24 := (- f6)
-#23 := (< f6 0::Int)
-#25 := (if #23 #24 f6)
-#26 := (- #25 f3)
-#27 := (= f7 #26)
-#73 := (implies #27 #72)
-#18 := (- f3)
-#17 := (< f3 0::Int)
-#19 := (if #17 #18 f3)
-#20 := (- #19 f4)
-#21 := (= f6 #20)
-#74 := (implies #21 #73)
-#11 := (- f4)
-#10 := (< f4 0::Int)
-#12 := (if #10 #11 f4)
-#14 := (- #12 f5)
-#15 := (= f3 #14)
-#75 := (implies #15 #74)
-#76 := (not #75)
-#632 := (iff #76 #629)
-#238 := (if #59 #235 f12)
-#244 := (+ #218 #238)
-#249 := (= f13 #244)
-#255 := (not #249)
-#256 := (or #255 #66)
-#221 := (if #53 #218 f11)
-#227 := (+ #201 #221)
-#232 := (= f12 #227)
-#264 := (not #232)
-#265 := (or #264 #256)
-#204 := (if #47 #201 f10)
-#210 := (+ #184 #204)
-#215 := (= f11 #210)
-#273 := (not #215)
-#274 := (or #273 #265)
-#187 := (if #41 #184 f9)
-#193 := (+ #167 #187)
-#198 := (= f10 #193)
-#282 := (not #198)
-#283 := (or #282 #274)
-#170 := (if #35 #167 f8)
-#176 := (+ #150 #170)
-#181 := (= f9 #176)
-#291 := (not #181)
-#292 := (or #291 #283)
-#153 := (if #29 #150 f7)
-#159 := (+ #133 #153)
-#164 := (= f8 #159)
-#300 := (not #164)
-#301 := (or #300 #292)
-#136 := (if #23 #133 f6)
-#142 := (+ #116 #136)
-#147 := (= f7 #142)
-#309 := (not #147)
-#310 := (or #309 #301)
-#119 := (if #17 #116 f3)
-#125 := (+ #98 #119)
-#130 := (= f6 #125)
-#318 := (not #130)
-#319 := (or #318 #310)
-#101 := (if #10 #98 f4)
-#107 := (* -1::Int f5)
-#108 := (+ #107 #101)
-#113 := (= f3 #108)
-#327 := (not #113)
-#328 := (or #327 #319)
-#333 := (not #328)
-#630 := (iff #333 #629)
-#627 := (iff #328 #624)
-#597 := (or #362 #66)
-#600 := (or #391 #597)
-#603 := (or #420 #600)
-#606 := (or #449 #603)
-#609 := (or #478 #606)
-#612 := (or #507 #609)
-#615 := (or #536 #612)
-#618 := (or #565 #615)
-#621 := (or #594 #618)
-#625 := (iff #621 #624)
-#626 := [rewrite]: #625
-#622 := (iff #328 #621)
-#619 := (iff #319 #618)
-#616 := (iff #310 #615)
-#613 := (iff #301 #612)
-#610 := (iff #292 #609)
-#607 := (iff #283 #606)
-#604 := (iff #274 #603)
-#601 := (iff #265 #600)
-#598 := (iff #256 #597)
-#363 := (iff #255 #362)
-#360 := (iff #249 #357)
-#348 := (+ #218 #343)
-#351 := (= f13 #348)
-#358 := (iff #351 #357)
-#359 := [rewrite]: #358
-#352 := (iff #249 #351)
-#349 := (= #244 #348)
-#346 := (= #238 #343)
-#337 := (not #336)
-#340 := (if #337 #235 f12)
-#344 := (= #340 #343)
-#345 := [rewrite]: #344
-#341 := (= #238 #340)
-#338 := (iff #59 #337)
-#339 := [rewrite]: #338
-#342 := [monotonicity #339]: #341
-#347 := [trans #342 #345]: #346
-#350 := [monotonicity #347]: #349
-#353 := [monotonicity #350]: #352
-#361 := [trans #353 #359]: #360
-#364 := [monotonicity #361]: #363
-#599 := [monotonicity #364]: #598
-#392 := (iff #264 #391)
-#389 := (iff #232 #386)
-#377 := (+ #201 #372)
-#380 := (= f12 #377)
-#387 := (iff #380 #386)
-#388 := [rewrite]: #387
-#381 := (iff #232 #380)
-#378 := (= #227 #377)
-#375 := (= #221 #372)
-#369 := (if #366 #218 f11)
-#373 := (= #369 #372)
-#374 := [rewrite]: #373
-#370 := (= #221 #369)
-#367 := (iff #53 #366)
-#368 := [rewrite]: #367
-#371 := [monotonicity #368]: #370
-#376 := [trans #371 #374]: #375
-#379 := [monotonicity #376]: #378
-#382 := [monotonicity #379]: #381
-#390 := [trans #382 #388]: #389
-#393 := [monotonicity #390]: #392
-#602 := [monotonicity #393 #599]: #601
-#421 := (iff #273 #420)
-#418 := (iff #215 #415)
-#406 := (+ #184 #401)
-#409 := (= f11 #406)
-#416 := (iff #409 #415)
-#417 := [rewrite]: #416
-#410 := (iff #215 #409)
-#407 := (= #210 #406)
-#404 := (= #204 #401)
-#398 := (if #395 #201 f10)
-#402 := (= #398 #401)
-#403 := [rewrite]: #402
-#399 := (= #204 #398)
-#396 := (iff #47 #395)
-#397 := [rewrite]: #396
-#400 := [monotonicity #397]: #399
-#405 := [trans #400 #403]: #404
-#408 := [monotonicity #405]: #407
-#411 := [monotonicity #408]: #410
-#419 := [trans #411 #417]: #418
-#422 := [monotonicity #419]: #421
-#605 := [monotonicity #422 #602]: #604
-#450 := (iff #282 #449)
-#447 := (iff #198 #444)
-#435 := (+ #167 #430)
-#438 := (= f10 #435)
-#445 := (iff #438 #444)
-#446 := [rewrite]: #445
-#439 := (iff #198 #438)
-#436 := (= #193 #435)
-#433 := (= #187 #430)
-#424 := (not #423)
-#427 := (if #424 #184 f9)
-#431 := (= #427 #430)
-#432 := [rewrite]: #431
-#428 := (= #187 #427)
-#425 := (iff #41 #424)
-#426 := [rewrite]: #425
-#429 := [monotonicity #426]: #428
-#434 := [trans #429 #432]: #433
-#437 := [monotonicity #434]: #436
-#440 := [monotonicity #437]: #439
-#448 := [trans #440 #446]: #447
-#451 := [monotonicity #448]: #450
-#608 := [monotonicity #451 #605]: #607
-#479 := (iff #291 #478)
-#476 := (iff #181 #473)
-#464 := (+ #150 #459)
-#467 := (= f9 #464)
-#474 := (iff #467 #473)
-#475 := [rewrite]: #474
-#468 := (iff #181 #467)
-#465 := (= #176 #464)
-#462 := (= #170 #459)
-#453 := (not #452)
-#456 := (if #453 #167 f8)
-#460 := (= #456 #459)
-#461 := [rewrite]: #460
-#457 := (= #170 #456)
-#454 := (iff #35 #453)
-#455 := [rewrite]: #454
-#458 := [monotonicity #455]: #457
-#463 := [trans #458 #461]: #462
-#466 := [monotonicity #463]: #465
-#469 := [monotonicity #466]: #468
-#477 := [trans #469 #475]: #476
-#480 := [monotonicity #477]: #479
-#611 := [monotonicity #480 #608]: #610
-#508 := (iff #300 #507)
-#505 := (iff #164 #502)
-#493 := (+ #133 #488)
-#496 := (= f8 #493)
-#503 := (iff #496 #502)
-#504 := [rewrite]: #503
-#497 := (iff #164 #496)
-#494 := (= #159 #493)
-#491 := (= #153 #488)
-#482 := (not #481)
-#485 := (if #482 #150 f7)
-#489 := (= #485 #488)
-#490 := [rewrite]: #489
-#486 := (= #153 #485)
-#483 := (iff #29 #482)
-#484 := [rewrite]: #483
-#487 := [monotonicity #484]: #486
-#492 := [trans #487 #490]: #491
-#495 := [monotonicity #492]: #494
-#498 := [monotonicity #495]: #497
-#506 := [trans #498 #504]: #505
-#509 := [monotonicity #506]: #508
-#614 := [monotonicity #509 #611]: #613
-#537 := (iff #309 #536)
-#534 := (iff #147 #531)
-#522 := (+ #116 #517)
-#525 := (= f7 #522)
-#532 := (iff #525 #531)
-#533 := [rewrite]: #532
-#526 := (iff #147 #525)
-#523 := (= #142 #522)
-#520 := (= #136 #517)
-#514 := (if #511 #133 f6)
-#518 := (= #514 #517)
-#519 := [rewrite]: #518
-#515 := (= #136 #514)
-#512 := (iff #23 #511)
-#513 := [rewrite]: #512
-#516 := [monotonicity #513]: #515
-#521 := [trans #516 #519]: #520
-#524 := [monotonicity #521]: #523
-#527 := [monotonicity #524]: #526
-#535 := [trans #527 #533]: #534
-#538 := [monotonicity #535]: #537
-#617 := [monotonicity #538 #614]: #616
-#566 := (iff #318 #565)
-#563 := (iff #130 #560)
-#551 := (+ #98 #546)
-#554 := (= f6 #551)
-#561 := (iff #554 #560)
-#562 := [rewrite]: #561
-#555 := (iff #130 #554)
-#552 := (= #125 #551)
-#549 := (= #119 #546)
-#540 := (not #539)
-#543 := (if #540 #116 f3)
-#547 := (= #543 #546)
-#548 := [rewrite]: #547
-#544 := (= #119 #543)
-#541 := (iff #17 #540)
-#542 := [rewrite]: #541
-#545 := [monotonicity #542]: #544
-#550 := [trans #545 #548]: #549
-#553 := [monotonicity #550]: #552
-#556 := [monotonicity #553]: #555
-#564 := [trans #556 #562]: #563
-#567 := [monotonicity #564]: #566
-#620 := [monotonicity #567 #617]: #619
-#595 := (iff #327 #594)
-#592 := (iff #113 #589)
-#580 := (+ #107 #575)
-#583 := (= f3 #580)
-#590 := (iff #583 #589)
-#591 := [rewrite]: #590
-#584 := (iff #113 #583)
-#581 := (= #108 #580)
-#578 := (= #101 #575)
-#569 := (not #568)
-#572 := (if #569 #98 f4)
-#576 := (= #572 #575)
-#577 := [rewrite]: #576
-#573 := (= #101 #572)
-#570 := (iff #10 #569)
-#571 := [rewrite]: #570
-#574 := [monotonicity #571]: #573
-#579 := [trans #574 #577]: #578
-#582 := [monotonicity #579]: #581
-#585 := [monotonicity #582]: #584
-#593 := [trans #585 #591]: #592
-#596 := [monotonicity #593]: #595
-#623 := [monotonicity #596 #620]: #622
-#628 := [trans #623 #626]: #627
-#631 := [monotonicity #628]: #630
-#334 := (iff #76 #333)
-#331 := (iff #75 #328)
-#324 := (implies #113 #319)
-#329 := (iff #324 #328)
-#330 := [rewrite]: #329
-#325 := (iff #75 #324)
-#322 := (iff #74 #319)
-#315 := (implies #130 #310)
-#320 := (iff #315 #319)
-#321 := [rewrite]: #320
-#316 := (iff #74 #315)
-#313 := (iff #73 #310)
-#306 := (implies #147 #301)
-#311 := (iff #306 #310)
-#312 := [rewrite]: #311
-#307 := (iff #73 #306)
-#304 := (iff #72 #301)
-#297 := (implies #164 #292)
-#302 := (iff #297 #301)
-#303 := [rewrite]: #302
-#298 := (iff #72 #297)
-#295 := (iff #71 #292)
-#288 := (implies #181 #283)
-#293 := (iff #288 #292)
-#294 := [rewrite]: #293
-#289 := (iff #71 #288)
-#286 := (iff #70 #283)
-#279 := (implies #198 #274)
-#284 := (iff #279 #283)
-#285 := [rewrite]: #284
-#280 := (iff #70 #279)
-#277 := (iff #69 #274)
-#270 := (implies #215 #265)
-#275 := (iff #270 #274)
-#276 := [rewrite]: #275
-#271 := (iff #69 #270)
-#268 := (iff #68 #265)
-#261 := (implies #232 #256)
-#266 := (iff #261 #265)
-#267 := [rewrite]: #266
-#262 := (iff #68 #261)
-#259 := (iff #67 #256)
-#252 := (implies #249 #66)
-#257 := (iff #252 #256)
-#258 := [rewrite]: #257
-#253 := (iff #67 #252)
-#250 := (iff #63 #249)
-#247 := (= #62 #244)
-#241 := (- #238 f11)
-#245 := (= #241 #244)
-#246 := [rewrite]: #245
-#242 := (= #62 #241)
-#239 := (= #61 #238)
-#236 := (= #60 #235)
-#237 := [rewrite]: #236
-#240 := [monotonicity #237]: #239
-#243 := [monotonicity #240]: #242
-#248 := [trans #243 #246]: #247
-#251 := [monotonicity #248]: #250
-#254 := [monotonicity #251]: #253
-#260 := [trans #254 #258]: #259
-#233 := (iff #57 #232)
-#230 := (= #56 #227)
-#224 := (- #221 f10)
-#228 := (= #224 #227)
-#229 := [rewrite]: #228
-#225 := (= #56 #224)
-#222 := (= #55 #221)
-#219 := (= #54 #218)
-#220 := [rewrite]: #219
-#223 := [monotonicity #220]: #222
-#226 := [monotonicity #223]: #225
-#231 := [trans #226 #229]: #230
-#234 := [monotonicity #231]: #233
-#263 := [monotonicity #234 #260]: #262
-#269 := [trans #263 #267]: #268
-#216 := (iff #51 #215)
-#213 := (= #50 #210)
-#207 := (- #204 f9)
-#211 := (= #207 #210)
-#212 := [rewrite]: #211
-#208 := (= #50 #207)
-#205 := (= #49 #204)
-#202 := (= #48 #201)
-#203 := [rewrite]: #202
-#206 := [monotonicity #203]: #205
-#209 := [monotonicity #206]: #208
-#214 := [trans #209 #212]: #213
-#217 := [monotonicity #214]: #216
-#272 := [monotonicity #217 #269]: #271
-#278 := [trans #272 #276]: #277
-#199 := (iff #45 #198)
-#196 := (= #44 #193)
-#190 := (- #187 f8)
-#194 := (= #190 #193)
-#195 := [rewrite]: #194
-#191 := (= #44 #190)
-#188 := (= #43 #187)
-#185 := (= #42 #184)
-#186 := [rewrite]: #185
-#189 := [monotonicity #186]: #188
-#192 := [monotonicity #189]: #191
-#197 := [trans #192 #195]: #196
-#200 := [monotonicity #197]: #199
-#281 := [monotonicity #200 #278]: #280
-#287 := [trans #281 #285]: #286
-#182 := (iff #39 #181)
-#179 := (= #38 #176)
-#173 := (- #170 f7)
-#177 := (= #173 #176)
-#178 := [rewrite]: #177
-#174 := (= #38 #173)
-#171 := (= #37 #170)
-#168 := (= #36 #167)
-#169 := [rewrite]: #168
-#172 := [monotonicity #169]: #171
-#175 := [monotonicity #172]: #174
-#180 := [trans #175 #178]: #179
-#183 := [monotonicity #180]: #182
-#290 := [monotonicity #183 #287]: #289
-#296 := [trans #290 #294]: #295
-#165 := (iff #33 #164)
-#162 := (= #32 #159)
-#156 := (- #153 f6)
-#160 := (= #156 #159)
-#161 := [rewrite]: #160
-#157 := (= #32 #156)
-#154 := (= #31 #153)
-#151 := (= #30 #150)
-#152 := [rewrite]: #151
-#155 := [monotonicity #152]: #154
-#158 := [monotonicity #155]: #157
-#163 := [trans #158 #161]: #162
-#166 := [monotonicity #163]: #165
-#299 := [monotonicity #166 #296]: #298
-#305 := [trans #299 #303]: #304
-#148 := (iff #27 #147)
-#145 := (= #26 #142)
-#139 := (- #136 f3)
-#143 := (= #139 #142)
-#144 := [rewrite]: #143
-#140 := (= #26 #139)
-#137 := (= #25 #136)
-#134 := (= #24 #133)
-#135 := [rewrite]: #134
-#138 := [monotonicity #135]: #137
-#141 := [monotonicity #138]: #140
-#146 := [trans #141 #144]: #145
-#149 := [monotonicity #146]: #148
-#308 := [monotonicity #149 #305]: #307
-#314 := [trans #308 #312]: #313
-#131 := (iff #21 #130)
-#128 := (= #20 #125)
-#122 := (- #119 f4)
-#126 := (= #122 #125)
-#127 := [rewrite]: #126
-#123 := (= #20 #122)
-#120 := (= #19 #119)
-#117 := (= #18 #116)
-#118 := [rewrite]: #117
-#121 := [monotonicity #118]: #120
-#124 := [monotonicity #121]: #123
-#129 := [trans #124 #127]: #128
-#132 := [monotonicity #129]: #131
-#317 := [monotonicity #132 #314]: #316
-#323 := [trans #317 #321]: #322
-#114 := (iff #15 #113)
-#111 := (= #14 #108)
-#104 := (- #101 f5)
-#109 := (= #104 #108)
-#110 := [rewrite]: #109
-#105 := (= #14 #104)
-#102 := (= #12 #101)
-#99 := (= #11 #98)
-#100 := [rewrite]: #99
-#103 := [monotonicity #100]: #102
-#106 := [monotonicity #103]: #105
-#112 := [trans #106 #110]: #111
-#115 := [monotonicity #112]: #114
-#326 := [monotonicity #115 #323]: #325
-#332 := [trans #326 #330]: #331
-#335 := [monotonicity #332]: #334
-#633 := [trans #335 #631]: #632
-#96 := [asserted]: #76
-#634 := [mp #96 #633]: #629
-#635 := [not-or-elim #634]: #589
-#1489 := (or #594 #649)
-#1490 := [th-lemma arith triangle-eq]: #1489
-#1491 := [unit-resolution #1490 #635]: #649
-#675 := (<= #559 0::Int)
-#636 := [not-or-elim #634]: #560
-#1486 := (or #565 #675)
-#1487 := [th-lemma arith triangle-eq]: #1486
-#1488 := [unit-resolution #1487 #636]: #675
-#1251 := (+ #167 #470)
-#741 := (>= #1251 0::Int)
-#1066 := [hypothesis]: #424
-#1804 := (or #539 #423)
-#818 := [hypothesis]: #540
-#1760 := (or #394 #539 #423)
-#747 := (+ #201 #412)
-#1708 := (>= #747 0::Int)
-#710 := (= #201 #401)
-#1122 := [hypothesis]: #395
-#713 := (or #394 #710)
-#714 := [def-axiom]: #713
-#1709 := [unit-resolution #714 #1122]: #710
-#1230 := (not #710)
-#1710 := (or #1230 #1708)
-#1711 := [th-lemma arith triangle-eq]: #1710
-#1712 := [unit-resolution #1711 #1709]: #1708
-#683 := (<= #530 0::Int)
-#637 := [not-or-elim #634]: #531
-#895 := (or #536 #683)
-#896 := [th-lemma arith triangle-eq]: #895
-#897 := [unit-resolution #896 #637]: #683
-#760 := (+ f6 #528)
-#756 := (>= #760 0::Int)
-#677 := (= f6 #517)
-#1197 := (or #510 #423)
-#989 := [hypothesis]: #511
-#1188 := (or #481 #510 #423)
-#752 := (+ f8 #470)
-#988 := (<= #752 0::Int)
-#1014 := (not #988)
-#1062 := (+ #150 #499)
-#1161 := (<= #1062 0::Int)
-#686 := (= #150 #488)
-#891 := [hypothesis]: #482
-#689 := (or #481 #686)
-#690 := [def-axiom]: #689
-#1169 := [unit-resolution #690 #891]: #686
-#1094 := (not #686)
-#1170 := (or #1094 #1161)
-#1171 := [th-lemma arith triangle-eq]: #1170
-#1172 := [unit-resolution #1171 #1169]: #1161
-#927 := (+ #184 #441)
-#744 := (>= #927 0::Int)
-#702 := (= #184 #430)
-#705 := (or #423 #702)
-#706 := [def-axiom]: #705
-#1071 := [unit-resolution #706 #1066]: #702
-#954 := (not #702)
-#1173 := (or #954 #744)
-#1174 := [th-lemma arith triangle-eq]: #1173
-#1175 := [unit-resolution #1174 #1071]: #744
-#1166 := (or #394 #423 #481)
-#700 := (>= #472 0::Int)
-#639 := [not-or-elim #634]: #473
-#1011 := (or #478 #700)
-#1012 := [th-lemma arith triangle-eq]: #1011
-#1013 := [unit-resolution #1012 #639]: #700
-#928 := (<= #927 0::Int)
-#955 := (or #954 #928)
-#1027 := (not #928)
-#1028 := [hypothesis]: #1027
-#1029 := [hypothesis]: #702
-#956 := [th-lemma arith triangle-eq]: #955
-#1030 := [unit-resolution #956 #1029 #1028]: false
-#1031 := [lemma #1030]: #955
-#1072 := [unit-resolution #1031 #1071]: #928
-#708 := (>= #443 0::Int)
-#640 := [not-or-elim #634]: #444
-#905 := (or #449 #708)
-#906 := [th-lemma arith triangle-eq]: #905
-#907 := [unit-resolution #906 #640]: #708
-#1015 := (not #700)
-#1048 := (not #708)
-#1130 := (or #481 #394 #1048 #1014 #1015 #423 #1027)
-#1131 := [th-lemma arith assign-bounds 1 1 1 1 2 1]: #1130
-#1162 := [unit-resolution #1131 #1122 #1066 #907 #891 #1072 #1013]: #1014
-#693 := (= f8 #459)
-#1123 := (or #452 #423 #394 #1048 #1027)
-#1124 := [th-lemma arith assign-bounds 1 1 1 1]: #1123
-#1163 := [unit-resolution #1124 #1122 #907 #1072 #1066]: #452
-#695 := (or #453 #693)
-#696 := [def-axiom]: #695
-#1164 := [unit-resolution #696 #1163]: #693
-#1007 := (not #693)
-#1008 := (or #1007 #988)
-#1067 := [hypothesis]: #1014
-#1068 := [hypothesis]: #693
-#1009 := [th-lemma arith triangle-eq]: #1008
-#1069 := [unit-resolution #1009 #1068 #1067]: false
-#1070 := [lemma #1069]: #1008
-#1165 := [unit-resolution #1070 #1164 #1162]: false
-#1167 := [lemma #1165]: #1166
-#1176 := [unit-resolution #1167 #891 #1066]: #394
-#707 := (<= #443 0::Int)
-#834 := (or #449 #707)
-#835 := [th-lemma arith triangle-eq]: #834
-#836 := [unit-resolution #835 #640]: #707
-#692 := (>= #501 0::Int)
-#638 := [not-or-elim #634]: #502
-#867 := (or #507 #692)
-#868 := [th-lemma arith triangle-eq]: #867
-#869 := [unit-resolution #868 #638]: #692
-#1002 := (not #692)
-#1179 := (not #1161)
-#1178 := (not #707)
-#1177 := (not #744)
-#1180 := (or #1014 #1015 #1177 #1178 #481 #395 #1179 #1002 #510)
-#1181 := [th-lemma arith assign-bounds 1 1 1 3 1 2 2 2]: #1180
-#1182 := [unit-resolution #1181 #891 #869 #1013 #836 #1176 #989 #1175 #1172]: #1014
-#1183 := (or #452 #1179 #1002 #510 #481)
-#1184 := [th-lemma arith assign-bounds 1 1 1 1]: #1183
-#1185 := [unit-resolution #1184 #891 #869 #989 #1172]: #452
-#1186 := [unit-resolution #696 #1185]: #693
-#1187 := [unit-resolution #1070 #1186 #1182]: false
-#1189 := [lemma #1187]: #1188
-#1168 := [unit-resolution #1189 #989 #1066]: #481
-#1159 := (or #539 #423 #510)
-#755 := (+ f7 #499)
-#812 := (<= #755 0::Int)
-#685 := (= f7 #488)
-#982 := (+ #133 #528)
-#983 := (<= #982 0::Int)
-#678 := (= #133 #517)
-#681 := (or #510 #678)
-#682 := [def-axiom]: #681
-#990 := [unit-resolution #682 #989]: #678
-#991 := (not #678)
-#992 := (or #991 #983)
-#993 := [th-lemma arith triangle-eq]: #992
-#994 := [unit-resolution #993 #990]: #983
-#684 := (>= #530 0::Int)
-#814 := (or #536 #684)
-#815 := [th-lemma arith triangle-eq]: #814
-#816 := [unit-resolution #815 #637]: #684
-#871 := (not #684)
-#995 := (not #983)
-#996 := (or #481 #995 #510 #539 #871)
-#997 := [th-lemma arith assign-bounds 1 1 1 1]: #996
-#1152 := [unit-resolution #997 #818 #816 #994 #989]: #481
-#687 := (or #482 #685)
-#688 := [def-axiom]: #687
-#1153 := [unit-resolution #688 #1152]: #685
-#876 := (not #685)
-#877 := (or #876 #812)
-#878 := [th-lemma arith triangle-eq]: #877
-#1154 := [unit-resolution #878 #1153]: #812
-#1001 := (not #812)
-#1016 := (or #423 #510 #1014 #1015 #1001 #1002)
-#1017 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1016
-#1155 := [unit-resolution #1017 #1154 #1013 #1066 #989 #869]: #1014
-#1003 := (or #452 #1001 #1002 #510 #995 #539 #871)
-#1004 := [th-lemma arith assign-bounds 1 1 2 1 1 1]: #1003
-#1156 := [unit-resolution #1004 #1154 #816 #869 #818 #994 #989]: #452
-#1157 := [unit-resolution #696 #1156]: #693
-#1158 := [unit-resolution #1070 #1157 #1155]: false
-#1160 := [lemma #1158]: #1159
-#1190 := [unit-resolution #1160 #989 #1066]: #539
-#984 := (>= #982 0::Int)
-#1021 := (or #991 #984)
-#1022 := [th-lemma arith triangle-eq]: #1021
-#1023 := [unit-resolution #1022 #990]: #984
-#1191 := [unit-resolution #688 #1168]: #685
-#1192 := [unit-resolution #878 #1191]: #812
-#1079 := (not #984)
-#1051 := (not #683)
-#1108 := (or #452 #1001 #1002 #482 #540 #1051 #1079)
-#1109 := [th-lemma arith assign-bounds -1/2 1/2 1 1/2 -1/2 1/2]: #1108
-#1193 := [unit-resolution #1109 #1192 #1023 #869 #1190 #1168 #897]: #452
-#1194 := [unit-resolution #1017 #1192 #1013 #1066 #989 #869]: #1014
-#1195 := [unit-resolution #1070 #1194]: #1007
-#1196 := [unit-resolution #696 #1195 #1193]: false
-#1198 := [lemma #1196]: #1197
-#1203 := [unit-resolution #1198 #1066]: #510
-#679 := (or #511 #677)
-#680 := [def-axiom]: #679
-#1209 := [unit-resolution #680 #1203]: #677
-#830 := (not #677)
-#958 := (or #830 #756)
-#959 := [th-lemma arith triangle-eq]: #958
-#1713 := [unit-resolution #959 #1209]: #756
-#750 := (<= #749 0::Int)
-#1268 := (not #750)
-#1550 := [unit-resolution #1031 #1028]: #954
-#1551 := [unit-resolution #706 #1550]: #423
-#1552 := (or #928 #1268 #424)
-#1553 := [th-lemma arith assign-bounds 1 -2]: #1552
-#1554 := [unit-resolution #1553 #1551 #1028]: #1268
-#703 := (or #424 #701)
-#704 := [def-axiom]: #703
-#1555 := [unit-resolution #704 #1551]: #701
-#909 := (not #701)
-#910 := (or #909 #750)
-#911 := [th-lemma arith triangle-eq]: #910
-#1556 := [unit-resolution #911 #1555 #1554]: false
-#1557 := [lemma #1556]: #928
-#758 := (+ #116 #557)
-#759 := (<= #758 0::Int)
-#670 := (= #116 #546)
-#673 := (or #539 #670)
-#674 := [def-axiom]: #673
-#819 := [unit-resolution #674 #818]: #670
-#804 := (not #670)
-#805 := (or #804 #759)
-#806 := [th-lemma arith triangle-eq]: #805
-#820 := [unit-resolution #806 #819]: #759
-#691 := (<= #501 0::Int)
-#785 := (or #507 #691)
-#786 := [th-lemma arith triangle-eq]: #785
-#787 := [unit-resolution #786 #638]: #691
-#757 := (>= #755 0::Int)
-#1705 := (or #481 #423)
-#1356 := (<= #1251 0::Int)
-#1439 := (not #1356)
-#754 := (>= #752 0::Int)
-#1434 := (or #988 #754)
-#1435 := [th-lemma arith farkas 1 1]: #1434
-#1436 := [unit-resolution #1435 #1067]: #754
-#1437 := [unit-resolution #1070 #1067]: #1007
-#1438 := [unit-resolution #696 #1437]: #453
-#797 := (not #754)
-#1440 := (or #797 #1439 #452)
-#1441 := [th-lemma arith assign-bounds 1 2]: #1440
-#1442 := [unit-resolution #1441 #1438 #1436]: #1439
-#694 := (= #167 #459)
-#697 := (or #452 #694)
-#698 := [def-axiom]: #697
-#1443 := [unit-resolution #698 #1438]: #694
-#1444 := (not #694)
-#1445 := (or #1444 #1356)
-#1446 := [th-lemma arith triangle-eq]: #1445
-#1447 := [unit-resolution #1446 #1443 #1442]: false
-#1448 := [lemma #1447]: #988
-#1362 := [hypothesis]: #453
-#1466 := [unit-resolution #698 #1362]: #694
-#1478 := (or #1444 #741)
-#1479 := [th-lemma arith triangle-eq]: #1478
-#1480 := [unit-resolution #1479 #1466]: #741
-#699 := (<= #472 0::Int)
-#789 := (or #478 #699)
-#790 := [th-lemma arith triangle-eq]: #789
-#791 := [unit-resolution #790 #639]: #699
-#1546 := (or #481 #452)
-#668 := (not #65)
-#734 := (<= #733 0::Int)
-#811 := (<= #760 0::Int)
-#1449 := (or #452 #1179 #510 #481)
-#1450 := [unit-resolution #1184 #869]: #1449
-#1451 := [unit-resolution #1450 #1172 #1362 #891]: #510
-#1452 := [unit-resolution #680 #1451]: #677
-#831 := (or #830 #811)
-#832 := [th-lemma arith triangle-eq]: #831
-#1453 := [unit-resolution #832 #1452]: #811
-#870 := (not #811)
-#1454 := (or #481 #511 #870 #539)
-#1035 := (or #481 #511 #870 #539 #871)
-#1036 := [th-lemma arith assign-bounds 1 1 1 1]: #1035
-#1455 := [unit-resolution #1036 #816]: #1454
-#1456 := [unit-resolution #1455 #1453 #891 #1451]: #539
-#671 := (or #540 #669)
-#672 := [def-axiom]: #671
-#1457 := [unit-resolution #672 #1456]: #669
-#776 := (not #669)
-#777 := (or #776 #762)
-#778 := [th-lemma arith triangle-eq]: #777
-#1458 := [unit-resolution #778 #1457]: #762
-#844 := (not #762)
-#1459 := (or #568 #844 #870 #481)
-#676 := (>= #559 0::Int)
-#771 := (or #565 #676)
-#772 := [th-lemma arith triangle-eq]: #771
-#773 := [unit-resolution #772 #636]: #676
-#823 := (not #676)
-#1387 := (or #568 #823 #844 #870 #871 #481)
-#1388 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1387
-#1460 := [unit-resolution #1388 #816 #773]: #1459
-#1461 := [unit-resolution #1460 #1458 #891 #1453]: #568
-#653 := (or #569 #655)
-#654 := [def-axiom]: #653
-#1462 := [unit-resolution #654 #1461]: #655
-#1263 := (not #655)
-#1463 := (or #1263 #1430)
-#1464 := [th-lemma arith triangle-eq]: #1463
-#1465 := [unit-resolution #1464 #1462]: #1430
-#1200 := (<= #743 0::Int)
-#1467 := [unit-resolution #1446 #1466]: #1356
-#1468 := (or #423 #1439 #481 #1015 #452)
-#1469 := [th-lemma arith assign-bounds 1 1 1 1]: #1468
-#1470 := [unit-resolution #1469 #891 #1013 #1362 #1467]: #423
-#1471 := [unit-resolution #704 #1470]: #701
-#1472 := [unit-resolution #911 #1471]: #750
-#1376 := (or #452 #365 #1268)
-#854 := (not #709)
-#1267 := (not #888)
-#1252 := [hypothesis]: #750
-#716 := (>= #414 0::Int)
-#641 := [not-or-elim #634]: #415
-#1215 := (or #420 #716)
-#1216 := [th-lemma arith triangle-eq]: #1215
-#1217 := [unit-resolution #1216 #641]: #716
-#1240 := (not #716)
-#1363 := (or #1267 #365 #1240 #1268 #1048 #452)
-#1364 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1363
-#1365 := [unit-resolution #1364 #1362 #1217 #1202 #1252 #907]: #1267
-#1219 := (or #854 #888)
-#1358 := [hypothesis]: #1267
-#1359 := [hypothesis]: #709
-#1220 := [th-lemma arith triangle-eq]: #1219
-#1360 := [unit-resolution #1220 #1359 #1358]: false
-#1361 := [lemma #1360]: #1219
-#1366 := [unit-resolution #1361 #1365]: #854
-#711 := (or #395 #709)
-#712 := [def-axiom]: #711
-#1367 := [unit-resolution #712 #1366]: #395
-#1368 := [unit-resolution #714 #1367]: #710
-#753 := (<= #747 0::Int)
-#1227 := (not #753)
-#1369 := (or #748 #365 #1240 #1268 #1048 #452)
-#1370 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1369
-#1371 := [unit-resolution #1370 #1362 #1217 #1202 #907 #1252]: #748
-#1372 := (or #916 #1227 #394)
-#1373 := [th-lemma arith assign-bounds 1 2]: #1372
-#1374 := [unit-resolution #1373 #1367 #1371]: #1227
-#1231 := (or #1230 #753)
-#1228 := [hypothesis]: #1227
-#1229 := [hypothesis]: #710
-#1232 := [th-lemma arith triangle-eq]: #1231
-#1233 := [unit-resolution #1232 #1229 #1228]: false
-#1234 := [lemma #1233]: #1231
-#1375 := [unit-resolution #1234 #1374 #1368]: false
-#1377 := [lemma #1375]: #1376
-#1473 := [unit-resolution #1377 #1472 #1362]: #365
-#719 := (or #366 #717)
-#720 := [def-axiom]: #719
-#1474 := [unit-resolution #720 #1473]: #717
-#860 := (not #717)
-#1475 := (or #860 #1200)
-#1476 := [th-lemma arith triangle-eq]: #1475
-#1477 := [unit-resolution #1476 #1474]: #1200
-#1481 := (or #394 #481 #1268)
-#1273 := (or #394 #481 #1014 #1015 #1268 #1048)
-#1274 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1273
-#1482 := [unit-resolution #1274 #907 #1448 #1013]: #1481
-#1483 := [unit-resolution #1482 #1472 #891]: #394
-#1484 := [unit-resolution #712 #1483]: #709
-#1485 := [unit-resolution #1361 #1484]: #888
-#724 := (>= #385 0::Int)
-#642 := [not-or-elim #634]: #386
-#1492 := (or #391 #724)
-#1493 := [th-lemma arith triangle-eq]: #1492
-#1494 := [unit-resolution #1493 #642]: #724
-#933 := (>= #761 0::Int)
-#1495 := (or #776 #933)
-#1496 := [th-lemma arith triangle-eq]: #1495
-#1497 := [unit-resolution #1496 #1457]: #933
-#1504 := (not #675)
-#1503 := (not #933)
-#1050 := (not #699)
-#1502 := (not #741)
-#1501 := (not #724)
-#1500 := (not #1200)
-#1499 := (not #649)
-#1505 := (or #734 #1498 #1499 #1179 #1002 #1500 #1501 #1502 #1050 #1503 #1504 #1267 #1240)
-#1506 := [th-lemma arith assign-bounds 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1]: #1505
-#1507 := [unit-resolution #1506 #1497 #869 #791 #1217 #1494 #1491 #1488 #1172 #1485 #1480 #1477 #1465]: #734
-#1064 := (>= #1062 0::Int)
-#1095 := (or #1094 #1064)
-#1090 := (not #1064)
-#1065 := [hypothesis]: #1090
-#1093 := [hypothesis]: #686
-#1096 := [th-lemma arith triangle-eq]: #1095
-#1097 := [unit-resolution #1096 #1093 #1065]: false
-#1098 := [lemma #1097]: #1095
-#1208 := [unit-resolution #1098 #1169]: #1064
-#1264 := (or #1263 #986)
-#1265 := [th-lemma arith triangle-eq]: #1264
-#1508 := [unit-resolution #1265 #1462]: #986
-#855 := (or #854 #748)
-#856 := [th-lemma arith triangle-eq]: #855
-#1509 := [unit-resolution #856 #1484]: #748
-#650 := (>= #588 0::Int)
-#901 := (or #594 #650)
-#902 := [th-lemma arith triangle-eq]: #901
-#903 := [unit-resolution #902 #635]: #650
-#723 := (<= #385 0::Int)
-#780 := (or #391 #723)
-#781 := [th-lemma arith triangle-eq]: #780
-#782 := [unit-resolution #781 #642]: #723
-#715 := (<= #414 0::Int)
-#880 := (or #420 #715)
-#881 := [th-lemma arith triangle-eq]: #880
-#882 := [unit-resolution #881 #641]: #715
-#861 := (or #860 #745)
-#795 := (not #745)
-#1204 := [hypothesis]: #795
-#1205 := [hypothesis]: #717
-#862 := [th-lemma arith triangle-eq]: #861
-#1206 := [unit-resolution #862 #1205 #1204]: false
-#1207 := [lemma #1206]: #861
-#1510 := [unit-resolution #1207 #1474]: #745
-#947 := (not #715)
-#822 := (not #723)
-#1049 := (not #691)
-#948 := (not #650)
-#1511 := (or #735 #1269 #948 #1090 #1049 #795 #822 #1439 #1015 #844 #823 #916 #947)
-#1512 := [th-lemma arith assign-bounds 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1]: #1511
-#1513 := [unit-resolution #1512 #1510 #787 #1013 #882 #782 #903 #773 #1458 #1509 #1508 #1208 #1467]: #735
-#949 := (not #734)
-#1514 := (or #64 #949 #899)
-#1515 := [th-lemma arith triangle-eq]: #1514
-#1516 := [unit-resolution #1515 #1513 #1507]: #64
-#667 := (not #64)
-#647 := (or #667 #668)
-#644 := (not #66)
-#660 := (iff #644 #647)
-#648 := (not #647)
-#663 := (not #648)
-#662 := (iff #663 #647)
-#659 := [rewrite]: #662
-#664 := (iff #644 #663)
-#665 := (iff #66 #648)
-#666 := [rewrite]: #665
-#661 := [monotonicity #666]: #664
-#657 := [trans #661 #659]: #660
-#645 := [not-or-elim #634]: #644
-#658 := [mp #645 #657]: #647
-#1517 := [unit-resolution #658 #1516]: #668
-#736 := (* -1::Int f13)
-#737 := (+ f4 #736)
-#739 := (>= #737 0::Int)
-#1431 := (+ #235 #354)
-#1433 := (>= #1431 0::Int)
-#726 := (= #235 #343)
-#1518 := (or #337 #795 #822 #452 #1439 #481 #1015 #916 #947)
-#1519 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1518
-#1520 := [unit-resolution #1519 #891 #1013 #882 #782 #1362 #1510 #1509 #1467]: #337
-#729 := (or #336 #726)
-#730 := [def-axiom]: #729
-#1521 := [unit-resolution #730 #1520]: #726
-#1522 := (not #726)
-#1523 := (or #1522 #1433)
-#1524 := [th-lemma arith triangle-eq]: #1523
-#1525 := [unit-resolution #1524 #1521]: #1433
-#731 := (<= #356 0::Int)
-#643 := [not-or-elim #634]: #357
-#767 := (or #362 #731)
-#768 := [th-lemma arith triangle-eq]: #767
-#769 := [unit-resolution #768 #643]: #731
-#824 := (not #731)
-#1526 := (not #1433)
-#1527 := (or #739 #1526 #1500 #1501 #1502 #1050 #1267 #1240 #824 #844 #823 #870 #871 #1268 #1048)
-#1528 := [th-lemma arith assign-bounds -1 1 -1 -1 1 2 -2 1 1 -1 1 -1 1 -1]: #1527
-#1529 := [unit-resolution #1528 #1458 #791 #907 #1217 #1494 #769 #773 #816 #1453 #1472 #1485 #1480 #1477 #1525]: #739
-#738 := (<= #737 0::Int)
-#1432 := (<= #1431 0::Int)
-#1530 := (or #1522 #1432)
-#1531 := [th-lemma arith triangle-eq]: #1530
-#1532 := [unit-resolution #1531 #1521]: #1432
-#1533 := [unit-resolution #959 #1452]: #756
-#1407 := (or #909 #751)
-#1408 := [th-lemma arith triangle-eq]: #1407
-#1534 := [unit-resolution #1408 #1471]: #751
-#732 := (>= #356 0::Int)
-#1535 := (or #362 #732)
-#1536 := [th-lemma arith triangle-eq]: #1535
-#1537 := [unit-resolution #1536 #643]: #732
-#838 := (not #751)
-#917 := (not #756)
-#1539 := (not #732)
-#1538 := (not #1432)
-#1540 := (or #738 #1538 #795 #822 #1439 #1015 #916 #947 #1539 #1503 #1504 #917 #1051 #838 #1178)
-#1541 := [th-lemma arith assign-bounds -1 1 -1 -1 1 2 -2 1 1 -1 1 -1 1 -1]: #1540
-#1542 := [unit-resolution #1541 #1510 #1013 #836 #882 #782 #1537 #1488 #897 #1534 #1509 #1533 #1497 #1467 #1532]: #738
-#765 := (not #739)
-#825 := (not #738)
-#1543 := (or #65 #825 #765)
-#1544 := [th-lemma arith triangle-eq]: #1543
-#1545 := [unit-resolution #1544 #1542 #1529 #1517]: false
-#1547 := [lemma #1545]: #1546
-#1572 := [unit-resolution #1547 #1362]: #481
-#1594 := (or #1027 #1502 #482 #1050 #1048 #394)
-#1595 := [th-lemma arith assign-bounds -1 -1 1 -1 1]: #1594
-#1596 := [unit-resolution #1595 #1480 #907 #1572 #1557 #791]: #394
-#1597 := [unit-resolution #712 #1596]: #709
-#1598 := [unit-resolution #1361 #1597]: #888
-#1573 := [unit-resolution #688 #1572]: #685
-#1574 := [unit-resolution #878 #1573]: #812
-#1680 := (or #1161 #482 #1001)
-#1681 := [th-lemma arith assign-bounds 2 -1]: #1680
-#1682 := [unit-resolution #1681 #1574 #1572]: #1161
-#1549 := [hypothesis]: #870
-#1558 := [hypothesis]: #677
-#1559 := [unit-resolution #832 #1558 #1549]: false
-#1560 := [lemma #1559]: #831
-#1561 := [unit-resolution #1560 #1549]: #830
-#1562 := [unit-resolution #680 #1561]: #511
-#1304 := (or #811 #510 #995)
-#1305 := [th-lemma arith assign-bounds 2 1]: #1304
-#1563 := [unit-resolution #1305 #1562 #1549]: #995
-#1564 := [unit-resolution #682 #1562]: #678
-#1565 := [unit-resolution #993 #1564 #1563]: false
-#1566 := [lemma #1565]: #811
-#1575 := (or #452 #1001 #870 #539)
-#1040 := (or #452 #1001 #1002 #870 #539 #871)
-#1041 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1040
-#1576 := [unit-resolution #1041 #869 #816]: #1575
-#1577 := [unit-resolution #1576 #1574 #1566 #1362]: #539
-#1578 := [unit-resolution #672 #1577]: #669
-#1579 := [unit-resolution #1496 #1578]: #933
-#1636 := (or #423 #452)
-#886 := (+ #98 #586)
-#1570 := (>= #886 0::Int)
-#656 := (= #98 #575)
-#1580 := (or #452 #1001 #482 #540 #1079)
-#1581 := [unit-resolution #1109 #869 #897]: #1580
-#1582 := [unit-resolution #1581 #1577 #1572 #1362 #1574]: #1079
-#1548 := [hypothesis]: #1079
-#1567 := [hypothesis]: #678
-#1568 := [unit-resolution #1022 #1567 #1548]: false
-#1569 := [lemma #1568]: #1021
-#1583 := [unit-resolution #1569 #1582]: #991
-#1584 := [unit-resolution #682 #1583]: #510
-#1585 := [unit-resolution #680 #1584]: #677
-#1586 := [unit-resolution #959 #1585]: #756
-#1587 := (or #569 #1504 #917 #1051 #1503 #1439 #1015 #423 #452)
-#1588 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1587
-#1589 := [unit-resolution #1588 #1066 #897 #1362 #1013 #1488 #1586 #1579 #1467]: #569
-#651 := (or #568 #656)
-#652 := [def-axiom]: #651
-#1590 := [unit-resolution #652 #1589]: #656
-#922 := (not #656)
-#1591 := (or #922 #1570)
-#1592 := [th-lemma arith triangle-eq]: #1591
-#1593 := [unit-resolution #1592 #1590]: #1570
-#1599 := [unit-resolution #778 #1578]: #762
-#1602 := (or #365 #1267 #1027 #423 #452)
-#1600 := (or #365 #1267 #1240 #1027 #1048 #423 #452)
-#1601 := [th-lemma arith assign-bounds 1 1 1 1 2 1]: #1600
-#1603 := [unit-resolution #1601 #907 #1217]: #1602
-#1604 := [unit-resolution #1603 #1066 #1557 #1362 #1598]: #365
-#1605 := [unit-resolution #720 #1604]: #717
-#1606 := [unit-resolution #1476 #1605]: #1200
-#1607 := (not #1570)
-#1608 := (or #734 #1499 #1500 #1501 #1502 #1050 #823 #1267 #1240 #1001 #1002 #844 #1607 #870 #871)
-#1609 := [th-lemma arith assign-bounds -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -2 2]: #1608
-#1610 := [unit-resolution #1609 #1606 #816 #869 #791 #1217 #1494 #1491 #1599 #1566 #1574 #1598 #773 #1480 #1593]: #734
-#1611 := [unit-resolution #856 #1597]: #748
-#887 := (<= #886 0::Int)
-#923 := (or #922 #887)
-#915 := (not #887)
-#920 := [hypothesis]: #915
-#921 := [hypothesis]: #656
-#924 := [th-lemma arith triangle-eq]: #923
-#925 := [unit-resolution #924 #921 #920]: false
-#926 := [lemma #925]: #923
-#1612 := [unit-resolution #926 #1590]: #887
-#940 := (or #876 #757)
-#941 := [th-lemma arith triangle-eq]: #940
-#1613 := [unit-resolution #941 #1573]: #757
-#1614 := [unit-resolution #1207 #1605]: #745
-#794 := (not #757)
-#1615 := (or #735 #948 #795 #822 #1439 #1015 #1504 #916 #947 #794 #1049 #1503 #915 #917 #1051)
-#1616 := [th-lemma arith assign-bounds -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -2 2]: #1615
-#1617 := [unit-resolution #1616 #1614 #897 #787 #1013 #882 #782 #903 #1488 #1613 #1612 #1611 #1586 #1579 #1467]: #735
-#1618 := [unit-resolution #1515 #1617 #1610]: #64
-#1619 := [unit-resolution #658 #1618]: #668
-#740 := (+ f12 #354)
-#1571 := (<= #740 0::Int)
-#725 := (= f12 #343)
-#1620 := (or #336 #1500 #1501 #1267 #1240 #423)
-#1621 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1620
-#1622 := [unit-resolution #1621 #1066 #1494 #1217 #1598 #1606]: #336
-#727 := (or #337 #725)
-#728 := [def-axiom]: #727
-#1623 := [unit-resolution #728 #1622]: #725
-#1394 := (not #725)
-#1624 := (or #1394 #1571)
-#1625 := [th-lemma arith triangle-eq]: #1624
-#1626 := [unit-resolution #1625 #1623]: #1571
-#1627 := (not #1571)
-#1628 := (or #738 #1627 #1500 #1501 #1539 #1504 #917 #1051 #1503 #1439 #1015 #1177 #1178)
-#1629 := [th-lemma arith assign-bounds 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1]: #1628
-#1630 := [unit-resolution #1629 #1175 #1013 #836 #1494 #1537 #1488 #1586 #1579 #897 #1467 #1606 #1626]: #738
-#742 := (>= #740 0::Int)
-#1395 := (or #1394 #742)
-#1396 := [th-lemma arith triangle-eq]: #1395
-#1631 := [unit-resolution #1396 #1623]: #742
-#796 := (not #742)
-#1632 := (or #739 #796 #795 #822 #824 #823 #870 #871 #844 #1502 #1050 #1027 #1048)
-#1633 := [th-lemma arith assign-bounds 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1]: #1632
-#1634 := [unit-resolution #1633 #1614 #791 #907 #782 #769 #773 #816 #1631 #1599 #1566 #1557 #1480]: #739
-#1635 := [unit-resolution #1544 #1634 #1630 #1619]: false
-#1637 := [lemma #1635]: #1636
-#1683 := [unit-resolution #1637 #1362]: #423
-#1684 := [unit-resolution #704 #1683]: #701
-#1685 := [unit-resolution #911 #1684]: #750
-#1686 := [unit-resolution #1377 #1685 #1362]: #365
-#1687 := [unit-resolution #720 #1686]: #717
-#1688 := [unit-resolution #1476 #1687]: #1200
-#1689 := [unit-resolution #1207 #1687]: #745
-#1663 := (or #735 #844 #916 #795 #1439 #794 #917 #1503)
-#1652 := [hypothesis]: #1356
-#784 := [hypothesis]: #745
-#913 := [hypothesis]: #748
-#889 := [hypothesis]: #762
-#1653 := [hypothesis]: #933
-#898 := [hypothesis]: #756
-#788 := [hypothesis]: #757
-#1654 := [unit-resolution #1616 #900 #897 #787 #1013 #882 #782 #903 #1488 #788 #784 #913 #898 #1653 #1652]: #915
-#1655 := [unit-resolution #926 #1654]: #922
-#1656 := [unit-resolution #652 #1655]: #568
-#1657 := [unit-resolution #654 #1656]: #655
-#1658 := [unit-resolution #1265 #1657]: #986
-#1659 := (or #1064 #794 #1504 #569 #917 #1051 #1503)
-#1660 := [th-lemma arith assign-bounds -1 2 -2 -2 2 -2]: #1659
-#1661 := [unit-resolution #1660 #1656 #897 #788 #898 #1488 #1653]: #1064
-#1662 := [unit-resolution #1512 #1661 #1658 #787 #1013 #882 #782 #903 #773 #889 #913 #784 #900 #1652]: false
-#1664 := [lemma #1662]: #1663
-#1690 := [unit-resolution #1664 #1599 #1611 #1689 #1467 #1613 #1586 #1579]: #735
-#1650 := (or #739 #795 #844 #1502 #1500 #1268 #1267)
-#1642 := [hypothesis]: #741
-#766 := [hypothesis]: #765
-#1643 := [unit-resolution #1633 #766 #791 #907 #782 #769 #773 #816 #784 #889 #1566 #1557 #1642]: #796
-#1385 := [hypothesis]: #888
-#1644 := [hypothesis]: #1200
-#1645 := [unit-resolution #1528 #766 #791 #907 #1217 #1494 #769 #1644 #889 #1566 #1252 #1385 #1642 #816 #773]: #1526
-#1638 := [hypothesis]: #1526
-#1639 := [hypothesis]: #726
-#1640 := [unit-resolution #1524 #1639 #1638]: false
-#1641 := [lemma #1640]: #1523
-#1646 := [unit-resolution #1641 #1645]: #1522
-#1647 := [unit-resolution #730 #1646]: #336
-#1648 := [unit-resolution #728 #1647]: #725
-#1649 := [unit-resolution #1396 #1648 #1643]: false
-#1651 := [lemma #1649]: #1650
-#1691 := [unit-resolution #1651 #1689 #1599 #1480 #1688 #1685 #1598]: #739
-#1692 := [unit-resolution #1408 #1684]: #751
-#1675 := (or #738 #795 #916 #917 #1503 #1439 #838)
-#813 := [hypothesis]: #751
-#1668 := [hypothesis]: #825
-#1669 := [unit-resolution #1541 #1668 #1013 #836 #882 #782 #1537 #1652 #784 #813 #913 #898 #1653 #897 #1488]: #1538
-#1665 := [hypothesis]: #1538
-#1666 := [unit-resolution #1531 #1639 #1665]: false
-#1667 := [lemma #1666]: #1530
-#1670 := [unit-resolution #1667 #1669]: #1522
-#1671 := [unit-resolution #730 #1670]: #336
-#1672 := [unit-resolution #728 #1671]: #725
-#1673 := [unit-resolution #1625 #1672]: #1571
-#1674 := [th-lemma arith farkas 1/2 -1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 1/2 -1/2 1 #784 #782 #913 #882 #1488 #898 #897 #1653 #1652 #1013 #1673 #1537 #1668 #813 #836 #1671]: false
-#1676 := [lemma #1674]: #1675
-#1693 := [unit-resolution #1676 #1689 #1611 #1586 #1579 #1467 #1692]: #738
-#1694 := [unit-resolution #1544 #1693 #1691]: #65
-#1695 := [unit-resolution #658 #1694]: #667
-#1696 := [unit-resolution #1515 #1695 #1690]: #949
-#1697 := [unit-resolution #1506 #1696 #869 #791 #1217 #1494 #1688 #1579 #1682 #1598 #1480 #1488 #1491]: #1498
-#1698 := [unit-resolution #1609 #1696 #816 #869 #791 #1217 #1494 #1688 #1599 #1566 #1574 #1598 #773 #1480 #1491]: #1607
-#1677 := [hypothesis]: #1607
-#1678 := [unit-resolution #1592 #921 #1677]: false
-#1679 := [lemma #1678]: #1591
-#1699 := [unit-resolution #1679 #1698]: #922
-#1700 := [unit-resolution #652 #1699]: #568
-#1701 := [unit-resolution #654 #1700]: #655
-#1702 := [unit-resolution #1464 #1701 #1697]: false
-#1703 := [lemma #1702]: #452
-#1704 := [th-lemma arith farkas 1 1 1 1 1 #1703 #891 #1013 #1066 #1448]: false
-#1706 := [lemma #1704]: #1705
-#1714 := [unit-resolution #1706 #1066]: #481
-#1715 := [unit-resolution #688 #1714]: #685
-#1716 := [unit-resolution #941 #1715]: #757
-#1717 := [unit-resolution #696 #1703]: #693
-#1044 := (or #1007 #754)
-#1045 := [th-lemma arith triangle-eq]: #1044
-#1718 := [unit-resolution #1045 #1717]: #754
-#1076 := (or #838 #423 #1027)
-#1077 := [th-lemma arith assign-bounds 2 1]: #1076
-#1719 := [unit-resolution #1077 #1066 #1557]: #838
-#1720 := (or #750 #751)
-#1721 := [th-lemma arith farkas 1 1]: #1720
-#1722 := [unit-resolution #1721 #1719]: #750
-#1723 := [unit-resolution #1234 #1709]: #753
-#1726 := (or #1177 #1268 #394 #365 #1227)
-#1724 := (or #1177 #1268 #394 #365 #1227 #1240)
-#1725 := [th-lemma arith assign-bounds 1 2 2 2 2]: #1724
-#1727 := [unit-resolution #1725 #1217]: #1726
-#1728 := [unit-resolution #1727 #1723 #1722 #1122 #1175]: #365
-#1729 := [unit-resolution #720 #1728]: #717
-#1730 := [unit-resolution #1207 #1729]: #745
-#821 := (not #759)
-#1731 := (or #568 #823 #797 #1050 #794 #1049 #821 #394 #1048 #1027 #917 #1051)
-#1732 := [th-lemma arith assign-bounds 1 1 1 2 2 1 1 1 1 1 1]: #1731
-#1733 := [unit-resolution #1732 #1122 #897 #787 #791 #907 #773 #1716 #1718 #820 #1713 #1557]: #568
-#1734 := [unit-resolution #654 #1733]: #655
-#1735 := [unit-resolution #1265 #1734]: #986
-#1736 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 1 -1 1 -3 3 1 -2 2 -2 2 -1 #1735 #903 #773 #1730 #782 #882 #1718 #791 #1716 #787 #820 #907 #1557 #1713 #897 #1712]: #735
-#1707 := (>= #758 0::Int)
-#1737 := (or #804 #1707)
-#1738 := [th-lemma arith triangle-eq]: #1737
-#1739 := [unit-resolution #1738 #819]: #1707
-#1740 := [unit-resolution #878 #1715]: #812
-#1741 := [unit-resolution #1476 #1729]: #1200
-#1742 := [unit-resolution #1464 #1734]: #1430
-#1743 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 1 -1 1 -3 3 1 -2 2 -2 2 -1 #1742 #1491 #1488 #1741 #1494 #1217 #1448 #1013 #1740 #869 #1739 #836 #1175 #1566 #816 #1723]: #734
-#1744 := [unit-resolution #1515 #1743 #1736]: #64
-#1745 := [unit-resolution #1373 #1723 #1122]: #916
-#1746 := (or #888 #748)
-#1747 := [th-lemma arith farkas 1 1]: #1746
-#1748 := [unit-resolution #1747 #1745]: #888
-#1749 := [unit-resolution #1621 #1741 #1494 #1217 #1066 #1748]: #336
-#1750 := [unit-resolution #728 #1749]: #725
-#1751 := [unit-resolution #1396 #1750]: #742
-#1060 := (or #539 #795 #796 #739)
-#770 := [hypothesis]: #742
-#1025 := (or #510 #795 #796 #739 #539)
-#998 := [unit-resolution #997 #989 #816 #818 #994]: #481
-#999 := [unit-resolution #688 #998]: #685
-#1000 := [unit-resolution #878 #999]: #812
-#1005 := [unit-resolution #1004 #989 #816 #869 #818 #994 #1000]: #452
-#1006 := [unit-resolution #696 #1005]: #693
-#1010 := [unit-resolution #1009 #1006]: #988
-#1018 := [unit-resolution #1017 #989 #1013 #869 #1000 #1010]: #423
-#1019 := [unit-resolution #704 #1018]: #701
-#1020 := [unit-resolution #911 #1019]: #750
-#1024 := [th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 1 #907 #784 #782 #820 #773 #770 #769 #766 #1023 #897 #1010 #1013 #1020]: false
-#1026 := [lemma #1024]: #1025
-#987 := [unit-resolution #1026 #818 #770 #766 #784]: #510
-#1032 := [unit-resolution #680 #987]: #677
-#1033 := [unit-resolution #959 #1032]: #756
-#1034 := [unit-resolution #832 #1032]: #811
-#1037 := [unit-resolution #1036 #987 #816 #818 #1034]: #481
-#1038 := [unit-resolution #688 #1037]: #685
-#1039 := [unit-resolution #878 #1038]: #812
-#1042 := [unit-resolution #1041 #818 #869 #816 #1034 #1039]: #452
-#1043 := [unit-resolution #696 #1042]: #693
-#1046 := [unit-resolution #1045 #1043]: #754
-#1047 := [unit-resolution #941 #1038]: #757
-#1052 := (or #1027 #1048 #796 #824 #739 #794 #1049 #797 #1050 #795 #822 #821 #823 #917 #1051)
-#1053 := [th-lemma arith assign-bounds -1 -1 1 1 -2 2 -1 1 -1 1 1 -1 -1 1]: #1052
-#1054 := [unit-resolution #1053 #1047 #787 #791 #907 #782 #769 #766 #770 #784 #897 #1046 #820 #1033 #773]: #1027
-#1055 := [unit-resolution #1031 #1054]: #954
-#1056 := [unit-resolution #706 #1055]: #423
-#1057 := [unit-resolution #704 #1056]: #701
-#1058 := [unit-resolution #911 #1057]: #750
-#1059 := [th-lemma arith farkas 1/2 -1/2 1 -1 -1/2 1/2 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1 #1046 #791 #1047 #787 #1058 #907 #784 #782 #820 #773 #770 #769 #766 #1033 #897 #1056]: false
-#1061 := [lemma #1059]: #1060
-#1752 := [unit-resolution #1061 #1751 #818 #1730]: #739
-#1753 := [unit-resolution #1625 #1750]: #1571
-#1754 := (not #1707)
-#1755 := (or #738 #1504 #1627 #1500 #1501 #1539 #1178 #1177 #1001 #1002 #1014 #1015 #870 #871 #1754)
-#1756 := [th-lemma arith assign-bounds 1 1 1 -1 -1 1 -1 2 -2 1 -1 1 -1 -1]: #1755
-#1757 := [unit-resolution #1756 #1741 #869 #1013 #836 #1494 #1537 #1488 #1566 #1740 #1448 #1175 #816 #1753 #1739]: #738
-#1758 := [unit-resolution #1544 #1757 #1752]: #65
-#1759 := [unit-resolution #658 #1758 #1744]: false
-#1761 := [lemma #1759]: #1760
-#1774 := [unit-resolution #1761 #818 #1066]: #394
-#1775 := [unit-resolution #712 #1774]: #709
-#1776 := [unit-resolution #1361 #1775]: #888
-#1779 := (or #1177 #1268 #1267 #365 #395)
-#1777 := (or #1177 #1268 #1267 #1240 #365 #395)
-#1778 := [th-lemma arith assign-bounds 1 2 2 2 2]: #1777
-#1780 := [unit-resolution #1778 #1217]: #1779
-#1781 := [unit-resolution #1780 #1776 #1722 #1774 #1175]: #365
-#1782 := [unit-resolution #720 #1781]: #717
-#1783 := [unit-resolution #1476 #1782]: #1200
-#1784 := [unit-resolution #1207 #1782]: #745
-#1785 := [unit-resolution #1621 #1783 #1494 #1217 #1066 #1776]: #336
-#1786 := [unit-resolution #728 #1785]: #725
-#1787 := [unit-resolution #1396 #1786]: #742
-#1788 := [unit-resolution #1061 #1787 #818 #1784]: #739
-#1789 := [unit-resolution #1625 #1786]: #1571
-#1790 := [unit-resolution #1756 #1789 #869 #1013 #836 #1494 #1537 #1783 #1566 #1740 #1448 #1175 #816 #1488 #1739]: #738
-#1791 := [unit-resolution #1544 #1790 #1788]: #65
-#1792 := [unit-resolution #658 #1791]: #667
-#1793 := [unit-resolution #856 #1775]: #748
-#1772 := (or #735 #795 #1001 #1754 #916)
-#1284 := [hypothesis]: #812
-#1762 := [hypothesis]: #1707
-#1764 := (or #915 #1001 #1754 #735 #795 #916)
-#904 := [hypothesis]: #887
-#1763 := [th-lemma arith farkas 1 1 -1 1 -1 -1 -1 1 -1 1 1 -1 1 #1488 #1448 #1013 #1284 #869 #1762 #903 #900 #784 #782 #882 #913 #904]: false
-#1765 := [lemma #1763]: #1764
-#1766 := [unit-resolution #1765 #900 #1762 #1284 #784 #913]: #915
-#1767 := [unit-resolution #926 #1766]: #922
-#1768 := [unit-resolution #652 #1767]: #568
-#1769 := [unit-resolution #654 #1768]: #655
-#1770 := [unit-resolution #1265 #1769]: #986
-#1771 := [th-lemma arith farkas -1 1 1 -1 1 1 1 -1 1 -1 -1 -1 -2 1 #903 #900 #1488 #784 #782 #882 #1448 #1013 #1284 #869 #1762 #913 #1768 #1770]: false
-#1773 := [lemma #1771]: #1772
-#1794 := [unit-resolution #1773 #1784 #1740 #1739 #1793]: #735
-#1795 := [unit-resolution #1515 #1794 #1792]: #949
-#1796 := (or #1607 #823 #797 #1050 #794 #1049 #821 #1499 #734 #1500 #1501 #1240 #1267)
-#1797 := [th-lemma arith assign-bounds 1 1 -1 1 -1 -1 -1 1 -1 1 1 -1]: #1796
-#1798 := [unit-resolution #1797 #1795 #787 #791 #1217 #1494 #773 #1716 #1718 #820 #1776 #1783 #1491]: #1607
-#1799 := [unit-resolution #1679 #1798]: #922
-#1800 := [unit-resolution #652 #1799]: #568
-#1801 := [unit-resolution #654 #1800]: #655
-#1802 := [unit-resolution #1464 #1801]: #1430
-#1803 := [th-lemma arith farkas -1/2 -1/2 1/2 -3/2 3/2 1/2 -1 1 -1 1 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1 #1488 #1448 #1013 #1740 #869 #1739 #836 #1175 #1566 #816 #1802 #1491 #1795 #1783 #1494 #1217 #1776 #1774]: false
-#1805 := [lemma #1803]: #1804
-#1806 := [unit-resolution #1805 #1066]: #539
-#1807 := (or #741 #797 #794 #1049 #917 #1051 #540)
-#1808 := [th-lemma arith assign-bounds -1 -2 2 -2 2 -2]: #1807
-#1809 := [unit-resolution #1808 #1716 #787 #897 #1718 #1713 #1806]: #741
-#1810 := (or #394 #794 #1049 #1048 #1027 #917 #1051 #423 #540)
-#1811 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1810
-#1812 := [unit-resolution #1811 #1066 #787 #897 #907 #1806 #1716 #1713 #1557]: #394
-#1813 := [unit-resolution #712 #1812]: #709
-#1814 := [unit-resolution #1361 #1813]: #888
-#1815 := (or #1161 #1049 #453 #482 #511)
-#1816 := [th-lemma arith assign-bounds -1 1 1 1]: #1815
-#1817 := [unit-resolution #1816 #1714 #787 #1703 #1203]: #1161
-#1818 := [unit-resolution #1780 #1814 #1722 #1812 #1175]: #365
-#1819 := [unit-resolution #720 #1818]: #717
-#1820 := [unit-resolution #1476 #1819]: #1200
-#1821 := [unit-resolution #672 #1806]: #669
-#1822 := [unit-resolution #1496 #1821]: #933
-#1823 := [unit-resolution #1207 #1819]: #745
-#1826 := (or #1356 #453)
-#1824 := (or #1356 #453 #1014)
-#1825 := [th-lemma arith assign-bounds 2 -1]: #1824
-#1827 := [unit-resolution #1825 #1448]: #1826
-#1828 := [unit-resolution #1827 #1703]: #1356
-#1829 := [unit-resolution #778 #1821]: #762
-#1830 := [unit-resolution #856 #1813]: #748
-#1831 := [unit-resolution #1664 #1830 #1829 #1822 #1828 #1716 #1713 #1823]: #735
-#1832 := [unit-resolution #1651 #1820 #1829 #1809 #1823 #1722 #1814]: #739
-#1833 := [unit-resolution #1621 #1820 #1494 #1217 #1066 #1814]: #336
-#1834 := [unit-resolution #728 #1833]: #725
-#1835 := [unit-resolution #1625 #1834]: #1571
-#1836 := [unit-resolution #1629 #1835 #1013 #836 #1494 #1537 #1822 #1713 #1820 #1175 #1828 #897 #1488]: #738
-#1837 := [unit-resolution #1544 #1836 #1832]: #65
-#1838 := [unit-resolution #658 #1837]: #667
-#1839 := [unit-resolution #1515 #1838 #1831]: #949
-#1840 := [unit-resolution #1506 #1839 #869 #791 #1217 #1494 #1822 #1820 #1817 #1814 #1809 #1488 #1491]: #1498
-#1073 := (or #759 #540 #844)
-#1074 := [th-lemma arith assign-bounds 2 -1]: #1073
-#1841 := [unit-resolution #1074 #1829 #1806]: #759
-#1842 := [unit-resolution #1797 #1839 #787 #791 #1217 #1494 #773 #1716 #1718 #1841 #1814 #1820 #1491]: #1607
-#1843 := [unit-resolution #1679 #1842]: #922
-#1844 := [unit-resolution #652 #1843]: #568
-#1845 := [unit-resolution #654 #1844]: #655
-#1846 := [unit-resolution #1464 #1845 #1840]: false
-#1847 := [lemma #1846]: #423
-#1849 := [unit-resolution #704 #1847]: #701
-#1850 := [unit-resolution #1408 #1849]: #751
-#1354 := (or #539 #511 #365 #838)
-#1335 := [hypothesis]: #510
-#1336 := [unit-resolution #680 #1335]: #677
-#1337 := [unit-resolution #832 #1336]: #811
-#1338 := [unit-resolution #1036 #818 #816 #1335 #1337]: #481
-#1339 := [unit-resolution #688 #1338]: #685
-#1340 := [unit-resolution #878 #1339]: #812
-#1341 := [unit-resolution #1041 #1340 #869 #818 #1337 #816]: #452
-#1342 := [unit-resolution #696 #1341]: #693
-#1343 := [unit-resolution #1045 #1342]: #754
-#1344 := (or #983 #511 #870)
-#1345 := [th-lemma arith assign-bounds 2 -1]: #1344
-#1346 := [unit-resolution #1345 #1337 #1335]: #983
-#1347 := [unit-resolution #941 #1339]: #757
-#1289 := (or #539 #794 #1227 #995 #838 #365 #1001 #870)
-#1282 := [hypothesis]: #983
-#1283 := [hypothesis]: #753
-#890 := [hypothesis]: #811
-#1285 := [unit-resolution #1041 #818 #869 #1284 #890 #816]: #452
-#1286 := [unit-resolution #696 #1285]: #693
-#1287 := [unit-resolution #1045 #1286]: #754
-#1288 := [th-lemma arith farkas 2 2 1 1 1 1 1 1 1 1 1 1 #1287 #791 #788 #1283 #1217 #787 #816 #818 #1282 #813 #836 #1202]: false
-#1290 := [lemma #1288]: #1289
-#1348 := [unit-resolution #1290 #1347 #818 #1346 #813 #1202 #1340 #1337]: #1227
-#1349 := [unit-resolution #1234 #1348]: #1230
-#1350 := [unit-resolution #714 #1349]: #394
-#1351 := [unit-resolution #712 #1350]: #709
-#1352 := [unit-resolution #1220 #1351]: #888
-#1353 := [th-lemma arith farkas 1 -1 -1 1 -1 -1 -1 1 1 #1352 #1347 #1217 #787 #1335 #1350 #1343 #791 #1202]: false
-#1355 := [lemma #1353]: #1354
-#1851 := [unit-resolution #1355 #818 #1850 #1202]: #511
-#1852 := [unit-resolution #911 #1849]: #750
-#1199 := (+ #218 #383)
-#1201 := (>= #1199 0::Int)
-#718 := (= #218 #372)
-#721 := (or #365 #718)
-#722 := [def-axiom]: #721
-#1226 := [unit-resolution #722 #1202]: #718
-#1235 := (not #718)
-#1236 := (or #1235 #1201)
-#1237 := [th-lemma arith triangle-eq]: #1236
-#1238 := [unit-resolution #1237 #1226]: #1201
-#1223 := (not #1201)
-#1278 := (or #481 #1268 #735 #1223 #510)
-#1214 := [hypothesis]: #1201
-#1253 := [unit-resolution #1184 #1172 #869 #989 #891]: #452
-#1254 := [unit-resolution #696 #1253]: #693
-#1255 := [unit-resolution #1070 #1254]: #988
-#1256 := [unit-resolution #997 #891 #816 #989 #994]: #539
-#1257 := [unit-resolution #672 #1256]: #669
-#1258 := [unit-resolution #778 #1257]: #762
-#1259 := (or #568 #540 #844 #823 #510)
-#1260 := [th-lemma arith assign-bounds 1 1 1 1]: #1259
-#1261 := [unit-resolution #1260 #1258 #773 #989 #1256]: #568
-#1262 := [unit-resolution #654 #1261]: #655
-#1266 := [unit-resolution #1265 #1262]: #986
-#1270 := (or #1267 #1240 #1268 #1048 #844 #1049 #823 #1090 #1014 #1015 #1223 #822 #1269 #948 #735)
-#1271 := [th-lemma arith assign-bounds -1 2 -2 1 1 -1 -1 1 -1 -1 1 1 -1 1]: #1270
-#1272 := [unit-resolution #1271 #1258 #787 #1013 #907 #1217 #782 #900 #773 #1266 #1255 #1252 #1208 #903 #1214]: #1267
-#1275 := [unit-resolution #1274 #891 #907 #1013 #1255 #1252]: #394
-#1276 := [unit-resolution #712 #1275]: #709
-#1277 := [unit-resolution #1220 #1276 #1272]: false
-#1279 := [lemma #1277]: #1278
-#1853 := [unit-resolution #1279 #1851 #900 #1238 #1852]: #481
-#1854 := [unit-resolution #688 #1853]: #685
-#1855 := [unit-resolution #878 #1854]: #812
-#1311 := (or #539 #510 #395 #838 #1001)
-#1306 := [unit-resolution #1305 #994 #989]: #811
-#1307 := [unit-resolution #1041 #818 #869 #1284 #1306 #816]: #452
-#1308 := [unit-resolution #696 #1307]: #693
-#1309 := [unit-resolution #1045 #1308]: #754
-#783 := [hypothesis]: #394
-#1310 := [th-lemma arith farkas 1 1 1 1 1 1 1 1 1 #989 #783 #791 #816 #818 #994 #813 #836 #1309]: false
-#1312 := [lemma #1310]: #1311
-#1856 := [unit-resolution #1312 #1855 #1850 #818 #1851]: #395
-#1857 := [unit-resolution #941 #1854]: #757
-#1858 := [unit-resolution #682 #1851]: #678
-#1859 := [unit-resolution #993 #1858]: #983
-#1860 := [unit-resolution #1290 #1859 #1566 #1850 #818 #1202 #1855 #1857]: #1227
-#1861 := [unit-resolution #1234 #1860]: #1230
-#1862 := [unit-resolution #714 #1861 #1856]: false
-#1864 := [lemma #1862]: #1863
-#1865 := [unit-resolution #1864 #1202 #900]: #539
-#1866 := [unit-resolution #672 #1865]: #669
-#1867 := [unit-resolution #778 #1866]: #762
-#1868 := [unit-resolution #1482 #1122 #1852]: #481
-#1869 := [unit-resolution #688 #1868]: #685
-#1870 := [unit-resolution #941 #1869]: #757
-#1871 := (or #511 #797 #1050 #794 #1049 #1227 #365 #1240 #394)
-#1872 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1871
-#1873 := [unit-resolution #1872 #1122 #791 #787 #1217 #1202 #1870 #1718 #1723]: #511
-#1874 := (or #568 #540 #844 #510)
-#1875 := [unit-resolution #1260 #773]: #1874
-#1876 := [unit-resolution #1875 #1873 #1865 #1867]: #568
-#1877 := [unit-resolution #654 #1876]: #655
-#1878 := [unit-resolution #1265 #1877]: #986
-#1879 := [th-lemma arith farkas -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 #903 #900 #1867 #773 #782 #1238 #1718 #791 #1870 #787 #1723 #1217 #1878]: false
-#1881 := [lemma #1879]: #1880
-#1882 := [unit-resolution #1881 #1202 #900]: #394
-#1883 := [unit-resolution #712 #1882]: #709
-#1884 := [unit-resolution #1361 #1883]: #888
-#1885 := (or #481 #735 #844 #1267 #1268 #1223 #870)
-#1392 := (or #481 #735 #844 #1267 #1014 #1268 #1223 #870)
-#1378 := [hypothesis]: #988
-#1386 := [unit-resolution #1271 #1208 #787 #1013 #907 #1217 #782 #900 #889 #1385 #1378 #1252 #773 #903 #1214]: #1269
-#1389 := [unit-resolution #1388 #891 #816 #890 #889 #773]: #568
-#1390 := [unit-resolution #654 #1389]: #655
-#1391 := [unit-resolution #1265 #1390 #1386]: false
-#1393 := [lemma #1391]: #1392
-#1886 := [unit-resolution #1393 #1448]: #1885
-#1887 := [unit-resolution #1886 #1884 #900 #1566 #1852 #1238 #1867]: #481
-#1888 := [unit-resolution #688 #1887]: #685
-#1889 := [unit-resolution #941 #1888]: #757
-#1890 := (or #1064 #797 #1050 #838 #395 #1178 #794)
-#1891 := [th-lemma arith assign-bounds -2 2 -2 -2 2 -1]: #1890
-#1892 := [unit-resolution #1891 #1882 #836 #1889 #1718 #1850 #791]: #1064
-#1893 := (or #1267 #1268 #844 #1090 #1223 #1269 #735)
-#1894 := [unit-resolution #1271 #787 #1013 #907 #1217 #782 #1448 #773 #903]: #1893
-#1895 := [unit-resolution #1894 #1892 #900 #1238 #1867 #1852 #1884]: #1269
-#1896 := [unit-resolution #878 #1888]: #812
-#1897 := (or #1090 #1001 #823 #568 #870 #871 #844)
-#1898 := [th-lemma arith assign-bounds 1 2 2 2 2 2]: #1897
-#1899 := [unit-resolution #1898 #1892 #816 #1867 #1566 #1896 #773]: #568
-#1900 := [unit-resolution #654 #1899]: #655
-#1901 := [unit-resolution #1265 #1900 #1895]: false
-#1903 := [lemma #1901]: #1902
-#1924 := [unit-resolution #1903 #900]: #365
-#1925 := [unit-resolution #720 #1924]: #717
-#2127 := [unit-resolution #1207 #1925]: #745
-#1967 := (or #394 #481)
-#1968 := [unit-resolution #1482 #1852]: #1967
-#2032 := [unit-resolution #1968 #891]: #394
-#2033 := [unit-resolution #712 #2032]: #709
-#2034 := [unit-resolution #856 #2033]: #748
-#1998 := (or #394 #539)
-#1969 := [unit-resolution #1968 #1122]: #481
-#1970 := [unit-resolution #688 #1969]: #685
-#1971 := [unit-resolution #941 #1970]: #757
-#1225 := (or #365 #539 #1227 #794)
-#1218 := (or #539 #794 #1227 #995 #365)
-#1931 := [hypothesis]: #1001
-#1935 := (or #812 #757)
-#1936 := [th-lemma arith farkas 1 1]: #1935
-#1937 := [unit-resolution #1936 #1931]: #757
-#1932 := [hypothesis]: #685
-#1933 := [unit-resolution #878 #1932 #1931]: false
-#1934 := [lemma #1933]: #877
-#1938 := [unit-resolution #1934 #1931]: #876
-#1939 := [unit-resolution #688 #1938]: #482
-#1940 := (or #794 #481 #1179)
-#1941 := [th-lemma arith assign-bounds 2 1]: #1940
-#1942 := [unit-resolution #1941 #1939 #1937]: #1179
-#1943 := [unit-resolution #690 #1939]: #686
-#1944 := [unit-resolution #1171 #1943 #1942]: false
-#1945 := [lemma #1944]: #812
-#1221 := [unit-resolution #1290 #1566 #1850 #1945]: #1218
-#1210 := [unit-resolution #1221 #1202 #818 #1283 #788]: #995
-#1211 := (or #539 #511 #365)
-#1212 := [unit-resolution #1355 #1850]: #1211
-#1213 := [unit-resolution #1212 #1202 #818]: #511
-#1222 := [unit-resolution #682 #1213]: #678
-#1224 := [unit-resolution #993 #1222 #1210]: false
-#1946 := [lemma #1224]: #1225
-#1972 := [unit-resolution #1946 #1723 #818 #1971]: #365
-#1973 := [unit-resolution #720 #1972]: #717
-#1974 := [unit-resolution #1476 #1973]: #1200
-#1913 := (or #568 #394 #539)
-#1904 := [hypothesis]: #569
-#1905 := [unit-resolution #1732 #1904 #897 #787 #791 #907 #773 #1122 #1718 #820 #1870 #1557]: #917
-#1908 := (or #568 #821 #539 #510)
-#1906 := (or #568 #821 #539 #823 #510)
-#1907 := [th-lemma arith assign-bounds 1 1 1 1]: #1906
-#1909 := [unit-resolution #1907 #773]: #1908
-#1910 := [unit-resolution #1909 #1904 #818 #820]: #510
-#1911 := [unit-resolution #680 #1910]: #677
-#1912 := [unit-resolution #959 #1911 #1905]: false
-#1914 := [lemma #1912]: #1913
-#1915 := [unit-resolution #1914 #1122 #818]: #568
-#1916 := [unit-resolution #654 #1915]: #655
-#1975 := [unit-resolution #1464 #1916]: #1430
-#1929 := (or #394 #735 #539)
-#1917 := [unit-resolution #1265 #1916]: #986
-#934 := (or #735 #734)
-#964 := [th-lemma arith farkas 1 1]: #934
-#965 := [unit-resolution #964 #900]: #734
-#1918 := (or #336 #1269 #948 #949 #539 #823 #821 #797 #1050 #794 #1049 #424)
-#1919 := [th-lemma arith assign-bounds 1 1 1 2 1 1 1 1 1 1 1]: #1918
-#1920 := [unit-resolution #1919 #1870 #773 #787 #791 #1847 #903 #965 #818 #1718 #820 #1917]: #336
-#1921 := [unit-resolution #728 #1920]: #725
-#1922 := [unit-resolution #1625 #1921]: #1571
-#1923 := [unit-resolution #878 #1869]: #812
-#1926 := [unit-resolution #1476 #1925]: #1200
-#1428 := (or #337 #735 #739)
-#1239 := [hypothesis]: #336
-#1357 := [unit-resolution #728 #1239]: #725
-#1397 := [unit-resolution #1396 #1357]: #742
-#1150 := (or #795 #796 #739 #735)
-#980 := (or #395 #795 #796 #739 #735)
-#853 := [unit-resolution #712 #783]: #709
-#857 := [unit-resolution #856 #853]: #748
-#763 := (or #739 #738)
-#800 := [th-lemma arith farkas 1 1]: #763
-#801 := [unit-resolution #800 #766]: #738
-#962 := (or #539 #795 #949 #796 #739 #395)
-#826 := (or #510 #821 #539 #795 #395 #822 #823 #796 #824 #825)
-#827 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 1]: #826
-#935 := [unit-resolution #827 #820 #818 #783 #782 #769 #801 #770 #784 #773]: #510
-#936 := [unit-resolution #680 #935]: #677
-#937 := [unit-resolution #832 #936]: #811
-#872 := (or #481 #870 #539 #871 #821 #795 #395 #822 #823 #796 #824 #825)
-#873 := [th-lemma arith assign-bounds 1 2 1 1 1 1 1 1 1 1 1]: #872
-#938 := [unit-resolution #873 #937 #816 #818 #783 #782 #769 #801 #770 #784 #820 #773]: #481
-#939 := [unit-resolution #688 #938]: #685
-#942 := [unit-resolution #941 #939]: #757
-#931 := (or #569 #795 #395 #796 #739)
-#929 := [hypothesis]: #568
-#930 := [th-lemma arith farkas 1 1 -1 1 -1 -1 1 #784 #783 #782 #770 #769 #766 #929]: false
-#932 := [lemma #930]: #931
-#943 := [unit-resolution #932 #783 #784 #770 #766]: #569
-#944 := [unit-resolution #652 #943]: #656
-#945 := [unit-resolution #926 #944]: #887
-#946 := [hypothesis]: #734
-#950 := (or #424 #395 #916 #947 #539 #795 #822 #948 #949 #915 #796 #824 #825)
-#951 := [th-lemma arith assign-bounds 1 1 1 1 2 2 1 1 1 1 1 1]: #950
-#952 := [unit-resolution #951 #818 #903 #783 #882 #782 #769 #946 #801 #770 #784 #857 #945]: #424
-#953 := [unit-resolution #706 #952]: #702
-#957 := [unit-resolution #956 #953]: #928
-#960 := [unit-resolution #959 #936]: #756
-#961 := [th-lemma arith farkas 1 1 1 1 1 1 2 2 1 1 -1 1 -1 -1 1 1 #787 #960 #897 #957 #857 #882 #784 #782 #903 #946 #945 #770 #769 #766 #907 #942]: false
-#963 := [lemma #961]: #962
-#966 := [unit-resolution #963 #783 #965 #770 #766 #784]: #539
-#967 := [unit-resolution #672 #966]: #669
-#968 := [unit-resolution #778 #967]: #762
-#845 := (or #510 #540 #844 #795 #395 #822 #823 #796 #824 #825)
-#846 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 1]: #845
-#969 := [unit-resolution #846 #968 #966 #783 #782 #769 #801 #770 #784 #773]: #510
-#970 := [unit-resolution #680 #969]: #677
-#971 := [unit-resolution #959 #970]: #756
-#972 := [unit-resolution #832 #970]: #811
-#893 := (or #481 #395 #870 #795 #796 #825 #844)
-#817 := [hypothesis]: #738
-#892 := [th-lemma arith farkas 1 1 1 1 1 1 1 1 1 -1 1 #891 #783 #890 #784 #782 #773 #770 #769 #817 #816 #889]: false
-#894 := [lemma #892]: #893
-#973 := [unit-resolution #894 #972 #968 #784 #770 #801 #783]: #481
-#974 := [unit-resolution #688 #973]: #685
-#975 := [unit-resolution #941 #974]: #757
-#918 := (or #915 #916 #794 #795 #796 #739 #735 #917 #424)
-#792 := [hypothesis]: #423
-#908 := [unit-resolution #704 #792]: #701
-#912 := [unit-resolution #911 #908]: #750
-#914 := [th-lemma arith farkas 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1 #913 #882 #912 #907 #788 #787 #904 #784 #782 #770 #769 #766 #903 #900 #898 #897 #792]: false
-#919 := [lemma #914]: #918
-#976 := [unit-resolution #919 #975 #945 #784 #770 #766 #900 #971 #857]: #424
-#977 := [unit-resolution #706 #976]: #702
-#978 := [unit-resolution #956 #977]: #928
-#979 := [th-lemma arith farkas 1 1 2 2 1 1 1 -1 1 1 -1 -1 1 -1 1 1 #857 #882 #784 #782 #903 #965 #945 #770 #769 #766 #907 #975 #787 #971 #897 #978]: false
-#981 := [lemma #979]: #980
-#1063 := [unit-resolution #981 #784 #770 #766 #900]: #395
-#1099 := [unit-resolution #1061 #784 #770 #766]: #539
-#1135 := (or #423 #394 #739 #796 #795)
-#1101 := [unit-resolution #672 #1099]: #669
-#1102 := [unit-resolution #778 #1101]: #762
-#1118 := [unit-resolution #1074 #1102 #1099]: #759
-#1116 := (or #510 #795 #796 #739)
-#1086 := (or #423 #510 #795 #796 #825 #540)
-#774 := [hypothesis]: #539
-#775 := [unit-resolution #672 #774]: #669
-#779 := [unit-resolution #778 #775]: #762
-#1075 := [unit-resolution #1074 #779 #774]: #759
-#1078 := [unit-resolution #1077 #1066 #1072]: #838
-#1080 := (or #751 #1048 #795 #822 #821 #823 #796 #824 #825 #1079 #1051 #1014 #1015)
-#1081 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 -1 1 1 -1]: #1080
-#1082 := [unit-resolution #1081 #1078 #1013 #907 #782 #769 #817 #770 #784 #1075 #1023 #897 #773]: #1014
-#1083 := [unit-resolution #1070 #1082]: #1007
-#1084 := [unit-resolution #696 #1083]: #453
-#1085 := [th-lemma arith farkas 1 1 1 1 1 1 1 1 1 1 1 1 1 #989 #1084 #1072 #907 #1066 #773 #784 #782 #770 #769 #817 #779 #774]: false
-#1087 := [lemma #1085]: #1086
-#1100 := [unit-resolution #1087 #989 #784 #770 #801 #1099]: #423
-#1091 := (or #1090 #795 #796 #825 #844 #510 #424)
-#1088 := [hypothesis]: #1064
-#1089 := [th-lemma arith farkas 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 #1088 #907 #773 #784 #782 #770 #769 #817 #816 #994 #889 #989 #787 #912 #792]: false
-#1092 := [lemma #1089]: #1091
-#1103 := [unit-resolution #1092 #989 #770 #801 #1102 #784 #1100]: #1090
-#1104 := [unit-resolution #1098 #1103]: #1094
-#1105 := [unit-resolution #690 #1104]: #481
-#1106 := [unit-resolution #688 #1105]: #685
-#1107 := [unit-resolution #878 #1106]: #812
-#1110 := [unit-resolution #1109 #1105 #897 #869 #1099 #1107 #1023]: #452
-#1111 := [unit-resolution #696 #1110]: #693
-#1112 := [unit-resolution #1070 #1111]: #988
-#1113 := [unit-resolution #704 #1100]: #701
-#1114 := [unit-resolution #911 #1113]: #750
-#1115 := [th-lemma arith farkas -1 -1 -1 1 -1 1 1 -1 1 1 -2 1 -1 1 #907 #773 #784 #782 #770 #769 #897 #1023 #1102 #1114 #1099 #1112 #1013 #766]: false
-#1117 := [lemma #1115]: #1116
-#1119 := [unit-resolution #1117 #784 #770 #766]: #510
-#1120 := [unit-resolution #680 #1119]: #677
-#1121 := [unit-resolution #959 #1120]: #756
-#1125 := [unit-resolution #1124 #1066 #907 #1122 #1072]: #452
-#1126 := [unit-resolution #696 #1125]: #693
-#1127 := [unit-resolution #1045 #1126]: #754
-#1128 := [unit-resolution #1053 #1127 #787 #791 #907 #782 #769 #766 #770 #784 #1121 #1072 #1118 #897 #773]: #794
-#1129 := [unit-resolution #1070 #1126]: #988
-#1132 := [unit-resolution #1131 #1066 #1013 #907 #1122 #1072 #1129]: #481
-#1133 := [unit-resolution #688 #1132]: #685
-#1134 := [unit-resolution #941 #1133 #1128]: false
-#1136 := [lemma #1134]: #1135
-#1137 := [unit-resolution #1136 #1063 #766 #770 #784]: #423
-#1140 := (or #1090 #424 #795 #796 #739)
-#1138 := [unit-resolution #832 #1120]: #811
-#1139 := [th-lemma arith farkas -1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 1 -1 1 #792 #1088 #787 #907 #1119 #773 #784 #782 #770 #769 #766 #1102 #1138 #816 #912]: false
-#1141 := [lemma #1139]: #1140
-#1142 := [unit-resolution #1141 #1137 #784 #770 #766]: #1090
-#1143 := [unit-resolution #1098 #1142]: #1094
-#1144 := [unit-resolution #690 #1143]: #481
-#1145 := [unit-resolution #688 #1144]: #685
-#1146 := [unit-resolution #941 #1145]: #757
-#1147 := [unit-resolution #704 #1137]: #701
-#1148 := [unit-resolution #911 #1147]: #750
-#1149 := [th-lemma arith farkas -1 1 -1 1 1 -1 -1 -1 1 #1121 #897 #1137 #1148 #787 #907 #1146 #1099 #1063]: false
-#1151 := [lemma #1149]: #1150
-#1398 := [unit-resolution #1151 #1397 #766 #900]: #795
-#1399 := [unit-resolution #1207 #1398]: #860
-#1400 := [unit-resolution #720 #1399]: #366
-#1249 := (or #423 #365 #337)
-#1241 := (or #1227 #1240 #337 #1223 #423 #822)
-#1242 := [th-lemma arith assign-bounds -1 -1 -1 1 1]: #1241
-#1243 := [unit-resolution #1242 #1066 #782 #1239 #1217 #1238]: #1227
-#1244 := [unit-resolution #1234 #1243]: #1230
-#1245 := [unit-resolution #714 #1244]: #394
-#1246 := [unit-resolution #712 #1245]: #709
-#1247 := [unit-resolution #1220 #1246]: #888
-#1248 := [th-lemma arith farkas 1 1 1 1 1 #1202 #1247 #1217 #1066 #1245]: false
-#1250 := [lemma #1248]: #1249
-#1401 := [unit-resolution #1250 #1400 #1239]: #423
-#1402 := [unit-resolution #704 #1401]: #701
-#1403 := [unit-resolution #911 #1402]: #750
-#1404 := [unit-resolution #1377 #1400 #1403]: #452
-#1405 := [unit-resolution #696 #1404]: #693
-#1406 := [unit-resolution #1070 #1405]: #988
-#1409 := [unit-resolution #1408 #1402]: #751
-#1333 := (or #510 #796 #838 #739 #735 #1268)
-#1280 := [unit-resolution #1151 #770 #766 #900]: #795
-#1313 := [unit-resolution #1207 #1280]: #860
-#1314 := [unit-resolution #720 #1313]: #366
-#1315 := [unit-resolution #722 #1314]: #718
-#1316 := [unit-resolution #1237 #1315]: #1201
-#1317 := [unit-resolution #1279 #989 #900 #1316 #1252]: #481
-#1318 := [unit-resolution #688 #1317]: #685
-#1319 := [unit-resolution #878 #1318]: #812
-#1302 := (or #1227 #796 #995 #838 #739 #1079 #482 #365 #870)
-#1281 := [hypothesis]: #481
-#1291 := [unit-resolution #688 #1281]: #685
-#1292 := [unit-resolution #878 #1291]: #812
-#1293 := [hypothesis]: #984
-#1294 := [unit-resolution #941 #1291]: #757
-#1295 := [unit-resolution #1290 #1283 #1294 #1282 #813 #1202 #1292 #890]: #539
-#1296 := [unit-resolution #1109 #1295 #1293 #869 #1281 #1292 #897]: #452
-#1297 := [unit-resolution #696 #1296]: #693
-#1298 := [unit-resolution #1045 #1297]: #754
-#1299 := [unit-resolution #672 #1295]: #669
-#1300 := [unit-resolution #778 #1299]: #762
-#1301 := [th-lemma arith farkas -1 1 -1 1 1 -1 -2 2 -2 2 -1 1 -1 1 -3 3 1 #770 #769 #1238 #782 #1300 #773 #1294 #1283 #1217 #787 #816 #1282 #813 #836 #1298 #791 #766]: false
-#1303 := [lemma #1301]: #1302
-#1320 := [unit-resolution #1303 #994 #770 #813 #766 #1023 #1317 #1314 #1306]: #1227
-#1321 := [unit-resolution #1234 #1320]: #1230
-#1322 := [unit-resolution #714 #1321]: #394
-#1323 := [unit-resolution #1312 #989 #1322 #813 #1319]: #539
-#1324 := [unit-resolution #672 #1323]: #669
-#1325 := [unit-resolution #778 #1324]: #762
-#1326 := [unit-resolution #1109 #1323 #1023 #869 #1317 #1319 #897]: #452
-#1327 := [unit-resolution #696 #1326]: #693
-#1328 := [unit-resolution #1045 #1327]: #754
-#1329 := [unit-resolution #941 #1318]: #757
-#1330 := [unit-resolution #712 #1322]: #709
-#1331 := [unit-resolution #1220 #1330]: #888
-#1332 := [th-lemma arith farkas -1 1 -1 1 -4 2 -2 -2 2 -3 3 1 -1 -1 1 -1 1 1 #770 #769 #1316 #782 #1322 #1331 #1329 #1217 #787 #1328 #791 #1325 #773 #816 #994 #813 #836 #766]: false
-#1334 := [lemma #1332]: #1333
-#1410 := [unit-resolution #1334 #1397 #1409 #766 #900 #1403]: #510
-#1411 := [unit-resolution #1355 #1410 #1400 #1409]: #539
-#1412 := [unit-resolution #680 #1410]: #677
-#1413 := [unit-resolution #959 #1412]: #756
-#1383 := (or #394 #917 #540 #424 #1014)
-#1379 := [unit-resolution #1274 #1122 #907 #1378 #1013 #912]: #481
-#1380 := [unit-resolution #688 #1379]: #685
-#1381 := [unit-resolution #941 #1380]: #757
-#1382 := [th-lemma arith farkas -1 1 -1 1 1 -1 -1 1 1 #787 #898 #897 #774 #792 #1122 #912 #907 #1381]: false
-#1384 := [lemma #1382]: #1383
-#1414 := [unit-resolution #1384 #1413 #1411 #1401 #1406]: #394
-#1415 := [unit-resolution #712 #1414]: #709
-#1416 := [unit-resolution #1361 #1415]: #888
-#1417 := (or #794 #1049 #917 #1051 #540 #1268 #1048 #1267 #1240 #365)
-#1418 := [th-lemma arith assign-bounds -1 1 -1 1 -1 1 -1 1 -1]: #1417
-#1419 := [unit-resolution #1418 #1400 #787 #907 #1217 #897 #1411 #1413 #1403 #1416]: #794
-#1420 := [unit-resolution #832 #1412]: #811
-#1421 := [unit-resolution #722 #1400]: #718
-#1422 := [unit-resolution #1237 #1421]: #1201
-#1423 := [unit-resolution #672 #1411]: #669
-#1424 := [unit-resolution #778 #1423]: #762
-#1425 := [unit-resolution #1393 #1424 #900 #1416 #1406 #1403 #1422 #1420]: #481
-#1426 := [unit-resolution #688 #1425]: #685
-#1427 := [unit-resolution #941 #1426 #1419]: false
-#1429 := [lemma #1427]: #1428
-#1927 := [unit-resolution #1429 #1920 #900]: #739
-#1928 := [th-lemma arith farkas -1 -1 1/2 -1/2 1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 1 #1537 #1927 #1917 #903 #900 #1926 #1488 #1494 #1739 #1448 #1013 #1923 #869 #1712 #882 #1922]: false
-#1930 := [lemma #1928]: #1929
-#1976 := [unit-resolution #1930 #1122 #818]: #735
-#1965 := (or #510 #539 #899 #794 #1227 #1498)
-#1947 := [unit-resolution #1946 #1283 #818 #788]: #365
-#1948 := [unit-resolution #720 #1947]: #717
-#1949 := [unit-resolution #1476 #1948]: #1200
-#1950 := (or #336 #1240 #1500 #1501 #1227 #510 #797 #1050 #794 #1049 #995 #871 #838 #1178 #539)
-#1951 := [th-lemma arith assign-bounds 1 1 1 1 1 3 3 1 1 2 2 2 2 2]: #1950
-#1952 := [unit-resolution #1951 #989 #816 #787 #791 #836 #1217 #1494 #818 #788 #1718 #1850 #1283 #994 #1949]: #336
-#1953 := [unit-resolution #728 #1952]: #725
-#1954 := [unit-resolution #1625 #1953]: #1571
-#1955 := [hypothesis]: #735
-#1956 := [hypothesis]: #1430
-#1957 := [th-lemma arith assign-bounds 1 -1 1 -1 -1 1 1 3 -3 1 -1 -1 -2 2 2 -2 #1217 #1949 #1956 #1491 #1488 #1494 #1739 #1718 #791 #788 #787 #1283 #994 #816 #1850 #836]: #734
-#1958 := [unit-resolution #1515 #1957 #1955]: #64
-#1959 := [unit-resolution #658 #1958]: #668
-#1960 := [unit-resolution #1207 #1948]: #745
-#1961 := [unit-resolution #1396 #1953]: #742
-#1962 := [unit-resolution #1061 #1961 #818 #1960]: #739
-#1963 := [unit-resolution #1544 #1962 #1959]: #825
-#1964 := [th-lemma arith farkas -1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 #1537 #1963 #1949 #1488 #1494 #1739 #994 #816 #1718 #791 #1850 #836 #1954]: false
-#1966 := [lemma #1964]: #1965
-#1977 := [unit-resolution #1966 #1976 #818 #1971 #1723 #1975]: #510
-#1978 := (or #744 #838 #511 #797 #1050 #794 #1049)
-#1979 := [th-lemma arith assign-bounds -1 -2 -2 2 -2 2]: #1978
-#1980 := [unit-resolution #1979 #1971 #791 #787 #1718 #1850 #1977]: #744
-#1983 := (or #1177 #1500 #336 #1267)
-#1981 := (or #1177 #1268 #1500 #336 #1501 #1267 #1240)
-#1982 := [th-lemma arith assign-bounds 1 2 2 2 2 2]: #1981
-#1984 := [unit-resolution #1982 #1494 #1852 #1217]: #1983
-#1985 := [unit-resolution #1984 #1980 #1974 #1748]: #336
-#1986 := [unit-resolution #728 #1985]: #725
-#1987 := [unit-resolution #1396 #1986]: #742
-#1988 := [unit-resolution #1625 #1986]: #1571
-#1989 := (or #738 #1627 #1500 #1177 #1754)
-#1990 := [unit-resolution #1756 #869 #1013 #836 #1494 #1537 #1566 #1945 #1448 #816 #1488]: #1989
-#1991 := [unit-resolution #1990 #1988 #1739 #1980 #1974]: #738
-#1992 := [unit-resolution #1207 #1973]: #745
-#1993 := [unit-resolution #1061 #1987 #818 #1992]: #739
-#1994 := [unit-resolution #1544 #1993 #1991]: #65
-#1995 := [unit-resolution #658 #1994]: #667
-#1996 := [unit-resolution #1515 #1995 #1976]: #949
-#1997 := [th-lemma arith farkas -1 -1 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 1 #769 #1991 #1992 #773 #782 #820 #1718 #791 #1217 #1975 #1491 #1996 #1971 #787 #1723 #1987]: false
-#1999 := [lemma #1997]: #1998
-#2000 := [unit-resolution #1999 #818]: #394
-#2001 := (or #539 #510 #395)
-#2002 := [unit-resolution #1312 #1850 #1945]: #2001
-#2003 := [unit-resolution #2002 #2000 #818]: #510
-#2008 := (or #1090 #511 #539)
-#2006 := (or #1090 #1001 #870 #511 #539)
-#2004 := (or #1090 #1001 #870 #871 #511 #539)
-#2005 := [th-lemma arith assign-bounds 1 2 2 2 2]: #2004
-#2007 := [unit-resolution #2005 #816]: #2006
-#2009 := [unit-resolution #2007 #1566 #1945]: #2008
-#2010 := [unit-resolution #2009 #2003 #818]: #1090
-#2011 := (or #1064 #395 #794)
-#2012 := [unit-resolution #1891 #836 #1718 #1850 #791]: #2011
-#2013 := [unit-resolution #2012 #2010 #2000]: #794
-#2014 := (or #481 #511 #539)
-#2015 := [unit-resolution #1455 #1566]: #2014
-#2016 := [unit-resolution #2015 #2003 #818]: #481
-#2017 := [unit-resolution #688 #2016]: #685
-#2018 := [unit-resolution #941 #2017 #2013]: false
-#2019 := [lemma #2018]: #539
-#2023 := [unit-resolution #672 #2019]: #669
-#2024 := [unit-resolution #778 #2023]: #762
-#2035 := (or #568 #844 #481)
-#2036 := [unit-resolution #1460 #1566]: #2035
-#2037 := [unit-resolution #2036 #891 #2024]: #568
-#2038 := [unit-resolution #654 #2037]: #655
-#2039 := [unit-resolution #1265 #2038]: #986
-#2030 := (or #735 #1090 #1269 #916)
-#2025 := [hypothesis]: #986
-#2026 := (or #735 #1269 #1090 #795 #844 #916)
-#2027 := [unit-resolution #1512 #787 #1013 #882 #782 #903 #773 #1828]: #2026
-#2028 := [unit-resolution #2027 #900 #1088 #2025 #2024 #913]: #795
-#2029 := [unit-resolution #1207 #1925 #2028]: false
-#2031 := [lemma #2029]: #2030
-#2040 := [unit-resolution #2031 #1208 #2039 #2034]: #735
-#2041 := [unit-resolution #1464 #2038]: #1430
-#2068 := (or #510 #481)
-#2042 := [unit-resolution #1496 #2023]: #933
-#1848 := (<= #1199 0::Int)
-#2043 := (or #366 #947 #838 #1178 #916 #1179 #481 #510 #1002)
-#2044 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #2043
-#2045 := [unit-resolution #2044 #989 #869 #836 #882 #891 #1850 #2034 #1172]: #366
-#2046 := [unit-resolution #722 #2045]: #718
-#2047 := (or #1235 #1848)
-#2048 := [th-lemma arith triangle-eq]: #2047
-#2049 := [unit-resolution #2048 #2046]: #1848
-#2050 := (not #1848)
-#2051 := (or #734 #1503 #797 #1050 #947 #1498 #1499 #1504 #1501 #916 #1179 #1002 #2050 #838 #1178)
-#2052 := [th-lemma arith assign-bounds 1 1 -1 -1 1 -1 -1 1 1 -1 1 -1 2 -2]: #2051
-#2053 := [unit-resolution #2052 #2049 #869 #791 #836 #882 #1494 #1491 #1718 #1850 #2034 #2042 #1172 #2041 #1488]: #734
-#2054 := [unit-resolution #1515 #2053 #2040]: #64
-#2055 := [unit-resolution #658 #2054]: #668
-#2056 := [unit-resolution #1569 #990]: #984
-#2057 := (or #336 #797 #1050 #947 #1501 #916 #1179 #510 #1002 #2050 #838 #1178)
-#2058 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 1 2 2]: #2057
-#2059 := [unit-resolution #2058 #989 #791 #836 #882 #1494 #869 #1718 #1850 #2034 #1172 #2049]: #336
-#2060 := [unit-resolution #728 #2059]: #725
-#2061 := [unit-resolution #1625 #2060]: #1571
-#2062 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 -3 3 -1 1 -1 1 1 2 -2 2 -2 #2061 #1537 #1494 #1718 #791 #1850 #836 #2042 #1488 #2056 #897 #2049 #882 #2034 #1172 #869]: #738
-#2063 := [unit-resolution #1361 #2033]: #888
-#2064 := [unit-resolution #1237 #2046]: #1201
-#2065 := [unit-resolution #1396 #2060]: #742
-#2066 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 -3 3 -1 1 -1 1 1 2 -2 2 -2 #2065 #769 #782 #1448 #1013 #1852 #907 #2024 #773 #994 #816 #2064 #1217 #2063 #1208 #787]: #739
-#2067 := [unit-resolution #1544 #2066 #2062 #2055]: false
-#2069 := [lemma #2067]: #2068
-#2103 := [unit-resolution #2069 #891]: #510
-#2101 := (or #1235 #1090 #1267 #511 #899 #916 #1179 #1498)
-#2083 := [hypothesis]: #718
-#2084 := [unit-resolution #1237 #2083]: #1201
-#2085 := [unit-resolution #959 #1336]: #756
-#2086 := [hypothesis]: #1161
-#2087 := [unit-resolution #2048 #2083]: #1848
-#2088 := [unit-resolution #2052 #2087 #869 #791 #836 #882 #1494 #1491 #1718 #1850 #913 #2042 #2086 #1956 #1488]: #734
-#2089 := [unit-resolution #1515 #2088 #1955]: #64
-#2090 := [unit-resolution #658 #2089]: #668
-#2081 := (or #739 #1267 #1090 #1223 #511 #2050)
-#2071 := [hypothesis]: #1848
-#2073 := (or #1526 #739 #2050)
-#2070 := [hypothesis]: #1433
-#2072 := [th-lemma arith farkas -1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 1 #769 #766 #1566 #2024 #773 #816 #1850 #836 #1718 #791 #1494 #2071 #2070]: false
-#2074 := [lemma #2072]: #2073
-#2075 := [unit-resolution #2074 #766 #2071]: #1526
-#2076 := [unit-resolution #1641 #2075]: #1522
-#2077 := [unit-resolution #730 #2076]: #336
-#2078 := [unit-resolution #728 #2077]: #725
-#2079 := [unit-resolution #1396 #2078]: #742
-#2080 := [th-lemma arith farkas -1/2 1/2 1 -1/2 -1 1 -1 1/2 -3/2 3/2 1/2 -1/2 -1/2 -1/2 -1/2 1/2 1/2 1 #1448 #1013 #1217 #782 #1385 #1088 #787 #1214 #1852 #907 #2079 #769 #766 #1566 #2024 #773 #816 #1335]: false
-#2082 := [lemma #2080]: #2081
-#2091 := [unit-resolution #2082 #2084 #1088 #1385 #1335 #2087]: #739
-#2092 := [unit-resolution #1544 #2091 #2090]: #825
-#2093 := (or #1538 #1539 #738 #917 #1503 #1504 #1051 #1268 #1048 #1014 #1015 #822 #1223)
-#2094 := [th-lemma arith assign-bounds -1 -1 -1 -1 1 1 1 -1 1 -1 1 -1]: #2093
-#2095 := [unit-resolution #2094 #2092 #1013 #907 #782 #1537 #897 #2085 #1448 #1852 #2042 #2084 #1488]: #1538
-#2096 := [unit-resolution #1667 #2095]: #1522
-#2097 := [unit-resolution #730 #2096]: #336
-#2098 := [unit-resolution #728 #2097]: #725
-#2099 := [unit-resolution #1625 #2098]: #1571
-#2100 := [th-lemma arith farkas -1 -1 -2 -1 -1 1 1 1 -1 1 -1 1 -1 1 #1537 #2092 #2097 #2085 #2042 #1488 #897 #1852 #907 #1448 #1013 #782 #2084 #2099]: false
-#2102 := [lemma #2100]: #2101
-#2104 := [unit-resolution #2102 #1208 #2063 #2103 #2040 #2034 #1172 #2041]: #1235
-#2105 := [unit-resolution #722 #2104]: #365
-#2106 := (or #741 #797 #947 #916 #838 #1178 #366)
-#2107 := [th-lemma arith assign-bounds -1 2 -2 -2 2 -2]: #2106
-#2108 := [unit-resolution #2107 #2105 #882 #1718 #1850 #2034 #836]: #741
-#2109 := [unit-resolution #720 #2105]: #717
-#2110 := [unit-resolution #1476 #2109]: #1200
-#2111 := (or #734 #1498 #1179 #1500 #1502 #1503 #1267)
-#2112 := [unit-resolution #1506 #869 #791 #1217 #1494 #1488 #1491]: #2111
-#2113 := [unit-resolution #2112 #2110 #2042 #2041 #1172 #2063 #2108]: #734
-#2114 := [unit-resolution #1515 #2113 #2040]: #64
-#2115 := [unit-resolution #680 #2103]: #677
-#2116 := [unit-resolution #959 #2115]: #756
-#2117 := [unit-resolution #1207 #2109]: #745
-#2118 := (or #738 #795 #916 #917 #1503)
-#2119 := [unit-resolution #1676 #1850 #1828]: #2118
-#2120 := [unit-resolution #2119 #2117 #2042 #2116 #2034]: #738
-#2121 := (or #739 #795 #844 #1502 #1500 #1267)
-#2122 := [unit-resolution #1651 #1852]: #2121
-#2123 := [unit-resolution #2122 #2108 #2117 #2024 #2110 #2063]: #739
-#2124 := [unit-resolution #1544 #2123 #2120]: #65
-#2125 := [unit-resolution #658 #2124 #2114]: false
-#2126 := [lemma #2125]: #481
-#2149 := [unit-resolution #688 #2126]: #685
-#2020 := [hypothesis]: #794
-#2021 := [unit-resolution #941 #1932 #2020]: false
-#2022 := [lemma #2021]: #940
-#2150 := [unit-resolution #2022 #2149]: #757
-#2147 := (or #510 #735)
-#2136 := (or #916 #1001 #482 #947 #510 #1002 #838 #1178 #366)
-#2137 := [th-lemma arith assign-bounds -1 1 -1 -1 1 1 -1 1]: #2136
-#2138 := [unit-resolution #2137 #989 #869 #836 #882 #1924 #1850 #2126 #1945]: #916
-#2130 := (not #1708)
-#2139 := [unit-resolution #1875 #989 #2019 #2024]: #568
-#2140 := [unit-resolution #654 #2139]: #655
-#2141 := [unit-resolution #1265 #2140]: #986
-#2131 := (or #2130 #1079 #1269 #735)
-#2128 := [hypothesis]: #1708
-#2129 := [th-lemma arith farkas 1 -1 -1 1 -3/2 3/2 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1 #1293 #897 #1852 #907 #1448 #1013 #2128 #1945 #882 #869 #2127 #2024 #2025 #903 #900 #773 #782 #2019]: false
-#2132 := [lemma #2129]: #2131
-#2142 := [unit-resolution #2132 #2056 #2141 #900]: #2130
-#2133 := [hypothesis]: #2130
-#2134 := [unit-resolution #1711 #1229 #2133]: false
-#2135 := [lemma #2134]: #1710
-#2143 := [unit-resolution #2135 #2142]: #1230
-#2144 := [unit-resolution #714 #2143]: #394
-#2145 := [unit-resolution #712 #2144]: #709
-#2146 := [unit-resolution #856 #2145 #2138]: false
-#2148 := [lemma #2146]: #2147
-#2151 := [unit-resolution #2148 #900]: #510
-#2152 := [unit-resolution #680 #2151]: #677
-#2153 := [unit-resolution #959 #2152]: #756
-#2154 := (or #735 #844 #916 #795 #794 #917 #1503)
-#2155 := [unit-resolution #1664 #1828]: #2154
-#2156 := [unit-resolution #2155 #2153 #2042 #2024 #2150 #900 #2127]: #916
-#2159 := (or #394 #917 #540)
-#2157 := (or #394 #917 #540 #424)
-#2158 := [unit-resolution #1384 #1448]: #2157
-#2160 := [unit-resolution #2158 #1847]: #2159
-#2161 := [unit-resolution #2160 #2153 #2019]: #394
-#2162 := [unit-resolution #712 #2161]: #709
-#2163 := [unit-resolution #856 #2162 #2156]: false
-#2164 := [lemma #2163]: #735
-#2208 := (or #365 #510)
-#2187 := [unit-resolution #1464 #2140]: #1430
-#2188 := (or #1161 #482)
-#2189 := [unit-resolution #1681 #1945]: #2188
-#2190 := [unit-resolution #2189 #2126]: #1161
-#2165 := [unit-resolution #2048 #1226]: #1848
-#2185 := (or #394 #1079 #1269 #1498 #365 #995)
-#2168 := (or #336 #365 #2050 #394)
-#2166 := (or #336 #1501 #365 #2050 #394)
-#2167 := [th-lemma arith assign-bounds 1 1 1 1]: #2166
-#2169 := [unit-resolution #2167 #1494]: #2168
-#2170 := [unit-resolution #2169 #1122 #1202 #2165]: #336
-#2171 := [unit-resolution #728 #2170]: #725
-#2172 := [unit-resolution #1396 #2171]: #742
-#2173 := (or #1227 #796 #995 #739 #1079 #482 #365)
-#2174 := [unit-resolution #1303 #1566 #1850]: #2173
-#2175 := [unit-resolution #2174 #2172 #2126 #1293 #1202 #1282 #1723]: #739
-#2176 := [unit-resolution #2135 #1709]: #1708
-#2177 := (or #734 #2130 #1014 #1015 #1001 #947 #1002 #1503 #1498 #1499 #1504 #1501 #2050)
-#2178 := [th-lemma arith assign-bounds 1 -1 1 -1 -1 1 1 1 -1 -1 1 -1]: #2177
-#2179 := [unit-resolution #2178 #2176 #869 #1013 #882 #1494 #1491 #1945 #1448 #2042 #1956 #2165 #1488]: #734
-#2180 := [unit-resolution #1515 #2179 #2164]: #64
-#2181 := [unit-resolution #658 #2180]: #668
-#2182 := [unit-resolution #1544 #2181 #2175]: #825
-#2183 := [unit-resolution #1625 #2171]: #1571
-#2184 := [th-lemma arith farkas -1 1 1 -1 -2 2 -2 -1 1 -1 1 -1 1 -1 1 1 #2183 #1537 #1293 #897 #2025 #903 #2179 #1448 #1013 #1852 #907 #2024 #773 #782 #1238 #2182]: false
-#2186 := [lemma #2184]: #2185
-#2191 := [unit-resolution #2186 #1202 #2141 #2187 #2056 #994]: #394
-#2192 := [unit-resolution #712 #2191]: #709
-#2193 := [unit-resolution #856 #2192]: #748
-#2194 := [unit-resolution #2052 #2193 #869 #791 #836 #882 #1494 #1491 #1718 #1850 #2165 #2042 #2190 #2187 #1488]: #734
-#2195 := [unit-resolution #1515 #2194 #2164]: #64
-#2196 := [unit-resolution #658 #2195]: #668
-#2197 := [unit-resolution #1361 #2192]: #888
-#2198 := (or #753 #395 #1267)
-#2199 := [th-lemma arith assign-bounds 2 -1]: #2198
-#2200 := [unit-resolution #2199 #2197 #2191]: #753
-#2201 := [unit-resolution #2058 #2193 #791 #836 #882 #1494 #869 #1718 #1850 #989 #2190 #2165]: #336
-#2202 := [unit-resolution #728 #2201]: #725
-#2203 := [unit-resolution #1396 #2202]: #742
-#2204 := [unit-resolution #2174 #2203 #2126 #2056 #1202 #994 #2200]: #739
-#2205 := [unit-resolution #1544 #2204 #2196]: #825
-#2206 := [unit-resolution #1625 #2202]: #1571
-#2207 := [th-lemma arith farkas -1 1 1 -1 -2 2 -2 -1 1 -1 1 -1 1 -1 1 1 #2206 #1537 #2056 #897 #2141 #903 #2194 #1448 #1013 #1852 #907 #2024 #773 #782 #1238 #2205]: false
-#2209 := [lemma #2207]: #2208
-#2210 := [unit-resolution #2209 #989]: #365
-#2231 := [unit-resolution #2137 #2210 #869 #836 #882 #989 #1850 #2126 #1945]: #916
-#2229 := (or #2130 #510)
-#2211 := [unit-resolution #720 #2210]: #717
-#2212 := [unit-resolution #1476 #2211]: #1200
-#2213 := (or #1848 #1500 #366)
-#2214 := [th-lemma arith assign-bounds 1 -2]: #2213
-#2215 := [unit-resolution #2214 #2212 #2210]: #1848
-#2216 := [unit-resolution #2178 #2128 #869 #1013 #882 #1494 #1491 #1945 #1448 #2042 #2187 #2215 #1488]: #734
-#2217 := [unit-resolution #1515 #2216 #2164]: #64
-#2218 := [unit-resolution #658 #2217]: #668
-#2219 := [unit-resolution #1207 #2211]: #745
-#2220 := (or #336 #844 #1269 #948 #949 #823 #510)
-#2221 := [th-lemma arith assign-bounds 1 1 1 1 1 1]: #2220
-#2222 := [unit-resolution #2221 #2216 #773 #903 #989 #2024 #2141]: #336
-#2223 := [unit-resolution #728 #2222]: #725
-#2224 := [unit-resolution #1396 #2223]: #742
-#2225 := [unit-resolution #1117 #2224 #2219 #989]: #739
-#2226 := [unit-resolution #1544 #2225 #2218]: #825
-#2227 := [unit-resolution #1625 #2223]: #1571
-#2228 := [th-lemma arith farkas -2 2 -1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 1 1 #1448 #1013 #1945 #882 #869 #2141 #903 #2216 #2227 #1537 #2226 #2056 #897 #1852 #907 #2128]: false
-#2230 := [lemma #2228]: #2229
-#2232 := [unit-resolution #2230 #989]: #2130
-#2233 := [unit-resolution #2135 #2232]: #1230
-#2234 := [unit-resolution #714 #2233]: #394
-#2235 := [unit-resolution #712 #2234]: #709
-#2236 := [unit-resolution #856 #2235 #2231]: false
-#2237 := [lemma #2236]: #510
-#2238 := [unit-resolution #680 #2237]: #677
-#2239 := [unit-resolution #959 #2238]: #756
-#2240 := [unit-resolution #2160 #2239 #2019]: #394
-#2241 := [unit-resolution #1979 #2237 #791 #787 #1718 #1850 #2150]: #744
-#2242 := [unit-resolution #712 #2240]: #709
-#2243 := [unit-resolution #1361 #2242]: #888
-#2244 := (or #1177 #1267 #365 #395)
-#2245 := [unit-resolution #1780 #1852]: #2244
-#2246 := [unit-resolution #2245 #2243 #2241 #2240]: #365
-#2247 := [unit-resolution #720 #2246]: #717
-#2248 := [unit-resolution #1476 #2247]: #1200
-#2249 := (or #741 #794 #917 #540)
-#2250 := [unit-resolution #1808 #787 #897 #1718]: #2249
-#2251 := [unit-resolution #2250 #2239 #2019 #2150]: #741
-#2252 := [unit-resolution #2012 #2240 #2150]: #1064
-#2253 := (or #1090 #568 #844)
-#2254 := [unit-resolution #1898 #816 #1945 #1566 #773]: #2253
-#2255 := [unit-resolution #2254 #2252 #2024]: #568
-#2256 := [unit-resolution #654 #2255]: #655
-#2257 := [unit-resolution #1464 #2256]: #1430
-#2258 := [unit-resolution #2112 #2257 #2042 #2251 #2190 #2243 #2248]: #734
-#2259 := [unit-resolution #1515 #2258 #2164]: #64
-#2260 := [unit-resolution #1207 #2247]: #745
-#2261 := [unit-resolution #856 #2242]: #748
-#2262 := [unit-resolution #2119 #2261 #2042 #2260 #2239]: #738
-#2263 := [unit-resolution #2122 #2248 #2251 #2024 #2260 #2243]: #739
-#2264 := [unit-resolution #1544 #2263 #2262]: #65
-[unit-resolution #658 #2264 #2259]: false
-unsat
-68356683e9cf34e34d65674fa3c8a62835e193a4 341 0
-#2 := false
-#24 := 0::Int
-decl f3 :: Int
-#7 := f3
-#433 := (<= f3 0::Int)
-#443 := (>= f3 0::Int)
-#754 := (not #443)
-#410 := (not #433)
-#755 := (or #410 #754)
-#716 := (not #755)
-#10 := 2::Int
-#763 := (mod f3 2::Int)
-#111 := -1::Int
-#420 := (* -1::Int #763)
-decl f4 :: (-> S2 Int Int)
-decl f5 :: (-> S3 Int S2)
-decl f6 :: S3
-#11 := f6
-#12 := (f5 f6 f3)
-#13 := (f4 #12 2::Int)
-#550 := (+ #13 #420)
-#757 := (= #550 0::Int)
-#706 := (not #757)
-#718 := (>= #550 0::Int)
-#663 := (not #718)
-#658 := [hypothesis]: #718
-#696 := (>= #763 0::Int)
-#1 := true
-#69 := [true-axiom]: true
-#659 := (or false #696)
-#660 := [th-lemma arith]: #659
-#661 := [unit-resolution #660 #69]: #696
-#99 := (>= #13 0::Int)
-#102 := (not #99)
-#8 := 1::Int
-#14 := (* 2::Int #13)
-#15 := (+ #14 1::Int)
-#16 := (+ f3 #15)
-#9 := (+ f3 1::Int)
-#17 := (<= #9 #16)
-#18 := (not #17)
-#107 := (iff #18 #102)
-#81 := (+ f3 #14)
-#82 := (+ 1::Int #81)
-#72 := (+ 1::Int f3)
-#87 := (<= #72 #82)
-#90 := (not #87)
-#105 := (iff #90 #102)
-#97 := (>= #14 0::Int)
-#93 := (not #97)
-#103 := (iff #93 #102)
-#100 := (iff #97 #99)
-#101 := [rewrite]: #100
-#104 := [monotonicity #101]: #103
-#94 := (iff #90 #93)
-#95 := (iff #87 #97)
-#96 := [rewrite]: #95
-#98 := [monotonicity #96]: #94
-#106 := [trans #98 #104]: #105
-#91 := (iff #18 #90)
-#88 := (iff #17 #87)
-#85 := (= #16 #82)
-#75 := (+ 1::Int #14)
-#78 := (+ f3 #75)
-#83 := (= #78 #82)
-#84 := [rewrite]: #83
-#79 := (= #16 #78)
-#76 := (= #15 #75)
-#77 := [rewrite]: #76
-#80 := [monotonicity #77]: #79
-#86 := [trans #80 #84]: #85
-#73 := (= #9 #72)
-#74 := [rewrite]: #73
-#89 := [monotonicity #74 #86]: #88
-#92 := [monotonicity #89]: #91
-#108 := [trans #92 #106]: #107
-#71 := [asserted]: #18
-#109 := [mp #71 #108]: #102
-#662 := [th-lemma arith farkas -1 1 1 #109 #661 #658]: false
-#664 := [lemma #662]: #663
-#673 := (or #706 #718)
-#653 := [th-lemma arith triangle-eq]: #673
-#654 := [unit-resolution #653 #664]: #706
-#645 := (or #716 #757)
-#742 := -2::Int
-#431 := (* -1::Int f3)
-#466 := (mod #431 -2::Int)
-#362 := (+ #13 #466)
-#461 := (= #362 0::Int)
-#740 := (if #755 #757 #461)
-#442 := (= #13 0::Int)
-#441 := (= f3 0::Int)
-#451 := (if #441 #442 #740)
-#22 := (:var 0 Int)
-#20 := (:var 1 Int)
-#42 := (f5 f6 #20)
-#43 := (f4 #42 #22)
-#776 := (pattern #43)
-#115 := (* -1::Int #22)
-#112 := (* -1::Int #20)
-#170 := (mod #112 #115)
-#285 := (+ #43 #170)
-#286 := (= #285 0::Int)
-#44 := (mod #20 #22)
-#282 := (* -1::Int #44)
-#283 := (+ #43 #282)
-#284 := (= #283 0::Int)
-#137 := (<= #22 0::Int)
-#144 := (>= #20 0::Int)
-#229 := (or #144 #137)
-#230 := (not #229)
-#133 := (<= #20 0::Int)
-#227 := (or #133 #137)
-#228 := (not #227)
-#233 := (or #228 #230)
-#287 := (if #233 #284 #286)
-#281 := (= #43 0::Int)
-#25 := (= #20 0::Int)
-#288 := (if #25 #281 #287)
-#280 := (= #43 #20)
-#26 := (= #22 0::Int)
-#289 := (if #26 #280 #288)
-#777 := (forall (vars (?v0 Int) (?v1 Int)) (:pat #776) #289)
-#292 := (forall (vars (?v0 Int) (?v1 Int)) #289)
-#780 := (iff #292 #777)
-#778 := (iff #289 #289)
-#779 := [refl]: #778
-#781 := [quant-intro #779]: #780
-#176 := (* -1::Int #170)
-#249 := (if #233 #44 #176)
-#252 := (if #25 0::Int #249)
-#255 := (if #26 #20 #252)
-#258 := (= #43 #255)
-#261 := (forall (vars (?v0 Int) (?v1 Int)) #258)
-#293 := (iff #261 #292)
-#290 := (iff #258 #289)
-#291 := [rewrite]: #290
-#294 := [quant-intro #291]: #293
-#138 := (not #137)
-#145 := (not #144)
-#148 := (and #145 #138)
-#134 := (not #133)
-#141 := (and #134 #138)
-#151 := (or #141 #148)
-#196 := (if #151 #44 #176)
-#199 := (if #25 0::Int #196)
-#202 := (if #26 #20 #199)
-#205 := (= #43 #202)
-#208 := (forall (vars (?v0 Int) (?v1 Int)) #205)
-#262 := (iff #208 #261)
-#259 := (iff #205 #258)
-#256 := (= #202 #255)
-#253 := (= #199 #252)
-#250 := (= #196 #249)
-#234 := (iff #151 #233)
-#231 := (iff #148 #230)
-#232 := [rewrite]: #231
-#221 := (iff #141 #228)
-#222 := [rewrite]: #221
-#235 := [monotonicity #222 #232]: #234
-#251 := [monotonicity #235]: #250
-#254 := [monotonicity #251]: #253
-#257 := [monotonicity #254]: #256
-#260 := [monotonicity #257]: #259
-#263 := [quant-intro #260]: #262
-#219 := (~ #208 #208)
-#218 := (~ #205 #205)
-#215 := [refl]: #218
-#220 := [nnf-pos #215]: #219
-#36 := (- #22)
-#35 := (- #20)
-#45 := (mod #35 #36)
-#46 := (- #45)
-#29 := (< 0::Int #22)
-#31 := (< #20 0::Int)
-#32 := (and #31 #29)
-#28 := (< 0::Int #20)
-#30 := (and #28 #29)
-#33 := (or #30 #32)
-#47 := (if #33 #44 #46)
-#48 := (if #25 0::Int #47)
-#49 := (if #26 #20 #48)
-#50 := (= #43 #49)
-#51 := (forall (vars (?v0 Int) (?v1 Int)) #50)
-#211 := (iff #51 #208)
-#181 := (if #33 #44 #176)
-#184 := (if #25 0::Int #181)
-#187 := (if #26 #20 #184)
-#190 := (= #43 #187)
-#193 := (forall (vars (?v0 Int) (?v1 Int)) #190)
-#209 := (iff #193 #208)
-#206 := (iff #190 #205)
-#203 := (= #187 #202)
-#200 := (= #184 #199)
-#197 := (= #181 #196)
-#152 := (iff #33 #151)
-#149 := (iff #32 #148)
-#139 := (iff #29 #138)
-#140 := [rewrite]: #139
-#146 := (iff #31 #145)
-#147 := [rewrite]: #146
-#150 := [monotonicity #147 #140]: #149
-#142 := (iff #30 #141)
-#135 := (iff #28 #134)
-#136 := [rewrite]: #135
-#143 := [monotonicity #136 #140]: #142
-#153 := [monotonicity #143 #150]: #152
-#198 := [monotonicity #153]: #197
-#201 := [monotonicity #198]: #200
-#204 := [monotonicity #201]: #203
-#207 := [monotonicity #204]: #206
-#210 := [quant-intro #207]: #209
-#194 := (iff #51 #193)
-#191 := (iff #50 #190)
-#188 := (= #49 #187)
-#185 := (= #48 #184)
-#182 := (= #47 #181)
-#179 := (= #46 #176)
-#173 := (- #170)
-#177 := (= #173 #176)
-#178 := [rewrite]: #177
-#174 := (= #46 #173)
-#171 := (= #45 #170)
-#116 := (= #36 #115)
-#117 := [rewrite]: #116
-#113 := (= #35 #112)
-#114 := [rewrite]: #113
-#172 := [monotonicity #114 #117]: #171
-#175 := [monotonicity #172]: #174
-#180 := [trans #175 #178]: #179
-#183 := [monotonicity #180]: #182
-#186 := [monotonicity #183]: #185
-#189 := [monotonicity #186]: #188
-#192 := [monotonicity #189]: #191
-#195 := [quant-intro #192]: #194
-#212 := [trans #195 #210]: #211
-#169 := [asserted]: #51
-#213 := [mp #169 #212]: #208
-#216 := [mp~ #213 #220]: #208
-#264 := [mp #216 #263]: #261
-#295 := [mp #264 #294]: #292
-#782 := [mp #295 #781]: #777
-#735 := (not #777)
-#724 := (or #735 #451)
-#432 := (* -1::Int 2::Int)
-#764 := (mod #431 #432)
-#765 := (+ #13 #764)
-#766 := (= #765 0::Int)
-#444 := (<= 2::Int 0::Int)
-#447 := (or #443 #444)
-#426 := (not #447)
-#445 := (or #433 #444)
-#446 := (not #445)
-#761 := (or #446 #426)
-#767 := (if #761 #757 #766)
-#762 := (if #441 #442 #767)
-#440 := (= #13 f3)
-#356 := (= 2::Int 0::Int)
-#768 := (if #356 #440 #762)
-#725 := (or #735 #768)
-#721 := (iff #725 #724)
-#727 := (iff #724 #724)
-#728 := [rewrite]: #727
-#734 := (iff #768 #451)
-#454 := (if false #440 #451)
-#448 := (iff #454 #451)
-#730 := [rewrite]: #448
-#732 := (iff #768 #454)
-#452 := (iff #762 #451)
-#737 := (iff #767 #740)
-#462 := (iff #766 #461)
-#738 := (= #765 #362)
-#467 := (= #764 #466)
-#743 := (= #432 -2::Int)
-#465 := [rewrite]: #743
-#468 := [monotonicity #465]: #467
-#739 := [monotonicity #468]: #738
-#736 := [monotonicity #739]: #462
-#753 := (iff #761 #755)
-#394 := (iff #426 #754)
-#389 := (iff #447 #443)
-#748 := (or #443 false)
-#745 := (iff #748 #443)
-#751 := [rewrite]: #745
-#749 := (iff #447 #748)
-#423 := (iff #444 false)
-#759 := [rewrite]: #423
-#750 := [monotonicity #759]: #749
-#752 := [trans #750 #751]: #389
-#395 := [monotonicity #752]: #394
-#746 := (iff #446 #410)
-#408 := (iff #445 #433)
-#419 := (or #433 false)
-#744 := (iff #419 #433)
-#407 := [rewrite]: #744
-#760 := (iff #445 #419)
-#403 := [monotonicity #759]: #760
-#409 := [trans #403 #407]: #408
-#747 := [monotonicity #409]: #746
-#756 := [monotonicity #747 #395]: #753
-#741 := [monotonicity #756 #736]: #737
-#453 := [monotonicity #741]: #452
-#758 := (iff #356 false)
-#418 := [rewrite]: #758
-#733 := [monotonicity #418 #453]: #732
-#731 := [trans #733 #730]: #734
-#722 := [monotonicity #731]: #721
-#723 := [trans #722 #728]: #721
-#726 := [quant-inst #7 #10]: #725
-#729 := [mp #726 #723]: #724
-#656 := [unit-resolution #729 #782]: #451
-#594 := (not #441)
-#593 := (not #451)
-#665 := (or #593 #594)
-#699 := (not #442)
-#657 := (or #699 #99)
-#694 := [th-lemma arith triangle-eq]: #657
-#695 := [unit-resolution #694 #109]: #699
-#553 := (or #593 #594 #442)
-#701 := [def-axiom]: #553
-#655 := [unit-resolution #701 #695]: #665
-#666 := [unit-resolution #655 #656]: #594
-#603 := (or #593 #441 #740)
-#698 := [def-axiom]: #603
-#644 := [unit-resolution #698 #666 #656]: #740
-#720 := (not #740)
-#549 := (or #720 #716 #757)
-#551 := [def-axiom]: #549
-#647 := [unit-resolution #551 #644]: #645
-#648 := [unit-resolution #647 #654]: #716
-#571 := (or #755 #433)
-#572 := [def-axiom]: #571
-#649 := [unit-resolution #572 #648]: #433
-#714 := (or #755 #443)
-#715 := [def-axiom]: #714
-#650 := [unit-resolution #715 #648]: #443
-#651 := (or #441 #410 #754)
-#646 := [th-lemma arith triangle-eq]: #651
-#652 := [unit-resolution #646 #666]: #755
-[unit-resolution #652 #650 #649]: false
-unsat
-1432b33c6328a1ffc0a07c49f1ba0f71ab4e0de0 343 0
-#2 := false
-#23 := 0::Int
-decl f3 :: Int
-#7 := f3
-#428 := (<= f3 0::Int)
-#438 := (>= f3 0::Int)
-#749 := (not #438)
-#405 := (not #428)
-#750 := (or #405 #749)
-#712 := (not #750)
-#10 := 2::Int
-#758 := (mod f3 2::Int)
-#106 := -1::Int
-#415 := (* -1::Int #758)
-decl f4 :: (-> S2 Int Int)
-decl f5 :: (-> S3 Int S2)
-decl f6 :: S3
-#8 := f6
-#9 := (f5 f6 f3)
-#11 := (f4 #9 2::Int)
-#545 := (+ #11 #415)
-#752 := (= #545 0::Int)
-#703 := (not #752)
-#713 := (<= #545 0::Int)
-#659 := (not #713)
-#663 := (>= #758 2::Int)
-#665 := (not #663)
-#1 := true
-#68 := [true-axiom]: true
-#654 := (or false #665)
-#655 := [th-lemma arith]: #654
-#656 := [unit-resolution #655 #68]: #665
-#657 := [hypothesis]: #713
-#97 := (>= #11 2::Int)
-#14 := 3::Int
-#15 := (+ f3 3::Int)
-#12 := (+ #11 #11)
-#13 := (+ f3 #12)
-#16 := (< #13 #15)
-#17 := (not #16)
-#102 := (iff #17 #97)
-#77 := (+ 3::Int f3)
-#71 := (* 2::Int #11)
-#74 := (+ f3 #71)
-#80 := (< #74 #77)
-#83 := (not #80)
-#100 := (iff #83 #97)
-#90 := (>= #71 3::Int)
-#98 := (iff #90 #97)
-#99 := [rewrite]: #98
-#95 := (iff #83 #90)
-#88 := (not #90)
-#87 := (not #88)
-#93 := (iff #87 #90)
-#94 := [rewrite]: #93
-#91 := (iff #83 #87)
-#89 := (iff #80 #88)
-#86 := [rewrite]: #89
-#92 := [monotonicity #86]: #91
-#96 := [trans #92 #94]: #95
-#101 := [trans #96 #99]: #100
-#84 := (iff #17 #83)
-#81 := (iff #16 #80)
-#78 := (= #15 #77)
-#79 := [rewrite]: #78
-#75 := (= #13 #74)
-#72 := (= #12 #71)
-#73 := [rewrite]: #72
-#76 := [monotonicity #73]: #75
-#82 := [monotonicity #76 #79]: #81
-#85 := [monotonicity #82]: #84
-#103 := [trans #85 #101]: #102
-#70 := [asserted]: #17
-#104 := [mp #70 #103]: #97
-#658 := [th-lemma arith farkas -1 1 1 #104 #657 #656]: false
-#660 := [lemma #658]: #659
-#648 := (or #703 #713)
-#649 := [th-lemma arith triangle-eq]: #648
-#651 := [unit-resolution #649 #660]: #703
-#641 := (or #712 #752)
-#737 := -2::Int
-#426 := (* -1::Int f3)
-#461 := (mod #426 -2::Int)
-#357 := (+ #11 #461)
-#456 := (= #357 0::Int)
-#735 := (if #750 #752 #456)
-#437 := (= #11 0::Int)
-#436 := (= f3 0::Int)
-#446 := (if #436 #437 #735)
-#21 := (:var 0 Int)
-#19 := (:var 1 Int)
-#41 := (f5 f6 #19)
-#42 := (f4 #41 #21)
-#771 := (pattern #42)
-#110 := (* -1::Int #21)
-#107 := (* -1::Int #19)
-#165 := (mod #107 #110)
-#280 := (+ #42 #165)
-#281 := (= #280 0::Int)
-#43 := (mod #19 #21)
-#277 := (* -1::Int #43)
-#278 := (+ #42 #277)
-#279 := (= #278 0::Int)
-#132 := (<= #21 0::Int)
-#139 := (>= #19 0::Int)
-#224 := (or #139 #132)
-#225 := (not #224)
-#128 := (<= #19 0::Int)
-#222 := (or #128 #132)
-#223 := (not #222)
-#228 := (or #223 #225)
-#282 := (if #228 #279 #281)
-#276 := (= #42 0::Int)
-#24 := (= #19 0::Int)
-#283 := (if #24 #276 #282)
-#275 := (= #42 #19)
-#25 := (= #21 0::Int)
-#284 := (if #25 #275 #283)
-#772 := (forall (vars (?v0 Int) (?v1 Int)) (:pat #771) #284)
-#287 := (forall (vars (?v0 Int) (?v1 Int)) #284)
-#775 := (iff #287 #772)
-#773 := (iff #284 #284)
-#774 := [refl]: #773
-#776 := [quant-intro #774]: #775
-#171 := (* -1::Int #165)
-#244 := (if #228 #43 #171)
-#247 := (if #24 0::Int #244)
-#250 := (if #25 #19 #247)
-#253 := (= #42 #250)
-#256 := (forall (vars (?v0 Int) (?v1 Int)) #253)
-#288 := (iff #256 #287)
-#285 := (iff #253 #284)
-#286 := [rewrite]: #285
-#289 := [quant-intro #286]: #288
-#133 := (not #132)
-#140 := (not #139)
-#143 := (and #140 #133)
-#129 := (not #128)
-#136 := (and #129 #133)
-#146 := (or #136 #143)
-#191 := (if #146 #43 #171)
-#194 := (if #24 0::Int #191)
-#197 := (if #25 #19 #194)
-#200 := (= #42 #197)
-#203 := (forall (vars (?v0 Int) (?v1 Int)) #200)
-#257 := (iff #203 #256)
-#254 := (iff #200 #253)
-#251 := (= #197 #250)
-#248 := (= #194 #247)
-#245 := (= #191 #244)
-#229 := (iff #146 #228)
-#226 := (iff #143 #225)
-#227 := [rewrite]: #226
-#216 := (iff #136 #223)
-#217 := [rewrite]: #216
-#230 := [monotonicity #217 #227]: #229
-#246 := [monotonicity #230]: #245
-#249 := [monotonicity #246]: #248
-#252 := [monotonicity #249]: #251
-#255 := [monotonicity #252]: #254
-#258 := [quant-intro #255]: #257
-#214 := (~ #203 #203)
-#213 := (~ #200 #200)
-#210 := [refl]: #213
-#215 := [nnf-pos #210]: #214
-#35 := (- #21)
-#34 := (- #19)
-#44 := (mod #34 #35)
-#45 := (- #44)
-#28 := (< 0::Int #21)
-#30 := (< #19 0::Int)
-#31 := (and #30 #28)
-#27 := (< 0::Int #19)
-#29 := (and #27 #28)
-#32 := (or #29 #31)
-#46 := (if #32 #43 #45)
-#47 := (if #24 0::Int #46)
-#48 := (if #25 #19 #47)
-#49 := (= #42 #48)
-#50 := (forall (vars (?v0 Int) (?v1 Int)) #49)
-#206 := (iff #50 #203)
-#176 := (if #32 #43 #171)
-#179 := (if #24 0::Int #176)
-#182 := (if #25 #19 #179)
-#185 := (= #42 #182)
-#188 := (forall (vars (?v0 Int) (?v1 Int)) #185)
-#204 := (iff #188 #203)
-#201 := (iff #185 #200)
-#198 := (= #182 #197)
-#195 := (= #179 #194)
-#192 := (= #176 #191)
-#147 := (iff #32 #146)
-#144 := (iff #31 #143)
-#134 := (iff #28 #133)
-#135 := [rewrite]: #134
-#141 := (iff #30 #140)
-#142 := [rewrite]: #141
-#145 := [monotonicity #142 #135]: #144
-#137 := (iff #29 #136)
-#130 := (iff #27 #129)
-#131 := [rewrite]: #130
-#138 := [monotonicity #131 #135]: #137
-#148 := [monotonicity #138 #145]: #147
-#193 := [monotonicity #148]: #192
-#196 := [monotonicity #193]: #195
-#199 := [monotonicity #196]: #198
-#202 := [monotonicity #199]: #201
-#205 := [quant-intro #202]: #204
-#189 := (iff #50 #188)
-#186 := (iff #49 #185)
-#183 := (= #48 #182)
-#180 := (= #47 #179)
-#177 := (= #46 #176)
-#174 := (= #45 #171)
-#168 := (- #165)
-#172 := (= #168 #171)
-#173 := [rewrite]: #172
-#169 := (= #45 #168)
-#166 := (= #44 #165)
-#111 := (= #35 #110)
-#112 := [rewrite]: #111
-#108 := (= #34 #107)
-#109 := [rewrite]: #108
-#167 := [monotonicity #109 #112]: #166
-#170 := [monotonicity #167]: #169
-#175 := [trans #170 #173]: #174
-#178 := [monotonicity #175]: #177
-#181 := [monotonicity #178]: #180
-#184 := [monotonicity #181]: #183
-#187 := [monotonicity #184]: #186
-#190 := [quant-intro #187]: #189
-#207 := [trans #190 #205]: #206
-#164 := [asserted]: #50
-#208 := [mp #164 #207]: #203
-#211 := [mp~ #208 #215]: #203
-#259 := [mp #211 #258]: #256
-#290 := [mp #259 #289]: #287
-#777 := [mp #290 #776]: #772
-#730 := (not #772)
-#719 := (or #730 #446)
-#427 := (* -1::Int 2::Int)
-#759 := (mod #426 #427)
-#760 := (+ #11 #759)
-#761 := (= #760 0::Int)
-#439 := (<= 2::Int 0::Int)
-#442 := (or #438 #439)
-#421 := (not #442)
-#440 := (or #428 #439)
-#441 := (not #440)
-#756 := (or #441 #421)
-#762 := (if #756 #752 #761)
-#757 := (if #436 #437 #762)
-#435 := (= #11 f3)
-#351 := (= 2::Int 0::Int)
-#763 := (if #351 #435 #757)
-#720 := (or #730 #763)
-#716 := (iff #720 #719)
-#722 := (iff #719 #719)
-#723 := [rewrite]: #722
-#729 := (iff #763 #446)
-#449 := (if false #435 #446)
-#443 := (iff #449 #446)
-#725 := [rewrite]: #443
-#727 := (iff #763 #449)
-#447 := (iff #757 #446)
-#732 := (iff #762 #735)
-#457 := (iff #761 #456)
-#733 := (= #760 #357)
-#462 := (= #759 #461)
-#738 := (= #427 -2::Int)
-#460 := [rewrite]: #738
-#463 := [monotonicity #460]: #462
-#734 := [monotonicity #463]: #733
-#731 := [monotonicity #734]: #457
-#748 := (iff #756 #750)
-#389 := (iff #421 #749)
-#384 := (iff #442 #438)
-#743 := (or #438 false)
-#740 := (iff #743 #438)
-#746 := [rewrite]: #740
-#744 := (iff #442 #743)
-#418 := (iff #439 false)
-#754 := [rewrite]: #418
-#745 := [monotonicity #754]: #744
-#747 := [trans #745 #746]: #384
-#390 := [monotonicity #747]: #389
-#741 := (iff #441 #405)
-#403 := (iff #440 #428)
-#414 := (or #428 false)
-#739 := (iff #414 #428)
-#402 := [rewrite]: #739
-#755 := (iff #440 #414)
-#398 := [monotonicity #754]: #755
-#404 := [trans #398 #402]: #403
-#742 := [monotonicity #404]: #741
-#751 := [monotonicity #742 #390]: #748
-#736 := [monotonicity #751 #731]: #732
-#448 := [monotonicity #736]: #447
-#753 := (iff #351 false)
-#413 := [rewrite]: #753
-#728 := [monotonicity #413 #448]: #727
-#726 := [trans #728 #725]: #729
-#717 := [monotonicity #726]: #716
-#718 := [trans #717 #723]: #716
-#721 := [quant-inst #7 #10]: #720
-#724 := [mp #721 #718]: #719
-#652 := [unit-resolution #724 #777]: #446
-#548 := (not #436)
-#589 := (not #446)
-#643 := (or #589 #548)
-#697 := (not #437)
-#565 := (<= #11 0::Int)
-#653 := (not #565)
-#690 := (not #97)
-#691 := (or #653 #690)
-#650 := [th-lemma arith farkas 1 1]: #691
-#661 := [unit-resolution #650 #104]: #653
-#639 := (or #697 #565)
-#640 := [th-lemma arith triangle-eq]: #639
-#642 := [unit-resolution #640 #661]: #697
-#696 := (or #589 #548 #437)
-#598 := [def-axiom]: #696
-#644 := [unit-resolution #598 #642]: #643
-#645 := [unit-resolution #644 #652]: #548
-#693 := (or #589 #436 #735)
-#694 := [def-axiom]: #693
-#646 := [unit-resolution #694 #645 #652]: #735
-#544 := (not #735)
-#546 := (or #544 #712 #752)
-#547 := [def-axiom]: #546
-#647 := [unit-resolution #547 #646]: #641
-#633 := [unit-resolution #647 #651]: #712
-#567 := (or #750 #428)
-#709 := [def-axiom]: #567
-#629 := [unit-resolution #709 #633]: #428
-#710 := (or #750 #438)
-#711 := [def-axiom]: #710
-#630 := [unit-resolution #711 #633]: #438
-#631 := (or #436 #405 #749)
-#634 := [th-lemma arith triangle-eq]: #631
-#635 := [unit-resolution #634 #645]: #750
-[unit-resolution #635 #630 #629]: false
-unsat
-6c2df05479a46eb0dc1434ea9ed59f4fae72c26e 101 0
-#2 := false
-#8 := 0::Real
-decl f3 :: Real
-#7 := f3
-#9 := (= f3 0::Real)
-#10 := (not #9)
-#45 := [asserted]: #10
-#100 := (<= f3 0::Real)
-#20 := 2::Real
-#47 := (* 2::Real f3)
-#102 := (<= #47 0::Real)
-#95 := (= #47 0::Real)
-#19 := 4::Real
-#14 := (- f3)
-#13 := (< f3 0::Real)
-#15 := (if #13 #14 f3)
-#12 := 1::Real
-#16 := (< 1::Real #15)
-#17 := (not #16)
-#18 := (or #16 #17)
-#21 := (if #18 4::Real 2::Real)
-#22 := (* #21 f3)
-#11 := (+ f3 f3)
-#23 := (= #11 #22)
-#24 := (not #23)
-#25 := (not #24)
-#96 := (iff #25 #95)
-#77 := (* 4::Real f3)
-#80 := (= #47 #77)
-#93 := (iff #80 #95)
-#94 := [rewrite]: #93
-#91 := (iff #25 #80)
-#83 := (not #80)
-#86 := (not #83)
-#89 := (iff #86 #80)
-#90 := [rewrite]: #89
-#87 := (iff #25 #86)
-#84 := (iff #24 #83)
-#81 := (iff #23 #80)
-#78 := (= #22 #77)
-#75 := (= #21 4::Real)
-#1 := true
-#70 := (if true 4::Real 2::Real)
-#73 := (= #70 4::Real)
-#74 := [rewrite]: #73
-#71 := (= #21 #70)
-#68 := (iff #18 true)
-#50 := -1::Real
-#51 := (* -1::Real f3)
-#54 := (if #13 #51 f3)
-#57 := (< 1::Real #54)
-#60 := (not #57)
-#63 := (or #57 #60)
-#66 := (iff #63 true)
-#67 := [rewrite]: #66
-#64 := (iff #18 #63)
-#61 := (iff #17 #60)
-#58 := (iff #16 #57)
-#55 := (= #15 #54)
-#52 := (= #14 #51)
-#53 := [rewrite]: #52
-#56 := [monotonicity #53]: #55
-#59 := [monotonicity #56]: #58
-#62 := [monotonicity #59]: #61
-#65 := [monotonicity #59 #62]: #64
-#69 := [trans #65 #67]: #68
-#72 := [monotonicity #69]: #71
-#76 := [trans #72 #74]: #75
-#79 := [monotonicity #76]: #78
-#48 := (= #11 #47)
-#49 := [rewrite]: #48
-#82 := [monotonicity #49 #79]: #81
-#85 := [monotonicity #82]: #84
-#88 := [monotonicity #85]: #87
-#92 := [trans #88 #90]: #91
-#97 := [trans #92 #94]: #96
-#46 := [asserted]: #25
-#98 := [mp #46 #97]: #95
-#104 := (not #95)
-#105 := (or #104 #102)
-#106 := [th-lemma arith triangle-eq]: #105
-#107 := [unit-resolution #106 #98]: #102
-#108 := (not #102)
-#109 := (or #100 #108)
-#110 := [th-lemma arith assign-bounds 1]: #109
-#111 := [unit-resolution #110 #107]: #100
-#101 := (>= f3 0::Real)
-#103 := (>= #47 0::Real)
-#112 := (or #104 #103)
-#113 := [th-lemma arith triangle-eq]: #112
-#114 := [unit-resolution #113 #98]: #103
-#115 := (not #103)
-#116 := (or #101 #115)
-#117 := [th-lemma arith assign-bounds 1]: #116
-#118 := [unit-resolution #117 #114]: #101
-#120 := (not #101)
-#119 := (not #100)
-#121 := (or #9 #119 #120)
-#122 := [th-lemma arith triangle-eq]: #121
-[unit-resolution #122 #118 #111 #45]: false
-unsat
-0eb09039097aac0255a0090f04ca5df53ea2d10a 24 0
-#2 := false
-#7 := (exists (vars (?v0 Int)) false)
-#8 := (not #7)
-#9 := (not #8)
-#45 := (iff #9 false)
-#1 := true
-#40 := (not true)
-#43 := (iff #40 false)
-#44 := [rewrite]: #43
-#41 := (iff #9 #40)
-#38 := (iff #8 true)
-#33 := (not false)
-#36 := (iff #33 true)
-#37 := [rewrite]: #36
-#34 := (iff #8 #33)
-#31 := (iff #7 false)
-#32 := [elim-unused]: #31
-#35 := [monotonicity #32]: #34
-#39 := [trans #35 #37]: #38
-#42 := [monotonicity #39]: #41
-#46 := [trans #42 #44]: #45
-#30 := [asserted]: #9
-[mp #30 #46]: false
-unsat
-9f8072a1ad3de2c920c120b81de67bceefc50c87 916 0
-#2 := false
-#22 := 1::Int
-decl f3 :: (-> S2 Int Int)
-#12 := 2::Int
-decl f4 :: (-> S3 Int S2)
-decl f7 :: Int
-#9 := f7
-decl f5 :: S3
-#7 := f5
-#24 := (f4 f5 f7)
-#25 := (f3 #24 2::Int)
-#1265 := (<= #25 1::Int)
-#14 := 0::Int
-#551 := (mod f7 2::Int)
-#84 := -1::Int
-#521 := (* -1::Int #551)
-#522 := (+ #25 #521)
-#920 := (<= #522 0::Int)
-#523 := (= #522 0::Int)
-decl f6 :: Int
-#8 := f6
-#10 := (+ f6 f7)
-#431 := (>= #10 0::Int)
-#426 := (= #10 0::Int)
-#746 := (mod #10 2::Int)
-#748 := (* -1::Int #746)
-#11 := (f4 f5 #10)
-#13 := (f3 #11 2::Int)
-#405 := (+ #13 #748)
-#535 := (= #405 0::Int)
-#686 := (not #535)
-#691 := (<= #405 0::Int)
-#1269 := [hypothesis]: #535
-#1270 := (or #686 #691)
-#1271 := [th-lemma arith triangle-eq]: #1270
-#1272 := [unit-resolution #1271 #1269]: #691
-#693 := (>= #405 0::Int)
-#1273 := (or #686 #693)
-#1626 := [th-lemma arith triangle-eq]: #1273
-#1627 := [unit-resolution #1626 #1269]: #693
-#1371 := (not #691)
-#1437 := (not #693)
-#1647 := (or #1437 #1371)
-#1274 := (div f7 2::Int)
-#447 := -2::Int
-#1287 := (* -2::Int #1274)
-#1288 := (+ #521 #1287)
-#1289 := (+ f7 #1288)
-#1286 := (= #1289 0::Int)
-#1349 := (not #1286)
-#1474 := [hypothesis]: #1349
-#1 := true
-#78 := [true-axiom]: true
-#1346 := (or false #1286)
-#1347 := [th-lemma arith]: #1346
-#1475 := [unit-resolution #1347 #78 #1474]: false
-#1476 := [lemma #1475]: #1286
-#1472 := (or #1349 #1437 #1371)
-#1296 := (>= #551 0::Int)
-#1398 := (or false #1296)
-#1399 := [th-lemma arith]: #1398
-#1400 := [unit-resolution #1399 #78]: #1296
-#1422 := (>= #1289 0::Int)
-#1444 := [hypothesis]: #1286
-#1445 := (or #1349 #1422)
-#1446 := [th-lemma arith triangle-eq]: #1445
-#1447 := [unit-resolution #1446 #1444]: #1422
-#19 := 3::Int
-#17 := 4::Int
-#16 := (f4 f5 f6)
-#18 := (f3 #16 4::Int)
-#539 := (>= #18 3::Int)
-#20 := (= #18 3::Int)
-#81 := [asserted]: #20
-#989 := (not #20)
-#1010 := (or #989 #539)
-#1011 := [th-lemma arith triangle-eq]: #1010
-#1012 := [unit-resolution #1011 #81]: #539
-#831 := (div f6 4::Int)
-#634 := -4::Int
-#847 := (* -4::Int #831)
-#672 := (mod f6 4::Int)
-#673 := (* -1::Int #672)
-#848 := (+ #673 #847)
-#849 := (+ f6 #848)
-#855 := (>= #849 0::Int)
-#846 := (= #849 0::Int)
-#993 := (or false #846)
-#994 := [th-lemma arith]: #993
-#995 := [unit-resolution #994 #78]: #846
-#996 := (not #846)
-#1013 := (or #996 #855)
-#1014 := [th-lemma arith triangle-eq]: #1013
-#1015 := [unit-resolution #1014 #995]: #855
-#531 := (>= #13 0::Int)
-#15 := (= #13 0::Int)
-#80 := [asserted]: #15
-#593 := (not #15)
-#1428 := (or #593 #531)
-#1429 := [th-lemma arith triangle-eq]: #1428
-#1430 := [unit-resolution #1429 #80]: #531
-#777 := (div #10 2::Int)
-#794 := (* -2::Int #777)
-#795 := (+ #748 #794)
-#796 := (+ f7 #795)
-#797 := (+ f6 #796)
-#1268 := (>= #797 0::Int)
-#792 := (= #797 0::Int)
-#1355 := (or false #792)
-#1356 := [th-lemma arith]: #1355
-#1357 := [unit-resolution #1356 #78]: #792
-#1358 := (not #792)
-#1431 := (or #1358 #1268)
-#1432 := [th-lemma arith triangle-eq]: #1431
-#1433 := [unit-resolution #1432 #1357]: #1268
-#1434 := [hypothesis]: #693
-#674 := (+ #18 #673)
-#571 := (>= #674 0::Int)
-#668 := (= #674 0::Int)
-#453 := (* -1::Int f6)
-#631 := (mod #453 -4::Int)
-#619 := (+ #18 #631)
-#624 := (= #619 0::Int)
-#681 := (>= f6 0::Int)
-#640 := (not #681)
-#667 := (<= f6 0::Int)
-#641 := (not #667)
-#630 := (or #641 #640)
-#627 := (if #630 #668 #624)
-#678 := (= f6 0::Int)
-#561 := (not #678)
-#670 := (= #18 0::Int)
-#566 := (not #670)
-#389 := (= 3::Int 0::Int)
-#396 := (iff #389 false)
-#397 := [rewrite]: #396
-#407 := [hypothesis]: #670
-#409 := (= 3::Int #18)
-#410 := [symm #81]: #409
-#391 := [trans #410 #407]: #389
-#398 := [mp #391 #397]: false
-#399 := [lemma #398]: #566
-#1204 := (or #561 #670)
-#601 := (if #678 #670 #627)
-#32 := (:var 0 Int)
-#30 := (:var 1 Int)
-#51 := (f4 f5 #30)
-#52 := (f3 #51 #32)
-#761 := (pattern #52)
-#88 := (* -1::Int #32)
-#85 := (* -1::Int #30)
-#143 := (mod #85 #88)
-#272 := (+ #52 #143)
-#273 := (= #272 0::Int)
-#53 := (mod #30 #32)
-#269 := (* -1::Int #53)
-#270 := (+ #52 #269)
-#271 := (= #270 0::Int)
-#110 := (<= #32 0::Int)
-#117 := (>= #30 0::Int)
-#216 := (or #117 #110)
-#217 := (not #216)
-#106 := (<= #30 0::Int)
-#212 := (or #106 #110)
-#213 := (not #212)
-#220 := (or #213 #217)
-#274 := (if #220 #271 #273)
-#268 := (= #52 0::Int)
-#34 := (= #30 0::Int)
-#275 := (if #34 #268 #274)
-#267 := (= #52 #30)
-#35 := (= #32 0::Int)
-#276 := (if #35 #267 #275)
-#762 := (forall (vars (?v0 Int) (?v1 Int)) (:pat #761) #276)
-#279 := (forall (vars (?v0 Int) (?v1 Int)) #276)
-#765 := (iff #279 #762)
-#763 := (iff #276 #276)
-#764 := [refl]: #763
-#766 := [quant-intro #764]: #765
-#149 := (* -1::Int #143)
-#236 := (if #220 #53 #149)
-#239 := (if #34 0::Int #236)
-#242 := (if #35 #30 #239)
-#245 := (= #52 #242)
-#248 := (forall (vars (?v0 Int) (?v1 Int)) #245)
-#280 := (iff #248 #279)
-#277 := (iff #245 #276)
-#278 := [rewrite]: #277
-#281 := [quant-intro #278]: #280
-#111 := (not #110)
-#118 := (not #117)
-#121 := (and #118 #111)
-#107 := (not #106)
-#114 := (and #107 #111)
-#124 := (or #114 #121)
-#169 := (if #124 #53 #149)
-#172 := (if #34 0::Int #169)
-#175 := (if #35 #30 #172)
-#178 := (= #52 #175)
-#181 := (forall (vars (?v0 Int) (?v1 Int)) #178)
-#249 := (iff #181 #248)
-#246 := (iff #178 #245)
-#243 := (= #175 #242)
-#240 := (= #172 #239)
-#237 := (= #169 #236)
-#221 := (iff #124 #220)
-#218 := (iff #121 #217)
-#219 := [rewrite]: #218
-#214 := (iff #114 #213)
-#215 := [rewrite]: #214
-#222 := [monotonicity #215 #219]: #221
-#238 := [monotonicity #222]: #237
-#241 := [monotonicity #238]: #240
-#244 := [monotonicity #241]: #243
-#247 := [monotonicity #244]: #246
-#250 := [quant-intro #247]: #249
-#191 := (~ #181 #181)
-#193 := (~ #178 #178)
-#190 := [refl]: #193
-#194 := [nnf-pos #190]: #191
-#45 := (- #32)
-#44 := (- #30)
-#54 := (mod #44 #45)
-#55 := (- #54)
-#38 := (< 0::Int #32)
-#40 := (< #30 0::Int)
-#41 := (and #40 #38)
-#37 := (< 0::Int #30)
-#39 := (and #37 #38)
-#42 := (or #39 #41)
-#56 := (if #42 #53 #55)
-#57 := (if #34 0::Int #56)
-#58 := (if #35 #30 #57)
-#59 := (= #52 #58)
-#60 := (forall (vars (?v0 Int) (?v1 Int)) #59)
-#184 := (iff #60 #181)
-#154 := (if #42 #53 #149)
-#157 := (if #34 0::Int #154)
-#160 := (if #35 #30 #157)
-#163 := (= #52 #160)
-#166 := (forall (vars (?v0 Int) (?v1 Int)) #163)
-#182 := (iff #166 #181)
-#179 := (iff #163 #178)
-#176 := (= #160 #175)
-#173 := (= #157 #172)
-#170 := (= #154 #169)
-#125 := (iff #42 #124)
-#122 := (iff #41 #121)
-#112 := (iff #38 #111)
-#113 := [rewrite]: #112
-#119 := (iff #40 #118)
-#120 := [rewrite]: #119
-#123 := [monotonicity #120 #113]: #122
-#115 := (iff #39 #114)
-#108 := (iff #37 #107)
-#109 := [rewrite]: #108
-#116 := [monotonicity #109 #113]: #115
-#126 := [monotonicity #116 #123]: #125
-#171 := [monotonicity #126]: #170
-#174 := [monotonicity #171]: #173
-#177 := [monotonicity #174]: #176
-#180 := [monotonicity #177]: #179
-#183 := [quant-intro #180]: #182
-#167 := (iff #60 #166)
-#164 := (iff #59 #163)
-#161 := (= #58 #160)
-#158 := (= #57 #157)
-#155 := (= #56 #154)
-#152 := (= #55 #149)
-#146 := (- #143)
-#150 := (= #146 #149)
-#151 := [rewrite]: #150
-#147 := (= #55 #146)
-#144 := (= #54 #143)
-#89 := (= #45 #88)
-#90 := [rewrite]: #89
-#86 := (= #44 #85)
-#87 := [rewrite]: #86
-#145 := [monotonicity #87 #90]: #144
-#148 := [monotonicity #145]: #147
-#153 := [trans #148 #151]: #152
-#156 := [monotonicity #153]: #155
-#159 := [monotonicity #156]: #158
-#162 := [monotonicity #159]: #161
-#165 := [monotonicity #162]: #164
-#168 := [quant-intro #165]: #167
-#185 := [trans #168 #183]: #184
-#142 := [asserted]: #60
-#186 := [mp #142 #185]: #181
-#195 := [mp~ #186 #194]: #181
-#251 := [mp #195 #250]: #248
-#282 := [mp #251 #281]: #279
-#767 := [mp #282 #766]: #762
-#555 := (not #762)
-#612 := (or #555 #601)
-#675 := (* -1::Int 4::Int)
-#659 := (mod #453 #675)
-#660 := (+ #18 #659)
-#662 := (= #660 0::Int)
-#669 := (<= 4::Int 0::Int)
-#677 := (or #681 #669)
-#682 := (not #677)
-#679 := (or #667 #669)
-#680 := (not #679)
-#671 := (or #680 #682)
-#663 := (if #671 #668 #662)
-#664 := (if #678 #670 #663)
-#676 := (= #18 f6)
-#689 := (= 4::Int 0::Int)
-#665 := (if #689 #676 #664)
-#615 := (or #555 #665)
-#617 := (iff #615 #612)
-#618 := (iff #612 #612)
-#598 := [rewrite]: #618
-#610 := (iff #665 #601)
-#496 := (if false #676 #601)
-#609 := (iff #496 #601)
-#614 := [rewrite]: #609
-#607 := (iff #665 #496)
-#602 := (iff #664 #601)
-#622 := (iff #663 #627)
-#625 := (iff #662 #624)
-#620 := (= #660 #619)
-#637 := (= #659 #631)
-#635 := (= #675 -4::Int)
-#636 := [rewrite]: #635
-#623 := [monotonicity #636]: #637
-#621 := [monotonicity #623]: #620
-#626 := [monotonicity #621]: #625
-#632 := (iff #671 #630)
-#651 := (iff #682 #640)
-#649 := (iff #677 #681)
-#644 := (or #681 false)
-#647 := (iff #644 #681)
-#648 := [rewrite]: #647
-#645 := (iff #677 #644)
-#652 := (iff #669 false)
-#653 := [rewrite]: #652
-#646 := [monotonicity #653]: #645
-#650 := [trans #646 #648]: #649
-#629 := [monotonicity #650]: #651
-#642 := (iff #680 #641)
-#638 := (iff #679 #667)
-#655 := (or #667 false)
-#654 := (iff #655 #667)
-#658 := [rewrite]: #654
-#656 := (iff #679 #655)
-#657 := [monotonicity #653]: #656
-#639 := [trans #657 #658]: #638
-#643 := [monotonicity #639]: #642
-#633 := [monotonicity #643 #629]: #632
-#628 := [monotonicity #633 #626]: #622
-#603 := [monotonicity #628]: #602
-#661 := (iff #689 false)
-#666 := [rewrite]: #661
-#608 := [monotonicity #666 #603]: #607
-#611 := [trans #608 #614]: #610
-#613 := [monotonicity #611]: #617
-#544 := [trans #613 #598]: #617
-#616 := [quant-inst #8 #17]: #615
-#599 := [mp #616 #544]: #612
-#1203 := [unit-resolution #599 #767]: #601
-#560 := (not #601)
-#562 := (or #560 #561 #670)
-#563 := [def-axiom]: #562
-#1205 := [unit-resolution #563 #1203]: #1204
-#1206 := [unit-resolution #1205 #399]: #561
-#1207 := (or #678 #627)
-#564 := (or #560 #678 #627)
-#565 := [def-axiom]: #564
-#1208 := [unit-resolution #565 #1203]: #1207
-#1209 := [unit-resolution #1208 #1206]: #627
-#606 := (not #630)
-#826 := [hypothesis]: #606
-#580 := (or #630 #667)
-#604 := [def-axiom]: #580
-#827 := [unit-resolution #604 #826]: #667
-#605 := (or #630 #681)
-#600 := [def-axiom]: #605
-#828 := [unit-resolution #600 #826]: #681
-#829 := (or #678 #641 #640)
-#830 := [th-lemma arith triangle-eq]: #829
-#879 := [unit-resolution #830 #828 #827 #1206]: false
-#880 := [lemma #879]: #630
-#582 := (not #627)
-#584 := (or #582 #606 #668)
-#585 := [def-axiom]: #584
-#1353 := [unit-resolution #585 #880 #1209]: #668
-#576 := (not #668)
-#1216 := (or #576 #571)
-#1217 := [th-lemma arith triangle-eq]: #1216
-#1435 := [unit-resolution #1217 #1353]: #571
-#1330 := (* -1::Int #1274)
-#1051 := (* -2::Int #831)
-#1331 := (+ #1051 #1330)
-#940 := (* -1::Int #777)
-#1332 := (+ #940 #1331)
-#1333 := (+ #748 #1332)
-#1334 := (+ #673 #1333)
-#1335 := (+ #18 #1334)
-#1336 := (+ #13 #1335)
-#1337 := (+ f7 #1336)
-#1338 := (+ f6 #1337)
-#1339 := (>= #1338 2::Int)
-#1369 := (not #1339)
-#921 := (>= #522 0::Int)
-#1362 := [hypothesis]: #691
-#1438 := (or #523 #1437 #1371)
-#532 := (<= #18 3::Int)
-#990 := (or #989 #532)
-#991 := [th-lemma arith triangle-eq]: #990
-#992 := [unit-resolution #991 #81]: #532
-#854 := (<= #849 0::Int)
-#997 := (or #996 #854)
-#998 := [th-lemma arith triangle-eq]: #997
-#999 := [unit-resolution #998 #995]: #854
-#545 := (<= f7 0::Int)
-#542 := (= f7 0::Int)
-#1190 := (not #523)
-#1308 := [hypothesis]: #1190
-#1420 := (or #542 #523)
-#347 := (* -1::Int f7)
-#507 := (mod #347 -2::Int)
-#504 := (+ #25 #507)
-#493 := (= #504 0::Int)
-#548 := (>= f7 0::Int)
-#497 := (not #548)
-#517 := (not #545)
-#502 := (or #517 #497)
-#476 := (if #502 #523 #493)
-#1255 := (not #542)
-#1412 := [hypothesis]: #1255
-#1406 := (or #542 #476)
-#543 := (= #25 0::Int)
-#480 := (if #542 #543 #476)
-#366 := (or #555 #480)
-#416 := (* -1::Int 2::Int)
-#524 := (mod #347 #416)
-#526 := (+ #25 #524)
-#527 := (= #526 0::Int)
-#418 := (<= 2::Int 0::Int)
-#549 := (or #548 #418)
-#550 := (not #549)
-#546 := (or #545 #418)
-#547 := (not #546)
-#533 := (or #547 #550)
-#528 := (if #533 #523 #527)
-#371 := (if #542 #543 #528)
-#541 := (= #25 f7)
-#341 := (= 2::Int 0::Int)
-#529 := (if #341 #541 #371)
-#351 := (or #555 #529)
-#352 := (iff #351 #366)
-#355 := (iff #366 #366)
-#342 := [rewrite]: #355
-#488 := (iff #529 #480)
-#483 := (if false #541 #480)
-#486 := (iff #483 #480)
-#487 := [rewrite]: #486
-#484 := (iff #529 #483)
-#481 := (iff #371 #480)
-#478 := (iff #528 #476)
-#491 := (iff #527 #493)
-#490 := (= #526 #504)
-#500 := (= #524 #507)
-#721 := (= #416 -2::Int)
-#725 := [rewrite]: #721
-#503 := [monotonicity #725]: #500
-#492 := [monotonicity #503]: #490
-#494 := [monotonicity #492]: #491
-#506 := (iff #533 #502)
-#498 := (iff #550 #497)
-#505 := (iff #549 #548)
-#511 := (or #548 false)
-#510 := (iff #511 #548)
-#515 := [rewrite]: #510
-#513 := (iff #549 #511)
-#404 := (iff #418 false)
-#392 := [rewrite]: #404
-#514 := [monotonicity #392]: #513
-#495 := [trans #514 #515]: #505
-#501 := [monotonicity #495]: #498
-#520 := (iff #547 #517)
-#518 := (iff #546 #545)
-#525 := (or #545 false)
-#512 := (iff #525 #545)
-#516 := [rewrite]: #512
-#530 := (iff #546 #525)
-#509 := [monotonicity #392]: #530
-#519 := [trans #509 #516]: #518
-#508 := [monotonicity #519]: #520
-#499 := [monotonicity #508 #501]: #506
-#479 := [monotonicity #499 #494]: #478
-#482 := [monotonicity #479]: #481
-#753 := (iff #341 false)
-#743 := [rewrite]: #753
-#485 := [monotonicity #743 #482]: #484
-#477 := [trans #485 #487]: #488
-#350 := [monotonicity #477]: #352
-#344 := [trans #350 #342]: #352
-#349 := [quant-inst #9 #12]: #351
-#345 := [mp #349 #344]: #366
-#1313 := [unit-resolution #345 #767]: #480
-#1254 := (not #480)
-#1258 := (or #1254 #542 #476)
-#1259 := [def-axiom]: #1258
-#1407 := [unit-resolution #1259 #1313]: #1406
-#1413 := [unit-resolution #1407 #1412]: #476
-#1410 := (or #548 #523)
-#1309 := [hypothesis]: #497
-#881 := (or #502 #548)
-#882 := [def-axiom]: #881
-#1310 := [unit-resolution #882 #1309]: #502
-#1311 := (or #1255 #548)
-#1312 := [th-lemma arith triangle-eq]: #1311
-#1295 := [unit-resolution #1312 #1309]: #1255
-#1408 := [unit-resolution #1407 #1295]: #476
-#883 := (not #502)
-#802 := (not #476)
-#1102 := (or #802 #883 #523)
-#1103 := [def-axiom]: #1102
-#1409 := [unit-resolution #1103 #1408 #1310 #1308]: false
-#1411 := [lemma #1409]: #1410
-#1414 := [unit-resolution #1411 #1308]: #548
-#1415 := (or #542 #517 #497)
-#1416 := [th-lemma arith triangle-eq]: #1415
-#1417 := [unit-resolution #1416 #1412 #1414]: #517
-#370 := (or #502 #545)
-#372 := [def-axiom]: #370
-#1418 := [unit-resolution #372 #1417]: #502
-#1419 := [unit-resolution #1103 #1418 #1413 #1308]: false
-#1421 := [lemma #1419]: #1420
-#1424 := [unit-resolution #1421 #1308]: #542
-#1425 := (or #1255 #545)
-#1426 := [th-lemma arith triangle-eq]: #1425
-#1427 := [unit-resolution #1426 #1424]: #545
-#570 := (<= #13 0::Int)
-#1364 := (or #593 #570)
-#1365 := [th-lemma arith triangle-eq]: #1364
-#1366 := [unit-resolution #1365 #80]: #570
-#1267 := (<= #797 0::Int)
-#1359 := (or #1358 #1267)
-#1360 := [th-lemma arith triangle-eq]: #1359
-#1361 := [unit-resolution #1360 #1357]: #1267
-#540 := (<= #674 0::Int)
-#1212 := (or #576 #540)
-#1213 := [th-lemma arith triangle-eq]: #1212
-#1354 := [unit-resolution #1213 #1353]: #540
-#1436 := [th-lemma arith gcd-test -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 #1435 #1354 #1434 #1362 #1433 #1361 #1430 #1366 #1414 #1427 #1015 #999 #1012 #992]: false
-#1439 := [lemma #1436]: #1438
-#1448 := [unit-resolution #1439 #1434 #1362]: #523
-#1449 := (or #1190 #921)
-#1450 := [th-lemma arith triangle-eq]: #1449
-#1451 := [unit-resolution #1450 #1448]: #921
-#1266 := (>= #25 1::Int)
-#1344 := (not #1266)
-#1452 := (or #1190 #920)
-#1453 := [th-lemma arith triangle-eq]: #1452
-#1454 := [unit-resolution #1453 #1448]: #920
-#1302 := (>= #551 2::Int)
-#1303 := (not #1302)
-#1455 := (or false #1303)
-#1456 := [th-lemma arith]: #1455
-#1457 := [unit-resolution #1456 #78]: #1303
-#1458 := (not #920)
-#1459 := (or #1265 #1302 #1458)
-#1460 := [th-lemma arith assign-bounds 1 1]: #1459
-#1461 := [unit-resolution #1460 #1457 #1454]: #1265
-#1464 := (not #1265)
-#1467 := (or #1464 #1344)
-#26 := (= #25 1::Int)
-#189 := (not #26)
-#21 := (f3 #16 2::Int)
-#23 := (= #21 1::Int)
-#1248 := (or #606 #23)
-#884 := (div f6 2::Int)
-#1118 := (* -1::Int #884)
-#1119 := (+ #1051 #1118)
-#1120 := (+ #673 #1119)
-#448 := (mod f6 2::Int)
-#457 := (* -1::Int #448)
-#1121 := (+ #457 #1120)
-#1122 := (+ #18 #1121)
-#1123 := (+ f6 #1122)
-#1124 := (>= #1123 2::Int)
-#1134 := (not #1124)
-#1210 := [hypothesis]: #630
-#1211 := [unit-resolution #585 #1210 #1209]: #668
-#1214 := [unit-resolution #1213 #1211]: #540
-#1005 := (not #540)
-#1135 := (or #1134 #1005)
-#906 := (>= #448 0::Int)
-#1129 := (or false #906)
-#1130 := [th-lemma arith]: #1129
-#1131 := [unit-resolution #1130 #78]: #906
-#1000 := [hypothesis]: #540
-#897 := (* -2::Int #884)
-#898 := (+ #457 #897)
-#899 := (+ f6 #898)
-#904 := (<= #899 0::Int)
-#896 := (= #899 0::Int)
-#1076 := (or false #896)
-#1077 := [th-lemma arith]: #1076
-#1078 := [unit-resolution #1077 #78]: #896
-#1079 := (not #896)
-#1080 := (or #1079 #904)
-#1081 := [th-lemma arith triangle-eq]: #1080
-#1082 := [unit-resolution #1081 #1078]: #904
-#1132 := [hypothesis]: #1124
-#1133 := [th-lemma arith farkas -1 2 -1 -1 -1 1 #992 #1132 #999 #1082 #1000 #1131]: false
-#1136 := [lemma #1133]: #1135
-#1215 := [unit-resolution #1136 #1214]: #1134
-#1218 := [unit-resolution #1217 #1211]: #571
-#905 := (>= #899 0::Int)
-#1219 := (or #1079 #905)
-#1220 := [th-lemma arith triangle-eq]: #1219
-#1221 := [unit-resolution #1220 #1078]: #905
-#458 := (+ #21 #457)
-#369 := (>= #458 0::Int)
-#449 := (= #458 0::Int)
-#489 := (mod #453 -2::Int)
-#471 := (+ #21 #489)
-#474 := (= #471 0::Int)
-#455 := (if #630 #449 #474)
-#475 := (= #21 0::Int)
-#424 := (if #678 #475 #455)
-#375 := (or #555 #424)
-#459 := (mod #453 #416)
-#440 := (+ #21 #459)
-#441 := (= #440 0::Int)
-#462 := (or #681 #418)
-#464 := (not #462)
-#460 := (or #667 #418)
-#461 := (not #460)
-#463 := (or #461 #464)
-#442 := (if #463 #449 #441)
-#434 := (if #678 #475 #442)
-#467 := (= #21 f6)
-#443 := (if #341 #467 #434)
-#377 := (or #555 #443)
-#381 := (iff #377 #375)
-#382 := (iff #375 #375)
-#357 := [rewrite]: #382
-#384 := (iff #443 #424)
-#390 := (if false #467 #424)
-#385 := (iff #390 #424)
-#386 := [rewrite]: #385
-#402 := (iff #443 #390)
-#400 := (iff #434 #424)
-#456 := (iff #442 #455)
-#465 := (iff #441 #474)
-#472 := (= #440 #471)
-#469 := (= #459 #489)
-#470 := [monotonicity #725]: #469
-#473 := [monotonicity #470]: #472
-#454 := [monotonicity #473]: #465
-#466 := (iff #463 #630)
-#422 := (iff #464 #640)
-#420 := (iff #462 #681)
-#406 := (iff #462 #644)
-#419 := [monotonicity #392]: #406
-#421 := [trans #419 #648]: #420
-#423 := [monotonicity #421]: #422
-#414 := (iff #461 #641)
-#445 := (iff #460 #667)
-#444 := (iff #460 #655)
-#435 := [monotonicity #392]: #444
-#412 := [trans #435 #658]: #445
-#415 := [monotonicity #412]: #414
-#468 := [monotonicity #415 #423]: #466
-#413 := [monotonicity #468 #454]: #456
-#401 := [monotonicity #413]: #400
-#383 := [monotonicity #743 #401]: #402
-#387 := [trans #383 #386]: #384
-#376 := [monotonicity #387]: #381
-#361 := [trans #376 #357]: #381
-#378 := [quant-inst #8 #12]: #377
-#362 := [mp #378 #361]: #375
-#1222 := [unit-resolution #362 #767]: #424
-#348 := (not #424)
-#1223 := (or #348 #455)
-#353 := (or #348 #678 #455)
-#354 := [def-axiom]: #353
-#1224 := [unit-resolution #354 #1206]: #1223
-#1225 := [unit-resolution #1224 #1222]: #455
-#368 := (not #455)
-#373 := (or #368 #606 #449)
-#356 := [def-axiom]: #373
-#1226 := [unit-resolution #356 #1210 #1225]: #449
-#363 := (not #449)
-#1227 := (or #363 #369)
-#1228 := [th-lemma arith triangle-eq]: #1227
-#1229 := [unit-resolution #1228 #1226]: #369
-#346 := (>= #21 1::Int)
-#1084 := (not #346)
-#343 := (<= #21 1::Int)
-#912 := (>= #448 2::Int)
-#913 := (not #912)
-#1230 := (or false #913)
-#1231 := [th-lemma arith]: #1230
-#1232 := [unit-resolution #1231 #78]: #913
-#367 := (<= #458 0::Int)
-#1233 := (or #363 #367)
-#1234 := [th-lemma arith triangle-eq]: #1233
-#1235 := [unit-resolution #1234 #1226]: #367
-#1236 := (not #367)
-#1237 := (or #343 #912 #1236)
-#1238 := [th-lemma arith assign-bounds 1 1]: #1237
-#1239 := [unit-resolution #1238 #1235 #1232]: #343
-#1241 := (not #343)
-#1244 := (or #1241 #1084)
-#188 := (not #23)
-#1240 := [hypothesis]: #188
-#1242 := (or #23 #1241 #1084)
-#1243 := [th-lemma arith triangle-eq]: #1242
-#1245 := [unit-resolution #1243 #1240]: #1244
-#1246 := [unit-resolution #1245 #1239]: #1084
-#1247 := [th-lemma arith farkas -1/2 -1/2 1/2 -1/2 -1/2 -1/2 1 #1012 #1015 #1246 #1229 #1221 #1218 #1215]: false
-#1249 := [lemma #1247]: #1248
-#1462 := [unit-resolution #1249 #880]: #23
-#200 := (or #188 #189)
-#27 := (and #23 #26)
-#28 := (not #27)
-#209 := (iff #28 #200)
-#201 := (not #200)
-#204 := (not #201)
-#207 := (iff #204 #200)
-#208 := [rewrite]: #207
-#205 := (iff #28 #204)
-#202 := (iff #27 #201)
-#203 := [rewrite]: #202
-#206 := [monotonicity #203]: #205
-#210 := [trans #206 #208]: #209
-#82 := [asserted]: #28
-#211 := [mp #82 #210]: #200
-#1463 := [unit-resolution #211 #1462]: #189
-#1465 := (or #26 #1464 #1344)
-#1466 := [th-lemma arith triangle-eq]: #1465
-#1468 := [unit-resolution #1466 #1463]: #1467
-#1469 := [unit-resolution #1468 #1461]: #1344
-#1370 := (not #921)
-#1372 := (or #1369 #1370 #1371 #1266)
-#1345 := [hypothesis]: #1344
-#1294 := (<= #1289 0::Int)
-#1348 := [unit-resolution #1347 #78]: #1286
-#1350 := (or #1349 #1294)
-#1351 := [th-lemma arith triangle-eq]: #1350
-#1352 := [unit-resolution #1351 #1348]: #1294
-#1363 := [hypothesis]: #1339
-#1367 := [hypothesis]: #921
-#1368 := [th-lemma arith farkas -1 1 -2 1 1 1 1 1 1 1 #1367 #1366 #1363 #1362 #1361 #1354 #1352 #999 #992 #1345]: false
-#1373 := [lemma #1368]: #1372
-#1470 := [unit-resolution #1373 #1469 #1362 #1451]: #1369
-#1471 := [th-lemma arith farkas -2 1 1 1 1 1 1 1 1 #1470 #1435 #1434 #1433 #1430 #1015 #1012 #1447 #1400]: false
-#1473 := [lemma #1471]: #1472
-#1648 := [unit-resolution #1473 #1476]: #1647
-#1649 := [unit-resolution #1648 #1627 #1272]: false
-#1650 := [lemma #1649]: #686
-#1479 := (or #426 #535)
-#1423 := [hypothesis]: #686
-#723 := (+ #453 #347)
-#722 := (mod #723 -2::Int)
-#437 := (+ #13 #722)
-#717 := (= #437 0::Int)
-#741 := (not #431)
-#427 := (<= #10 0::Int)
-#735 := (not #427)
-#450 := (or #735 #741)
-#715 := (if #450 #535 #717)
-#589 := (not #426)
-#768 := [hypothesis]: #589
-#1441 := (or #426 #715)
-#720 := (if #426 #15 #715)
-#556 := (or #555 #720)
-#742 := (* -1::Int #10)
-#417 := (mod #742 #416)
-#749 := (+ #13 #417)
-#750 := (= #749 0::Int)
-#428 := (or #431 #418)
-#432 := (not #428)
-#429 := (or #427 #418)
-#430 := (not #429)
-#411 := (or #430 #432)
-#751 := (if #411 #535 #750)
-#752 := (if #426 #15 #751)
-#425 := (= #13 #10)
-#747 := (if #341 #425 #752)
-#557 := (or #555 #747)
-#700 := (iff #557 #556)
-#702 := (iff #556 #556)
-#696 := [rewrite]: #702
-#708 := (iff #747 #720)
-#745 := (* -1::Int #13)
-#388 := (+ f7 #745)
-#729 := (+ f6 #388)
-#744 := (= #729 0::Int)
-#711 := (if false #744 #720)
-#712 := (iff #711 #720)
-#713 := [rewrite]: #712
-#706 := (iff #747 #711)
-#709 := (iff #752 #720)
-#719 := (iff #751 #715)
-#718 := (iff #750 #717)
-#438 := (= #749 #437)
-#726 := (= #417 #722)
-#724 := (= #742 #723)
-#446 := [rewrite]: #724
-#436 := [monotonicity #446 #725]: #726
-#439 := [monotonicity #436]: #438
-#433 := [monotonicity #439]: #718
-#451 := (iff #411 #450)
-#727 := (iff #432 #741)
-#740 := (iff #428 #431)
-#374 := (or #431 false)
-#379 := (iff #374 #431)
-#380 := [rewrite]: #379
-#737 := (iff #428 #374)
-#739 := [monotonicity #392]: #737
-#738 := [trans #739 #380]: #740
-#728 := [monotonicity #738]: #727
-#730 := (iff #430 #735)
-#733 := (iff #429 #427)
-#393 := (or #427 false)
-#731 := (iff #393 #427)
-#732 := [rewrite]: #731
-#394 := (iff #429 #393)
-#395 := [monotonicity #392]: #394
-#734 := [trans #395 #732]: #733
-#736 := [monotonicity #734]: #730
-#452 := [monotonicity #736 #728]: #451
-#716 := [monotonicity #452 #433]: #719
-#710 := [monotonicity #716]: #709
-#408 := (iff #425 #744)
-#403 := [rewrite]: #408
-#707 := [monotonicity #743 #403 #710]: #706
-#714 := [trans #707 #713]: #708
-#701 := [monotonicity #714]: #700
-#697 := [trans #701 #696]: #700
-#699 := [quant-inst #10 #12]: #557
-#703 := [mp #699 #697]: #556
-#1440 := [unit-resolution #703 #767]: #720
-#587 := (not #720)
-#591 := (or #587 #426 #715)
-#592 := [def-axiom]: #591
-#1442 := [unit-resolution #592 #1440]: #1441
-#1443 := [unit-resolution #1442 #768]: #715
-#775 := (or #450 #426)
-#536 := (not #450)
-#769 := [hypothesis]: #536
-#704 := (or #450 #427)
-#698 := [def-axiom]: #704
-#770 := [unit-resolution #698 #769]: #427
-#705 := (or #450 #431)
-#534 := [def-axiom]: #705
-#771 := [unit-resolution #534 #769]: #431
-#772 := (or #426 #735 #741)
-#773 := [th-lemma arith triangle-eq]: #772
-#774 := [unit-resolution #773 #771 #770 #768]: false
-#776 := [lemma #774]: #775
-#1477 := [unit-resolution #776 #768]: #450
-#695 := (not #715)
-#577 := (or #695 #536 #535)
-#578 := [def-axiom]: #577
-#1478 := [unit-resolution #578 #1477 #1443 #1423]: false
-#1480 := [lemma #1478]: #1479
-#1651 := [unit-resolution #1480 #1650]: #426
-#1652 := (or #589 #431)
-#1653 := [th-lemma arith triangle-eq]: #1652
-#1654 := [unit-resolution #1653 #1651]: #431
-#1655 := (or #589 #427)
-#1656 := [th-lemma arith triangle-eq]: #1655
-#1657 := [unit-resolution #1656 #1651]: #427
-#1645 := (or #523 #741 #735)
-#1513 := [hypothesis]: #427
-#1580 := (or #497 #735 #667)
-#1022 := [hypothesis]: #641
-#1487 := [hypothesis]: #548
-#1579 := [th-lemma arith farkas -1 1 1 #1513 #1487 #1022]: false
-#1581 := [lemma #1579]: #1580
-#1641 := [unit-resolution #1581 #1414 #1513]: #667
-#1642 := [unit-resolution #830 #1206]: #630
-#1643 := [unit-resolution #1642 #1641]: #640
-#1573 := [hypothesis]: #431
-#1644 := [th-lemma arith farkas -1 1 1 #1573 #1643 #1427]: false
-#1646 := [lemma #1644]: #1645
-#1658 := [unit-resolution #1646 #1657 #1654]: #523
-#1659 := [unit-resolution #1453 #1658]: #920
-#1660 := (or #1265 #1458)
-#1623 := [hypothesis]: #1302
-#1624 := [unit-resolution #1456 #78 #1623]: false
-#1625 := [lemma #1624]: #1303
-#1661 := [unit-resolution #1460 #1625]: #1660
-#1662 := [unit-resolution #1661 #1659]: #1265
-#1503 := (+ #673 #1331)
-#1609 := (+ #521 #1503)
-#1610 := (+ #18 #1609)
-#1611 := (+ f7 #1610)
-#1612 := (+ f6 #1611)
-#1613 := (>= #1612 2::Int)
-#1620 := (not #1613)
-#1621 := (or #1620 #735)
-#1512 := [unit-resolution #1351 #1476]: #1294
-#1618 := [hypothesis]: #1613
-#1619 := [th-lemma arith farkas 2 -1 -1 -1 -1 -1 1 #1618 #1513 #1354 #999 #992 #1512 #1400]: false
-#1622 := [lemma #1619]: #1621
-#1663 := [unit-resolution #1622 #1657]: #1620
-#1664 := [unit-resolution #1450 #1658]: #921
-#1639 := (or #1370 #1613 #741 #1266)
-#1597 := [unit-resolution #1446 #1476]: #1422
-#1637 := [th-lemma arith #1573 #1345 #1367 #1435 #1015 #1012 #1597]: #1613
-#1636 := [hypothesis]: #1620
-#1638 := [unit-resolution #1636 #1637]: false
-#1640 := [lemma #1638]: #1639
-#1665 := [unit-resolution #1640 #1664 #1654 #1663]: #1266
-[unit-resolution #1468 #1665 #1662]: false
-unsat
-f966ee970dc5619d71e606afb53aade7fa8a1452 24 0
-#2 := false
-#7 := (exists (vars (?v0 Real)) false)
-#8 := (not #7)
-#9 := (not #8)
-#45 := (iff #9 false)
-#1 := true
-#40 := (not true)
-#43 := (iff #40 false)
-#44 := [rewrite]: #43
-#41 := (iff #9 #40)
-#38 := (iff #8 true)
-#33 := (not false)
-#36 := (iff #33 true)
-#37 := [rewrite]: #36
-#34 := (iff #8 #33)
-#31 := (iff #7 false)
-#32 := [elim-unused]: #31
-#35 := [monotonicity #32]: #34
-#39 := [trans #35 #37]: #38
-#42 := [monotonicity #39]: #41
-#46 := [trans #42 #44]: #45
-#30 := [asserted]: #9
-[mp #30 #46]: false
-unsat
-c4f4c8220660d1979009b33a643f0927bee816b1 1 0
-unsat
-e7ef76d73ccb9bc09d2b5368495a7a59d1bae3dc 1 0
-unsat
-db6426d59fdd57da8ca5d11de399761d1f1443de 1 0
-unsat
-a2da5fa16f268876e3dcbc1874e34212d0a36218 54 0
-#2 := false
-#11 := 1::Int
-#8 := 0::Int
-#135 := (= 0::Int 1::Int)
-#137 := (iff #135 false)
-#138 := [rewrite]: #137
-decl ?v1!0 :: Int
-#55 := ?v1!0
-#58 := (= ?v1!0 1::Int)
-decl ?v0!1 :: Int
-#56 := ?v0!1
-#57 := (= ?v0!1 0::Int)
-#50 := (and #57 #58)
-#59 := (= ?v0!1 ?v1!0)
-#60 := (not #59)
-#52 := (not #50)
-#61 := (or #52 #60)
-#62 := (not #61)
-#10 := (:var 0 Int)
-#7 := (:var 1 Int)
-#14 := (= #7 #10)
-#15 := (not #14)
-#12 := (= #10 1::Int)
-#9 := (= #7 0::Int)
-#13 := (and #9 #12)
-#39 := (not #13)
-#40 := (or #39 #15)
-#43 := (forall (vars (?v0 Int) (?v1 Int)) #40)
-#46 := (not #43)
-#63 := (~ #46 #62)
-#64 := [sk]: #63
-#16 := (implies #13 #15)
-#17 := (forall (vars (?v0 Int) (?v1 Int)) #16)
-#18 := (not #17)
-#47 := (iff #18 #46)
-#44 := (iff #17 #43)
-#41 := (iff #16 #40)
-#42 := [rewrite]: #41
-#45 := [quant-intro #42]: #44
-#48 := [monotonicity #45]: #47
-#38 := [asserted]: #18
-#51 := [mp #38 #48]: #46
-#67 := [mp~ #51 #64]: #62
-#70 := [not-or-elim #67]: #50
-#72 := [and-elim #70]: #58
-#133 := (= 0::Int ?v1!0)
-#73 := [not-or-elim #67]: #59
-#131 := (= 0::Int ?v0!1)
-#71 := [and-elim #70]: #57
-#132 := [symm #71]: #131
-#134 := [trans #132 #73]: #133
-#136 := [trans #134 #72]: #135
-[mp #136 #138]: false
-unsat
-46597b09986e0d4d045609318eeba242d6132e5c 82 0
-#2 := false
-#8 := (:var 0 Int)
-#10 := 0::Int
-#12 := (<= 0::Int #8)
-#11 := (< #8 0::Int)
-#13 := (or #11 #12)
-#7 := (:var 1 Int)
-#9 := (< #7 #8)
-#14 := (implies #9 #13)
-#15 := (forall (vars (?v1 Int)) #14)
-#16 := (exists (vars (?v0 Int)) #15)
-#17 := (not #16)
-#102 := (iff #17 false)
-#38 := (not #9)
-#39 := (or #38 #13)
-#42 := (forall (vars (?v1 Int)) #39)
-#45 := (exists (vars (?v0 Int)) #42)
-#48 := (not #45)
-#100 := (iff #48 false)
-#1 := true
-#95 := (not true)
-#98 := (iff #95 false)
-#99 := [rewrite]: #98
-#96 := (iff #48 #95)
-#93 := (iff #45 true)
-#88 := (exists (vars (?v0 Int)) true)
-#91 := (iff #88 true)
-#92 := [elim-unused]: #91
-#89 := (iff #45 #88)
-#86 := (iff #42 true)
-#81 := (forall (vars (?v1 Int)) true)
-#84 := (iff #81 true)
-#85 := [elim-unused]: #84
-#82 := (iff #42 #81)
-#79 := (iff #39 true)
-#53 := (>= #8 0::Int)
-#51 := (not #53)
-#71 := (or #51 #53)
-#57 := -1::Int
-#60 := (* -1::Int #8)
-#61 := (+ #7 #60)
-#59 := (>= #61 0::Int)
-#74 := (or #59 #71)
-#77 := (iff #74 true)
-#78 := [rewrite]: #77
-#75 := (iff #39 #74)
-#72 := (iff #13 #71)
-#55 := (iff #12 #53)
-#56 := [rewrite]: #55
-#52 := (iff #11 #51)
-#54 := [rewrite]: #52
-#73 := [monotonicity #54 #56]: #72
-#69 := (iff #38 #59)
-#58 := (not #59)
-#64 := (not #58)
-#67 := (iff #64 #59)
-#68 := [rewrite]: #67
-#65 := (iff #38 #64)
-#62 := (iff #9 #58)
-#63 := [rewrite]: #62
-#66 := [monotonicity #63]: #65
-#70 := [trans #66 #68]: #69
-#76 := [monotonicity #70 #73]: #75
-#80 := [trans #76 #78]: #79
-#83 := [quant-intro #80]: #82
-#87 := [trans #83 #85]: #86
-#90 := [quant-intro #87]: #89
-#94 := [trans #90 #92]: #93
-#97 := [monotonicity #94]: #96
-#101 := [trans #97 #99]: #100
-#49 := (iff #17 #48)
-#46 := (iff #16 #45)
-#43 := (iff #15 #42)
-#40 := (iff #14 #39)
-#41 := [rewrite]: #40
-#44 := [quant-intro #41]: #43
-#47 := [quant-intro #44]: #46
-#50 := [monotonicity #47]: #49
-#103 := [trans #50 #101]: #102
-#37 := [asserted]: #17
-[mp #37 #103]: false
-unsat
-aea13e787f95ed97feac7bd1dfc69160a5b8be70 78 0
-#2 := false
-#8 := (:var 0 Int)
-#10 := 2::Int
-#14 := (* 2::Int #8)
-#12 := 1::Int
-#7 := (:var 1 Int)
-#11 := (* 2::Int #7)
-#13 := (+ #11 1::Int)
-#15 := (< #13 #14)
-#9 := (< #7 #8)
-#16 := (implies #9 #15)
-#17 := (forall (vars (?v0 Int) (?v1 Int)) #16)
-#18 := (not #17)
-#98 := (iff #18 false)
-#40 := (+ 1::Int #11)
-#43 := (< #40 #14)
-#49 := (not #9)
-#50 := (or #49 #43)
-#55 := (forall (vars (?v0 Int) (?v1 Int)) #50)
-#58 := (not #55)
-#96 := (iff #58 false)
-#1 := true
-#91 := (not true)
-#94 := (iff #91 false)
-#95 := [rewrite]: #94
-#92 := (iff #58 #91)
-#89 := (iff #55 true)
-#84 := (forall (vars (?v0 Int) (?v1 Int)) true)
-#87 := (iff #84 true)
-#88 := [elim-unused]: #87
-#85 := (iff #55 #84)
-#82 := (iff #50 true)
-#20 := 0::Int
-#61 := -1::Int
-#64 := (* -1::Int #8)
-#65 := (+ #7 #64)
-#63 := (>= #65 0::Int)
-#62 := (not #63)
-#76 := (or #63 #62)
-#80 := (iff #76 true)
-#81 := [rewrite]: #80
-#78 := (iff #50 #76)
-#77 := (iff #43 #62)
-#75 := [rewrite]: #77
-#73 := (iff #49 #63)
-#68 := (not #62)
-#71 := (iff #68 #63)
-#72 := [rewrite]: #71
-#69 := (iff #49 #68)
-#66 := (iff #9 #62)
-#67 := [rewrite]: #66
-#70 := [monotonicity #67]: #69
-#74 := [trans #70 #72]: #73
-#79 := [monotonicity #74 #75]: #78
-#83 := [trans #79 #81]: #82
-#86 := [quant-intro #83]: #85
-#90 := [trans #86 #88]: #89
-#93 := [monotonicity #90]: #92
-#97 := [trans #93 #95]: #96
-#59 := (iff #18 #58)
-#56 := (iff #17 #55)
-#53 := (iff #16 #50)
-#46 := (implies #9 #43)
-#51 := (iff #46 #50)
-#52 := [rewrite]: #51
-#47 := (iff #16 #46)
-#44 := (iff #15 #43)
-#41 := (= #13 #40)
-#42 := [rewrite]: #41
-#45 := [monotonicity #42]: #44
-#48 := [monotonicity #45]: #47
-#54 := [trans #48 #52]: #53
-#57 := [quant-intro #54]: #56
-#60 := [monotonicity #57]: #59
-#99 := [trans #60 #97]: #98
-#39 := [asserted]: #18
-[mp #39 #99]: false
-unsat
-e6703a33319f0e5148dba82e8205956f98cd7b63 56 0
-#2 := false
-#12 := (:var 0 Int)
-#7 := 2::Int
-#13 := (* 2::Int #12)
-#10 := 1::Int
-#8 := (:var 1 Int)
-#9 := (* 2::Int #8)
-#11 := (+ #9 1::Int)
-#14 := (= #11 #13)
-#15 := (not #14)
-#16 := (forall (vars (?v0 Int) (?v1 Int)) #15)
-#17 := (not #16)
-#77 := (iff #17 false)
-#39 := (+ 1::Int #9)
-#42 := (= #39 #13)
-#45 := (not #42)
-#48 := (forall (vars (?v0 Int) (?v1 Int)) #45)
-#51 := (not #48)
-#75 := (iff #51 false)
-#1 := true
-#70 := (not true)
-#73 := (iff #70 false)
-#74 := [rewrite]: #73
-#71 := (iff #51 #70)
-#68 := (iff #48 true)
-#63 := (forall (vars (?v0 Int) (?v1 Int)) true)
-#66 := (iff #63 true)
-#67 := [elim-unused]: #66
-#64 := (iff #48 #63)
-#61 := (iff #45 true)
-#54 := (not false)
-#59 := (iff #54 true)
-#60 := [rewrite]: #59
-#55 := (iff #45 #54)
-#56 := (iff #42 false)
-#57 := [rewrite]: #56
-#58 := [monotonicity #57]: #55
-#62 := [trans #58 #60]: #61
-#65 := [quant-intro #62]: #64
-#69 := [trans #65 #67]: #68
-#72 := [monotonicity #69]: #71
-#76 := [trans #72 #74]: #75
-#52 := (iff #17 #51)
-#49 := (iff #16 #48)
-#46 := (iff #15 #45)
-#43 := (iff #14 #42)
-#40 := (= #11 #39)
-#41 := [rewrite]: #40
-#44 := [monotonicity #41]: #43
-#47 := [monotonicity #44]: #46
-#50 := [quant-intro #47]: #49
-#53 := [monotonicity #50]: #52
-#78 := [trans #53 #76]: #77
-#38 := [asserted]: #17
-[mp #38 #78]: false
-unsat
-8a770e2a15f5bbced47daef21d1d322e18a383fb 89 0
-#2 := false
-#7 := 2::Int
-decl ?v0!1 :: Int
-#71 := ?v0!1
-decl ?v1!0 :: Int
-#70 := ?v1!0
-#85 := (+ ?v1!0 ?v0!1)
-#94 := (= #85 2::Int)
-#109 := (not #94)
-#97 := (>= #85 2::Int)
-#100 := (not #97)
-#88 := (<= #85 2::Int)
-#91 := (not #88)
-#103 := (or #91 #94 #100)
-#106 := (not #103)
-#72 := (+ ?v0!1 ?v1!0)
-#74 := (>= #72 2::Int)
-#75 := (not #74)
-#67 := (= #72 2::Int)
-#73 := (<= #72 2::Int)
-#40 := (not #73)
-#76 := (or #40 #67 #75)
-#77 := (not #76)
-#107 := (iff #77 #106)
-#104 := (iff #76 #103)
-#101 := (iff #75 #100)
-#98 := (iff #74 #97)
-#86 := (= #72 #85)
-#87 := [rewrite]: #86
-#99 := [monotonicity #87]: #98
-#102 := [monotonicity #99]: #101
-#95 := (iff #67 #94)
-#96 := [monotonicity #87]: #95
-#92 := (iff #40 #91)
-#89 := (iff #73 #88)
-#90 := [monotonicity #87]: #89
-#93 := [monotonicity #90]: #92
-#105 := [monotonicity #93 #96 #102]: #104
-#108 := [monotonicity #105]: #107
-#9 := (:var 0 Int)
-#8 := (:var 1 Int)
-#10 := (+ #8 #9)
-#44 := (>= #10 2::Int)
-#41 := (not #44)
-#12 := (= #10 2::Int)
-#45 := (<= #10 2::Int)
-#46 := (not #45)
-#55 := (or #46 #12 #41)
-#60 := (forall (vars (?v0 Int) (?v1 Int)) #55)
-#63 := (not #60)
-#78 := (~ #63 #77)
-#79 := [sk]: #78
-#13 := (< #10 2::Int)
-#14 := (or #12 #13)
-#11 := (< 2::Int #10)
-#15 := (or #11 #14)
-#16 := (forall (vars (?v0 Int) (?v1 Int)) #15)
-#17 := (not #16)
-#64 := (iff #17 #63)
-#61 := (iff #16 #60)
-#58 := (iff #15 #55)
-#49 := (or #12 #41)
-#52 := (or #46 #49)
-#56 := (iff #52 #55)
-#57 := [rewrite]: #56
-#53 := (iff #15 #52)
-#50 := (iff #14 #49)
-#43 := (iff #13 #41)
-#42 := [rewrite]: #43
-#51 := [monotonicity #42]: #50
-#47 := (iff #11 #46)
-#48 := [rewrite]: #47
-#54 := [monotonicity #48 #51]: #53
-#59 := [trans #54 #57]: #58
-#62 := [quant-intro #59]: #61
-#65 := [monotonicity #62]: #64
-#38 := [asserted]: #17
-#66 := [mp #38 #65]: #63
-#82 := [mp~ #66 #79]: #77
-#83 := [mp #82 #108]: #106
-#110 := [not-or-elim #83]: #109
-#111 := [not-or-elim #83]: #97
-#173 := (or #94 #100)
-#84 := [not-or-elim #83]: #88
-#171 := (or #94 #91 #100)
-#172 := [th-lemma arith triangle-eq]: #171
-#174 := [unit-resolution #172 #84]: #173
-[unit-resolution #174 #111 #110]: false
-unsat
-c93368b1109e5b13c7d8bc3c33d69c60ba539127 89 0
-#2 := false
-#7 := 0::Int
-decl ?v0!0 :: Int
-#87 := ?v0!0
-#88 := (<= ?v0!0 0::Int)
-#157 := (not #88)
-#166 := [hypothesis]: #88
-#10 := 1::Int
-#89 := (>= ?v0!0 1::Int)
-#90 := (not #89)
-#167 := (or #90 #157)
-#168 := [th-lemma arith farkas 1 1]: #167
-#169 := [unit-resolution #168 #166]: #90
-#170 := (or #157 #89)
-#56 := -1::Int
-#83 := (<= ?v0!0 -1::Int)
-#84 := (not #83)
-#91 := (if #88 #90 #84)
-#92 := (not #91)
-#8 := (:var 0 Int)
-#57 := (<= #8 -1::Int)
-#58 := (not #57)
-#62 := (>= #8 1::Int)
-#61 := (not #62)
-#52 := (<= #8 0::Int)
-#68 := (if #52 #61 #58)
-#73 := (forall (vars (?v0 Int)) #68)
-#76 := (not #73)
-#93 := (~ #76 #92)
-#94 := [sk]: #93
-#13 := (< #8 1::Int)
-#11 := (+ #8 1::Int)
-#12 := (< 0::Int #11)
-#9 := (< 0::Int #8)
-#14 := (if #9 #12 #13)
-#15 := (forall (vars (?v0 Int)) #14)
-#16 := (not #15)
-#79 := (iff #16 #76)
-#37 := (+ 1::Int #8)
-#40 := (< 0::Int #37)
-#43 := (if #9 #40 #13)
-#46 := (forall (vars (?v0 Int)) #43)
-#49 := (not #46)
-#77 := (iff #49 #76)
-#74 := (iff #46 #73)
-#71 := (iff #43 #68)
-#53 := (not #52)
-#65 := (if #53 #58 #61)
-#69 := (iff #65 #68)
-#70 := [rewrite]: #69
-#66 := (iff #43 #65)
-#63 := (iff #13 #61)
-#64 := [rewrite]: #63
-#59 := (iff #40 #58)
-#60 := [rewrite]: #59
-#54 := (iff #9 #53)
-#55 := [rewrite]: #54
-#67 := [monotonicity #55 #60 #64]: #66
-#72 := [trans #67 #70]: #71
-#75 := [quant-intro #72]: #74
-#78 := [monotonicity #75]: #77
-#50 := (iff #16 #49)
-#47 := (iff #15 #46)
-#44 := (iff #14 #43)
-#41 := (iff #12 #40)
-#38 := (= #11 #37)
-#39 := [rewrite]: #38
-#42 := [monotonicity #39]: #41
-#45 := [monotonicity #42]: #44
-#48 := [quant-intro #45]: #47
-#51 := [monotonicity #48]: #50
-#80 := [trans #51 #78]: #79
-#36 := [asserted]: #16
-#81 := [mp #36 #80]: #76
-#97 := [mp~ #81 #94]: #92
-#162 := (or #91 #157 #89)
-#163 := [def-axiom]: #162
-#171 := [unit-resolution #163 #97]: #170
-#172 := [unit-resolution #171 #169 #166]: false
-#173 := [lemma #172]: #157
-#174 := (or #84 #88)
-#175 := [th-lemma arith farkas 1 1]: #174
-#176 := [unit-resolution #175 #173]: #84
-#177 := (or #88 #83)
-#164 := (or #91 #88 #83)
-#165 := [def-axiom]: #164
-#178 := [unit-resolution #165 #97]: #177
-[unit-resolution #178 #176 #173]: false
-unsat
-8578dab7bf88c7d119f9af2e5f7eaf948f1bdb87 84 0
-WARNING: failed to find a pattern for quantifier (quantifier id: k!10)
-#2 := false
-#8 := 0::Int
-#7 := (:var 0 Int)
-#49 := (<= #7 0::Int)
-#50 := (not #49)
-#47 := (>= #7 0::Int)
-#45 := (not #47)
-#53 := (or #45 #50)
-#56 := (forall (vars (?v0 Int)) #53)
-#525 := (not #56)
-#218 := (<= 0::Int 0::Int)
-#539 := (not #218)
-#207 := (>= 0::Int 0::Int)
-#201 := (not #207)
-#537 := (or #201 #539)
-#526 := (or #525 #537)
-#170 := (iff #526 #525)
-#527 := (or #525 false)
-#530 := (iff #527 #525)
-#169 := [rewrite]: #530
-#164 := (iff #526 #527)
-#523 := (iff #537 false)
-#182 := (or false false)
-#185 := (iff #182 false)
-#522 := [rewrite]: #185
-#183 := (iff #537 #182)
-#178 := (iff #539 false)
-#1 := true
-#543 := (not true)
-#222 := (iff #543 false)
-#544 := [rewrite]: #222
-#194 := (iff #539 #543)
-#198 := (iff #218 true)
-#535 := [rewrite]: #198
-#536 := [monotonicity #535]: #194
-#520 := [trans #536 #544]: #178
-#534 := (iff #201 false)
-#538 := (iff #201 #543)
-#541 := (iff #207 true)
-#542 := [rewrite]: #541
-#326 := [monotonicity #542]: #538
-#193 := [trans #326 #544]: #534
-#184 := [monotonicity #193 #520]: #183
-#524 := [trans #184 #522]: #523
-#528 := [monotonicity #524]: #164
-#531 := [trans #528 #169]: #170
-#521 := [quant-inst #8]: #526
-#529 := [mp #521 #531]: #525
-#69 := (~ #56 #56)
-#67 := (~ #53 #53)
-#68 := [refl]: #67
-#70 := [nnf-pos #68]: #69
-#10 := (< 0::Int #7)
-#9 := (< #7 0::Int)
-#11 := (or #9 #10)
-#12 := (forall (vars (?v0 Int)) #11)
-#13 := (if #12 false true)
-#14 := (not #13)
-#59 := (iff #14 #56)
-#57 := (iff #12 #56)
-#54 := (iff #11 #53)
-#51 := (iff #10 #50)
-#52 := [rewrite]: #51
-#46 := (iff #9 #45)
-#48 := [rewrite]: #46
-#55 := [monotonicity #48 #52]: #54
-#58 := [quant-intro #55]: #57
-#43 := (iff #14 #12)
-#35 := (not #12)
-#38 := (not #35)
-#41 := (iff #38 #12)
-#42 := [rewrite]: #41
-#39 := (iff #14 #38)
-#36 := (iff #13 #35)
-#37 := [rewrite]: #36
-#40 := [monotonicity #37]: #39
-#44 := [trans #40 #42]: #43
-#60 := [trans #44 #58]: #59
-#34 := [asserted]: #14
-#61 := [mp #34 #60]: #56
-#63 := [mp~ #61 #70]: #56
-[unit-resolution #63 #529]: false
-unsat
-f6f0c702e5caae5d1fc0a3e7862c44d261de6d47 63 0
-#2 := false
-#15 := 1::Int
-#12 := (:var 1 Int)
-#10 := 6::Int
-#11 := (- 6::Int)
-#13 := (* #11 #12)
-#8 := (:var 2 Int)
-#7 := 4::Int
-#9 := (* 4::Int #8)
-#14 := (+ #9 #13)
-#16 := (= #14 1::Int)
-#17 := (exists (vars (?v0 Int) (?v1 Int) (?v2 Int)) #16)
-#18 := (not #17)
-#19 := (not #18)
-#86 := (iff #19 false)
-#56 := (:var 0 Int)
-#41 := -6::Int
-#58 := (* -6::Int #56)
-#57 := (* 4::Int #12)
-#59 := (+ #57 #58)
-#60 := (= #59 1::Int)
-#61 := (exists (vars (?v0 Int) (?v1 Int)) #60)
-#84 := (iff #61 false)
-#77 := (exists (vars (?v0 Int) (?v1 Int)) false)
-#82 := (iff #77 false)
-#83 := [elim-unused]: #82
-#80 := (iff #61 #77)
-#78 := (iff #60 false)
-#79 := [rewrite]: #78
-#81 := [quant-intro #79]: #80
-#85 := [trans #81 #83]: #84
-#74 := (iff #19 #61)
-#66 := (not #61)
-#69 := (not #66)
-#72 := (iff #69 #61)
-#73 := [rewrite]: #72
-#70 := (iff #19 #69)
-#67 := (iff #18 #66)
-#64 := (iff #17 #61)
-#44 := (* -6::Int #12)
-#47 := (+ #9 #44)
-#50 := (= #47 1::Int)
-#53 := (exists (vars (?v0 Int) (?v1 Int) (?v2 Int)) #50)
-#62 := (iff #53 #61)
-#63 := [elim-unused]: #62
-#54 := (iff #17 #53)
-#51 := (iff #16 #50)
-#48 := (= #14 #47)
-#45 := (= #13 #44)
-#42 := (= #11 -6::Int)
-#43 := [rewrite]: #42
-#46 := [monotonicity #43]: #45
-#49 := [monotonicity #46]: #48
-#52 := [monotonicity #49]: #51
-#55 := [quant-intro #52]: #54
-#65 := [trans #55 #63]: #64
-#68 := [monotonicity #65]: #67
-#71 := [monotonicity #68]: #70
-#75 := [trans #71 #73]: #74
-#87 := [trans #75 #85]: #86
-#40 := [asserted]: #19
-[mp #40 #87]: false
-unsat
-252d255c564463d916bc68156eea8dbe7fb0be0a 165 0
-WARNING: failed to find a pattern for quantifier (quantifier id: k!10)
-#2 := false
-#7 := 0::Int
-#8 := (:var 0 Int)
-#55 := (<= #8 0::Int)
-#56 := (not #55)
-#52 := (>= #8 0::Int)
-#51 := (not #52)
-#59 := (or #51 #56)
-#62 := (forall (vars (?v0 Int)) #59)
-#95 := (not #62)
-#587 := (<= 0::Int 0::Int)
-#586 := (not #587)
-#585 := (>= 0::Int 0::Int)
-#248 := (not #585)
-#593 := (or #248 #586)
-#290 := (or #95 #593)
-#569 := (iff #290 #95)
-#292 := (or #95 false)
-#572 := (iff #292 #95)
-#287 := [rewrite]: #572
-#293 := (iff #290 #292)
-#576 := (iff #593 false)
-#578 := (or false false)
-#575 := (iff #578 false)
-#579 := [rewrite]: #575
-#300 := (iff #593 #578)
-#201 := (iff #586 false)
-#1 := true
-#594 := (not true)
-#592 := (iff #594 false)
-#595 := [rewrite]: #592
-#306 := (iff #586 #594)
-#304 := (iff #587 true)
-#305 := [rewrite]: #304
-#307 := [monotonicity #305]: #306
-#577 := [trans #307 #595]: #201
-#581 := (iff #248 false)
-#589 := (iff #248 #594)
-#233 := (iff #585 true)
-#234 := [rewrite]: #233
-#249 := [monotonicity #234]: #589
-#582 := [trans #249 #595]: #581
-#301 := [monotonicity #582 #577]: #300
-#580 := [trans #301 #579]: #576
-#571 := [monotonicity #580]: #293
-#573 := [trans #571 #287]: #569
-#291 := [quant-inst #7]: #290
-#570 := [mp #291 #573]: #95
-decl z3name!0 :: bool
-#92 := z3name!0
-#15 := 3::Int
-#39 := -1::Int
-#99 := (if z3name!0 -1::Int 3::Int)
-#284 := (= #99 3::Int)
-#604 := (not #284)
-#602 := (>= #99 3::Int)
-#259 := (not #602)
-#102 := (<= #99 0::Int)
-#65 := (if #62 -1::Int 3::Int)
-#71 := (<= #65 0::Int)
-#103 := (~ #71 #102)
-#100 := (= #65 #99)
-#97 := (~ #62 z3name!0)
-#88 := (or z3name!0 #95)
-#93 := (not z3name!0)
-#94 := (or #93 #62)
-#89 := (and #94 #88)
-#96 := [intro-def]: #89
-#98 := [apply-def #96]: #97
-#101 := [monotonicity #98]: #100
-#104 := [monotonicity #101]: #103
-#13 := 1::Int
-#14 := (- 1::Int)
-#10 := (< 0::Int #8)
-#9 := (< #8 0::Int)
-#11 := (or #9 #10)
-#12 := (forall (vars (?v0 Int)) #11)
-#16 := (if #12 #14 3::Int)
-#17 := (< 0::Int #16)
-#18 := (not #17)
-#84 := (iff #18 #71)
-#42 := (if #12 -1::Int 3::Int)
-#45 := (< 0::Int #42)
-#48 := (not #45)
-#82 := (iff #48 #71)
-#72 := (not #71)
-#77 := (not #72)
-#80 := (iff #77 #71)
-#81 := [rewrite]: #80
-#78 := (iff #48 #77)
-#75 := (iff #45 #72)
-#68 := (< 0::Int #65)
-#73 := (iff #68 #72)
-#74 := [rewrite]: #73
-#69 := (iff #45 #68)
-#66 := (= #42 #65)
-#63 := (iff #12 #62)
-#60 := (iff #11 #59)
-#57 := (iff #10 #56)
-#58 := [rewrite]: #57
-#53 := (iff #9 #51)
-#54 := [rewrite]: #53
-#61 := [monotonicity #54 #58]: #60
-#64 := [quant-intro #61]: #63
-#67 := [monotonicity #64]: #66
-#70 := [monotonicity #67]: #69
-#76 := [trans #70 #74]: #75
-#79 := [monotonicity #76]: #78
-#83 := [trans #79 #81]: #82
-#49 := (iff #18 #48)
-#46 := (iff #17 #45)
-#43 := (= #16 #42)
-#40 := (= #14 -1::Int)
-#41 := [rewrite]: #40
-#44 := [monotonicity #41]: #43
-#47 := [monotonicity #44]: #46
-#50 := [monotonicity #47]: #49
-#85 := [trans #50 #83]: #84
-#38 := [asserted]: #18
-#86 := [mp #38 #85]: #71
-#133 := [mp~ #86 #104]: #102
-#389 := (not #102)
-#596 := (or #259 #389)
-#270 := [th-lemma arith farkas 1 1]: #596
-#271 := [unit-resolution #270 #133]: #259
-#603 := [hypothesis]: #284
-#605 := (or #604 #602)
-#606 := [th-lemma arith triangle-eq]: #605
-#601 := [unit-resolution #606 #603 #271]: false
-#607 := [lemma #601]: #604
-#286 := (or z3name!0 #284)
-#265 := [def-axiom]: #286
-#574 := [unit-resolution #265 #607]: z3name!0
-decl ?v0!1 :: Int
-#115 := ?v0!1
-#118 := (<= ?v0!1 0::Int)
-#119 := (not #118)
-#116 := (>= ?v0!1 0::Int)
-#117 := (not #116)
-#120 := (or #117 #119)
-#121 := (not #120)
-#126 := (or z3name!0 #121)
-#129 := (and #94 #126)
-#130 := (~ #89 #129)
-#127 := (~ #88 #126)
-#122 := (~ #95 #121)
-#123 := [sk]: #122
-#113 := (~ z3name!0 z3name!0)
-#114 := [refl]: #113
-#128 := [monotonicity #114 #123]: #127
-#111 := (~ #94 #94)
-#109 := (~ #62 #62)
-#107 := (~ #59 #59)
-#108 := [refl]: #107
-#110 := [nnf-pos #108]: #109
-#105 := (~ #93 #93)
-#106 := [refl]: #105
-#112 := [monotonicity #106 #110]: #111
-#131 := [monotonicity #112 #128]: #130
-#132 := [mp~ #96 #131]: #129
-#136 := [and-elim #132]: #94
-#563 := [unit-resolution #136 #574]: #62
-[unit-resolution #563 #570]: false
-unsat
-302156fb98e1f9b5657a3c89c418d5e1813f274a 101 0
-#2 := false
-#7 := 0::Int
-decl ?v1!1 :: Int
-#92 := ?v1!1
-decl ?v2!0 :: Int
-#91 := ?v2!0
-#109 := (+ ?v2!0 ?v1!1)
-#112 := (<= #109 0::Int)
-#115 := (not #112)
-#87 := (<= ?v2!0 0::Int)
-#88 := (not #87)
-#93 := (<= ?v1!1 0::Int)
-#94 := (not #93)
-#95 := (and #94 #88)
-#96 := (not #95)
-#118 := (or #96 #115)
-#121 := (not #118)
-#97 := (+ ?v1!1 ?v2!0)
-#98 := (<= #97 0::Int)
-#99 := (not #98)
-#100 := (or #96 #99)
-#101 := (not #100)
-#122 := (iff #101 #121)
-#119 := (iff #100 #118)
-#116 := (iff #99 #115)
-#113 := (iff #98 #112)
-#110 := (= #97 #109)
-#111 := [rewrite]: #110
-#114 := [monotonicity #111]: #113
-#117 := [monotonicity #114]: #116
-#120 := [monotonicity #117]: #119
-#123 := [monotonicity #120]: #122
-#10 := (:var 0 Int)
-#8 := (:var 1 Int)
-#13 := (+ #8 #10)
-#70 := (<= #13 0::Int)
-#71 := (not #70)
-#60 := (<= #10 0::Int)
-#61 := (not #60)
-#56 := (<= #8 0::Int)
-#57 := (not #56)
-#64 := (and #57 #61)
-#67 := (not #64)
-#74 := (or #67 #71)
-#77 := (forall (vars (?v1 Int) (?v2 Int)) #74)
-#80 := (not #77)
-#102 := (~ #80 #101)
-#103 := [sk]: #102
-#14 := (< 0::Int #13)
-#11 := (< 0::Int #10)
-#9 := (< 0::Int #8)
-#12 := (and #9 #11)
-#15 := (implies #12 #14)
-#16 := (forall (vars (?v1 Int) (?v2 Int)) #15)
-#17 := (exists (vars (?v0 Int)) #16)
-#18 := (not #17)
-#83 := (iff #18 #80)
-#39 := (not #12)
-#40 := (or #39 #14)
-#43 := (forall (vars (?v1 Int) (?v2 Int)) #40)
-#53 := (not #43)
-#81 := (iff #53 #80)
-#78 := (iff #43 #77)
-#75 := (iff #40 #74)
-#72 := (iff #14 #71)
-#73 := [rewrite]: #72
-#68 := (iff #39 #67)
-#65 := (iff #12 #64)
-#62 := (iff #11 #61)
-#63 := [rewrite]: #62
-#58 := (iff #9 #57)
-#59 := [rewrite]: #58
-#66 := [monotonicity #59 #63]: #65
-#69 := [monotonicity #66]: #68
-#76 := [monotonicity #69 #73]: #75
-#79 := [quant-intro #76]: #78
-#82 := [monotonicity #79]: #81
-#54 := (iff #18 #53)
-#51 := (iff #17 #43)
-#46 := (exists (vars (?v0 Int)) #43)
-#49 := (iff #46 #43)
-#50 := [elim-unused]: #49
-#47 := (iff #17 #46)
-#44 := (iff #16 #43)
-#41 := (iff #15 #40)
-#42 := [rewrite]: #41
-#45 := [quant-intro #42]: #44
-#48 := [quant-intro #45]: #47
-#52 := [trans #48 #50]: #51
-#55 := [monotonicity #52]: #54
-#84 := [trans #55 #82]: #83
-#38 := [asserted]: #18
-#85 := [mp #38 #84]: #80
-#106 := [mp~ #85 #103]: #101
-#107 := [mp #106 #123]: #121
-#126 := [not-or-elim #107]: #112
-#108 := [not-or-elim #107]: #95
-#124 := [and-elim #108]: #94
-#125 := [and-elim #108]: #88
-[th-lemma arith farkas 1 1 1 #125 #124 #126]: false
-unsat
-bcc217c52aea6d752e93b67733058589bedd0079 99 0
-#2 := false
-#39 := -1::Int
-decl ?v1!1 :: Int
-#101 := ?v1!1
-#106 := (<= ?v1!1 -1::Int)
-#107 := (not #106)
-#10 := 0::Real
-decl ?v2!0 :: Real
-#100 := ?v2!0
-#102 := (<= ?v2!0 0::Real)
-#103 := (not #102)
-#7 := 0::Int
-#98 := (<= ?v1!1 0::Int)
-#99 := (not #98)
-#104 := (and #99 #103)
-#105 := (not #104)
-#108 := (or #105 #107)
-#109 := (not #108)
-#8 := (:var 1 Int)
-#81 := (<= #8 -1::Int)
-#82 := (not #81)
-#11 := (:var 0 Real)
-#71 := (<= #11 0::Real)
-#72 := (not #71)
-#67 := (<= #8 0::Int)
-#68 := (not #67)
-#75 := (and #68 #72)
-#78 := (not #75)
-#85 := (or #78 #82)
-#88 := (forall (vars (?v1 Int) (?v2 Real)) #85)
-#91 := (not #88)
-#110 := (~ #91 #109)
-#111 := [sk]: #110
-#14 := 1::Int
-#15 := (- 1::Int)
-#16 := (< #15 #8)
-#12 := (< 0::Real #11)
-#9 := (< 0::Int #8)
-#13 := (and #9 #12)
-#17 := (implies #13 #16)
-#18 := (forall (vars (?v1 Int) (?v2 Real)) #17)
-#19 := (exists (vars (?v0 Int)) #18)
-#20 := (not #19)
-#94 := (iff #20 #91)
-#42 := (< -1::Int #8)
-#48 := (not #13)
-#49 := (or #48 #42)
-#54 := (forall (vars (?v1 Int) (?v2 Real)) #49)
-#64 := (not #54)
-#92 := (iff #64 #91)
-#89 := (iff #54 #88)
-#86 := (iff #49 #85)
-#83 := (iff #42 #82)
-#84 := [rewrite]: #83
-#79 := (iff #48 #78)
-#76 := (iff #13 #75)
-#73 := (iff #12 #72)
-#74 := [rewrite]: #73
-#69 := (iff #9 #68)
-#70 := [rewrite]: #69
-#77 := [monotonicity #70 #74]: #76
-#80 := [monotonicity #77]: #79
-#87 := [monotonicity #80 #84]: #86
-#90 := [quant-intro #87]: #89
-#93 := [monotonicity #90]: #92
-#65 := (iff #20 #64)
-#62 := (iff #19 #54)
-#57 := (exists (vars (?v0 Int)) #54)
-#60 := (iff #57 #54)
-#61 := [elim-unused]: #60
-#58 := (iff #19 #57)
-#55 := (iff #18 #54)
-#52 := (iff #17 #49)
-#45 := (implies #13 #42)
-#50 := (iff #45 #49)
-#51 := [rewrite]: #50
-#46 := (iff #17 #45)
-#43 := (iff #16 #42)
-#40 := (= #15 -1::Int)
-#41 := [rewrite]: #40
-#44 := [monotonicity #41]: #43
-#47 := [monotonicity #44]: #46
-#53 := [trans #47 #51]: #52
-#56 := [quant-intro #53]: #55
-#59 := [quant-intro #56]: #58
-#63 := [trans #59 #61]: #62
-#66 := [monotonicity #63]: #65
-#95 := [trans #66 #93]: #94
-#38 := [asserted]: #20
-#96 := [mp #38 #95]: #91
-#114 := [mp~ #96 #111]: #109
-#120 := [not-or-elim #114]: #106
-#117 := [not-or-elim #114]: #104
-#118 := [and-elim #117]: #99
-#178 := (or #107 #98)
-#179 := [th-lemma arith farkas 1 1]: #178
-#180 := [unit-resolution #179 #118]: #107
-[unit-resolution #180 #120]: false
-unsat
-8a78832884e41117489fba88c88de0b5cacb832a 143 0
-#2 := false
-#10 := 0::Int
-#8 := (:var 0 Int)
-#68 := (<= #8 0::Int)
-#69 := (not #68)
-#146 := (not false)
-#149 := (or #146 #69)
-#152 := (not #149)
-#155 := (forall (vars (?v0 Int)) #152)
-#182 := (iff #155 false)
-#177 := (forall (vars (?v0 Int)) false)
-#180 := (iff #177 false)
-#181 := [elim-unused]: #180
-#178 := (iff #155 #177)
-#175 := (iff #152 false)
-#1 := true
-#170 := (not true)
-#173 := (iff #170 false)
-#174 := [rewrite]: #173
-#171 := (iff #152 #170)
-#168 := (iff #149 true)
-#163 := (or true #69)
-#166 := (iff #163 true)
-#167 := [rewrite]: #166
-#164 := (iff #149 #163)
-#161 := (iff #146 true)
-#162 := [rewrite]: #161
-#165 := [monotonicity #162]: #164
-#169 := [trans #165 #167]: #168
-#172 := [monotonicity #169]: #171
-#176 := [trans #172 #174]: #175
-#179 := [quant-intro #176]: #178
-#183 := [trans #179 #181]: #182
-#59 := -1::Int
-#60 := (* -1::Int #8)
-#7 := (:var 1 Int)
-#61 := (+ #7 #60)
-#62 := (<= #61 0::Int)
-#65 := (not #62)
-#72 := (or #65 #69)
-#75 := (forall (vars (?v1 Int)) #72)
-#78 := (not #75)
-#81 := (or #78 #69)
-#107 := (not #81)
-#125 := (forall (vars (?v0 Int)) #107)
-#158 := (iff #125 #155)
-#129 := (forall (vars (?v1 Int)) #69)
-#132 := (not #129)
-#135 := (or #132 #69)
-#138 := (not #135)
-#141 := (forall (vars (?v0 Int)) #138)
-#156 := (iff #141 #155)
-#157 := [rewrite]: #156
-#142 := (iff #125 #141)
-#143 := [rewrite]: #142
-#159 := [trans #143 #157]: #158
-#118 := (and #75 #68)
-#121 := (forall (vars (?v0 Int)) #118)
-#126 := (iff #121 #125)
-#115 := (iff #118 #107)
-#124 := [rewrite]: #115
-#127 := [quant-intro #124]: #126
-#103 := (not #69)
-#106 := (and #75 #103)
-#110 := (forall (vars (?v0 Int)) #106)
-#122 := (iff #110 #121)
-#119 := (iff #106 #118)
-#116 := (iff #103 #68)
-#117 := [rewrite]: #116
-#120 := [monotonicity #117]: #119
-#123 := [quant-intro #120]: #122
-#84 := (exists (vars (?v0 Int)) #81)
-#87 := (not #84)
-#111 := (~ #87 #110)
-#108 := (~ #107 #106)
-#104 := (~ #103 #103)
-#105 := [refl]: #104
-#94 := (not #78)
-#95 := (~ #94 #75)
-#100 := (~ #75 #75)
-#98 := (~ #72 #72)
-#99 := [refl]: #98
-#101 := [nnf-pos #99]: #100
-#102 := [nnf-neg #101]: #95
-#109 := [nnf-neg #102 #105]: #108
-#112 := [nnf-neg #109]: #111
-#11 := (< 0::Int #8)
-#9 := (<= #7 #8)
-#12 := (implies #9 #11)
-#13 := (forall (vars (?v1 Int)) #12)
-#14 := (implies #13 #11)
-#15 := (exists (vars (?v0 Int)) #14)
-#16 := (not #15)
-#90 := (iff #16 #87)
-#37 := (not #9)
-#38 := (or #37 #11)
-#41 := (forall (vars (?v1 Int)) #38)
-#47 := (not #41)
-#48 := (or #47 #11)
-#53 := (exists (vars (?v0 Int)) #48)
-#56 := (not #53)
-#88 := (iff #56 #87)
-#85 := (iff #53 #84)
-#82 := (iff #48 #81)
-#70 := (iff #11 #69)
-#71 := [rewrite]: #70
-#79 := (iff #47 #78)
-#76 := (iff #41 #75)
-#73 := (iff #38 #72)
-#66 := (iff #37 #65)
-#63 := (iff #9 #62)
-#64 := [rewrite]: #63
-#67 := [monotonicity #64]: #66
-#74 := [monotonicity #67 #71]: #73
-#77 := [quant-intro #74]: #76
-#80 := [monotonicity #77]: #79
-#83 := [monotonicity #80 #71]: #82
-#86 := [quant-intro #83]: #85
-#89 := [monotonicity #86]: #88
-#57 := (iff #16 #56)
-#54 := (iff #15 #53)
-#51 := (iff #14 #48)
-#44 := (implies #41 #11)
-#49 := (iff #44 #48)
-#50 := [rewrite]: #49
-#45 := (iff #14 #44)
-#42 := (iff #13 #41)
-#39 := (iff #12 #38)
-#40 := [rewrite]: #39
-#43 := [quant-intro #40]: #42
-#46 := [monotonicity #43]: #45
-#52 := [trans #46 #50]: #51
-#55 := [quant-intro #52]: #54
-#58 := [monotonicity #55]: #57
-#91 := [trans #58 #89]: #90
-#36 := [asserted]: #16
-#92 := [mp #36 #91]: #87
-#113 := [mp~ #92 #112]: #110
-#114 := [mp #113 #123]: #121
-#128 := [mp #114 #127]: #125
-#160 := [mp #128 #159]: #155
-[mp #160 #183]: false
-unsat
-ea961570b37add45bc63c8f0e3f6ddc653b28f42 67 0
-ERROR: line 11 column 83: invalid pattern.
-#2 := false
-decl f3 :: Int
-#8 := f3
-#10 := 2::Int
-#12 := (* 2::Int f3)
-#7 := (:var 0 Int)
-#11 := (* 2::Int #7)
-#13 := (< #11 #12)
-#9 := (< #7 f3)
-#14 := (implies #9 #13)
-#15 := (forall (vars (?v0 Int)) #14)
-#16 := (not #15)
-#85 := (iff #16 false)
-#38 := (not #9)
-#39 := (or #38 #13)
-#42 := (forall (vars (?v0 Int)) #39)
-#45 := (not #42)
-#83 := (iff #45 false)
-#1 := true
-#78 := (not true)
-#81 := (iff #78 false)
-#82 := [rewrite]: #81
-#79 := (iff #45 #78)
-#76 := (iff #42 true)
-#71 := (forall (vars (?v0 Int)) true)
-#74 := (iff #71 true)
-#75 := [elim-unused]: #74
-#72 := (iff #42 #71)
-#69 := (iff #39 true)
-#18 := 0::Int
-#48 := -1::Int
-#51 := (* -1::Int f3)
-#52 := (+ #7 #51)
-#50 := (>= #52 0::Int)
-#49 := (not #50)
-#63 := (or #50 #49)
-#67 := (iff #63 true)
-#68 := [rewrite]: #67
-#65 := (iff #39 #63)
-#64 := (iff #13 #49)
-#62 := [rewrite]: #64
-#60 := (iff #38 #50)
-#55 := (not #49)
-#58 := (iff #55 #50)
-#59 := [rewrite]: #58
-#56 := (iff #38 #55)
-#53 := (iff #9 #49)
-#54 := [rewrite]: #53
-#57 := [monotonicity #54]: #56
-#61 := [trans #57 #59]: #60
-#66 := [monotonicity #61 #62]: #65
-#70 := [trans #66 #68]: #69
-#73 := [quant-intro #70]: #72
-#77 := [trans #73 #75]: #76
-#80 := [monotonicity #77]: #79
-#84 := [trans #80 #82]: #83
-#46 := (iff #16 #45)
-#43 := (iff #15 #42)
-#40 := (iff #14 #39)
-#41 := [rewrite]: #40
-#44 := [quant-intro #41]: #43
-#47 := [monotonicity #44]: #46
-#86 := [trans #47 #84]: #85
-#37 := [asserted]: #16
-[mp #37 #86]: false
-unsat
-cc87973002902704adc7d85df3fb8affa4a44929 54 0
-#2 := false
-#10 := 1::Int
-decl ?v1!0 :: Int
-#66 := ?v1!0
-#69 := (>= ?v1!0 1::Int)
-#62 := (not #69)
-#7 := 0::Int
-#67 := (<= ?v1!0 0::Int)
-#68 := (not #67)
-#63 := (or #68 #62)
-#70 := (not #63)
-#8 := (:var 0 Int)
-#47 := (>= #8 1::Int)
-#45 := (not #47)
-#41 := (<= #8 0::Int)
-#42 := (not #41)
-#49 := (or #42 #45)
-#52 := (forall (vars (?v1 Int)) #49)
-#55 := (not #52)
-#71 := (~ #55 #70)
-#72 := [sk]: #71
-#11 := (< #8 1::Int)
-#9 := (< 0::Int #8)
-#12 := (or #9 #11)
-#13 := (forall (vars (?v0 Int) (?v1 Int)) #12)
-#14 := (not #13)
-#58 := (iff #14 #55)
-#35 := (forall (vars (?v1 Int)) #12)
-#38 := (not #35)
-#56 := (iff #38 #55)
-#53 := (iff #35 #52)
-#50 := (iff #12 #49)
-#46 := (iff #11 #45)
-#48 := [rewrite]: #46
-#43 := (iff #9 #42)
-#44 := [rewrite]: #43
-#51 := [monotonicity #44 #48]: #50
-#54 := [quant-intro #51]: #53
-#57 := [monotonicity #54]: #56
-#39 := (iff #14 #38)
-#36 := (iff #13 #35)
-#37 := [elim-unused]: #36
-#40 := [monotonicity #37]: #39
-#59 := [trans #40 #57]: #58
-#34 := [asserted]: #14
-#60 := [mp #34 #59]: #55
-#75 := [mp~ #60 #72]: #70
-#79 := [not-or-elim #75]: #69
-#78 := [not-or-elim #75]: #67
-#137 := (or #62 #68)
-#138 := [th-lemma arith farkas 1 1]: #137
-#139 := [unit-resolution #138 #78]: #62
-[unit-resolution #139 #79]: false
-unsat
-1d9e76ccce459de8771731a1c234c6d9e2aa3527 1 0
-unsat
-e46d82e75c1853418f786555dbc1a12ba5d54f6e 75 0
-#2 := false
-#9 := 1::Int
-decl f5 :: Int
-#11 := f5
-#15 := (+ f5 1::Int)
-decl f3 :: Int
-#7 := f3
-#16 := (* f3 #15)
-decl f4 :: Int
-#8 := f4
-#14 := (* f3 f4)
-#17 := (+ #14 #16)
-#10 := (+ f4 1::Int)
-#12 := (+ #10 f5)
-#13 := (* f3 #12)
-#18 := (= #13 #17)
-#19 := (not #18)
-#93 := (iff #19 false)
-#1 := true
-#88 := (not true)
-#91 := (iff #88 false)
-#92 := [rewrite]: #91
-#89 := (iff #19 #88)
-#86 := (iff #18 true)
-#56 := (* f3 f5)
-#57 := (+ #14 #56)
-#58 := (+ f3 #57)
-#81 := (= #58 #58)
-#84 := (iff #81 true)
-#85 := [rewrite]: #84
-#82 := (iff #18 #81)
-#79 := (= #17 #58)
-#69 := (+ f3 #56)
-#74 := (+ #14 #69)
-#77 := (= #74 #58)
-#78 := [rewrite]: #77
-#75 := (= #17 #74)
-#72 := (= #16 #69)
-#63 := (+ 1::Int f5)
-#66 := (* f3 #63)
-#70 := (= #66 #69)
-#71 := [rewrite]: #70
-#67 := (= #16 #66)
-#64 := (= #15 #63)
-#65 := [rewrite]: #64
-#68 := [monotonicity #65]: #67
-#73 := [trans #68 #71]: #72
-#76 := [monotonicity #73]: #75
-#80 := [trans #76 #78]: #79
-#61 := (= #13 #58)
-#47 := (+ f4 f5)
-#48 := (+ 1::Int #47)
-#53 := (* f3 #48)
-#59 := (= #53 #58)
-#60 := [rewrite]: #59
-#54 := (= #13 #53)
-#51 := (= #12 #48)
-#41 := (+ 1::Int f4)
-#44 := (+ #41 f5)
-#49 := (= #44 #48)
-#50 := [rewrite]: #49
-#45 := (= #12 #44)
-#42 := (= #10 #41)
-#43 := [rewrite]: #42
-#46 := [monotonicity #43]: #45
-#52 := [trans #46 #50]: #51
-#55 := [monotonicity #52]: #54
-#62 := [trans #55 #60]: #61
-#83 := [monotonicity #62 #80]: #82
-#87 := [trans #83 #85]: #86
-#90 := [monotonicity #87]: #89
-#94 := [trans #90 #92]: #93
-#40 := [asserted]: #19
-[mp #40 #94]: false
-unsat
-60242f59c15f3933ccbd1d4ed5e4e07293c9dd72 62 0
-#2 := false
-decl f4 :: Real
-#9 := f4
-decl f3 :: Real
-#7 := f3
-#15 := 2::Real
-#16 := (* 2::Real f3)
-#17 := (* #16 f4)
-#8 := 1::Real
-#12 := (- 1::Real f4)
-#13 := (* f3 #12)
-#10 := (+ 1::Real f4)
-#11 := (* f3 #10)
-#14 := (- #11 #13)
-#18 := (= #14 #17)
-#19 := (not #18)
-#81 := (iff #19 false)
-#1 := true
-#76 := (not true)
-#79 := (iff #76 false)
-#80 := [rewrite]: #79
-#77 := (iff #19 #76)
-#74 := (iff #18 true)
-#41 := (* f3 f4)
-#63 := (* 2::Real #41)
-#69 := (= #63 #63)
-#72 := (iff #69 true)
-#73 := [rewrite]: #72
-#70 := (iff #18 #69)
-#67 := (= #17 #63)
-#68 := [rewrite]: #67
-#65 := (= #14 #63)
-#45 := -1::Real
-#53 := (* -1::Real #41)
-#54 := (+ f3 #53)
-#42 := (+ f3 #41)
-#59 := (- #42 #54)
-#62 := (= #59 #63)
-#64 := [rewrite]: #62
-#60 := (= #14 #59)
-#57 := (= #13 #54)
-#46 := (* -1::Real f4)
-#47 := (+ 1::Real #46)
-#50 := (* f3 #47)
-#55 := (= #50 #54)
-#56 := [rewrite]: #55
-#51 := (= #13 #50)
-#48 := (= #12 #47)
-#49 := [rewrite]: #48
-#52 := [monotonicity #49]: #51
-#58 := [trans #52 #56]: #57
-#43 := (= #11 #42)
-#44 := [rewrite]: #43
-#61 := [monotonicity #44 #58]: #60
-#66 := [trans #61 #64]: #65
-#71 := [monotonicity #66 #68]: #70
-#75 := [trans #71 #73]: #74
-#78 := [monotonicity #75]: #77
-#82 := [trans #78 #80]: #81
-#40 := [asserted]: #19
-[mp #40 #82]: false
-unsat
-3ecab0bc7101d63e72b4fb9ac8a649c491da9533 141 0
-#2 := false
-decl f6 :: Int
-#12 := f6
-decl f7 :: Int
-#16 := f7
-decl f5 :: Int
-#11 := f5
-#27 := (+ f5 f7)
-#28 := (+ #27 f6)
-decl f4 :: Int
-#9 := f4
-#8 := 1::Int
-#10 := (+ 1::Int f4)
-#29 := (* #10 #28)
-#24 := (* f7 f4)
-#22 := (* #10 f7)
-#13 := (+ f5 f6)
-#19 := 2::Int
-#20 := (* 2::Int #10)
-#21 := (* #20 #13)
-#23 := (+ #21 #22)
-#25 := (+ #23 #24)
-decl f3 :: Int
-#7 := f3
-#26 := (+ f3 #25)
-#30 := (- #26 #29)
-#17 := (* f4 f7)
-#14 := (* #10 #13)
-#15 := (+ f3 #14)
-#18 := (+ #15 #17)
-#31 := (= #18 #30)
-#32 := (not #31)
-#157 := (iff #32 false)
-#1 := true
-#152 := (not true)
-#155 := (iff #152 false)
-#156 := [rewrite]: #155
-#153 := (iff #32 #152)
-#150 := (iff #31 true)
-#55 := (* f4 f6)
-#54 := (* f4 f5)
-#56 := (+ #54 #55)
-#67 := (+ #17 #56)
-#68 := (+ f6 #67)
-#69 := (+ f5 #68)
-#70 := (+ f3 #69)
-#144 := (= #70 #70)
-#148 := (iff #144 true)
-#149 := [rewrite]: #148
-#143 := (iff #31 #144)
-#146 := (= #30 #70)
-#131 := (+ f7 #67)
-#132 := (+ f6 #131)
-#133 := (+ f5 #132)
-#85 := (* 2::Int #55)
-#83 := (* 2::Int #54)
-#86 := (+ #83 #85)
-#112 := (* 2::Int #17)
-#113 := (+ #112 #86)
-#114 := (+ f7 #113)
-#84 := (* 2::Int f6)
-#115 := (+ #84 #114)
-#82 := (* 2::Int f5)
-#116 := (+ #82 #115)
-#121 := (+ f3 #116)
-#138 := (- #121 #133)
-#141 := (= #138 #70)
-#147 := [rewrite]: #141
-#139 := (= #30 #138)
-#136 := (= #29 #133)
-#124 := (+ f6 f7)
-#125 := (+ f5 #124)
-#128 := (* #10 #125)
-#134 := (= #128 #133)
-#135 := [rewrite]: #134
-#129 := (= #29 #128)
-#126 := (= #28 #125)
-#127 := [rewrite]: #126
-#130 := [monotonicity #127]: #129
-#137 := [trans #130 #135]: #136
-#122 := (= #26 #121)
-#119 := (= #25 #116)
-#99 := (+ #17 #86)
-#100 := (+ f7 #99)
-#101 := (+ #84 #100)
-#102 := (+ #82 #101)
-#109 := (+ #102 #17)
-#117 := (= #109 #116)
-#118 := [rewrite]: #117
-#110 := (= #25 #109)
-#107 := (= #24 #17)
-#108 := [rewrite]: #107
-#105 := (= #23 #102)
-#93 := (+ f7 #17)
-#87 := (+ #84 #86)
-#88 := (+ #82 #87)
-#96 := (+ #88 #93)
-#103 := (= #96 #102)
-#104 := [rewrite]: #103
-#97 := (= #23 #96)
-#94 := (= #22 #93)
-#95 := [rewrite]: #94
-#91 := (= #21 #88)
-#75 := (* 2::Int f4)
-#76 := (+ 2::Int #75)
-#79 := (* #76 #13)
-#89 := (= #79 #88)
-#90 := [rewrite]: #89
-#80 := (= #21 #79)
-#77 := (= #20 #76)
-#78 := [rewrite]: #77
-#81 := [monotonicity #78]: #80
-#92 := [trans #81 #90]: #91
-#98 := [monotonicity #92 #95]: #97
-#106 := [trans #98 #104]: #105
-#111 := [monotonicity #106 #108]: #110
-#120 := [trans #111 #118]: #119
-#123 := [monotonicity #120]: #122
-#140 := [monotonicity #123 #137]: #139
-#145 := [trans #140 #147]: #146
-#73 := (= #18 #70)
-#57 := (+ f6 #56)
-#58 := (+ f5 #57)
-#61 := (+ f3 #58)
-#64 := (+ #61 #17)
-#71 := (= #64 #70)
-#72 := [rewrite]: #71
-#65 := (= #18 #64)
-#62 := (= #15 #61)
-#59 := (= #14 #58)
-#60 := [rewrite]: #59
-#63 := [monotonicity #60]: #62
-#66 := [monotonicity #63]: #65
-#74 := [trans #66 #72]: #73
-#142 := [monotonicity #74 #145]: #143
-#151 := [trans #142 #149]: #150
-#154 := [monotonicity #151]: #153
-#158 := [trans #154 #156]: #157
-#53 := [asserted]: #32
-[mp #53 #158]: false
-unsat
 43550507f510d81bc4fb9ef8c1fd14424eaa9070 37 0
 #2 := false
 #10 := 0::Int
@@ -8819,1764 +1561,6 @@
 #53 := [not-or-elim #52]: #11
 [th-lemma arith farkas 1 1 1 #53 #57 #55]: false
 unsat
-f5067fa58c623377db978838e2294684a3fe7bb2 225 0
-#2 := false
-#24 := 0::Int
-decl f5 :: (-> S4 S3 Int)
-decl f3 :: (-> S2 Int S3)
-decl f7 :: S3
-#10 := f7
-decl f6 :: S4
-#9 := f6
-#11 := (f5 f6 f7)
-#8 := 2::Int
-#12 := (* 2::Int #11)
-decl f4 :: S2
-#7 := f4
-#13 := (f3 f4 #12)
-#276 := (f5 f6 #13)
-#185 := -1::Int
-#596 := (* -1::Int #276)
-#597 := (+ #12 #596)
-#577 := (<= #597 0::Int)
-#595 := (= #597 0::Int)
-#256 := (>= #11 0::Int)
-#579 := (= #276 0::Int)
-#436 := (not #579)
-#297 := (<= #276 0::Int)
-#533 := (not #297)
-#14 := 1::Int
-#544 := (>= #276 1::Int)
-#549 := (= #276 1::Int)
-#15 := (f3 f4 1::Int)
-#569 := (f5 f6 #15)
-#570 := (= #569 1::Int)
-#25 := (:var 0 Int)
-#27 := (f3 f4 #25)
-#607 := (pattern #27)
-#28 := (f5 f6 #27)
-#29 := (= #28 #25)
-#70 := (>= #25 0::Int)
-#71 := (not #70)
-#74 := (or #71 #29)
-#608 := (forall (vars (?v0 Int)) (:pat #607) #74)
-#77 := (forall (vars (?v0 Int)) #74)
-#611 := (iff #77 #608)
-#609 := (iff #74 #74)
-#610 := [refl]: #609
-#612 := [quant-intro #610]: #611
-#114 := (~ #77 #77)
-#113 := (~ #74 #74)
-#110 := [refl]: #113
-#115 := [nnf-pos #110]: #114
-#26 := (<= 0::Int #25)
-#30 := (implies #26 #29)
-#31 := (forall (vars (?v0 Int)) #30)
-#80 := (iff #31 #77)
-#61 := (not #26)
-#62 := (or #61 #29)
-#65 := (forall (vars (?v0 Int)) #62)
-#78 := (iff #65 #77)
-#75 := (iff #62 #74)
-#72 := (iff #61 #71)
-#68 := (iff #26 #70)
-#69 := [rewrite]: #68
-#73 := [monotonicity #69]: #72
-#76 := [monotonicity #73]: #75
-#79 := [quant-intro #76]: #78
-#66 := (iff #31 #65)
-#63 := (iff #30 #62)
-#64 := [rewrite]: #63
-#67 := [quant-intro #64]: #66
-#81 := [trans #67 #79]: #80
-#59 := [asserted]: #31
-#82 := [mp #59 #81]: #77
-#111 := [mp~ #82 #115]: #77
-#613 := [mp #111 #612]: #608
-#589 := (not #608)
-#555 := (or #589 #570)
-#299 := (>= 1::Int 0::Int)
-#192 := (not #299)
-#292 := (or #192 #570)
-#556 := (or #589 #292)
-#552 := (iff #556 #555)
-#558 := (iff #555 #555)
-#559 := [rewrite]: #558
-#562 := (iff #292 #570)
-#563 := (or false #570)
-#561 := (iff #563 #570)
-#565 := [rewrite]: #561
-#564 := (iff #292 #563)
-#284 := (iff #192 false)
-#1 := true
-#571 := (not true)
-#282 := (iff #571 false)
-#283 := [rewrite]: #282
-#568 := (iff #192 #571)
-#293 := (iff #299 true)
-#567 := [rewrite]: #293
-#572 := [monotonicity #567]: #568
-#285 := [trans #572 #283]: #284
-#278 := [monotonicity #285]: #564
-#566 := [trans #278 #565]: #562
-#553 := [monotonicity #566]: #552
-#554 := [trans #553 #559]: #552
-#557 := [quant-inst #14]: #556
-#560 := [mp #557 #554]: #555
-#383 := [unit-resolution #560 #613]: #570
-#536 := (= #276 #569)
-#16 := (= #13 #15)
-#17 := (not #16)
-#18 := (not #17)
-#56 := (iff #18 #16)
-#57 := [rewrite]: #56
-#55 := [asserted]: #18
-#60 := [mp #55 #57]: #16
-#424 := [monotonicity #60]: #536
-#425 := [trans #424 #383]: #549
-#384 := (not #549)
-#532 := (or #384 #544)
-#434 := [th-lemma arith triangle-eq]: #532
-#529 := [unit-resolution #434 #425]: #544
-#530 := (not #544)
-#418 := (or #530 #533)
-#433 := [th-lemma arith farkas 1 1]: #418
-#435 := [unit-resolution #433 #529]: #533
-#429 := (or #436 #297)
-#437 := [th-lemma arith triangle-eq]: #429
-#438 := [unit-resolution #437 #435]: #436
-#581 := (or #256 #579)
-#33 := (= #28 0::Int)
-#100 := (or #70 #33)
-#614 := (forall (vars (?v0 Int)) (:pat #607) #100)
-#103 := (forall (vars (?v0 Int)) #100)
-#617 := (iff #103 #614)
-#615 := (iff #100 #100)
-#616 := [refl]: #615
-#618 := [quant-intro #616]: #617
-#116 := (~ #103 #103)
-#124 := (~ #100 #100)
-#125 := [refl]: #124
-#117 := [nnf-pos #125]: #116
-#32 := (< #25 0::Int)
-#34 := (implies #32 #33)
-#35 := (forall (vars (?v0 Int)) #34)
-#106 := (iff #35 #103)
-#84 := (not #32)
-#85 := (or #84 #33)
-#88 := (forall (vars (?v0 Int)) #85)
-#104 := (iff #88 #103)
-#101 := (iff #85 #100)
-#98 := (iff #84 #70)
-#93 := (not #71)
-#96 := (iff #93 #70)
-#97 := [rewrite]: #96
-#94 := (iff #84 #93)
-#91 := (iff #32 #71)
-#92 := [rewrite]: #91
-#95 := [monotonicity #92]: #94
-#99 := [trans #95 #97]: #98
-#102 := [monotonicity #99]: #101
-#105 := [quant-intro #102]: #104
-#89 := (iff #35 #88)
-#86 := (iff #34 #85)
-#87 := [rewrite]: #86
-#90 := [quant-intro #87]: #89
-#107 := [trans #90 #105]: #106
-#83 := [asserted]: #35
-#108 := [mp #83 #107]: #103
-#126 := [mp~ #108 #117]: #103
-#619 := [mp #126 #618]: #614
-#219 := (not #614)
-#583 := (or #219 #256 #579)
-#271 := (>= #12 0::Int)
-#580 := (or #271 #579)
-#585 := (or #219 #580)
-#574 := (iff #585 #583)
-#225 := (or #219 #581)
-#587 := (iff #225 #583)
-#573 := [rewrite]: #587
-#586 := (iff #585 #225)
-#576 := (iff #580 #581)
-#592 := (iff #271 #256)
-#594 := [rewrite]: #592
-#582 := [monotonicity #594]: #576
-#584 := [monotonicity #582]: #586
-#281 := [trans #584 #573]: #574
-#224 := [quant-inst #12]: #585
-#296 := [mp #224 #281]: #583
-#439 := [unit-resolution #296 #619]: #581
-#440 := [unit-resolution #439 #438]: #256
-#250 := (not #256)
-#598 := (or #250 #595)
-#248 := (or #589 #250 #595)
-#273 := (= #276 #12)
-#272 := (not #271)
-#277 := (or #272 #273)
-#253 := (or #589 #277)
-#238 := (iff #253 #248)
-#249 := (or #589 #598)
-#575 := (iff #249 #248)
-#237 := [rewrite]: #575
-#591 := (iff #253 #249)
-#593 := (iff #277 #598)
-#261 := (iff #273 #595)
-#262 := [rewrite]: #261
-#381 := (iff #272 #250)
-#588 := [monotonicity #594]: #381
-#599 := [monotonicity #588 #262]: #593
-#233 := [monotonicity #599]: #591
-#239 := [trans #233 #237]: #238
-#590 := [quant-inst #12]: #253
-#240 := [mp #590 #239]: #248
-#441 := [unit-resolution #240 #613]: #598
-#534 := [unit-resolution #441 #440]: #595
-#531 := (not #595)
-#535 := (or #531 #577)
-#522 := [th-lemma arith triangle-eq]: #535
-#524 := [unit-resolution #522 #534]: #577
-#578 := (>= #597 0::Int)
-#516 := (or #531 #578)
-#513 := [th-lemma arith triangle-eq]: #516
-#515 := [unit-resolution #513 #534]: #578
-#550 := (<= #276 1::Int)
-#525 := (or #384 #550)
-#526 := [th-lemma arith triangle-eq]: #525
-#527 := [unit-resolution #526 #425]: #550
-[th-lemma arith gcd-test -1/2 -1/2 -1/2 -1/2 #529 #527 #515 #524]: false
-unsat
-4225ab6372dca8ebf6ba05ad5ea39526a6e2a129 55 0
-#2 := false
-#74 := 4::Int
-decl f3 :: (-> S2 S3 Int)
-decl f5 :: S3
-#8 := f5
-decl f4 :: S2
-#7 := f4
-#9 := (f3 f4 f5)
-#75 := (>= #9 4::Int)
-#76 := (not #75)
-#10 := 3::Int
-#65 := (>= #9 3::Int)
-#79 := (or #65 #76)
-#82 := (not #79)
-#14 := 7::Int
-#12 := 2::Int
-#13 := (* 2::Int #9)
-#15 := (< #13 7::Int)
-#11 := (< #9 3::Int)
-#16 := (implies #11 #15)
-#17 := (not #16)
-#85 := (iff #17 #82)
-#56 := (not #11)
-#57 := (or #56 #15)
-#60 := (not #57)
-#83 := (iff #60 #82)
-#80 := (iff #57 #79)
-#77 := (iff #15 #76)
-#78 := [rewrite]: #77
-#72 := (iff #56 #65)
-#63 := (not #65)
-#67 := (not #63)
-#70 := (iff #67 #65)
-#71 := [rewrite]: #70
-#68 := (iff #56 #67)
-#64 := (iff #11 #63)
-#66 := [rewrite]: #64
-#69 := [monotonicity #66]: #68
-#73 := [trans #69 #71]: #72
-#81 := [monotonicity #73 #78]: #80
-#84 := [monotonicity #81]: #83
-#61 := (iff #17 #60)
-#58 := (iff #16 #57)
-#59 := [rewrite]: #58
-#62 := [monotonicity #59]: #61
-#86 := [trans #62 #84]: #85
-#55 := [asserted]: #17
-#87 := [mp #55 #86]: #82
-#89 := [not-or-elim #87]: #75
-#88 := [not-or-elim #87]: #63
-#300 := (or #76 #65)
-#216 := [th-lemma arith farkas 1 1]: #300
-#301 := [unit-resolution #216 #88]: #76
-[unit-resolution #301 #89]: false
-unsat
-6b3381ed26844d4b649300d18bdcc49988752527 270 0
-#2 := false
-#7 := 0::Int
-decl f3 :: (-> S2 S3 Int)
-decl f5 :: (-> S4 Int S3)
-decl f7 :: S3
-#11 := f7
-decl f4 :: S2
-#8 := f4
-#12 := (f3 f4 f7)
-#10 := 1::Int
-#13 := (+ 1::Int #12)
-decl f6 :: S4
-#9 := f6
-#14 := (f5 f6 #13)
-#15 := (f3 f4 #14)
-#60 := -1::Int
-#61 := (* -1::Int #12)
-#62 := (+ #61 #15)
-#65 := (f5 f6 #62)
-#68 := (f3 f4 #65)
-#625 := (* -1::Int #15)
-#593 := (+ #625 #68)
-#597 := (+ #12 #593)
-#574 := (>= #597 0::Int)
-#594 := (= #597 0::Int)
-#631 := (+ #12 #625)
-#315 := (<= #631 0::Int)
-#614 := (<= #631 -1::Int)
-#621 := (= #631 -1::Int)
-#294 := (>= #12 -1::Int)
-#416 := (>= #12 0::Int)
-#545 := (= #12 0::Int)
-#218 := (f5 f6 #12)
-#564 := (f3 f4 #218)
-#466 := (= #564 0::Int)
-#550 := (not #416)
-#551 := [hypothesis]: #550
-#561 := (or #416 #466)
-#27 := (:var 0 Int)
-#29 := (f5 f6 #27)
-#639 := (pattern #29)
-#30 := (f3 f4 #29)
-#35 := (= #30 0::Int)
-#101 := (>= #27 0::Int)
-#132 := (or #101 #35)
-#646 := (forall (vars (?v0 Int)) (:pat #639) #132)
-#135 := (forall (vars (?v0 Int)) #132)
-#649 := (iff #135 #646)
-#647 := (iff #132 #132)
-#648 := [refl]: #647
-#650 := [quant-intro #648]: #649
-#148 := (~ #135 #135)
-#156 := (~ #132 #132)
-#157 := [refl]: #156
-#149 := [nnf-pos #157]: #148
-#34 := (< #27 0::Int)
-#36 := (implies #34 #35)
-#37 := (forall (vars (?v0 Int)) #36)
-#138 := (iff #37 #135)
-#116 := (not #34)
-#117 := (or #116 #35)
-#120 := (forall (vars (?v0 Int)) #117)
-#136 := (iff #120 #135)
-#133 := (iff #117 #132)
-#130 := (iff #116 #101)
-#103 := (not #101)
-#125 := (not #103)
-#128 := (iff #125 #101)
-#129 := [rewrite]: #128
-#126 := (iff #116 #125)
-#123 := (iff #34 #103)
-#124 := [rewrite]: #123
-#127 := [monotonicity #124]: #126
-#131 := [trans #127 #129]: #130
-#134 := [monotonicity #131]: #133
-#137 := [quant-intro #134]: #136
-#121 := (iff #37 #120)
-#118 := (iff #36 #117)
-#119 := [rewrite]: #118
-#122 := [quant-intro #119]: #121
-#139 := [trans #122 #137]: #138
-#115 := [asserted]: #37
-#140 := [mp #115 #139]: #135
-#158 := [mp~ #140 #149]: #135
-#651 := [mp #158 #650]: #646
-#616 := (not #646)
-#450 := (or #616 #416 #466)
-#465 := (or #616 #561)
-#468 := (iff #465 #450)
-#461 := [rewrite]: #468
-#467 := [quant-inst #12]: #465
-#469 := [mp #467 #461]: #450
-#552 := [unit-resolution #469 #651]: #561
-#546 := [unit-resolution #552 #551]: #466
-#540 := (= #12 #564)
-#537 := (= f7 #218)
-#303 := (= #218 f7)
-#22 := (:var 0 S3)
-#23 := (f3 f4 #22)
-#632 := (pattern #23)
-#24 := (f5 f6 #23)
-#25 := (= #24 #22)
-#633 := (forall (vars (?v0 S3)) (:pat #632) #25)
-#26 := (forall (vars (?v0 S3)) #25)
-#636 := (iff #26 #633)
-#634 := (iff #25 #25)
-#635 := [refl]: #634
-#637 := [quant-intro #635]: #636
-#154 := (~ #26 #26)
-#152 := (~ #25 #25)
-#153 := [refl]: #152
-#155 := [nnf-pos #153]: #154
-#91 := [asserted]: #26
-#144 := [mp~ #91 #155]: #26
-#638 := [mp #144 #637]: #633
-#305 := (not #633)
-#296 := (or #305 #303)
-#307 := [quant-inst #11]: #296
-#553 := [unit-resolution #307 #638]: #303
-#538 := [symm #553]: #537
-#541 := [monotonicity #538]: #540
-#542 := [trans #541 #546]: #545
-#543 := (not #545)
-#539 := (or #543 #416)
-#544 := [th-lemma arith triangle-eq]: #539
-#530 := [unit-resolution #544 #551 #542]: false
-#531 := [lemma #530]: #416
-#547 := (or #550 #294)
-#533 := [th-lemma arith farkas 1 1]: #547
-#534 := [unit-resolution #533 #531]: #294
-#628 := (not #294)
-#622 := (or #628 #621)
-#31 := (= #30 #27)
-#106 := (or #103 #31)
-#640 := (forall (vars (?v0 Int)) (:pat #639) #106)
-#109 := (forall (vars (?v0 Int)) #106)
-#643 := (iff #109 #640)
-#641 := (iff #106 #106)
-#642 := [refl]: #641
-#644 := [quant-intro #642]: #643
-#146 := (~ #109 #109)
-#145 := (~ #106 #106)
-#142 := [refl]: #145
-#147 := [nnf-pos #142]: #146
-#28 := (<= 0::Int #27)
-#32 := (implies #28 #31)
-#33 := (forall (vars (?v0 Int)) #32)
-#112 := (iff #33 #109)
-#93 := (not #28)
-#94 := (or #93 #31)
-#97 := (forall (vars (?v0 Int)) #94)
-#110 := (iff #97 #109)
-#107 := (iff #94 #106)
-#104 := (iff #93 #103)
-#100 := (iff #28 #101)
-#102 := [rewrite]: #100
-#105 := [monotonicity #102]: #104
-#108 := [monotonicity #105]: #107
-#111 := [quant-intro #108]: #110
-#98 := (iff #33 #97)
-#95 := (iff #32 #94)
-#96 := [rewrite]: #95
-#99 := [quant-intro #96]: #98
-#113 := [trans #99 #111]: #112
-#92 := [asserted]: #33
-#114 := [mp #92 #113]: #109
-#143 := [mp~ #114 #147]: #109
-#645 := [mp #143 #644]: #640
-#266 := (not #640)
-#607 := (or #266 #628 #621)
-#413 := (= #15 #13)
-#289 := (>= #13 0::Int)
-#624 := (not #289)
-#620 := (or #624 #413)
-#270 := (or #266 #620)
-#612 := (iff #270 #607)
-#272 := (or #266 #622)
-#610 := (iff #272 #607)
-#611 := [rewrite]: #610
-#273 := (iff #270 #272)
-#282 := (iff #620 #622)
-#281 := (iff #413 #621)
-#286 := [rewrite]: #281
-#629 := (iff #624 #628)
-#295 := (iff #289 #294)
-#627 := [rewrite]: #295
-#630 := [monotonicity #627]: #629
-#623 := [monotonicity #630 #286]: #282
-#609 := [monotonicity #623]: #273
-#613 := [trans #609 #611]: #612
-#271 := [quant-inst #13]: #270
-#608 := [mp #271 #613]: #607
-#535 := [unit-resolution #608 #645]: #622
-#532 := [unit-resolution #535 #534]: #621
-#536 := (not #621)
-#516 := (or #536 #614)
-#517 := [th-lemma arith triangle-eq]: #516
-#519 := [unit-resolution #517 #532]: #614
-#520 := (not #614)
-#521 := (or #520 #315)
-#522 := [th-lemma arith farkas 1 1]: #521
-#523 := [unit-resolution #522 #519]: #315
-#595 := (not #315)
-#588 := (or #595 #594)
-#585 := (or #266 #595 #594)
-#604 := (= #68 #62)
-#603 := (>= #62 0::Int)
-#600 := (not #603)
-#314 := (or #600 #604)
-#590 := (or #266 #314)
-#577 := (iff #590 #585)
-#586 := (or #266 #588)
-#434 := (iff #586 #585)
-#435 := [rewrite]: #434
-#592 := (iff #590 #586)
-#589 := (iff #314 #588)
-#598 := (iff #604 #594)
-#587 := [rewrite]: #598
-#596 := (iff #600 #595)
-#316 := (iff #603 #315)
-#317 := [rewrite]: #316
-#311 := [monotonicity #317]: #596
-#584 := [monotonicity #311 #587]: #589
-#433 := [monotonicity #584]: #592
-#578 := [trans #433 #435]: #577
-#591 := [quant-inst #62]: #590
-#579 := [mp #591 #578]: #585
-#524 := [unit-resolution #579 #645]: #588
-#525 := [unit-resolution #524 #523]: #594
-#526 := (not #594)
-#527 := (or #526 #574)
-#528 := [th-lemma arith triangle-eq]: #527
-#518 := [unit-resolution #528 #525]: #574
-#77 := (<= #68 0::Int)
-#17 := (- #15 #12)
-#18 := (f5 f6 #17)
-#19 := (f3 f4 #18)
-#16 := (* 0::Int #15)
-#20 := (< #16 #19)
-#21 := (not #20)
-#88 := (iff #21 #77)
-#71 := (< 0::Int #68)
-#74 := (not #71)
-#86 := (iff #74 #77)
-#78 := (not #77)
-#81 := (not #78)
-#84 := (iff #81 #77)
-#85 := [rewrite]: #84
-#82 := (iff #74 #81)
-#79 := (iff #71 #78)
-#80 := [rewrite]: #79
-#83 := [monotonicity #80]: #82
-#87 := [trans #83 #85]: #86
-#75 := (iff #21 #74)
-#72 := (iff #20 #71)
-#69 := (= #19 #68)
-#66 := (= #18 #65)
-#63 := (= #17 #62)
-#64 := [rewrite]: #63
-#67 := [monotonicity #64]: #66
-#70 := [monotonicity #67]: #69
-#58 := (= #16 0::Int)
-#59 := [rewrite]: #58
-#73 := [monotonicity #59 #70]: #72
-#76 := [monotonicity #73]: #75
-#89 := [trans #76 #87]: #88
-#57 := [asserted]: #21
-#90 := [mp #57 #89]: #77
-[th-lemma arith farkas -1 -1 1 #90 #519 #518]: false
-unsat
-b3acce989065928cb3ce15ce4113a910c6fff5aa 269 0
-#2 := false
-#7 := 0::Int
-decl f3 :: (-> S2 S3 Int)
-decl f5 :: (-> S4 Int S3)
-decl f7 :: S3
-#11 := f7
-decl f4 :: S2
-#8 := f4
-#12 := (f3 f4 f7)
-#10 := 1::Int
-#13 := (+ 1::Int #12)
-decl f6 :: S4
-#9 := f6
-#14 := (f5 f6 #13)
-#15 := (f3 f4 #14)
-#65 := -1::Int
-#66 := (+ -1::Int #15)
-#69 := (f5 f6 #66)
-#367 := (f3 f4 #69)
-#638 := (* -1::Int #367)
-#499 := (+ #12 #638)
-#459 := (>= #499 0::Int)
-#498 := (= #12 #367)
-#605 := (= f7 #69)
-#72 := (= #69 f7)
-#101 := (<= #15 0::Int)
-#173 := (iff #101 #72)
-#192 := (iff #173 #72)
-#1 := true
-#187 := (iff true #72)
-#190 := (iff #187 #72)
-#191 := [rewrite]: #190
-#188 := (iff #173 #187)
-#179 := (iff #101 true)
-#102 := (not #101)
-#105 := (iff #102 #72)
-#108 := (or #105 #102)
-#111 := (not #108)
-#16 := (< 0::Int #15)
-#17 := (if #16 true false)
-#22 := (not #17)
-#23 := (implies #22 false)
-#18 := (- #15 1::Int)
-#19 := (f5 f6 #18)
-#20 := (= #19 f7)
-#21 := (iff #17 #20)
-#24 := (or #21 #23)
-#25 := (or false #24)
-#26 := (not #25)
-#114 := (iff #26 #111)
-#75 := (iff #16 #72)
-#88 := (or #75 #16)
-#98 := (not #88)
-#112 := (iff #98 #111)
-#109 := (iff #88 #108)
-#103 := (iff #16 #102)
-#104 := [rewrite]: #103
-#106 := (iff #75 #105)
-#107 := [monotonicity #104]: #106
-#110 := [monotonicity #107 #104]: #109
-#113 := [monotonicity #110]: #112
-#99 := (iff #26 #98)
-#96 := (iff #25 #88)
-#91 := (or false #88)
-#94 := (iff #91 #88)
-#95 := [rewrite]: #94
-#92 := (iff #25 #91)
-#89 := (iff #24 #88)
-#86 := (iff #23 #16)
-#78 := (not #16)
-#81 := (implies #78 false)
-#84 := (iff #81 #16)
-#85 := [rewrite]: #84
-#82 := (iff #23 #81)
-#79 := (iff #22 #78)
-#63 := (iff #17 #16)
-#64 := [rewrite]: #63
-#80 := [monotonicity #64]: #79
-#83 := [monotonicity #80]: #82
-#87 := [trans #83 #85]: #86
-#76 := (iff #21 #75)
-#73 := (iff #20 #72)
-#70 := (= #19 #69)
-#67 := (= #18 #66)
-#68 := [rewrite]: #67
-#71 := [monotonicity #68]: #70
-#74 := [monotonicity #71]: #73
-#77 := [monotonicity #64 #74]: #76
-#90 := [monotonicity #77 #87]: #89
-#93 := [monotonicity #90]: #92
-#97 := [trans #93 #95]: #96
-#100 := [monotonicity #97]: #99
-#115 := [trans #100 #113]: #114
-#62 := [asserted]: #26
-#116 := [mp #62 #115]: #111
-#119 := [not-or-elim #116]: #101
-#180 := [iff-true #119]: #179
-#189 := [monotonicity #180]: #188
-#193 := [trans #189 #191]: #192
-#117 := (not #105)
-#174 := (iff #117 #173)
-#175 := [rewrite]: #174
-#118 := [not-or-elim #116]: #117
-#176 := [mp #118 #175]: #173
-#177 := [mp #176 #193]: #72
-#608 := [symm #177]: #605
-#513 := [monotonicity #608]: #498
-#514 := (not #498)
-#515 := (or #514 #459)
-#516 := [th-lemma arith triangle-eq]: #515
-#609 := [unit-resolution #516 #513]: #459
-#672 := (* -1::Int #15)
-#673 := (+ #12 #672)
-#654 := (<= #673 -1::Int)
-#671 := (= #673 -1::Int)
-#669 := (>= #12 -1::Int)
-#616 := (>= #367 0::Int)
-#621 := (= #367 0::Int)
-#646 := (>= #15 1::Int)
-#357 := (not #646)
-#606 := (or #357 #102)
-#610 := [th-lemma arith farkas 1 1]: #606
-#597 := [unit-resolution #610 #119]: #357
-#32 := (:var 0 Int)
-#34 := (f5 f6 #32)
-#682 := (pattern #34)
-#35 := (f3 f4 #34)
-#40 := (= #35 0::Int)
-#130 := (>= #32 0::Int)
-#161 := (or #130 #40)
-#689 := (forall (vars (?v0 Int)) (:pat #682) #161)
-#164 := (forall (vars (?v0 Int)) #161)
-#692 := (iff #164 #689)
-#690 := (iff #161 #161)
-#691 := [refl]: #690
-#693 := [quant-intro #691]: #692
-#197 := (~ #164 #164)
-#195 := (~ #161 #161)
-#196 := [refl]: #195
-#198 := [nnf-pos #196]: #197
-#39 := (< #32 0::Int)
-#41 := (implies #39 #40)
-#42 := (forall (vars (?v0 Int)) #41)
-#167 := (iff #42 #164)
-#145 := (not #39)
-#146 := (or #145 #40)
-#149 := (forall (vars (?v0 Int)) #146)
-#165 := (iff #149 #164)
-#162 := (iff #146 #161)
-#159 := (iff #145 #130)
-#132 := (not #130)
-#154 := (not #132)
-#157 := (iff #154 #130)
-#158 := [rewrite]: #157
-#155 := (iff #145 #154)
-#152 := (iff #39 #132)
-#153 := [rewrite]: #152
-#156 := [monotonicity #153]: #155
-#160 := [trans #156 #158]: #159
-#163 := [monotonicity #160]: #162
-#166 := [quant-intro #163]: #165
-#150 := (iff #42 #149)
-#147 := (iff #41 #146)
-#148 := [rewrite]: #147
-#151 := [quant-intro #148]: #150
-#168 := [trans #151 #166]: #167
-#144 := [asserted]: #42
-#169 := [mp #144 #168]: #164
-#199 := [mp~ #169 #198]: #164
-#694 := [mp #199 #693]: #689
-#660 := (not #689)
-#624 := (or #660 #646 #621)
-#644 := (>= #66 0::Int)
-#622 := (or #644 #621)
-#625 := (or #660 #622)
-#612 := (iff #625 #624)
-#623 := (or #646 #621)
-#626 := (or #660 #623)
-#458 := (iff #626 #624)
-#611 := [rewrite]: #458
-#455 := (iff #625 #626)
-#617 := (iff #622 #623)
-#643 := (iff #644 #646)
-#647 := [rewrite]: #643
-#618 := [monotonicity #647]: #617
-#457 := [monotonicity #618]: #455
-#614 := [trans #457 #611]: #612
-#619 := [quant-inst #66]: #625
-#615 := [mp #619 #614]: #624
-#599 := [unit-resolution #615 #694 #597]: #621
-#591 := (not #621)
-#588 := (or #591 #616)
-#590 := [th-lemma arith triangle-eq]: #588
-#600 := [unit-resolution #590 #599]: #616
-#602 := (not #459)
-#601 := (not #616)
-#598 := (or #669 #601 #602)
-#603 := [th-lemma arith assign-bounds 1 1]: #598
-#592 := [unit-resolution #603 #600 #609]: #669
-#663 := (not #669)
-#674 := (or #663 #671)
-#36 := (= #35 #32)
-#135 := (or #132 #36)
-#683 := (forall (vars (?v0 Int)) (:pat #682) #135)
-#138 := (forall (vars (?v0 Int)) #135)
-#686 := (iff #138 #683)
-#684 := (iff #135 #135)
-#685 := [refl]: #684
-#687 := [quant-intro #685]: #686
-#194 := (~ #138 #138)
-#182 := (~ #135 #135)
-#178 := [refl]: #182
-#171 := [nnf-pos #178]: #194
-#33 := (<= 0::Int #32)
-#37 := (implies #33 #36)
-#38 := (forall (vars (?v0 Int)) #37)
-#141 := (iff #38 #138)
-#122 := (not #33)
-#123 := (or #122 #36)
-#126 := (forall (vars (?v0 Int)) #123)
-#139 := (iff #126 #138)
-#136 := (iff #123 #135)
-#133 := (iff #122 #132)
-#129 := (iff #33 #130)
-#131 := [rewrite]: #129
-#134 := [monotonicity #131]: #133
-#137 := [monotonicity #134]: #136
-#140 := [quant-intro #137]: #139
-#127 := (iff #38 #126)
-#124 := (iff #37 #123)
-#125 := [rewrite]: #124
-#128 := [quant-intro #125]: #127
-#142 := [trans #128 #140]: #141
-#121 := [asserted]: #38
-#143 := [mp #121 #142]: #138
-#172 := [mp~ #143 #171]: #138
-#688 := [mp #172 #687]: #683
-#329 := (not #683)
-#665 := (or #329 #663 #671)
-#332 := (= #15 #13)
-#351 := (>= #13 0::Int)
-#352 := (not #351)
-#667 := (or #352 #332)
-#325 := (or #329 #667)
-#316 := (iff #325 #665)
-#309 := (or #329 #674)
-#314 := (iff #309 #665)
-#315 := [rewrite]: #314
-#650 := (iff #325 #309)
-#664 := (iff #667 #674)
-#670 := (iff #332 #671)
-#668 := [rewrite]: #670
-#337 := (iff #352 #663)
-#326 := (iff #351 #669)
-#456 := [rewrite]: #326
-#338 := [monotonicity #456]: #337
-#324 := [monotonicity #338 #668]: #664
-#313 := [monotonicity #324]: #650
-#652 := [trans #313 #315]: #316
-#666 := [quant-inst #13]: #325
-#653 := [mp #666 #652]: #665
-#593 := [unit-resolution #653 #688]: #674
-#594 := [unit-resolution #593 #592]: #671
-#595 := (not #671)
-#589 := (or #595 #654)
-#596 := [th-lemma arith triangle-eq]: #589
-#580 := [unit-resolution #596 #594]: #654
-[th-lemma arith farkas 1 -1 -1 1 #600 #119 #580 #609]: false
-unsat
-4f28f42d6f2b6fbb94a4ff1e55f0a807d8afe0f8 147 0
-#2 := false
-#10 := 0::Int
-decl f7 :: Int
-#9 := f7
-#54 := -1::Int
-#55 := (* -1::Int f7)
-#73 := (>= f7 0::Int)
-#80 := (if #73 f7 #55)
-#617 := (* -1::Int #80)
-#282 := (+ #55 #617)
-#625 := (<= #282 0::Int)
-#313 := (= #55 #80)
-#74 := (not #73)
-#280 := (+ f7 #617)
-#281 := (<= #280 0::Int)
-#228 := (= f7 #80)
-#283 := [hypothesis]: #73
-#229 := (or #74 #228)
-#314 := [def-axiom]: #229
-#619 := [unit-resolution #314 #283]: #228
-#620 := (not #228)
-#621 := (or #620 #281)
-#622 := [th-lemma arith triangle-eq]: #621
-#623 := [unit-resolution #622 #619]: #281
-#319 := (>= #80 0::Int)
-#316 := (not #319)
-decl f5 :: (-> S4 Int S3)
-#23 := (:var 0 Int)
-decl f6 :: S4
-#8 := f6
-#25 := (f5 f6 #23)
-#649 := (pattern #25)
-decl f3 :: (-> S2 S3 Int)
-decl f4 :: S2
-#7 := f4
-#26 := (f3 f4 #25)
-#27 := (= #26 #23)
-#110 := (>= #23 0::Int)
-#112 := (not #110)
-#115 := (or #112 #27)
-#650 := (forall (vars (?v0 Int)) (:pat #649) #115)
-#118 := (forall (vars (?v0 Int)) #115)
-#653 := (iff #118 #650)
-#651 := (iff #115 #115)
-#652 := [refl]: #651
-#654 := [quant-intro #652]: #653
-#155 := (~ #118 #118)
-#154 := (~ #115 #115)
-#151 := [refl]: #154
-#156 := [nnf-pos #151]: #155
-#24 := (<= 0::Int #23)
-#28 := (implies #24 #27)
-#29 := (forall (vars (?v0 Int)) #28)
-#121 := (iff #29 #118)
-#102 := (not #24)
-#103 := (or #102 #27)
-#106 := (forall (vars (?v0 Int)) #103)
-#119 := (iff #106 #118)
-#116 := (iff #103 #115)
-#113 := (iff #102 #112)
-#109 := (iff #24 #110)
-#111 := [rewrite]: #109
-#114 := [monotonicity #111]: #113
-#117 := [monotonicity #114]: #116
-#120 := [quant-intro #117]: #119
-#107 := (iff #29 #106)
-#104 := (iff #28 #103)
-#105 := [rewrite]: #104
-#108 := [quant-intro #105]: #107
-#122 := [trans #108 #120]: #121
-#101 := [asserted]: #29
-#123 := [mp #101 #122]: #118
-#152 := [mp~ #123 #156]: #118
-#655 := [mp #152 #654]: #650
-#85 := (f5 f6 #80)
-#88 := (f3 f4 #85)
-#91 := (= #88 #80)
-#94 := (not #91)
-#12 := (- f7)
-#11 := (< f7 0::Int)
-#13 := (if #11 #12 f7)
-#14 := (f5 f6 #13)
-#15 := (f3 f4 #14)
-#16 := (= #15 #13)
-#17 := (not #16)
-#97 := (iff #17 #94)
-#58 := (if #11 #55 f7)
-#61 := (f5 f6 #58)
-#64 := (f3 f4 #61)
-#67 := (= #64 #58)
-#70 := (not #67)
-#95 := (iff #70 #94)
-#92 := (iff #67 #91)
-#83 := (= #58 #80)
-#77 := (if #74 #55 f7)
-#81 := (= #77 #80)
-#82 := [rewrite]: #81
-#78 := (= #58 #77)
-#75 := (iff #11 #74)
-#76 := [rewrite]: #75
-#79 := [monotonicity #76]: #78
-#84 := [trans #79 #82]: #83
-#89 := (= #64 #88)
-#86 := (= #61 #85)
-#87 := [monotonicity #84]: #86
-#90 := [monotonicity #87]: #89
-#93 := [monotonicity #90 #84]: #92
-#96 := [monotonicity #93]: #95
-#71 := (iff #17 #70)
-#68 := (iff #16 #67)
-#59 := (= #13 #58)
-#56 := (= #12 #55)
-#57 := [rewrite]: #56
-#60 := [monotonicity #57]: #59
-#65 := (= #15 #64)
-#62 := (= #14 #61)
-#63 := [monotonicity #60]: #62
-#66 := [monotonicity #63]: #65
-#69 := [monotonicity #66 #60]: #68
-#72 := [monotonicity #69]: #71
-#98 := [trans #72 #96]: #97
-#53 := [asserted]: #17
-#99 := [mp #53 #98]: #94
-#630 := (not #650)
-#304 := (or #630 #316 #91)
-#636 := (or #316 #91)
-#305 := (or #630 #636)
-#638 := (iff #305 #304)
-#639 := [rewrite]: #638
-#637 := [quant-inst #80]: #305
-#640 := [mp #637 #639]: #304
-#618 := [unit-resolution #640 #99 #655]: #316
-#624 := [th-lemma arith farkas -1 1 1 #283 #618 #623]: false
-#262 := [lemma #624]: #74
-#315 := (or #73 #313)
-#306 := [def-axiom]: #315
-#267 := [unit-resolution #306 #262]: #313
-#268 := (not #313)
-#628 := (or #268 #625)
-#626 := [th-lemma arith triangle-eq]: #628
-#629 := [unit-resolution #626 #267]: #625
-#641 := (<= #80 0::Int)
-#615 := (or #641 #319)
-#616 := [th-lemma arith farkas 1 1]: #615
-#338 := [unit-resolution #616 #618]: #641
-[th-lemma arith farkas 1 1 1 #338 #262 #629]: false
-unsat
-7e6da58556dd56d85be0ea32c44b6f00c868dac5 431 0
-WARNING: For problems containing quantifiers, the model finding capabilities of Z3 work better when the formula does not contain nested quantifiers. You can use PULL_NESTED_QUANTIFIERS=true to eliminate nested quantifiers.
-#2 := false
-#446 := -1::Int
-decl f4 :: (-> S3 S2 Int)
-decl f7 :: (-> S4 Int S2)
-decl f9 :: S2
-#28 := f9
-decl f5 :: S3
-#11 := f5
-#29 := (f4 f5 f9)
-#27 := 4::Int
-#30 := (* 4::Int #29)
-#10 := 1::Int
-#112 := (+ 1::Int #30)
-decl f8 :: S4
-#17 := f8
-#115 := (f7 f8 #112)
-#362 := (f4 f5 #115)
-#662 := (* -1::Int #362)
-#673 := (+ #30 #662)
-#649 := (>= #673 -1::Int)
-#672 := (= #673 -1::Int)
-#41 := 0::Int
-#664 := (>= #29 0::Int)
-#644 := (= #362 0::Int)
-#593 := (not #644)
-#640 := (<= #362 0::Int)
-#628 := (not #640)
-#447 := (<= #362 1::Int)
-#752 := (not #447)
-decl f6 :: (-> S2 S2 S1)
-#7 := (:var 0 S2)
-#452 := (f6 #7 #115)
-#768 := (pattern #452)
-#451 := (= #7 #115)
-#18 := (f7 f8 1::Int)
-#19 := (= #7 #18)
-decl f1 :: S1
-#3 := f1
-#449 := (= #452 f1)
-#453 := (not #449)
-#432 := (or #453 #19 #451)
-#770 := (forall (vars (?v1 S2)) (:pat #768) #432)
-#426 := (not #770)
-#437 := (or #447 #426)
-#438 := (not #437)
-decl f3 :: (-> S2 S1)
-#118 := (f3 #115)
-#121 := (= #118 f1)
-#127 := (not #121)
-#771 := (or #127 #438)
-decl ?v1!0 :: (-> S2 S2)
-#772 := (?v1!0 #115)
-#767 := (= #772 #115)
-#425 := (= #772 #18)
-#773 := (f6 #772 #115)
-#774 := (= #773 f1)
-#769 := (not #774)
-#409 := (or #769 #425 #767)
-#766 := (not #409)
-#751 := (or #121 #447 #766)
-#413 := (not #751)
-#764 := (not #771)
-#414 := (or #764 #413)
-#415 := (not #414)
-#12 := (f4 f5 #7)
-#804 := (pattern #12)
-#8 := (f3 #7)
-#803 := (pattern #8)
-#219 := (?v1!0 #7)
-#222 := (= #219 #7)
-#221 := (= #219 #18)
-#202 := (f6 #219 #7)
-#203 := (= #202 f1)
-#220 := (not #203)
-#223 := (or #220 #221 #222)
-#224 := (not #223)
-#89 := (<= #12 1::Int)
-#9 := (= #8 f1)
-#266 := (or #9 #89 #224)
-#290 := (not #266)
-#14 := (:var 1 S2)
-#15 := (f6 #7 #14)
-#776 := (pattern #15)
-#20 := (= #7 #14)
-#16 := (= #15 f1)
-#73 := (not #16)
-#93 := (or #73 #19 #20)
-#777 := (forall (vars (?v1 S2)) (:pat #776) #93)
-#782 := (not #777)
-#785 := (or #89 #782)
-#788 := (not #785)
-#242 := (not #9)
-#791 := (or #242 #788)
-#794 := (not #791)
-#797 := (or #794 #290)
-#800 := (not #797)
-#805 := (forall (vars (?v0 S2)) (:pat #803 #804) #800)
-#96 := (forall (vars (?v1 S2)) #93)
-#225 := (not #96)
-#281 := (or #89 #225)
-#282 := (not #281)
-#283 := (or #242 #282)
-#289 := (not #283)
-#291 := (or #289 #290)
-#292 := (not #291)
-#297 := (forall (vars (?v0 S2)) #292)
-#806 := (iff #297 #805)
-#801 := (iff #292 #800)
-#798 := (iff #291 #797)
-#795 := (iff #289 #794)
-#792 := (iff #283 #791)
-#789 := (iff #282 #788)
-#786 := (iff #281 #785)
-#783 := (iff #225 #782)
-#780 := (iff #96 #777)
-#778 := (iff #93 #93)
-#779 := [refl]: #778
-#781 := [quant-intro #779]: #780
-#784 := [monotonicity #781]: #783
-#787 := [monotonicity #784]: #786
-#790 := [monotonicity #787]: #789
-#793 := [monotonicity #790]: #792
-#796 := [monotonicity #793]: #795
-#799 := [monotonicity #796]: #798
-#802 := [monotonicity #799]: #801
-#807 := [quant-intro #802]: #806
-#90 := (not #89)
-#99 := (and #90 #96)
-#248 := (or #242 #99)
-#271 := (and #248 #266)
-#274 := (forall (vars (?v0 S2)) #271)
-#298 := (iff #274 #297)
-#295 := (iff #271 #292)
-#286 := (and #283 #266)
-#293 := (iff #286 #292)
-#294 := [rewrite]: #293
-#287 := (iff #271 #286)
-#284 := (iff #248 #283)
-#214 := (iff #99 #282)
-#215 := [rewrite]: #214
-#285 := [monotonicity #215]: #284
-#288 := [monotonicity #285]: #287
-#296 := [trans #288 #294]: #295
-#299 := [quant-intro #296]: #298
-#216 := (not #90)
-#230 := (or #216 #224)
-#247 := (or #9 #230)
-#249 := (and #248 #247)
-#252 := (forall (vars (?v0 S2)) #249)
-#275 := (iff #252 #274)
-#272 := (iff #249 #271)
-#269 := (iff #247 #266)
-#260 := (or #89 #224)
-#263 := (or #9 #260)
-#267 := (iff #263 #266)
-#268 := [rewrite]: #267
-#264 := (iff #247 #263)
-#261 := (iff #230 #260)
-#258 := (iff #216 #89)
-#259 := [rewrite]: #258
-#262 := [monotonicity #259]: #261
-#265 := [monotonicity #262]: #264
-#270 := [trans #265 #268]: #269
-#273 := [monotonicity #270]: #272
-#276 := [quant-intro #273]: #275
-#102 := (iff #9 #99)
-#105 := (forall (vars (?v0 S2)) #102)
-#253 := (~ #105 #252)
-#250 := (~ #102 #249)
-#240 := (~ #99 #99)
-#238 := (~ #96 #96)
-#236 := (~ #93 #93)
-#237 := [refl]: #236
-#239 := [nnf-pos #237]: #238
-#234 := (~ #90 #90)
-#235 := [refl]: #234
-#241 := [monotonicity #235 #239]: #240
-#231 := (not #99)
-#232 := (~ #231 #230)
-#226 := (~ #225 #224)
-#227 := [sk]: #226
-#217 := (~ #216 #216)
-#218 := [refl]: #217
-#233 := [nnf-neg #218 #227]: #232
-#245 := (~ #9 #9)
-#246 := [refl]: #245
-#243 := (~ #242 #242)
-#244 := [refl]: #243
-#251 := [nnf-pos #244 #246 #233 #241]: #250
-#254 := [nnf-pos #251]: #253
-#21 := (or #19 #20)
-#22 := (implies #16 #21)
-#23 := (forall (vars (?v1 S2)) #22)
-#13 := (< 1::Int #12)
-#24 := (and #13 #23)
-#25 := (iff #9 #24)
-#26 := (forall (vars (?v0 S2)) #25)
-#108 := (iff #26 #105)
-#74 := (or #73 #21)
-#77 := (forall (vars (?v1 S2)) #74)
-#80 := (and #13 #77)
-#83 := (iff #9 #80)
-#86 := (forall (vars (?v0 S2)) #83)
-#106 := (iff #86 #105)
-#103 := (iff #83 #102)
-#100 := (iff #80 #99)
-#97 := (iff #77 #96)
-#94 := (iff #74 #93)
-#95 := [rewrite]: #94
-#98 := [quant-intro #95]: #97
-#91 := (iff #13 #90)
-#92 := [rewrite]: #91
-#101 := [monotonicity #92 #98]: #100
-#104 := [monotonicity #101]: #103
-#107 := [quant-intro #104]: #106
-#87 := (iff #26 #86)
-#84 := (iff #25 #83)
-#81 := (iff #24 #80)
-#78 := (iff #23 #77)
-#75 := (iff #22 #74)
-#76 := [rewrite]: #75
-#79 := [quant-intro #76]: #78
-#82 := [monotonicity #79]: #81
-#85 := [monotonicity #82]: #84
-#88 := [quant-intro #85]: #87
-#109 := [trans #88 #107]: #108
-#72 := [asserted]: #26
-#110 := [mp #72 #109]: #105
-#255 := [mp~ #110 #254]: #252
-#256 := [mp #255 #276]: #274
-#300 := [mp #256 #299]: #297
-#808 := [mp #300 #807]: #805
-#756 := (not #805)
-#753 := (or #756 #415)
-#757 := [quant-inst #115]: #753
-#566 := [unit-resolution #757 #808]: #415
-#730 := (or #414 #771)
-#736 := [def-axiom]: #730
-#621 := [unit-resolution #736 #566]: #771
-#602 := (or #764 #438)
-#138 := (>= #29 1::Int)
-#139 := (or #127 #138)
-#142 := (not #139)
-#35 := (<= 1::Int #29)
-#31 := (+ #30 1::Int)
-#32 := (f7 f8 #31)
-#33 := (f3 #32)
-#34 := (= #33 f1)
-#36 := (implies #34 #35)
-#37 := (not #36)
-#145 := (iff #37 #142)
-#128 := (or #127 #35)
-#133 := (not #128)
-#143 := (iff #133 #142)
-#140 := (iff #128 #139)
-#136 := (iff #35 #138)
-#137 := [rewrite]: #136
-#141 := [monotonicity #137]: #140
-#144 := [monotonicity #141]: #143
-#134 := (iff #37 #133)
-#131 := (iff #36 #128)
-#124 := (implies #121 #35)
-#129 := (iff #124 #128)
-#130 := [rewrite]: #129
-#125 := (iff #36 #124)
-#122 := (iff #34 #121)
-#119 := (= #33 #118)
-#116 := (= #32 #115)
-#113 := (= #31 #112)
-#114 := [rewrite]: #113
-#117 := [monotonicity #114]: #116
-#120 := [monotonicity #117]: #119
-#123 := [monotonicity #120]: #122
-#126 := [monotonicity #123]: #125
-#132 := [trans #126 #130]: #131
-#135 := [monotonicity #132]: #134
-#146 := [trans #135 #144]: #145
-#111 := [asserted]: #37
-#147 := [mp #111 #146]: #142
-#148 := [not-or-elim #147]: #121
-#744 := (or #764 #127 #438)
-#748 := [def-axiom]: #744
-#626 := [unit-resolution #748 #148]: #602
-#627 := [unit-resolution #626 #621]: #438
-#758 := (or #437 #752)
-#395 := [def-axiom]: #758
-#622 := [unit-resolution #395 #627]: #752
-#596 := (or #628 #447)
-#603 := [th-lemma arith farkas 1 1]: #596
-#562 := [unit-resolution #603 #622]: #628
-#595 := (or #593 #640)
-#597 := [th-lemma arith triangle-eq]: #595
-#604 := [unit-resolution #597 #562]: #593
-#623 := (or #664 #644)
-#42 := (:var 0 Int)
-#44 := (f7 f8 #42)
-#815 := (pattern #44)
-#45 := (f4 f5 #44)
-#50 := (= #45 0::Int)
-#162 := (>= #42 0::Int)
-#192 := (or #162 #50)
-#822 := (forall (vars (?v0 Int)) (:pat #815) #192)
-#195 := (forall (vars (?v0 Int)) #192)
-#825 := (iff #195 #822)
-#823 := (iff #192 #192)
-#824 := [refl]: #823
-#826 := [quant-intro #824]: #825
-#212 := (~ #195 #195)
-#278 := (~ #192 #192)
-#279 := [refl]: #278
-#213 := [nnf-pos #279]: #212
-#49 := (< #42 0::Int)
-#51 := (implies #49 #50)
-#52 := (forall (vars (?v0 Int)) #51)
-#198 := (iff #52 #195)
-#176 := (not #49)
-#177 := (or #176 #50)
-#180 := (forall (vars (?v0 Int)) #177)
-#196 := (iff #180 #195)
-#193 := (iff #177 #192)
-#190 := (iff #176 #162)
-#163 := (not #162)
-#185 := (not #163)
-#188 := (iff #185 #162)
-#189 := [rewrite]: #188
-#186 := (iff #176 #185)
-#183 := (iff #49 #163)
-#184 := [rewrite]: #183
-#187 := [monotonicity #184]: #186
-#191 := [trans #187 #189]: #190
-#194 := [monotonicity #191]: #193
-#197 := [quant-intro #194]: #196
-#181 := (iff #52 #180)
-#178 := (iff #51 #177)
-#179 := [rewrite]: #178
-#182 := [quant-intro #179]: #181
-#199 := [trans #182 #197]: #198
-#175 := [asserted]: #52
-#200 := [mp #175 #199]: #195
-#280 := [mp~ #200 #213]: #195
-#827 := [mp #280 #826]: #822
-#518 := (not #822)
-#629 := (or #518 #664 #644)
-#678 := (>= #112 0::Int)
-#650 := (or #678 #644)
-#630 := (or #518 #650)
-#638 := (iff #630 #629)
-#636 := (or #518 #623)
-#634 := (iff #636 #629)
-#637 := [rewrite]: #634
-#632 := (iff #630 #636)
-#624 := (iff #650 #623)
-#665 := (iff #678 #664)
-#666 := [rewrite]: #665
-#625 := [monotonicity #666]: #624
-#633 := [monotonicity #625]: #632
-#639 := [trans #633 #637]: #638
-#631 := [quant-inst #112]: #630
-#635 := [mp #631 #639]: #629
-#606 := [unit-resolution #635 #827]: #623
-#607 := [unit-resolution #606 #604]: #664
-#667 := (not #664)
-#651 := (or #667 #672)
-#46 := (= #45 #42)
-#166 := (or #163 #46)
-#816 := (forall (vars (?v0 Int)) (:pat #815) #166)
-#169 := (forall (vars (?v0 Int)) #166)
-#819 := (iff #169 #816)
-#817 := (iff #166 #166)
-#818 := [refl]: #817
-#820 := [quant-intro #818]: #819
-#210 := (~ #169 #169)
-#209 := (~ #166 #166)
-#206 := [refl]: #209
-#211 := [nnf-pos #206]: #210
-#43 := (<= 0::Int #42)
-#47 := (implies #43 #46)
-#48 := (forall (vars (?v0 Int)) #47)
-#172 := (iff #48 #169)
-#153 := (not #43)
-#154 := (or #153 #46)
-#157 := (forall (vars (?v0 Int)) #154)
-#170 := (iff #157 #169)
-#167 := (iff #154 #166)
-#164 := (iff #153 #163)
-#160 := (iff #43 #162)
-#161 := [rewrite]: #160
-#165 := [monotonicity #161]: #164
-#168 := [monotonicity #165]: #167
-#171 := [quant-intro #168]: #170
-#158 := (iff #48 #157)
-#155 := (iff #47 #154)
-#156 := [rewrite]: #155
-#159 := [quant-intro #156]: #158
-#173 := [trans #159 #171]: #172
-#152 := [asserted]: #48
-#174 := [mp #152 #173]: #169
-#207 := [mp~ #174 #211]: #169
-#821 := [mp #207 #820]: #816
-#655 := (not #816)
-#656 := (or #655 #667 #672)
-#661 := (= #362 #112)
-#679 := (not #678)
-#663 := (or #679 #661)
-#657 := (or #655 #663)
-#643 := (iff #657 #656)
-#653 := (or #655 #651)
-#641 := (iff #653 #656)
-#642 := [rewrite]: #641
-#659 := (iff #657 #653)
-#652 := (iff #663 #651)
-#670 := (iff #661 #672)
-#671 := [rewrite]: #670
-#668 := (iff #679 #667)
-#669 := [monotonicity #666]: #668
-#654 := [monotonicity #669 #671]: #652
-#645 := [monotonicity #654]: #659
-#646 := [trans #645 #642]: #643
-#658 := [quant-inst #112]: #657
-#647 := [mp #658 #646]: #656
-#608 := [unit-resolution #647 #821]: #651
-#618 := [unit-resolution #608 #607]: #672
-#598 := (not #672)
-#619 := (or #598 #649)
-#574 := [th-lemma arith triangle-eq]: #619
-#575 := [unit-resolution #574 #618]: #649
-#149 := (not #138)
-#150 := [not-or-elim #147]: #149
-[th-lemma arith farkas -4 1 1 #150 #622 #575]: false
-unsat
-f0add7d14def5da0b06e595882e28df041b2cf29 58 0
-#2 := false
-decl f8 :: S2
-#18 := f8
-decl f6 :: S2
-#14 := f6
-#20 := (= f6 f8)
-decl f3 :: (-> S4 S5 S2)
-decl f5 :: (-> S2 S3 S5)
-decl f7 :: S3
-#15 := f7
-#16 := (f5 f6 f7)
-decl f4 :: S4
-#7 := f4
-#17 := (f3 f4 #16)
-#19 := (= #17 f8)
-#45 := (not #19)
-#46 := (or #45 #20)
-#49 := (not #46)
-#21 := (implies #19 #20)
-#22 := (not #21)
-#50 := (iff #22 #49)
-#47 := (iff #21 #46)
-#48 := [rewrite]: #47
-#51 := [monotonicity #48]: #50
-#44 := [asserted]: #22
-#54 := [mp #44 #51]: #49
-#52 := [not-or-elim #54]: #19
-#125 := (= f6 #17)
-#124 := (= #17 f6)
-#9 := (:var 0 S3)
-#8 := (:var 1 S2)
-#10 := (f5 #8 #9)
-#540 := (pattern #10)
-#11 := (f3 f4 #10)
-#12 := (= #11 #8)
-#541 := (forall (vars (?v0 S2) (?v1 S3)) (:pat #540) #12)
-#13 := (forall (vars (?v0 S2) (?v1 S3)) #12)
-#544 := (iff #13 #541)
-#542 := (iff #12 #12)
-#543 := [refl]: #542
-#545 := [quant-intro #543]: #544
-#67 := (~ #13 #13)
-#65 := (~ #12 #12)
-#66 := [refl]: #65
-#68 := [nnf-pos #66]: #67
-#43 := [asserted]: #13
-#57 := [mp~ #43 #68]: #13
-#546 := [mp #57 #545]: #541
-#211 := (not #541)
-#126 := (or #211 #124)
-#212 := [quant-inst #14 #15]: #126
-#210 := [unit-resolution #212 #546]: #124
-#203 := [symm #210]: #125
-#214 := [trans #203 #52]: #20
-#53 := (not #20)
-#55 := [not-or-elim #54]: #53
-[unit-resolution #55 #214]: false
-unsat
-86345bce2206ce27e174d4b1d6d3e0182564f8a1 106 0
-#2 := false
-decl f11 :: (-> S9 S5 S3)
-decl f16 :: S5
-#34 := f16
-decl f12 :: S9
-#25 := f12
-#39 := (f11 f12 f16)
-decl f6 :: (-> S6 S7 S3)
-decl f13 :: S7
-#29 := f13
-decl f7 :: S6
-#14 := f7
-#38 := (f6 f7 f13)
-#40 := (= #38 #39)
-decl f5 :: (-> S2 S3 S5)
-decl f14 :: S3
-#30 := f14
-decl f15 :: S2
-#31 := f15
-#35 := (f5 f15 f14)
-#165 := (f11 f12 #35)
-#233 := (= #165 #39)
-#573 := (= #39 #165)
-#36 := (= f16 #35)
-decl f8 :: (-> S3 S2 S7)
-#32 := (f8 f14 f15)
-#33 := (= f13 #32)
-#37 := (and #33 #36)
-#68 := (not #37)
-#69 := (or #68 #40)
-#72 := (not #69)
-#41 := (implies #37 #40)
-#42 := (not #41)
-#73 := (iff #42 #72)
-#70 := (iff #41 #69)
-#71 := [rewrite]: #70
-#74 := [monotonicity #71]: #73
-#67 := [asserted]: #42
-#77 := [mp #67 #74]: #72
-#75 := [not-or-elim #77]: #37
-#78 := [and-elim #75]: #36
-#579 := [monotonicity #78]: #573
-#570 := [symm #579]: #233
-#213 := (= #38 #165)
-#569 := (= f14 #165)
-#251 := (= #165 f14)
-#9 := (:var 0 S3)
-#8 := (:var 1 S2)
-#10 := (f5 #8 #9)
-#580 := (pattern #10)
-#26 := (f11 f12 #10)
-#27 := (= #26 #9)
-#600 := (forall (vars (?v0 S2) (?v1 S3)) (:pat #580) #27)
-#28 := (forall (vars (?v0 S2) (?v1 S3)) #27)
-#603 := (iff #28 #600)
-#601 := (iff #27 #27)
-#602 := [refl]: #601
-#604 := [quant-intro #602]: #603
-#88 := (~ #28 #28)
-#107 := (~ #27 #27)
-#108 := [refl]: #107
-#89 := [nnf-pos #108]: #88
-#66 := [asserted]: #28
-#109 := [mp~ #66 #89]: #28
-#605 := [mp #109 #604]: #600
-#256 := (not #600)
-#253 := (or #256 #251)
-#257 := [quant-inst #31 #30]: #253
-#568 := [unit-resolution #257 #605]: #251
-#228 := [symm #568]: #569
-#229 := (= #38 f14)
-#254 := (f6 f7 #32)
-#255 := (= #254 f14)
-#16 := (:var 0 S2)
-#15 := (:var 1 S3)
-#17 := (f8 #15 #16)
-#587 := (pattern #17)
-#18 := (f6 f7 #17)
-#19 := (= #18 #15)
-#588 := (forall (vars (?v0 S3) (?v1 S2)) (:pat #587) #19)
-#20 := (forall (vars (?v0 S3) (?v1 S2)) #19)
-#591 := (iff #20 #588)
-#589 := (iff #19 #19)
-#590 := [refl]: #589
-#592 := [quant-intro #590]: #591
-#84 := (~ #20 #20)
-#83 := (~ #19 #19)
-#102 := [refl]: #83
-#85 := [nnf-pos #102]: #84
-#64 := [asserted]: #20
-#103 := [mp~ #64 #85]: #20
-#593 := [mp #103 #592]: #588
-#574 := (not #588)
-#230 := (or #574 #255)
-#361 := [quant-inst #30 #31]: #230
-#241 := [unit-resolution #361 #593]: #255
-#577 := (= #38 #254)
-#76 := [and-elim #75]: #33
-#578 := [monotonicity #76]: #577
-#571 := [trans #578 #241]: #229
-#555 := [trans #571 #228]: #213
-#217 := [trans #555 #570]: #40
-#79 := (not #40)
-#80 := [not-or-elim #77]: #79
-[unit-resolution #80 #217]: false
-unsat
-7180d528e452ef46d73483bf56a7d7018ee1b306 113 0
-#2 := false
-decl f3 :: (-> S2 S3 S4)
-decl f8 :: S3
-#30 := f8
-decl f11 :: S2
-#38 := f11
-#48 := (f3 f11 f8)
-decl f4 :: (-> S5 S4 S2)
-decl f13 :: S4
-#45 := f13
-decl f5 :: (-> S6 S3 S5)
-decl f10 :: S3
-#34 := f10
-decl f6 :: (-> S7 S2 S6)
-decl f12 :: S4
-#41 := f12
-decl f9 :: S3
-#31 := f9
-decl f7 :: S7
-#7 := f7
-#39 := (f6 f7 f11)
-#40 := (f5 #39 f9)
-#42 := (f4 #40 f12)
-#43 := (f6 f7 #42)
-#44 := (f5 #43 f10)
-#46 := (f4 #44 f13)
-#47 := (f3 #46 f8)
-#49 := (= #47 #48)
-#261 := (f3 #42 f8)
-#271 := (= #261 #48)
-#270 := (= #261 f12)
-#32 := (= f8 f9)
-#549 := (if #32 #270 #271)
-#23 := (:var 0 S3)
-#21 := (:var 1 S4)
-#19 := (:var 2 S3)
-#17 := (:var 3 S2)
-#18 := (f6 f7 #17)
-#20 := (f5 #18 #19)
-#22 := (f4 #20 #21)
-#24 := (f3 #22 #23)
-#593 := (pattern #24)
-#26 := (f3 #17 #23)
-#108 := (= #24 #26)
-#107 := (= #24 #21)
-#25 := (= #23 #19)
-#93 := (if #25 #107 #108)
-#594 := (forall (vars (?v0 S2) (?v1 S3) (?v2 S4) (?v3 S3)) (:pat #593) #93)
-#100 := (forall (vars (?v0 S2) (?v1 S3) (?v2 S4) (?v3 S3)) #93)
-#597 := (iff #100 #594)
-#595 := (iff #93 #93)
-#596 := [refl]: #595
-#598 := [quant-intro #596]: #597
-#27 := (if #25 #21 #26)
-#28 := (= #24 #27)
-#29 := (forall (vars (?v0 S2) (?v1 S3) (?v2 S4) (?v3 S3)) #28)
-#97 := (iff #29 #100)
-#94 := (iff #28 #93)
-#99 := [rewrite]: #94
-#98 := [quant-intro #99]: #97
-#91 := (~ #29 #29)
-#90 := (~ #28 #28)
-#105 := [refl]: #90
-#92 := [nnf-pos #105]: #91
-#73 := [asserted]: #29
-#106 := [mp~ #73 #92]: #29
-#95 := [mp #106 #98]: #100
-#599 := [mp #95 #598]: #594
-#236 := (not #594)
-#547 := (or #236 #549)
-#551 := [quant-inst #38 #31 #41 #30]: #547
-#550 := [unit-resolution #551 #599]: #549
-#548 := (not #549)
-#264 := (or #548 #271)
-#33 := (not #32)
-#35 := (= f8 f10)
-#36 := (not #35)
-#37 := (and #33 #36)
-#75 := (not #37)
-#76 := (or #75 #49)
-#79 := (not #76)
-#50 := (implies #37 #49)
-#51 := (not #50)
-#80 := (iff #51 #79)
-#77 := (iff #50 #76)
-#78 := [rewrite]: #77
-#81 := [monotonicity #78]: #80
-#74 := [asserted]: #51
-#84 := [mp #74 #81]: #79
-#82 := [not-or-elim #84]: #37
-#83 := [and-elim #82]: #33
-#542 := (or #548 #32 #271)
-#543 := [def-axiom]: #542
-#387 := [unit-resolution #543 #83]: #264
-#388 := [unit-resolution #387 #550]: #271
-#263 := (= #47 #261)
-#260 := (= #47 f13)
-#242 := (if #35 #260 #263)
-#367 := (or #236 #242)
-#574 := [quant-inst #42 #34 #45 #30]: #367
-#389 := [unit-resolution #574 #599]: #242
-#247 := (not #242)
-#531 := (or #247 #263)
-#85 := [and-elim #82]: #36
-#582 := (or #247 #35 #263)
-#583 := [def-axiom]: #582
-#532 := [unit-resolution #583 #85]: #531
-#533 := [unit-resolution #532 #389]: #263
-#529 := [trans #533 #388]: #49
-#86 := (not #49)
-#87 := [not-or-elim #84]: #86
-[unit-resolution #87 #529]: false
-unsat
-1c419ffe565f74df1755b00362bfce413a0bbb21 74 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f6 :: (-> S2 S3 S1)
-decl f5 :: S3
-#8 := f5
-decl f4 :: S2
-#7 := f4
-#11 := (f6 f4 f5)
-#12 := (= #11 f1)
-decl f3 :: (-> S2 S3 S1)
-#9 := (f3 f4 f5)
-#10 := (= #9 f1)
-#70 := (not #10)
-#77 := (iff #70 #12)
-#81 := (iff #77 false)
-#83 := (iff #10 false)
-#43 := (iff #10 #12)
-#59 := (or #43 #10 #12)
-#62 := (not #59)
-#1 := true
-#16 := (iff #12 true)
-#15 := (iff #10 true)
-#17 := (or #15 #16)
-#13 := (and #12 true)
-#14 := (iff #10 #13)
-#18 := (or #14 #17)
-#19 := (not #18)
-#65 := (iff #19 #62)
-#50 := (or #10 #12)
-#53 := (or #43 #50)
-#56 := (not #53)
-#63 := (iff #56 #62)
-#60 := (iff #53 #59)
-#61 := [rewrite]: #60
-#64 := [monotonicity #61]: #63
-#57 := (iff #19 #56)
-#54 := (iff #18 #53)
-#51 := (iff #17 #50)
-#48 := (iff #16 #12)
-#49 := [rewrite]: #48
-#46 := (iff #15 #10)
-#47 := [rewrite]: #46
-#52 := [monotonicity #47 #49]: #51
-#44 := (iff #14 #43)
-#41 := (iff #13 #12)
-#42 := [rewrite]: #41
-#45 := [monotonicity #42]: #44
-#55 := [monotonicity #45 #52]: #54
-#58 := [monotonicity #55]: #57
-#66 := [trans #58 #64]: #65
-#40 := [asserted]: #19
-#67 := [mp #40 #66]: #62
-#71 := [not-or-elim #67]: #70
-#84 := [iff-false #71]: #83
-#92 := (iff #77 #10)
-#87 := (iff #70 false)
-#90 := (iff #87 #10)
-#91 := [rewrite]: #90
-#88 := (iff #77 #87)
-#85 := (iff #12 false)
-#72 := (not #12)
-#73 := [not-or-elim #67]: #72
-#86 := [iff-false #73]: #85
-#89 := [monotonicity #86]: #88
-#93 := [trans #89 #91]: #92
-#82 := [trans #93 #84]: #81
-#68 := (not #43)
-#78 := (iff #68 #77)
-#79 := [rewrite]: #78
-#69 := [not-or-elim #67]: #68
-#80 := [mp #69 #79]: #77
-[mp #80 #82]: false
-unsat
 76d09b53549e91e8b6b69b6b905b5e8307464c6f 106 0
 #2 := false
 decl f7 :: S2
@@ -10684,1133 +1668,6 @@
 #215 := [quant-inst #19]: #210
 [unit-resolution #215 #568 #555]: false
 unsat
-1396ebdf2db554fa58d5de90d7aa27d442610f3c 29 0
-#2 := false
-#1 := true
-decl f1 :: S1
-#3 := f1
-decl f3 :: (-> S1 S1)
-decl f2 :: S1
-#4 := f2
-decl f4 :: (-> S2 S1)
-#7 := (:var 0 S2)
-#8 := (f4 #7)
-#9 := (= #8 f1)
-#10 := (exists (vars (?v0 S2)) #9)
-#11 := (if #10 f1 f2)
-#12 := (f3 #11)
-#13 := (= #12 f1)
-#14 := (implies #13 true)
-#15 := (not #14)
-#44 := (iff #15 false)
-#39 := (not true)
-#42 := (iff #39 false)
-#43 := [rewrite]: #42
-#40 := (iff #15 #39)
-#37 := (iff #14 true)
-#38 := [rewrite]: #37
-#41 := [monotonicity #38]: #40
-#45 := [trans #41 #43]: #44
-#36 := [asserted]: #15
-[mp #36 #45]: false
-unsat
-352ef3cbf5b05cf656dc82749237c3b497c01e97 113 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: (-> S2 Int S1)
-#21 := 42::Int
-decl f4 :: (-> S3 Int S2)
-#19 := 3::Int
-decl f6 :: S3
-#17 := f6
-#20 := (f4 f6 3::Int)
-#22 := (f3 #20 42::Int)
-#23 := (= #22 f1)
-decl f5 :: S3
-#7 := f5
-#139 := (f4 f5 3::Int)
-#223 := (f3 #139 42::Int)
-#224 := (= #223 f1)
-#10 := (:var 0 Int)
-#8 := (:var 1 Int)
-#9 := (f4 f5 #8)
-#11 := (f3 #9 #10)
-#12 := (pattern #11)
-#27 := 0::Int
-#49 := -1::Int
-#50 := (* -1::Int #10)
-#51 := (+ #8 #50)
-#52 := (<= #51 0::Int)
-#13 := (= #11 f1)
-#55 := (iff #13 #52)
-#58 := (forall (vars (?v0 Int) (?v1 Int)) (:pat #12) #55)
-#83 := (~ #58 #58)
-#81 := (~ #55 #55)
-#82 := [refl]: #81
-#84 := [nnf-pos #82]: #83
-#14 := (<= #8 #10)
-#15 := (iff #13 #14)
-#16 := (forall (vars (?v0 Int) (?v1 Int)) (:pat #12) #15)
-#59 := (iff #16 #58)
-#56 := (iff #15 #55)
-#53 := (iff #14 #52)
-#54 := [rewrite]: #53
-#57 := [monotonicity #54]: #56
-#60 := [quant-intro #57]: #59
-#46 := [asserted]: #16
-#61 := [mp #46 #60]: #58
-#73 := [mp~ #61 #84]: #58
-#190 := (not #58)
-#191 := (or #190 #224)
-#225 := (* -1::Int 42::Int)
-#216 := (+ 3::Int #225)
-#227 := (<= #216 0::Int)
-#228 := (iff #224 #227)
-#192 := (or #190 #228)
-#529 := (iff #192 #191)
-#531 := (iff #191 #191)
-#532 := [rewrite]: #531
-#186 := (iff #228 #224)
-#1 := true
-#201 := (iff #224 true)
-#202 := (iff #201 #224)
-#543 := [rewrite]: #202
-#206 := (iff #228 #201)
-#551 := (iff #227 true)
-#203 := -39::Int
-#547 := (<= -39::Int 0::Int)
-#550 := (iff #547 true)
-#545 := [rewrite]: #550
-#548 := (iff #227 #547)
-#214 := (= #216 -39::Int)
-#229 := -42::Int
-#209 := (+ 3::Int -42::Int)
-#333 := (= #209 -39::Int)
-#540 := [rewrite]: #333
-#544 := (= #216 #209)
-#226 := (= #225 -42::Int)
-#230 := [rewrite]: #226
-#546 := [monotonicity #230]: #544
-#215 := [trans #546 #540]: #214
-#549 := [monotonicity #215]: #548
-#541 := [trans #549 #545]: #551
-#542 := [monotonicity #541]: #206
-#527 := [trans #542 #543]: #186
-#530 := [monotonicity #527]: #529
-#533 := [trans #530 #532]: #529
-#193 := [quant-inst #19 #21]: #192
-#528 := [mp #193 #533]: #191
-#534 := [unit-resolution #528 #73]: #224
-#536 := (= #22 #223)
-#178 := (= #20 #139)
-#537 := (= #139 #20)
-#172 := (= f5 f6)
-#18 := (= f6 f5)
-#48 := (not #18)
-#62 := (or #48 #23)
-#65 := (not #62)
-#24 := (implies #18 #23)
-#25 := (not #24)
-#66 := (iff #25 #65)
-#63 := (iff #24 #62)
-#64 := [rewrite]: #63
-#67 := [monotonicity #64]: #66
-#47 := [asserted]: #25
-#70 := [mp #47 #67]: #65
-#68 := [not-or-elim #70]: #18
-#535 := [symm #68]: #172
-#177 := [monotonicity #535]: #537
-#538 := [symm #177]: #178
-#539 := [monotonicity #538]: #536
-#525 := [trans #539 #534]: #23
-#69 := (not #23)
-#71 := [not-or-elim #70]: #69
-[unit-resolution #71 #525]: false
-unsat
-8fa5494ea43f950aa9add5e070d1d34c34426a1b 29 0
-#2 := false
-#1 := true
-decl f1 :: S1
-#3 := f1
-decl f3 :: (-> S1 S1)
-decl f2 :: S1
-#4 := f2
-decl f4 :: (-> S2 S1)
-#7 := (:var 0 S2)
-#8 := (f4 #7)
-#9 := (= #8 f1)
-#10 := (forall (vars (?v0 S2)) #9)
-#11 := (if #10 f1 f2)
-#12 := (f3 #11)
-#13 := (= #12 f1)
-#14 := (implies #13 true)
-#15 := (not #14)
-#44 := (iff #15 false)
-#39 := (not true)
-#42 := (iff #39 false)
-#43 := [rewrite]: #42
-#40 := (iff #15 #39)
-#37 := (iff #14 true)
-#38 := [rewrite]: #37
-#41 := [monotonicity #38]: #40
-#45 := [trans #41 #43]: #44
-#36 := [asserted]: #15
-[mp #36 #45]: false
-unsat
-2fd48adc6f5c51aec7f5f7945dc6937d8ac8fd61 424 0
-#2 := false
-decl f9 :: (-> S6 S7 S7)
-decl f12 :: S7
-#22 := f12
-decl f13 :: (-> S9 S2 S6)
-decl f5 :: (-> S4 Int S2)
-#49 := 2::Int
-decl f6 :: S4
-#11 := f6
-#50 := (f5 f6 2::Int)
-decl f14 :: S9
-#28 := f14
-#51 := (f13 f14 #50)
-#52 := (f9 #51 f12)
-#14 := 1::Int
-#44 := (f5 f6 1::Int)
-#45 := (f13 f14 #44)
-#53 := (f9 #45 #52)
-#46 := (f9 #45 f12)
-#41 := 0::Int
-#42 := (f5 f6 0::Int)
-#43 := (f13 f14 #42)
-#47 := (f9 #43 #46)
-decl f10 :: (-> S8 S3 S6)
-decl f4 :: S3
-#7 := f4
-decl f11 :: S8
-#19 := f11
-#40 := (f10 f11 f4)
-#48 := (f9 #40 #47)
-#54 := (= #48 #53)
-#654 := (f9 #40 #46)
-decl f3 :: (-> S3 S2 S2)
-#337 := (f3 f4 #42)
-#338 := (f13 f14 #337)
-#656 := (f9 #338 #654)
-#321 := (= #656 #53)
-#353 := (= #53 #656)
-#391 := (= #52 #654)
-#248 := (f9 #40 f12)
-#596 := (f3 f4 #44)
-#593 := (f13 f14 #596)
-#597 := (f9 #593 #248)
-#389 := (= #597 #654)
-#584 := (= #654 #597)
-#31 := (:var 0 S7)
-#26 := (:var 2 S3)
-#27 := (f10 f11 #26)
-#36 := (f9 #27 #31)
-#29 := (:var 1 S2)
-#34 := (f3 #26 #29)
-#35 := (f13 f14 #34)
-#37 := (f9 #35 #36)
-#670 := (pattern #37)
-#30 := (f13 f14 #29)
-#32 := (f9 #30 #31)
-#33 := (f9 #27 #32)
-#669 := (pattern #33)
-#38 := (= #33 #37)
-#671 := (forall (vars (?v0 S3) (?v1 S2) (?v2 S7)) (:pat #669 #670) #38)
-#39 := (forall (vars (?v0 S3) (?v1 S2) (?v2 S7)) #38)
-#674 := (iff #39 #671)
-#672 := (iff #38 #38)
-#673 := [refl]: #672
-#675 := [quant-intro #673]: #674
-#161 := (~ #39 #39)
-#179 := (~ #38 #38)
-#180 := [refl]: #179
-#162 := [nnf-pos #180]: #161
-#103 := [asserted]: #39
-#181 := [mp~ #103 #162]: #39
-#676 := [mp #181 #675]: #671
-#323 := (not #671)
-#575 := (or #323 #584)
-#577 := [quant-inst #7 #44 #22]: #575
-#430 := [unit-resolution #577 #676]: #584
-#390 := [symm #430]: #389
-#387 := (= #52 #597)
-#435 := (= f12 #248)
-#332 := (= #248 f12)
-#20 := (:var 0 S3)
-#21 := (f10 f11 #20)
-#662 := (pattern #21)
-#23 := (f9 #21 f12)
-#24 := (= #23 f12)
-#663 := (forall (vars (?v0 S3)) (:pat #662) #24)
-#25 := (forall (vars (?v0 S3)) #24)
-#666 := (iff #25 #663)
-#664 := (iff #24 #24)
-#665 := [refl]: #664
-#667 := [quant-intro #665]: #666
-#159 := (~ #25 #25)
-#158 := (~ #24 #24)
-#177 := [refl]: #158
-#160 := [nnf-pos #177]: #159
-#102 := [asserted]: #25
-#178 := [mp~ #102 #160]: #25
-#668 := [mp #178 #667]: #663
-#335 := (not #663)
-#339 := (or #335 #332)
-#318 := [quant-inst #7]: #339
-#431 := [unit-resolution #318 #668]: #332
-#436 := [symm #431]: #435
-#384 := (= #51 #593)
-#399 := (= #50 #596)
-decl f7 :: (-> S5 S2 Int)
-decl f8 :: S5
-#12 := f8
-#254 := (f7 f8 #44)
-#580 := (+ 1::Int #254)
-#581 := (f5 f6 #580)
-#412 := (= #581 #596)
-#582 := (= #596 #581)
-#8 := (:var 0 S2)
-#9 := (f3 f4 #8)
-#10 := (pattern #9)
-#13 := (f7 f8 #8)
-#90 := (+ 1::Int #13)
-#93 := (f5 f6 #90)
-#96 := (= #9 #93)
-#99 := (forall (vars (?v0 S2)) (:pat #10) #96)
-#175 := (~ #99 #99)
-#173 := (~ #96 #96)
-#174 := [refl]: #173
-#176 := [nnf-pos #174]: #175
-#15 := (+ #13 1::Int)
-#16 := (f5 f6 #15)
-#17 := (= #9 #16)
-#18 := (forall (vars (?v0 S2)) (:pat #10) #17)
-#100 := (iff #18 #99)
-#97 := (iff #17 #96)
-#94 := (= #16 #93)
-#91 := (= #15 #90)
-#92 := [rewrite]: #91
-#95 := [monotonicity #92]: #94
-#98 := [monotonicity #95]: #97
-#101 := [quant-intro #98]: #100
-#89 := [asserted]: #18
-#104 := [mp #89 #101]: #99
-#157 := [mp~ #104 #176]: #99
-#585 := (not #99)
-#567 := (or #585 #582)
-#568 := [quant-inst #44]: #567
-#278 := [unit-resolution #568 #157]: #582
-#398 := [symm #278]: #412
-#400 := (= #50 #581)
-#522 := (f7 f8 #581)
-#450 := (f5 f6 #522)
-#451 := (= #450 #581)
-#677 := (pattern #13)
-#56 := (f5 f6 #13)
-#57 := (= #56 #8)
-#678 := (forall (vars (?v0 S2)) (:pat #677) #57)
-#58 := (forall (vars (?v0 S2)) #57)
-#681 := (iff #58 #678)
-#679 := (iff #57 #57)
-#680 := [refl]: #679
-#682 := [quant-intro #680]: #681
-#163 := (~ #58 #58)
-#182 := (~ #57 #57)
-#183 := [refl]: #182
-#164 := [nnf-pos #183]: #163
-#106 := [asserted]: #58
-#165 := [mp~ #106 #164]: #58
-#683 := [mp #165 #682]: #678
-#453 := (not #678)
-#458 := (or #453 #451)
-#441 := [quant-inst #581]: #458
-#437 := [unit-resolution #441 #683]: #451
-#408 := (= #50 #450)
-#407 := (= 2::Int #522)
-#410 := (= #522 2::Int)
-#247 := -1::Int
-#507 := (* -1::Int #522)
-#488 := (+ #254 #507)
-#484 := (<= #488 -1::Int)
-#452 := (= #488 -1::Int)
-#520 := (>= #254 -1::Int)
-#515 := (>= #254 1::Int)
-#631 := (= #254 1::Int)
-#59 := (:var 0 Int)
-#61 := (f5 f6 #59)
-#684 := (pattern #61)
-#62 := (f7 f8 #61)
-#63 := (= #62 #59)
-#117 := (>= #59 0::Int)
-#118 := (not #117)
-#121 := (or #118 #63)
-#685 := (forall (vars (?v0 Int)) (:pat #684) #121)
-#124 := (forall (vars (?v0 Int)) #121)
-#688 := (iff #124 #685)
-#686 := (iff #121 #121)
-#687 := [refl]: #686
-#689 := [quant-intro #687]: #688
-#167 := (~ #124 #124)
-#166 := (~ #121 #121)
-#184 := [refl]: #166
-#168 := [nnf-pos #184]: #167
-#60 := (<= 0::Int #59)
-#64 := (implies #60 #63)
-#65 := (forall (vars (?v0 Int)) #64)
-#127 := (iff #65 #124)
-#108 := (not #60)
-#109 := (or #108 #63)
-#112 := (forall (vars (?v0 Int)) #109)
-#125 := (iff #112 #124)
-#122 := (iff #109 #121)
-#119 := (iff #108 #118)
-#115 := (iff #60 #117)
-#116 := [rewrite]: #115
-#120 := [monotonicity #116]: #119
-#123 := [monotonicity #120]: #122
-#126 := [quant-intro #123]: #125
-#113 := (iff #65 #112)
-#110 := (iff #64 #109)
-#111 := [rewrite]: #110
-#114 := [quant-intro #111]: #113
-#128 := [trans #114 #126]: #127
-#107 := [asserted]: #65
-#129 := [mp #107 #128]: #124
-#185 := [mp~ #129 #168]: #124
-#690 := [mp #185 #689]: #685
-#641 := (not #685)
-#623 := (or #641 #631)
-#360 := (>= 1::Int 0::Int)
-#361 := (not #360)
-#632 := (or #361 #631)
-#627 := (or #641 #632)
-#628 := (iff #627 #623)
-#618 := (iff #623 #623)
-#619 := [rewrite]: #618
-#626 := (iff #632 #631)
-#344 := (or false #631)
-#347 := (iff #344 #631)
-#625 := [rewrite]: #347
-#345 := (iff #632 #344)
-#630 := (iff #361 false)
-#1 := true
-#651 := (not true)
-#652 := (iff #651 false)
-#311 := [rewrite]: #652
-#629 := (iff #361 #651)
-#354 := (iff #360 true)
-#355 := [rewrite]: #354
-#633 := [monotonicity #355]: #629
-#634 := [trans #633 #311]: #630
-#346 := [monotonicity #634]: #345
-#340 := [trans #346 #625]: #626
-#617 := [monotonicity #340]: #628
-#614 := [trans #617 #619]: #628
-#624 := [quant-inst #14]: #627
-#615 := [mp #624 #614]: #623
-#433 := [unit-resolution #615 #690]: #631
-#438 := (not #631)
-#417 := (or #438 #515)
-#420 := [th-lemma arith triangle-eq]: #417
-#424 := [unit-resolution #420 #433]: #515
-#426 := (not #515)
-#427 := (or #426 #520)
-#425 := [th-lemma arith farkas 1 1]: #427
-#428 := [unit-resolution #425 #424]: #520
-#525 := (not #520)
-#482 := (or #641 #525 #452)
-#518 := (= #522 #580)
-#516 := (>= #580 0::Int)
-#517 := (not #516)
-#519 := (or #517 #518)
-#489 := (or #641 #519)
-#493 := (iff #489 #482)
-#513 := (or #525 #452)
-#479 := (or #641 #513)
-#490 := (iff #479 #482)
-#492 := [rewrite]: #490
-#481 := (iff #489 #479)
-#508 := (iff #519 #513)
-#506 := (iff #518 #452)
-#512 := [rewrite]: #506
-#521 := (iff #517 #525)
-#523 := (iff #516 #520)
-#524 := [rewrite]: #523
-#526 := [monotonicity #524]: #521
-#514 := [monotonicity #526 #512]: #508
-#483 := [monotonicity #514]: #481
-#494 := [trans #483 #492]: #493
-#448 := [quant-inst #580]: #489
-#504 := [mp #448 #494]: #482
-#416 := [unit-resolution #504 #690 #428]: #452
-#419 := (not #452)
-#421 := (or #419 #484)
-#422 := [th-lemma arith triangle-eq]: #421
-#418 := [unit-resolution #422 #416]: #484
-#505 := (>= #488 -1::Int)
-#423 := (or #419 #505)
-#413 := [th-lemma arith triangle-eq]: #423
-#403 := [unit-resolution #413 #416]: #505
-#404 := (<= #254 1::Int)
-#405 := (or #438 #404)
-#406 := [th-lemma arith triangle-eq]: #405
-#409 := [unit-resolution #406 #433]: #404
-#414 := [th-lemma arith eq-propagate -1 -1 1 1 #424 #409 #403 #418]: #410
-#415 := [symm #414]: #407
-#411 := [monotonicity #415]: #408
-#401 := [trans #411 #437]: #400
-#402 := [trans #401 #398]: #399
-#386 := [monotonicity #402]: #384
-#388 := [monotonicity #386 #436]: #387
-#392 := [trans #388 #390]: #391
-#351 := (= #45 #338)
-#350 := (= #44 #337)
-#658 := (f7 f8 #42)
-#586 := (+ 1::Int #658)
-#578 := (f5 f6 #586)
-#357 := (= #578 #337)
-#587 := (= #337 #578)
-#590 := (or #585 #587)
-#579 := [quant-inst #42]: #590
-#393 := [unit-resolution #579 #157]: #587
-#367 := [symm #393]: #357
-#348 := (= #44 #578)
-#570 := (f7 f8 #578)
-#447 := (f5 f6 #570)
-#449 := (= #447 #578)
-#454 := (or #453 #449)
-#455 := [quant-inst #578]: #454
-#394 := [unit-resolution #455 #683]: #449
-#365 := (= #44 #447)
-#364 := (= 1::Int #570)
-#362 := (= #570 1::Int)
-#564 := (* -1::Int #658)
-#565 := (+ #570 #564)
-#538 := (<= #565 1::Int)
-#562 := (= #565 1::Int)
-#573 := (>= #658 -1::Int)
-#589 := (>= #658 0::Int)
-#659 := (= #658 0::Int)
-#642 := (or #641 #659)
-#443 := (>= 0::Int 0::Int)
-#650 := (not #443)
-#660 := (or #650 #659)
-#643 := (or #641 #660)
-#644 := (iff #643 #642)
-#645 := (iff #642 #642)
-#647 := [rewrite]: #645
-#639 := (iff #660 #659)
-#637 := (or false #659)
-#301 := (iff #637 #659)
-#302 := [rewrite]: #301
-#299 := (iff #660 #637)
-#653 := (iff #650 false)
-#310 := (iff #650 #651)
-#655 := (iff #443 true)
-#661 := [rewrite]: #655
-#315 := [monotonicity #661]: #310
-#295 := [trans #315 #311]: #653
-#300 := [monotonicity #295]: #299
-#640 := [trans #300 #302]: #639
-#281 := [monotonicity #640]: #644
-#286 := [trans #281 #647]: #644
-#638 := [quant-inst #41]: #643
-#287 := [mp #638 #286]: #642
-#395 := [unit-resolution #287 #690]: #659
-#396 := (not #659)
-#385 := (or #396 #589)
-#397 := [th-lemma arith triangle-eq]: #385
-#374 := [unit-resolution #397 #395]: #589
-#376 := (not #589)
-#377 := (or #376 #573)
-#378 := [th-lemma arith farkas 1 1]: #377
-#379 := [unit-resolution #378 #374]: #573
-#560 := (not #573)
-#551 := (or #641 #560 #562)
-#571 := (= #570 #586)
-#576 := (>= #586 0::Int)
-#583 := (not #576)
-#572 := (or #583 #571)
-#552 := (or #641 #572)
-#548 := (iff #552 #551)
-#547 := (or #560 #562)
-#554 := (or #641 #547)
-#557 := (iff #554 #551)
-#558 := [rewrite]: #557
-#555 := (iff #552 #554)
-#549 := (iff #572 #547)
-#566 := (iff #571 #562)
-#546 := [rewrite]: #566
-#561 := (iff #583 #560)
-#569 := (iff #576 #573)
-#574 := [rewrite]: #569
-#563 := [monotonicity #574]: #561
-#550 := [monotonicity #563 #546]: #549
-#556 := [monotonicity #550]: #555
-#559 := [trans #556 #558]: #548
-#553 := [quant-inst #586]: #552
-#537 := [mp #553 #559]: #551
-#380 := [unit-resolution #537 #690 #379]: #562
-#381 := (not #562)
-#382 := (or #381 #538)
-#375 := [th-lemma arith triangle-eq]: #382
-#383 := [unit-resolution #375 #380]: #538
-#540 := (>= #565 1::Int)
-#368 := (or #381 #540)
-#369 := [th-lemma arith triangle-eq]: #368
-#370 := [unit-resolution #369 #380]: #540
-#588 := (<= #658 0::Int)
-#372 := (or #396 #588)
-#371 := [th-lemma arith triangle-eq]: #372
-#373 := [unit-resolution #371 #395]: #588
-#363 := [th-lemma arith eq-propagate -1 -1 -1 -1 #374 #373 #370 #383]: #362
-#356 := [symm #363]: #364
-#366 := [monotonicity #356]: #365
-#349 := [trans #366 #394]: #348
-#341 := [trans #349 #367]: #350
-#352 := [monotonicity #341]: #351
-#319 := [monotonicity #352 #392]: #353
-#322 := [symm #319]: #321
-#312 := (= #48 #656)
-#324 := (or #323 #312)
-#657 := [quant-inst #7 #42 #46]: #324
-#342 := [unit-resolution #657 #676]: #312
-#313 := [trans #342 #322]: #54
-#55 := (not #54)
-#105 := [asserted]: #55
-[unit-resolution #105 #313]: false
-unsat
-7a4c9001ff099c38b0602b196e3bc37f301b1551 24 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: (-> S2 S1)
-#7 := (:var 0 S2)
-#8 := (f3 #7)
-#9 := (= #8 f1)
-#10 := (forall (vars (?v0 S2)) #9)
-#11 := (not #10)
-#12 := (or #10 #11)
-#13 := (not #12)
-#42 := (iff #13 false)
-#1 := true
-#37 := (not true)
-#40 := (iff #37 false)
-#41 := [rewrite]: #40
-#38 := (iff #13 #37)
-#35 := (iff #12 true)
-#36 := [rewrite]: #35
-#39 := [monotonicity #36]: #38
-#43 := [trans #39 #41]: #42
-#34 := [asserted]: #13
-[mp #34 #43]: false
-unsat
-5e86b4c9726ef5b2868f22c9ea608e9e3558803e 344 0
-#2 := false
-decl f7 :: (-> S5 Int S2)
-#28 := 6::Int
-decl f8 :: S5
-#14 := f8
-#29 := (f7 f8 6::Int)
-decl f3 :: (-> S3 S2 S2)
-decl f5 :: (-> S4 S2 Int)
-#21 := 4::Int
-#22 := (f7 f8 4::Int)
-decl f4 :: S3
-#7 := f4
-#23 := (f3 f4 #22)
-decl f6 :: S4
-#10 := f6
-#24 := (f5 f6 #23)
-#25 := (* 4::Int #24)
-#26 := (f7 f8 #25)
-#27 := (f3 f4 #26)
-#30 := (= #27 #29)
-#526 := (f3 f4 #29)
-#490 := (= #526 #29)
-#552 := (f5 f6 #29)
-#67 := -10::Int
-#528 := (+ -10::Int #552)
-#508 := (f7 f8 #528)
-#454 := (f3 f4 #508)
-#509 := (= #526 #454)
-#12 := 10::Int
-#525 := (>= #552 10::Int)
-#514 := (if #525 #509 #490)
-#8 := (:var 0 S2)
-#9 := (f3 f4 #8)
-#665 := (pattern #9)
-#11 := (f5 f6 #8)
-#664 := (pattern #11)
-#182 := (= #9 #8)
-#68 := (+ -10::Int #11)
-#71 := (f7 f8 #68)
-#74 := (f3 f4 #71)
-#181 := (= #9 #74)
-#88 := (>= #11 10::Int)
-#169 := (if #88 #181 #182)
-#666 := (forall (vars (?v0 S2)) (:pat #664 #665) #169)
-#184 := (forall (vars (?v0 S2)) #169)
-#669 := (iff #184 #666)
-#667 := (iff #169 #169)
-#668 := [refl]: #667
-#670 := [quant-intro #668]: #669
-#93 := (if #88 #74 #8)
-#98 := (= #9 #93)
-#101 := (forall (vars (?v0 S2)) #98)
-#185 := (iff #101 #184)
-#170 := (iff #98 #169)
-#183 := [rewrite]: #170
-#186 := [quant-intro #183]: #185
-#173 := (~ #101 #101)
-#171 := (~ #98 #98)
-#172 := [refl]: #171
-#174 := [nnf-pos #172]: #173
-#15 := (- #11 10::Int)
-#16 := (f7 f8 #15)
-#17 := (f3 f4 #16)
-#13 := (< #11 10::Int)
-#18 := (if #13 #8 #17)
-#19 := (= #9 #18)
-#20 := (forall (vars (?v0 S2)) #19)
-#104 := (iff #20 #101)
-#77 := (if #13 #8 #74)
-#80 := (= #9 #77)
-#83 := (forall (vars (?v0 S2)) #80)
-#102 := (iff #83 #101)
-#99 := (iff #80 #98)
-#96 := (= #77 #93)
-#86 := (not #88)
-#90 := (if #86 #8 #74)
-#94 := (= #90 #93)
-#95 := [rewrite]: #94
-#91 := (= #77 #90)
-#87 := (iff #13 #86)
-#89 := [rewrite]: #87
-#92 := [monotonicity #89]: #91
-#97 := [trans #92 #95]: #96
-#100 := [monotonicity #97]: #99
-#103 := [quant-intro #100]: #102
-#84 := (iff #20 #83)
-#81 := (iff #19 #80)
-#78 := (= #18 #77)
-#75 := (= #17 #74)
-#72 := (= #16 #71)
-#69 := (= #15 #68)
-#70 := [rewrite]: #69
-#73 := [monotonicity #70]: #72
-#76 := [monotonicity #73]: #75
-#79 := [monotonicity #76]: #78
-#82 := [monotonicity #79]: #81
-#85 := [quant-intro #82]: #84
-#105 := [trans #85 #103]: #104
-#66 := [asserted]: #20
-#106 := [mp #66 #105]: #101
-#159 := [mp~ #106 #174]: #101
-#187 := [mp #159 #186]: #184
-#671 := [mp #187 #670]: #666
-#320 := (not #666)
-#516 := (or #320 #514)
-#484 := [quant-inst #29]: #516
-#469 := [unit-resolution #484 #671]: #514
-#450 := (not #525)
-#515 := (<= #552 6::Int)
-#553 := (= #552 6::Int)
-#36 := (:var 0 Int)
-#38 := (f7 f8 #36)
-#678 := (pattern #38)
-#39 := (f5 f6 #38)
-#40 := (= #39 #36)
-#35 := 0::Int
-#119 := (>= #36 0::Int)
-#120 := (not #119)
-#123 := (or #120 #40)
-#679 := (forall (vars (?v0 Int)) (:pat #678) #123)
-#126 := (forall (vars (?v0 Int)) #123)
-#682 := (iff #126 #679)
-#680 := (iff #123 #123)
-#681 := [refl]: #680
-#683 := [quant-intro #681]: #682
-#165 := (~ #126 #126)
-#164 := (~ #123 #123)
-#176 := [refl]: #164
-#166 := [nnf-pos #176]: #165
-#37 := (<= 0::Int #36)
-#41 := (implies #37 #40)
-#42 := (forall (vars (?v0 Int)) #41)
-#129 := (iff #42 #126)
-#110 := (not #37)
-#111 := (or #110 #40)
-#114 := (forall (vars (?v0 Int)) #111)
-#127 := (iff #114 #126)
-#124 := (iff #111 #123)
-#121 := (iff #110 #120)
-#117 := (iff #37 #119)
-#118 := [rewrite]: #117
-#122 := [monotonicity #118]: #121
-#125 := [monotonicity #122]: #124
-#128 := [quant-intro #125]: #127
-#115 := (iff #42 #114)
-#112 := (iff #41 #111)
-#113 := [rewrite]: #112
-#116 := [quant-intro #113]: #115
-#130 := [trans #116 #128]: #129
-#109 := [asserted]: #42
-#131 := [mp #109 #130]: #126
-#177 := [mp~ #131 #166]: #126
-#684 := [mp #177 #683]: #679
-#611 := (not #679)
-#545 := (or #611 #553)
-#549 := (>= 6::Int 0::Int)
-#551 := (not #549)
-#554 := (or #551 #553)
-#546 := (or #611 #554)
-#547 := (iff #546 #545)
-#529 := (iff #545 #545)
-#530 := [rewrite]: #529
-#543 := (iff #554 #553)
-#550 := (or false #553)
-#540 := (iff #550 #553)
-#542 := [rewrite]: #540
-#561 := (iff #554 #550)
-#559 := (iff #551 false)
-#1 := true
-#619 := (not true)
-#616 := (iff #619 false)
-#617 := [rewrite]: #616
-#557 := (iff #551 #619)
-#555 := (iff #549 true)
-#556 := [rewrite]: #555
-#558 := [monotonicity #556]: #557
-#560 := [trans #558 #617]: #559
-#539 := [monotonicity #560]: #561
-#544 := [trans #539 #542]: #543
-#533 := [monotonicity #544]: #547
-#531 := [trans #533 #530]: #547
-#541 := [quant-inst #28]: #546
-#534 := [mp #541 #531]: #545
-#470 := [unit-resolution #534 #684]: #553
-#477 := (not #553)
-#478 := (or #477 #515)
-#479 := [th-lemma arith triangle-eq]: #478
-#464 := [unit-resolution #479 #470]: #515
-#480 := (not #515)
-#441 := (or #480 #450)
-#442 := [th-lemma arith farkas 1 1]: #441
-#449 := [unit-resolution #442 #464]: #450
-#491 := (not #514)
-#485 := (or #491 #525 #490)
-#492 := [def-axiom]: #485
-#451 := [unit-resolution #492 #449 #469]: #490
-#404 := (= #27 #526)
-#641 := (f5 f6 #26)
-#638 := (+ -10::Int #641)
-#345 := (f7 f8 #638)
-#360 := (f3 f4 #345)
-#403 := (= #360 #526)
-#416 := (= #345 #29)
-#411 := (= #638 6::Int)
-#312 := (f5 f6 #22)
-#249 := -1::Int
-#518 := (* -1::Int #312)
-#519 := (+ #24 #518)
-#524 := (<= #519 0::Int)
-#517 := (= #24 #312)
-#303 := (= #23 #22)
-#297 := (+ -10::Int #312)
-#639 := (f7 f8 #297)
-#301 := (f3 f4 #639)
-#302 := (= #23 #301)
-#317 := (>= #312 10::Int)
-#304 := (if #317 #302 #303)
-#643 := (or #320 #304)
-#644 := [quant-inst #22]: #643
-#452 := [unit-resolution #644 #671]: #304
-#640 := (not #317)
-#447 := (<= #312 4::Int)
-#625 := (= #312 4::Int)
-#612 := (or #611 #625)
-#256 := (>= 4::Int 0::Int)
-#633 := (not #256)
-#629 := (or #633 #625)
-#606 := (or #611 #629)
-#613 := (iff #606 #612)
-#608 := (iff #612 #612)
-#615 := [rewrite]: #608
-#609 := (iff #629 #625)
-#618 := (or false #625)
-#466 := (iff #618 #625)
-#467 := [rewrite]: #466
-#624 := (iff #629 #618)
-#622 := (iff #633 false)
-#620 := (iff #633 #619)
-#626 := (iff #256 true)
-#630 := [rewrite]: #626
-#621 := [monotonicity #630]: #620
-#623 := [trans #621 #617]: #622
-#465 := [monotonicity #623]: #624
-#610 := [trans #465 #467]: #609
-#614 := [monotonicity #610]: #613
-#444 := [trans #614 #615]: #613
-#607 := [quant-inst #21]: #606
-#446 := [mp #607 #444]: #612
-#453 := [unit-resolution #446 #684]: #625
-#455 := (not #625)
-#456 := (or #455 #447)
-#457 := [th-lemma arith triangle-eq]: #456
-#458 := [unit-resolution #457 #453]: #447
-#459 := (not #447)
-#460 := (or #459 #640)
-#443 := [th-lemma arith farkas 1 1]: #460
-#461 := [unit-resolution #443 #458]: #640
-#645 := (not #304)
-#647 := (or #645 #317 #303)
-#649 := [def-axiom]: #647
-#431 := [unit-resolution #649 #461 #452]: #303
-#434 := [monotonicity #431]: #517
-#436 := (not #517)
-#437 := (or #436 #524)
-#438 := [th-lemma arith triangle-eq]: #437
-#280 := [unit-resolution #438 #434]: #524
-#520 := (>= #519 0::Int)
-#439 := (or #436 #520)
-#435 := [th-lemma arith triangle-eq]: #439
-#440 := [unit-resolution #435 #434]: #520
-#600 := (>= #312 4::Int)
-#419 := (or #455 #600)
-#422 := [th-lemma arith triangle-eq]: #419
-#426 := [unit-resolution #422 #453]: #600
-#504 := (* -1::Int #641)
-#505 := (+ #25 #504)
-#582 := (<= #505 0::Int)
-#503 := (= #505 0::Int)
-#597 := (>= #24 0::Int)
-#429 := (not #520)
-#428 := (not #600)
-#427 := (or #597 #428 #429)
-#430 := [th-lemma arith assign-bounds 1 1]: #427
-#418 := [unit-resolution #430 #426 #440]: #597
-#499 := (not #597)
-#598 := (or #499 #503)
-#586 := (or #611 #499 #503)
-#593 := (= #641 #25)
-#596 := (>= #25 0::Int)
-#498 := (not #596)
-#594 := (or #498 #593)
-#588 := (or #611 #594)
-#587 := (iff #588 #586)
-#577 := (or #611 #598)
-#590 := (iff #577 #586)
-#591 := [rewrite]: #590
-#579 := (iff #588 #577)
-#595 := (iff #594 #598)
-#501 := (iff #593 #503)
-#502 := [rewrite]: #501
-#500 := (iff #498 #499)
-#482 := (iff #596 #597)
-#497 := [rewrite]: #482
-#493 := [monotonicity #497]: #500
-#599 := [monotonicity #493 #502]: #595
-#589 := [monotonicity #599]: #579
-#592 := [trans #589 #591]: #587
-#580 := [quant-inst #25]: #588
-#581 := [mp #580 #592]: #586
-#421 := [unit-resolution #581 #684]: #598
-#423 := [unit-resolution #421 #418]: #503
-#424 := (not #503)
-#420 := (or #424 #582)
-#425 := [th-lemma arith triangle-eq]: #420
-#415 := [unit-resolution #425 #423]: #582
-#583 := (>= #505 0::Int)
-#405 := (or #424 #583)
-#407 := [th-lemma arith triangle-eq]: #405
-#408 := [unit-resolution #407 #423]: #583
-#412 := [th-lemma arith eq-propagate 1 1 -4 -4 -4 -4 #408 #415 #426 #458 #440 #280]: #411
-#409 := [monotonicity #412]: #416
-#401 := [monotonicity #409]: #403
-#361 := (= #27 #360)
-#362 := (= #27 #26)
-#642 := (>= #641 10::Int)
-#363 := (if #642 #361 #362)
-#634 := (or #320 #363)
-#356 := [quant-inst #26]: #634
-#417 := [unit-resolution #356 #671]: #363
-#410 := (not #582)
-#413 := (or #642 #410 #428 #429)
-#414 := [th-lemma arith assign-bounds 1 4 4]: #413
-#400 := [unit-resolution #414 #426 #415 #440]: #642
-#631 := (not #642)
-#357 := (not #363)
-#635 := (or #357 #631 #361)
-#632 := [def-axiom]: #635
-#402 := [unit-resolution #632 #400 #417]: #361
-#386 := [trans #402 #401]: #404
-#388 := [trans #386 #451]: #30
-#31 := (not #30)
-#107 := [asserted]: #31
-[unit-resolution #107 #388]: false
-unsat
-013f2c4f5eccbaac1754336d2ce477a569c8d0cd 1 0
-unsat
-8954c874576a1a34e48535e83e9151ff299d36aa 95 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: (-> S3 S2 S1)
-decl f10 :: (-> S5 S6 S2)
-decl f12 :: (-> S3 S6)
-decl f6 :: S3
-#19 := f6
-#43 := (f12 f6)
-decl f11 :: S5
-#42 := f11
-#44 := (f10 f11 #43)
-decl f8 :: (-> S4 S2 S3)
-decl f9 :: S4
-#29 := f9
-#45 := (f8 f9 #44)
-#53 := (f3 #45 #44)
-#54 := (= #53 f1)
-#55 := (not #54)
-#140 := [asserted]: #55
-decl f4 :: S3
-#7 := f4
-#46 := (f12 f4)
-#47 := (f10 f11 #46)
-#50 := (f8 f9 #47)
-#51 := (f3 #50 #44)
-#52 := (= #51 f1)
-#139 := [asserted]: #52
-#48 := (f3 #45 #47)
-#49 := (= #48 f1)
-#138 := [asserted]: #49
-#8 := (:var 0 S2)
-#12 := (:var 1 S2)
-#34 := (f8 f9 #12)
-#35 := (f3 #34 #8)
-#30 := (:var 2 S2)
-#31 := (f8 f9 #30)
-#32 := (f3 #31 #12)
-#635 := (pattern #32 #35)
-#37 := (f3 #31 #8)
-#38 := (= #37 f1)
-#36 := (= #35 f1)
-#112 := (not #36)
-#33 := (= #32 f1)
-#120 := (not #33)
-#129 := (or #120 #112 #38)
-#636 := (forall (vars (?v0 S2) (?v1 S2) (?v2 S2)) (:pat #635) #129)
-#132 := (forall (vars (?v0 S2) (?v1 S2) (?v2 S2)) #129)
-#639 := (iff #132 #636)
-#637 := (iff #129 #129)
-#638 := [refl]: #637
-#640 := [quant-intro #638]: #639
-#146 := (~ #132 #132)
-#162 := (~ #129 #129)
-#163 := [refl]: #162
-#147 := [nnf-pos #163]: #146
-#39 := (implies #36 #38)
-#40 := (implies #33 #39)
-#41 := (forall (vars (?v0 S2) (?v1 S2) (?v2 S2)) #40)
-#135 := (iff #41 #132)
-#114 := (or #112 #38)
-#121 := (or #120 #114)
-#126 := (forall (vars (?v0 S2) (?v1 S2) (?v2 S2)) #121)
-#133 := (iff #126 #132)
-#130 := (iff #121 #129)
-#131 := [rewrite]: #130
-#134 := [quant-intro #131]: #133
-#127 := (iff #41 #126)
-#124 := (iff #40 #121)
-#117 := (implies #33 #114)
-#122 := (iff #117 #121)
-#123 := [rewrite]: #122
-#118 := (iff #40 #117)
-#115 := (iff #39 #114)
-#116 := [rewrite]: #115
-#119 := [monotonicity #116]: #118
-#125 := [trans #119 #123]: #124
-#128 := [quant-intro #125]: #127
-#136 := [trans #128 #134]: #135
-#111 := [asserted]: #41
-#137 := [mp #111 #136]: #132
-#164 := [mp~ #137 #147]: #132
-#641 := [mp #164 #640]: #636
-#305 := (not #52)
-#219 := (not #49)
-#307 := (not #636)
-#298 := (or #307 #219 #305 #54)
-#220 := (or #219 #305 #54)
-#309 := (or #307 #220)
-#311 := (iff #309 #298)
-#308 := [rewrite]: #311
-#310 := [quant-inst #44 #47 #44]: #309
-#312 := [mp #310 #308]: #298
-[unit-resolution #312 #641 #138 #139 #140]: false
-unsat
-b66bf263776a429b47555990b2282b5f0c94c465 59 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f22 :: (-> Int S1)
-#70 := 1::Int
-#71 := (f22 1::Int)
-#72 := (= #71 f1)
-#73 := (not #72)
-#163 := [asserted]: #73
-#57 := (:var 0 Int)
-#58 := (f22 #57)
-#695 := (pattern #58)
-#59 := (= #58 f1)
-#696 := (forall (vars (?v0 Int)) (:pat #695) #59)
-#160 := (forall (vars (?v0 Int)) #59)
-#699 := (iff #160 #696)
-#697 := (iff #59 #59)
-#698 := [refl]: #697
-#700 := [quant-intro #698]: #699
-#174 := (~ #160 #160)
-#192 := (~ #59 #59)
-#193 := [refl]: #192
-#175 := [nnf-pos #193]: #174
-decl f17 :: (-> S10 S1)
-decl f23 :: (-> S13 S10 S10)
-decl f26 :: S10
-#62 := f26
-decl f24 :: (-> S14 Int S13)
-decl f25 :: S14
-#60 := f25
-#61 := (f24 f25 #57)
-#63 := (f23 #61 f26)
-#64 := (f17 #63)
-#65 := (= #64 f1)
-#66 := (not #65)
-#67 := (or #65 #66)
-#68 := (and #59 #67)
-#69 := (forall (vars (?v0 Int)) #68)
-#161 := (iff #69 #160)
-#158 := (iff #68 #59)
-#1 := true
-#153 := (and #59 true)
-#156 := (iff #153 #59)
-#157 := [rewrite]: #156
-#154 := (iff #68 #153)
-#150 := (iff #67 true)
-#152 := [rewrite]: #150
-#155 := [monotonicity #152]: #154
-#159 := [trans #155 #157]: #158
-#162 := [quant-intro #159]: #161
-#149 := [asserted]: #69
-#165 := [mp #149 #162]: #160
-#194 := [mp~ #165 #175]: #160
-#701 := [mp #194 #700]: #696
-#253 := (not #696)
-#338 := (or #253 #72)
-#339 := [quant-inst #70]: #338
-[unit-resolution #339 #701 #163]: false
-unsat
 d9c8c0d6c38991be073d0ed9988535642e4f47a6 396 0
 #2 := false
 decl f12 :: (-> S9 S10 S4)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/SMT_Examples/SMT_Examples.certs2	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,5185 @@
+bbf19253181a221ae876ff5207c4e19acd49bcc5 5 0
+unsat
+((set-logic AUFLIA)
+(proof
+(mp (asserted (not true)) (rewrite (= (not true) false)) false)))
+
+d87f11f143468ba38d9fc95b46b5b98486b253cf 9 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x14 (monotonicity (rewrite (= (and |$p| true) |$p|)) (= (= (and |$p| true) |$p|) (= |$p| |$p|)))))
+(let ((@x18 (trans @x14 (rewrite (= (= |$p| |$p|) true)) (= (= (and |$p| true) |$p|) true))))
+(let ((@x21 (monotonicity @x18 (= (not (= (and |$p| true) |$p|)) (not true)))))
+(let ((@x25 (trans @x21 (rewrite (= (not true) false)) (= (not (= (and |$p| true) |$p|)) false))))
+(mp (asserted (not (= (and |$p| true) |$p|))) @x25 false)))))))
+
+99f2877c9b2926aa4e958996112303a242b952bc 5 0
+unsat
+((set-logic AUFLIA)
+(proof
+(|unit-resolution| (|not-or-elim| (asserted (not (or |$p| (not |$p|)))) (not |$p|)) (|not-or-elim| (asserted (not (or |$p| (not |$p|)))) |$p|) false)))
+
+0a07d7a11138b117a4d59df4d18dbfe8aa605632 13 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x11 (not (=> (and (or |$p| |$q|) (not |$p|)) |$q|))))
+(let (($x15 (= (=> (and (or |$p| |$q|) (not |$p|)) |$q|) (or (not (and (or |$p| |$q|) (not |$p|))) |$q|))))
+(let ((@x19 (monotonicity (rewrite $x15) (= $x11 (not (or (not (and (or |$p| |$q|) (not |$p|))) |$q|))))))
+(let ((@x20 (mp (asserted $x11) @x19 (not (or (not (and (or |$p| |$q|) (not |$p|))) |$q|)))))
+(let ((@x23 (|and-elim| (|not-or-elim| @x20 (and (or |$p| |$q|) (not |$p|))) (not |$p|))))
+(let ((@x32 (monotonicity (|iff-false| @x23 (= |$p| false)) (|iff-false| (|not-or-elim| @x20 (not |$q|)) (= |$q| false)) (= (or |$p| |$q|) (or false false)))))
+(let ((@x36 (trans @x32 (rewrite (= (or false false) false)) (= (or |$p| |$q|) false))))
+(let (($x7 (or |$p| |$q|)))
+(mp (|and-elim| (|not-or-elim| @x20 (and $x7 (not |$p|))) $x7) @x36 false)))))))))))
+
+7f27e7dcdafd31a50eb11bdc93e6dd1ff163e460 15 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x14 (or (=> |$p1| (or (and |$p3| |$p2|) (and |$p1| |$p3|))) |$p1|)))
+(let (($x15 (=> (or (and |$p1| |$p2|) |$p3|) $x14)))
+(let (($x16 (not $x15)))
+(let (($x25 (= (or (or (not |$p1|) (and |$p3| |$p2|) (and |$p1| |$p3|)) |$p1|) true)))
+(let (($x23 (= $x14 (or (or (not |$p1|) (and |$p3| |$p2|) (and |$p1| |$p3|)) |$p1|))))
+(let (($x20 (= (=> |$p1| (or (and |$p3| |$p2|) (and |$p1| |$p3|))) (or (not |$p1|) (and |$p3| |$p2|) (and |$p1| |$p3|)))))
+(let ((@x28 (trans (monotonicity (rewrite $x20) $x23) (rewrite $x25) (= $x14 true))))
+(let ((@x31 (monotonicity @x28 (= $x15 (=> (or (and |$p1| |$p2|) |$p3|) true)))))
+(let ((@x35 (trans @x31 (rewrite (= (=> (or (and |$p1| |$p2|) |$p3|) true) true)) (= $x15 true))))
+(let ((@x42 (trans (monotonicity @x35 (= $x16 (not true))) (rewrite (= (not true) false)) (= $x16 false))))
+(mp (asserted $x16) @x42 false)))))))))))))
+
+98a52c3bde4a8a8511a7d117590a4d90d6c2632f 13 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x10 (and |$c| |$d|)))
+(let (($x7 (and |$a| |$b|)))
+(let (($x13 (not (=> (or $x7 $x10) (or $x7 $x10)))))
+(let (($x17 (= (=> (or $x7 $x10) (or $x7 $x10)) (or (not (or $x7 $x10)) $x7 $x10))))
+(let ((@x21 (monotonicity (rewrite $x17) (= $x13 (not (or (not (or $x7 $x10)) $x7 $x10))))))
+(let ((@x22 (mp (asserted $x13) @x21 (not (or (not (or $x7 $x10)) $x7 $x10)))))
+(let ((@x34 (monotonicity (|iff-false| (|not-or-elim| @x22 (not $x7)) (= $x7 false)) (|iff-false| (|not-or-elim| @x22 (not $x10)) (= $x10 false)) (= (or $x7 $x10) (or false false)))))
+(let ((@x38 (trans @x34 (rewrite (= (or false false) false)) (= (or $x7 $x10) false))))
+(mp (|not-or-elim| @x22 (or $x7 $x10)) @x38 false)))))))))))
+
+ef231eb2aad4a0ac2e86eb81929a952ed6ffca74 24 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x6 (= |$p| |$p|)))
+(let (($x7 (= $x6 |$p|)))
+(let (($x8 (= $x7 |$p|)))
+(let (($x9 (= $x8 |$p|)))
+(let (($x10 (= $x9 |$p|)))
+(let (($x11 (= $x10 |$p|)))
+(let (($x12 (= $x11 |$p|)))
+(let (($x13 (= $x12 |$p|)))
+(let (($x14 (= $x13 |$p|)))
+(let (($x15 (not $x14)))
+(let ((@x18 (rewrite (= $x6 true))))
+(let ((@x23 (rewrite (= (= true |$p|) |$p|))))
+(let ((@x25 (trans (monotonicity @x18 (= $x7 (= true |$p|))) @x23 (= $x7 |$p|))))
+(let ((@x31 (monotonicity (trans (monotonicity @x25 (= $x8 $x6)) @x18 (= $x8 true)) (= $x9 (= true |$p|)))))
+(let ((@x37 (trans (monotonicity (trans @x31 @x23 (= $x9 |$p|)) (= $x10 $x6)) @x18 (= $x10 true))))
+(let ((@x41 (trans (monotonicity @x37 (= $x11 (= true |$p|))) @x23 (= $x11 |$p|))))
+(let ((@x47 (monotonicity (trans (monotonicity @x41 (= $x12 $x6)) @x18 (= $x12 true)) (= $x13 (= true |$p|)))))
+(let ((@x53 (trans (monotonicity (trans @x47 @x23 (= $x13 |$p|)) (= $x14 $x6)) @x18 (= $x14 true))))
+(let ((@x60 (trans (monotonicity @x53 (= $x15 (not true))) (rewrite (= (not true) false)) (= $x15 false))))
+(mp (asserted $x15) @x60 false))))))))))))))))))))))
+
+e260c13b04d4db6b9e0810f3315867f22ac5ddea 16 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x16 (= (|$symm_f| |$a| |$b|) (|$symm_f| |$b| |$a|))))
+(let (($x30 (not $x16)))
+(let ((@x25 (monotonicity (rewrite (= (= |$a| |$a|) true)) (= (and (= |$a| |$a|) $x16) (and true $x16)))))
+(let ((@x29 (trans @x25 (rewrite (= (and true $x16) $x16)) (= (and (= |$a| |$a|) $x16) $x16))))
+(let ((@x33 (mp (asserted (not (and (= |$a| |$a|) $x16))) (monotonicity @x29 (= (not (and (= |$a| |$a|) $x16)) $x30)) $x30)))
+(let (($x483 (forall ((?v0 |$A|) (?v1 |$A|) )(!(= (|$symm_f| ?v0 ?v1) (|$symm_f| ?v1 ?v0)) :pattern ( (|$symm_f| ?v0 ?v1) ) :pattern ( (|$symm_f| ?v1 ?v0) )))
+))
+(let (($x10 (forall ((?v0 |$A|) (?v1 |$A|) )(= (|$symm_f| ?v0 ?v1) (|$symm_f| ?v1 ?v0)))
+))
+(let (($x9 (= (|$symm_f| ?1 ?0) (|$symm_f| ?0 ?1))))
+(let ((@x63 (|mp~| (mp (asserted $x10) (|rewrite*| (= $x10 $x10)) $x10) (|nnf-pos| (refl (|~| $x9 $x9)) (|~| $x10 $x10)) $x10)))
+(|unit-resolution| ((_ |quant-inst| |$a| |$b|) (or (not $x483) $x16)) (mp @x63 (|quant-intro| (refl (= $x9 $x9)) (= $x10 $x483)) $x483) (mp @x33 (|rewrite*| (= $x30 $x30)) $x30) false))))))))))))
+
+636b47d50f91d856f59f6da5f466deed9a030095 33 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x101 (not |$d|)))
+(let (($x39 (not (or |$c| (and (not |$p|) (or |$p| (and |$q| (not |$q|))))))))
+(let ((@x109 (|iff-false| (|not-or-elim| (asserted $x39) (not |$c|)) (= |$c| false))))
+(let ((@x116 (trans (monotonicity @x109 (= (or $x101 |$c|) (or $x101 false))) (rewrite (= (or $x101 false) $x101)) (= (or $x101 |$c|) $x101))))
+(let (($x104 (or $x101 |$c|)))
+(let ((@x103 (monotonicity (rewrite (= (or |$d| false) |$d|)) (= (not (or |$d| false)) $x101))))
+(let ((@x107 (mp (asserted (or (not (or |$d| false)) |$c|)) (monotonicity @x103 (= (or (not (or |$d| false)) |$c|) $x104)) $x104)))
+(let (($x92 (not |$b|)))
+(let ((@x127 (trans (monotonicity @x109 (= (or $x92 |$c|) (or $x92 false))) (rewrite (= (or $x92 false) $x92)) (= (or $x92 |$c|) $x92))))
+(let (($x95 (or $x92 |$c|)))
+(let ((@x87 (monotonicity (rewrite (= (or |$x| (not |$x|)) true)) (= (and |$b| (or |$x| (not |$x|))) (and |$b| true)))))
+(let ((@x91 (trans @x87 (rewrite (= (and |$b| true) |$b|)) (= (and |$b| (or |$x| (not |$x|))) |$b|))))
+(let ((@x97 (monotonicity (monotonicity @x91 (= (not (and |$b| (or |$x| (not |$x|)))) $x92)) (= (or (not (and |$b| (or |$x| (not |$x|)))) |$c|) $x95))))
+(let ((@x98 (mp (asserted (or (not (and |$b| (or |$x| (not |$x|)))) |$c|)) @x97 $x95)))
+(let (($x76 (not |$a|)))
+(let ((@x128 (monotonicity (|iff-false| (mp @x98 @x127 $x92) (= |$b| false)) (= (or $x76 |$b|) (or $x76 false)))))
+(let ((@x133 (trans @x128 (rewrite (= (or $x76 false) $x76)) (= (or $x76 |$b|) $x76))))
+(let (($x79 (or $x76 |$b|)))
+(let ((@x71 (monotonicity (rewrite (= (and |$c| (not |$c|)) false)) (= (or |$a| (and |$c| (not |$c|))) (or |$a| false)))))
+(let ((@x75 (trans @x71 (rewrite (= (or |$a| false) |$a|)) (= (or |$a| (and |$c| (not |$c|))) |$a|))))
+(let ((@x81 (monotonicity (monotonicity @x75 (= (not (or |$a| (and |$c| (not |$c|)))) $x76)) (= (or (not (or |$a| (and |$c| (not |$c|)))) |$b|) $x79))))
+(let ((@x82 (mp (asserted (or (not (or |$a| (and |$c| (not |$c|)))) |$b|)) @x81 $x79)))
+(let ((@x155 (monotonicity (|iff-false| (mp @x82 @x133 $x76) (= |$a| false)) (|iff-false| (mp @x98 @x127 $x92) (= |$b| false)) @x109 (|iff-false| (mp @x107 @x116 $x101) (= |$d| false)) (= (or |$a| |$b| |$c| |$d|) (or false false false false)))))
+(let ((@x159 (trans @x155 (rewrite (= (or false false false false) false)) (= (or |$a| |$b| |$c| |$d|) false))))
+(let (($x57 (or |$a| |$b| |$c| |$d|)))
+(let (($x11 (or |$a| (or |$b| (or |$c| |$d|)))))
+(let ((@x56 (monotonicity (rewrite (= (or |$b| (or |$c| |$d|)) (or |$b| |$c| |$d|))) (= $x11 (or |$a| (or |$b| |$c| |$d|))))))
+(let ((@x61 (trans @x56 (rewrite (= (or |$a| (or |$b| |$c| |$d|)) $x57)) (= $x11 $x57))))
+(mp (mp (asserted $x11) @x61 $x57) @x159 false)))))))))))))))))))))))))))))))
+
+6f9ce267835afc5c093320d462369cdaca5709b1 37 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!0 () Int)
+(declare-fun ?v1!1 () Int)
+(proof
+(let (($x49 (|$p| ?v0!0)))
+(let (($x50 (not $x49)))
+(let (($x63 (not (or $x49 (|$p| ?v1!1)))))
+(let ((@x79 (monotonicity (rewrite (= (not $x50) $x49)) (= (and (not $x50) $x63) (and $x49 $x63)))))
+(let (($x57 (not $x50)))
+(let (($x67 (and $x57 $x63)))
+(let (($x19 (forall ((?v0 Int) )(let (($x10 (forall ((?v1 Int) )(let (($x6 (|$p| ?v1)))
+(or (|$p| ?v0) $x6)))
+))
+(or (not (|$p| ?v0)) $x10)))
+))
+(let (($x22 (not $x19)))
+(let (($x52 (forall ((?v1 Int) )(let (($x6 (|$p| ?v1)))
+(let (($x49 (|$p| ?v0!0)))
+(or $x49 $x6))))
+))
+(let ((@x69 (|nnf-neg| (refl (|~| $x57 $x57)) (sk (|~| (not $x52) $x63)) (|~| (not (or $x50 $x52)) $x67))))
+(let (($x12 (forall ((?v0 Int) )(let (($x10 (forall ((?v1 Int) )(let (($x6 (|$p| ?v1)))
+(or (|$p| ?v0) $x6)))
+))
+(let (($x6 (|$p| ?v0)))
+(=> $x6 $x10))))
+))
+(let (($x13 (not $x12)))
+(let (($x10 (forall ((?v1 Int) )(let (($x6 (|$p| ?v1)))
+(or (|$p| ?0) $x6)))
+))
+(let ((@x21 (|quant-intro| (rewrite (= (=> (|$p| ?0) $x10) (or (not (|$p| ?0)) $x10))) (= $x12 $x19))))
+(let ((@x28 (mp (mp (asserted $x13) (monotonicity @x21 (= $x13 $x22)) $x22) (|rewrite*| (= $x22 $x22)) $x22)))
+(let ((@x72 (|mp~| @x28 (trans (sk (|~| $x22 (not (or $x50 $x52)))) @x69 (|~| $x22 $x67)) $x67)))
+(|unit-resolution| (|and-elim| (mp @x72 @x79 (and $x49 $x63)) $x49) (|not-or-elim| (|and-elim| (mp @x72 @x79 (and $x49 $x63)) $x63) $x50) false)))))))))))))))))))
+
+e69ad24173d1bbc9cac87666801f4dbcf20e7cdf 22 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x6 (|$p| |$x|)))
+(let ((@x26 (monotonicity (rewrite (= (=> $x6 (|$p| |$y|)) (or (not $x6) (|$p| |$y|)))) (= (not (=> $x6 (|$p| |$y|))) (not (or (not $x6) (|$p| |$y|)))))))
+(let ((@x27 (mp (asserted (not (=> $x6 (|$p| |$y|)))) @x26 (not (or (not $x6) (|$p| |$y|))))))
+(let (($x492 (forall ((?v0 |$A|) )(!(let (($x8 (|$p| ?v0)))
+(not $x8)) :pattern ( (|$p| ?v0) )))
+))
+(let (($x12 (forall ((?v0 |$A|) )(let (($x8 (|$p| ?v0)))
+(not $x8)))
+))
+(let ((@x496 (|quant-intro| (refl (= (not (|$p| ?0)) (not (|$p| ?0)))) (= $x12 $x492))))
+(let (($x9 (exists ((?v0 |$A|) )(|$p| ?v0))
+))
+(let (($x10 (not $x9)))
+(let ((@x35 (monotonicity (|iff-true| (|not-or-elim| @x27 $x6) (= $x6 true)) (= (ite $x6 $x10 $x12) (ite true $x10 $x12)))))
+(let ((@x39 (trans @x35 (rewrite (= (ite true $x10 $x12) $x10)) (= (ite $x6 $x10 $x12) $x10))))
+(let ((@x43 (mp (mp (asserted (ite $x6 $x10 $x12)) @x39 $x10) (|rewrite*| (= $x10 $x10)) $x10)))
+(let ((@x72 (|mp~| @x43 (|nnf-neg| (refl (|~| (not (|$p| ?0)) (not (|$p| ?0)))) (|~| $x10 $x12)) $x12)))
+(|unit-resolution| ((_ |quant-inst| |$x|) (or (not $x492) (not $x6))) (mp @x72 @x496 $x492) (mp (|not-or-elim| @x27 $x6) (|rewrite*| (= $x6 $x6)) $x6) false)))))))))))))))
+
+a89c726795a8d0e170934e5d099744330d95400b 7 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x14 (monotonicity (rewrite (= (= 3 3) true)) (= (not (= 3 3)) (not true)))))
+(let ((@x18 (trans @x14 (rewrite (= (not true) false)) (= (not (= 3 3)) false))))
+(mp (asserted (not (= 3 3))) @x18 false)))))
+
+f7b25fbc92a3db52d764adfa193cc9c7d084b0d6 7 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((@x14 (monotonicity (rewrite (= (= 3.0 3.0) true)) (= (not (= 3.0 3.0)) (not true)))))
+(let ((@x18 (trans @x14 (rewrite (= (not true) false)) (= (not (= 3.0 3.0)) false))))
+(mp (asserted (not (= 3.0 3.0))) @x18 false)))))
+
+54ea7c923e2f51278ebed4a257f587326e98cb4d 9 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x15 (monotonicity (rewrite (= (+ 3 1) 4)) (= (= (+ 3 1) 4) (= 4 4)))))
+(let ((@x20 (trans @x15 (rewrite (= (= 4 4) true)) (= (= (+ 3 1) 4) true))))
+(let ((@x23 (monotonicity @x20 (= (not (= (+ 3 1) 4)) (not true)))))
+(let ((@x27 (trans @x23 (rewrite (= (not true) false)) (= (not (= (+ 3 1) 4)) false))))
+(mp (asserted (not (= (+ 3 1) 4))) @x27 false)))))))
+
+bde9a5a7e78533da0a75d611922e444d2935b662 10 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x12 (= (+ |$x| (+ |$y| |$z|)) (+ |$y| (+ |$z| |$x|)))))
+(let (($x13 (not $x12)))
+(let ((@x23 (monotonicity (rewrite (= (+ |$x| (+ |$y| |$z|)) (+ |$x| |$y| |$z|))) (rewrite (= (+ |$y| (+ |$z| |$x|)) (+ |$y| |$z| |$x|))) (= $x12 (= (+ |$x| |$y| |$z|) (+ |$y| |$z| |$x|))))))
+(let ((@x28 (trans @x23 (rewrite (= (= (+ |$x| |$y| |$z|) (+ |$y| |$z| |$x|)) true)) (= $x12 true))))
+(let ((@x35 (trans (monotonicity @x28 (= $x13 (not true))) (rewrite (= (not true) false)) (= $x13 false))))
+(mp (asserted $x13) @x35 false))))))))
+
+36faa6237c000d60624d7bc78360f9dad21b1321 15 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x36 (monotonicity (rewrite (= (<= 8 5) false)) (= (not (<= 8 5)) (not false)))))
+(let ((@x40 (trans @x36 (rewrite (= (not false) true)) (= (not (<= 8 5)) true))))
+(let (($x27 (not (<= 8 5))))
+(let ((?x9 (ite (<= 3 8) 8 3)))
+(let (($x10 (< 5 ?x9)))
+(let ((@x18 (monotonicity (rewrite (= (<= 3 8) true)) (= ?x9 (ite true 8 3)))))
+(let ((@x22 (trans @x18 (rewrite (= (ite true 8 3) 8)) (= ?x9 8))))
+(let ((@x31 (trans (monotonicity @x22 (= $x10 (< 5 8))) (rewrite (= (< 5 8) $x27)) (= $x10 $x27))))
+(let ((@x45 (monotonicity (trans @x31 @x40 (= $x10 true)) (= (not $x10) (not true)))))
+(let ((@x49 (trans @x45 (rewrite (= (not true) false)) (= (not $x10) false))))
+(mp (asserted (not $x10)) @x49 false)))))))))))))
+
+9ae86bca3e53d9143c71216845bc6c4cb7c0764c 85 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let (($x194 (<= (+ |$x| (* (~ 1.0) (ite (>= |$x| 0.0) |$x| (* (~ 1.0) |$x|)))) 0.0)))
+(let ((?x35 (* (~ 1.0) |$x|)))
+(let (($x140 (>= |$x| 0.0)))
+(let ((?x143 (ite $x140 |$x| ?x35)))
+(let (($x176 (= |$x| ?x143)))
+(let ((?x36 (* (~ 1.0) |$y|)))
+(let ((?x37 (+ ?x35 ?x36)))
+(let ((?x7 (+ |$x| |$y|)))
+(let (($x134 (>= ?x7 0.0)))
+(let ((?x137 (ite $x134 ?x7 ?x37)))
+(let (($x226 (>= (+ ?x37 (* (~ 1.0) ?x137)) 0.0)))
+(let (($x172 (= ?x37 ?x137)))
+(let (($x133 (not $x134)))
+(let (($x146 (>= |$y| 0.0)))
+(let (($x185 (not $x146)))
+(let (($x199 (>= (+ ?x7 (* (~ 1.0) ?x137)) 0.0)))
+(let (($x171 (= ?x7 ?x137)))
+(let (($x235 (not $x226)))
+(let ((@x206 (hypothesis $x146)))
+(let (($x161 (<= (+ ?x137 (* (~ 1.0) ?x143) (* (~ 1.0) (ite $x146 |$y| ?x36))) 0.0)))
+(let (($x69 (<= 0.0 |$y|)))
+(let ((?x83 (ite $x69 |$y| ?x36)))
+(let (($x50 (<= 0.0 |$x|)))
+(let ((?x64 (ite $x50 |$x| ?x35)))
+(let ((?x88 (+ ?x64 ?x83)))
+(let (($x22 (<= 0.0 ?x7)))
+(let ((?x45 (ite $x22 ?x7 ?x37)))
+(let (($x91 (<= ?x45 ?x88)))
+(let (($x94 (not $x91)))
+(let ((@x154 (monotonicity (monotonicity (rewrite (= $x50 $x140)) (= ?x64 ?x143)) (monotonicity (rewrite (= $x69 $x146)) (= ?x83 (ite $x146 |$y| ?x36))) (= ?x88 (+ ?x143 (ite $x146 |$y| ?x36))))))
+(let ((@x157 (monotonicity (monotonicity (rewrite (= $x22 $x134)) (= ?x45 ?x137)) @x154 (= $x91 (<= ?x137 (+ ?x143 (ite $x146 |$y| ?x36)))))))
+(let ((@x165 (trans @x157 (rewrite (= (<= ?x137 (+ ?x143 (ite $x146 |$y| ?x36))) $x161)) (= $x91 $x161))))
+(let ((@x108 (monotonicity (monotonicity (rewrite (= $x50 $x50)) (= ?x64 ?x64)) (monotonicity (rewrite (= $x69 $x69)) (= ?x83 ?x83)) (= ?x88 ?x88))))
+(let ((@x110 (monotonicity (monotonicity (rewrite (= $x22 $x22)) (= ?x45 ?x45)) @x108 (= $x91 $x91))))
+(let ((?x17 (ite (< |$y| 0.0) (- |$y|) |$y|)))
+(let ((?x14 (ite (< |$x| 0.0) (- |$x|) |$x|)))
+(let ((?x10 (- ?x7)))
+(let ((?x11 (ite (< ?x7 0.0) ?x10 ?x7)))
+(let (($x20 (not (<= ?x11 (+ ?x14 ?x17)))))
+(let ((@x77 (trans (rewrite (= (< |$y| 0.0) (not $x69))) (monotonicity (rewrite (= $x69 $x69)) (= (not $x69) (not $x69))) (= (< |$y| 0.0) (not $x69)))))
+(let ((@x82 (monotonicity @x77 (rewrite (= (- |$y|) ?x36)) (= ?x17 (ite (not $x69) ?x36 |$y|)))))
+(let ((@x87 (trans @x82 (rewrite (= (ite (not $x69) ?x36 |$y|) ?x83)) (= ?x17 ?x83))))
+(let ((@x58 (trans (rewrite (= (< |$x| 0.0) (not $x50))) (monotonicity (rewrite (= $x50 $x50)) (= (not $x50) (not $x50))) (= (< |$x| 0.0) (not $x50)))))
+(let ((@x63 (monotonicity @x58 (rewrite (= (- |$x|) ?x35)) (= ?x14 (ite (not $x50) ?x35 |$x|)))))
+(let ((@x68 (trans @x63 (rewrite (= (ite (not $x50) ?x35 |$x|) ?x64)) (= ?x14 ?x64))))
+(let ((@x41 (trans (rewrite (= ?x10 (* (~ 1.0) ?x7))) (rewrite (= (* (~ 1.0) ?x7) ?x37)) (= ?x10 ?x37))))
+(let ((@x30 (trans (rewrite (= (< ?x7 0.0) (not $x22))) (monotonicity (rewrite (= $x22 $x22)) (= (not $x22) (not $x22))) (= (< ?x7 0.0) (not $x22)))))
+(let ((@x49 (trans (monotonicity @x30 @x41 (= ?x11 (ite (not $x22) ?x37 ?x7))) (rewrite (= (ite (not $x22) ?x37 ?x7) ?x45)) (= ?x11 ?x45))))
+(let ((@x93 (monotonicity @x49 (monotonicity @x68 @x87 (= (+ ?x14 ?x17) ?x88)) (= (<= ?x11 (+ ?x14 ?x17)) $x91))))
+(let ((@x100 (mp (mp (asserted $x20) (monotonicity @x93 (= $x20 $x94)) $x94) (|rewrite*| (= $x94 $x94)) $x94)))
+(let ((@x113 (mp (mp @x100 (monotonicity @x110 (= $x94 $x94)) $x94) (monotonicity @x110 (= $x94 $x94)) $x94)))
+(let ((@x169 (mp @x113 (monotonicity @x165 (= $x94 (not $x161))) (not $x161))))
+(let ((?x149 (ite $x146 |$y| ?x36)))
+(let (($x183 (= |$y| ?x149)))
+(let ((@x219 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x183) (<= (+ |$y| (* (~ 1.0) ?x149)) 0.0))) (|unit-resolution| (|def-axiom| (or $x185 $x183)) @x206 $x183) (<= (+ |$y| (* (~ 1.0) ?x149)) 0.0))))
+(let (($x198 (<= (+ ?x35 (* (~ 1.0) ?x143)) 0.0)))
+(let (($x177 (= ?x35 ?x143)))
+(let (($x178 (not $x140)))
+(let ((@x204 ((_ |th-lemma| arith triangle-eq) (or (not $x176) $x194))))
+(let ((@x205 (|unit-resolution| @x204 (|unit-resolution| (|def-axiom| (or $x178 $x176)) (hypothesis $x140) $x176) $x194)))
+(let ((@x209 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1) (or $x134 $x178 $x185)) (hypothesis $x140) @x206 $x134)))
+(let ((@x173 (|def-axiom| (or $x133 $x171))))
+(let ((@x213 ((_ |th-lemma| arith triangle-eq) (or (not $x171) $x199))))
+(let ((@x220 ((_ |th-lemma| arith farkas 1 -1 -1 1) @x219 (|unit-resolution| @x213 (|unit-resolution| @x173 @x209 $x171) $x199) @x169 @x205 false)))
+(let ((@x229 (|unit-resolution| (|def-axiom| (or $x140 $x177)) (|unit-resolution| (lemma @x220 (or $x178 $x185)) @x206 $x178) $x177)))
+(let ((@x234 ((_ |th-lemma| arith farkas 2 -1 -1 1 1) @x206 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x177) $x198)) @x229 $x198) @x219 @x169 (hypothesis $x226) false)))
+(let ((@x243 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x172) $x226)) (hypothesis $x172) (hypothesis $x235) false)))
+(let ((@x246 (|unit-resolution| (lemma @x243 (or (not $x172) $x226)) (|unit-resolution| (lemma @x234 (or $x235 $x185)) @x206 $x235) (not $x172))))
+(let ((@x248 (|unit-resolution| @x173 (|unit-resolution| (|def-axiom| (or $x134 $x172)) @x246 $x134) $x171)))
+(let ((@x250 ((_ |th-lemma| arith farkas 2 1 1 1 1) (|unit-resolution| (lemma @x220 (or $x178 $x185)) @x206 $x178) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x177) $x198)) @x229 $x198) @x219 @x169 (|unit-resolution| @x213 @x248 $x199) false)))
+(let ((@x251 (lemma @x250 $x185)))
+(let ((@x257 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x140 $x146 $x133)) (hypothesis $x134) @x251 $x140)))
+(let ((@x180 (|def-axiom| (or $x178 $x176))))
+(let ((@x261 (|unit-resolution| @x213 (|unit-resolution| @x173 (hypothesis $x134) $x171) $x199)))
+(let (($x184 (= ?x36 ?x149)))
+(let ((@x266 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x184) (<= (+ ?x36 (* (~ 1.0) ?x149)) 0.0))) (|unit-resolution| (|def-axiom| (or $x146 $x184)) @x251 $x184) (<= (+ ?x36 (* (~ 1.0) ?x149)) 0.0))))
+(let ((@x267 ((_ |th-lemma| arith farkas 2 1 1 1 1) @x251 @x266 @x169 @x261 (|unit-resolution| @x204 (|unit-resolution| @x180 @x257 $x176) $x194) false)))
+(let ((@x271 (|unit-resolution| (lemma @x243 (or (not $x172) $x226)) (|unit-resolution| (|def-axiom| (or $x134 $x172)) (lemma @x267 $x133) $x172) $x226)))
+(let ((@x276 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x177) $x198)) (hypothesis $x177) (lemma ((_ |th-lemma| arith farkas 1 -1 -1 1) @x266 @x169 @x271 (hypothesis $x198) false) (not $x198)) false)))
+(let ((@x278 (|unit-resolution| (|def-axiom| (or $x140 $x177)) (lemma @x276 (not $x177)) $x140)))
+((_ |th-lemma| arith farkas -2 1 -1 -1 1) @x278 @x266 @x169 @x271 (|unit-resolution| @x204 (|unit-resolution| @x180 @x278 $x176) $x194) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+bda8d33802015dc305234fb79b2dc2d3b5b989a3 15 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x10 (|$p| true)))
+(let (($x11 (= (|$p| (ite (< 2 3) true false)) ?x10)))
+(let (($x12 (not $x11)))
+(let ((@x23 (monotonicity (rewrite (= (<= 3 2) false)) (= (not (<= 3 2)) (not false)))))
+(let ((@x27 (trans @x23 (rewrite (= (not false) true)) (= (not (<= 3 2)) true))))
+(let ((@x29 (trans (rewrite (= (< 2 3) (not (<= 3 2)))) @x27 (= (< 2 3) true))))
+(let ((@x32 (monotonicity @x29 (= (ite (< 2 3) true false) (ite true true false)))))
+(let ((@x36 (trans @x32 (rewrite (= (ite true true false) true)) (= (ite (< 2 3) true false) true))))
+(let ((@x44 (trans (monotonicity (monotonicity @x36 $x11) (= $x11 (= ?x10 ?x10))) (rewrite (= (= ?x10 ?x10) true)) (= $x11 true))))
+(let ((@x51 (trans (monotonicity @x44 (= $x12 (not true))) (rewrite (= (not true) false)) (= $x12 false))))
+(mp (asserted $x12) @x51 false)))))))))))))
+
+0db14feea22451768e922b971092e245316a2ab9 16 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x25 (<= 1 |$x|)))
+(let ((@x40 (trans (rewrite (= (< |$x| 1) (not $x25))) (monotonicity (rewrite (= $x25 $x25)) (= (not $x25) (not $x25))) (= (< |$x| 1) (not $x25)))))
+(let ((@x47 (trans (monotonicity @x40 (= (not (< |$x| 1)) (not (not $x25)))) (rewrite (= (not (not $x25)) $x25)) (= (not (< |$x| 1)) $x25))))
+(let (($x11 (< |$x| 1)))
+(let (($x17 (not $x11)))
+(let ((@x18 (|not-or-elim| (asserted (not (or (<= 4 (+ |$x| 3)) $x11))) $x17)))
+(let (($x30 (not $x25)))
+(let ((@x24 (monotonicity (rewrite (= (+ |$x| 3) (+ 3 |$x|))) (= (<= 4 (+ |$x| 3)) (<= 4 (+ 3 |$x|))))))
+(let ((@x29 (trans @x24 (rewrite (= (<= 4 (+ 3 |$x|)) $x25)) (= (<= 4 (+ |$x| 3)) $x25))))
+(let ((@x16 (|not-or-elim| (asserted (not (or (<= 4 (+ |$x| 3)) $x11))) (not (<= 4 (+ |$x| 3))))))
+(let ((@x33 (mp @x16 (monotonicity @x29 (= (not (<= 4 (+ |$x| 3))) $x30)) $x30)))
+(|unit-resolution| @x33 (mp @x18 @x47 $x25) false))))))))))))))
+
+645567e3e3327ecb3e66c4f305da47d4a968203d 23 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x93 (rewrite (= (= |$y| (+ 4 |$x|)) (= (+ |$x| (* (~ 1) |$y|)) (~ 4))))))
+(let (($x25 (= |$y| (+ 4 |$x|))))
+(let ((@x29 (rewrite (= $x25 $x25))))
+(let ((@x27 (monotonicity (rewrite (= (+ |$x| 4) (+ 4 |$x|))) (= (= |$y| (+ |$x| 4)) $x25))))
+(let ((@x31 (mp (asserted (= |$y| (+ |$x| 4))) (trans @x27 @x29 (= (= |$y| (+ |$x| 4)) $x25)) $x25)))
+(let ((@x64 (mp (mp (mp @x31 (|rewrite*| (= $x25 $x25)) $x25) @x29 $x25) @x29 $x25)))
+(let ((@x108 (monotonicity (mp @x64 @x93 (= (+ |$x| (* (~ 1) |$y|)) (~ 4))) (= (>= (+ |$x| (* (~ 1) |$y|)) 0) (>= (~ 4) 0)))))
+(let ((@x112 (trans @x108 (rewrite (= (>= (~ 4) 0) false)) (= (>= (+ |$x| (* (~ 1) |$y|)) 0) false))))
+(let (($x100 (>= (+ |$x| (* (~ 1) |$y|)) 0)))
+(let ((?x34 (+ |$y| (* (~ 1) |$x|))))
+(let (($x40 (<= ?x34 0)))
+(let ((@x99 (monotonicity (rewrite (= ?x34 (+ (* (~ 1) |$x|) |$y|))) (= $x40 (<= (+ (* (~ 1) |$x|) |$y|) 0)))))
+(let ((@x104 (trans @x99 (rewrite (= (<= (+ (* (~ 1) |$x|) |$y|) 0) $x100)) (= $x40 $x100))))
+(let ((@x39 (monotonicity (rewrite (= (- |$y| |$x|) ?x34)) (= (< 0 (- |$y| |$x|)) (< 0 ?x34)))))
+(let ((@x45 (trans @x39 (rewrite (= (< 0 ?x34) (not $x40))) (= (< 0 (- |$y| |$x|)) (not $x40)))))
+(let ((@x48 (monotonicity @x45 (= (not (< 0 (- |$y| |$x|))) (not (not $x40))))))
+(let ((@x52 (trans @x48 (rewrite (= (not (not $x40)) $x40)) (= (not (< 0 (- |$y| |$x|))) $x40))))
+(let ((@x60 (mp (mp (asserted (not (< 0 (- |$y| |$x|)))) @x52 $x40) (|rewrite*| (= $x40 $x40)) $x40)))
+(mp (mp @x60 @x104 $x100) @x112 false)))))))))))))))))))))
+
+aa7e091783f91e1fa3f52d47f54666f367d1bb36 11 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x17 (monotonicity (rewrite (= (+ 2 2) 4)) (= (= (+ 2 2) 5) (= 4 5)))))
+(let ((@x23 (trans @x17 (rewrite (= (= 4 5) false)) (= (= (+ 2 2) 5) false))))
+(let ((@x26 (monotonicity @x23 (= (not (= (+ 2 2) 5)) (not false)))))
+(let ((@x30 (trans @x26 (rewrite (= (not false) true)) (= (not (= (+ 2 2) 5)) true))))
+(let ((@x33 (monotonicity @x30 (= (not (not (= (+ 2 2) 5))) (not true)))))
+(let ((@x37 (trans @x33 (rewrite (= (not true) false)) (= (not (not (= (+ 2 2) 5))) false))))
+(mp (asserted (not (not (= (+ 2 2) 5)))) @x37 false)))))))))
+
+cd3f9abd9d67c54340b9a735f57e57dd8885d5a5 22 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((?x11 (+ (* 3.0 |$x|) (* 7.0 |$a|))))
+(let (($x23 (<= 4.0 ?x11)))
+(let (($x24 (not $x23)))
+(let ((@x100 (monotonicity (rewrite (= $x23 (>= ?x11 4.0))) (= $x24 (not (>= ?x11 4.0))))))
+(let ((@x30 (monotonicity (rewrite (= $x23 $x23)) (= $x24 $x24))))
+(let ((@x31 (trans (rewrite (= (< ?x11 4.0) $x24)) @x30 (= (< ?x11 4.0) $x24))))
+(let ((@x65 (mp (mp (asserted (< ?x11 4.0)) @x31 $x24) (|rewrite*| (= $x24 $x24)) $x24)))
+(let (($x47 (<= 0.0 |$a|)))
+(let ((@x52 (rewrite (= $x47 $x47))))
+(let ((@x55 (trans (rewrite (= (< |$a| 0.0) (not $x47))) (monotonicity @x52 (= (not $x47) (not $x47))) (= (< |$a| 0.0) (not $x47)))))
+(let ((@x62 (trans (monotonicity @x55 (= (not (< |$a| 0.0)) (not (not $x47)))) (rewrite (= (not (not $x47)) $x47)) (= (not (< |$a| 0.0)) $x47))))
+(let ((@x70 (mp (mp (asserted (not (< |$a| 0.0))) @x62 $x47) (|rewrite*| (= $x47 $x47)) $x47)))
+(let ((@x105 (mp (mp (mp @x70 @x52 $x47) @x52 $x47) (rewrite (= $x47 (>= |$a| 0.0))) (>= |$a| 0.0))))
+(let (($x41 (not (<= |$x| (/ 3.0 2.0)))))
+(let ((@x43 (monotonicity (rewrite (= (<= (* 2.0 |$x|) 3.0) (<= |$x| (/ 3.0 2.0)))) (= (not (<= (* 2.0 |$x|) 3.0)) $x41))))
+(let ((@x36 (rewrite (= (< 3.0 (* 2.0 |$x|)) (not (<= (* 2.0 |$x|) 3.0))))))
+(let ((@x46 (mp (asserted (< 3.0 (* 2.0 |$x|))) (trans @x36 @x43 (= (< 3.0 (* 2.0 |$x|)) $x41)) $x41)))
+((_ |th-lemma| arith farkas 3 7 1) (mp @x46 (|rewrite*| (= $x41 $x41)) $x41) @x105 (mp (mp (mp @x65 @x30 $x24) @x30 $x24) @x100 (not (>= ?x11 4.0))) false))))))))))))))))))))
+
+518f03305155ba7b2a332e2bcee979ecb50e0a2b 22 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x13 (<= 0 |$x|)))
+(let (($x14 (not $x13)))
+(let (($x15 (or $x14 $x13)))
+(let (($x16 (or (<= 0 (+ |$y| (* (- 1) |$x|))) $x15)))
+(let (($x18 (= $x16 (not false))))
+(let (($x19 (not $x18)))
+(let ((@x49 (rewrite (= (or (<= 0 (+ |$y| (* (~ 1) |$x|))) true) true))))
+(let ((@x41 (monotonicity (monotonicity (rewrite (= $x13 $x13)) (= $x14 $x14)) (rewrite (= $x13 $x13)) (= $x15 $x15))))
+(let (($x30 (<= 0 (+ |$y| (* (~ 1) |$x|)))))
+(let ((@x26 (monotonicity (rewrite (= (- 1) (~ 1))) (= (* (- 1) |$x|) (* (~ 1) |$x|)))))
+(let ((@x29 (monotonicity @x26 (= (+ |$y| (* (- 1) |$x|)) (+ |$y| (* (~ 1) |$x|))))))
+(let ((@x32 (monotonicity @x29 (= (<= 0 (+ |$y| (* (- 1) |$x|))) $x30))))
+(let ((@x35 (trans @x32 (rewrite (= $x30 $x30)) (= (<= 0 (+ |$y| (* (- 1) |$x|))) $x30))))
+(let ((@x47 (monotonicity @x35 (trans @x41 (rewrite (= $x15 true)) (= $x15 true)) (= $x16 (or $x30 true)))))
+(let ((@x56 (monotonicity (trans @x47 @x49 (= $x16 true)) (rewrite (= (not false) true)) (= $x18 (= true true)))))
+(let ((@x60 (trans @x56 (rewrite (= (= true true) true)) (= $x18 true))))
+(let ((@x67 (trans (monotonicity @x60 (= $x19 (not true))) (rewrite (= (not true) false)) (= $x19 false))))
+(mp (asserted $x19) @x67 false))))))))))))))))))))
+
+f6879622ab4f51a0b9503b8bdd07ca3fe36c89e3 223 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x22 (= |$m| |$n|)))
+(let ((@x700 (symm (commutativity (= $x22 (= |$n| |$m|))) (= (= |$n| |$m|) $x22))))
+(let (($x18 (= |$n| |$m|)))
+(let (($x312 (>= (+ |$n| (* (~ 1) |$m|)) 0)))
+(let (($x348 (<= (+ |$m| (* (~ 1) |$na|)) 0)))
+(let (($x342 (>= (+ |$n| (* (~ 1) |$na|)) 0)))
+(let (($x471 (or $x342 $x348)))
+(let ((@x467 (monotonicity (rewrite (= (and (not $x342) (not $x348)) (not $x471))) (= (not (and (not $x342) (not $x348))) (not (not $x471))))))
+(let ((@x491 (trans @x467 (rewrite (= (not (not $x471)) $x471)) (= (not (and (not $x342) (not $x348))) $x471))))
+(let (($x351 (not $x348)))
+(let (($x345 (not $x342)))
+(let (($x354 (and $x345 $x351)))
+(let (($x357 (not $x354)))
+(let ((@x353 (monotonicity (rewrite (= (<= |$m| |$na|) $x348)) (= (not (<= |$m| |$na|)) $x351))))
+(let ((@x347 (monotonicity (rewrite (= (<= |$na| |$n|) $x342)) (= (not (<= |$na| |$n|)) $x345))))
+(let ((@x356 (monotonicity @x347 @x353 (= (and (not (<= |$na| |$n|)) (not (<= |$m| |$na|))) $x354))))
+(let ((@x359 (monotonicity @x356 (= (not (and (not (<= |$na| |$n|)) (not (<= |$m| |$na|)))) $x357))))
+(let (($x140 (not (<= |$m| |$na|))))
+(let (($x136 (not (<= |$na| |$n|))))
+(let (($x143 (and $x136 $x140)))
+(let (($x146 (not $x143)))
+(let ((@x142 (rewrite (= (< |$na| |$m|) $x140))))
+(let ((@x145 (monotonicity (rewrite (= (< |$n| |$na|) $x136)) @x142 (= (and (< |$n| |$na|) (< |$na| |$m|)) $x143))))
+(let ((@x148 (monotonicity @x145 (= (not (and (< |$n| |$na|) (< |$na| |$m|))) $x146))))
+(let (($x37 (or (and $x22 (< |$n| |$na|)) (or (and (= |$m| |$na|) (< |$na| |$n|)) (and (= |$na| |$m|) $x22)))))
+(let (($x24 (< |$na| |$n|)))
+(let (($x9 (< |$m| |$na|)))
+(let (($x32 (and $x9 $x24)))
+(let (($x26 (= |$na| |$n|)))
+(let (($x20 (< |$m| |$n|)))
+(let (($x31 (and $x20 $x26)))
+(let (($x13 (< |$n| |$na|)))
+(let (($x30 (and $x20 $x13)))
+(let (($x42 (or (and $x26 (< |$n| |$m|)) (or (and (= |$na| |$m|) $x20) (or $x30 (or $x31 (or $x32 $x37)))))))
+(let (($x7 (< |$n| |$m|)))
+(let (($x25 (and $x24 $x7)))
+(let (($x14 (< |$na| |$m|)))
+(let (($x23 (and $x14 $x22)))
+(let (($x21 (and $x14 $x20)))
+(let (($x19 (and $x18 $x9)))
+(let (($x16 (= |$n| |$na|)))
+(let (($x17 (and $x16 $x14)))
+(let (($x15 (and $x13 $x14)))
+(let (($x59 (not (or $x15 (or $x17 (or $x19 (or $x21 (or $x23 (or $x25 $x42)))))))))
+(let (($x11 (= |$m| |$na|)))
+(let (($x12 (and $x7 $x11)))
+(let (($x49 (or $x12 (or $x15 (or $x17 (or $x19 (or $x21 (or $x23 (or $x25 $x42)))))))))
+(let ((@x60 (|not-or-elim| (|not-or-elim| (asserted (not (or (and $x7 $x9) $x49))) (not $x49)) $x59)))
+(let ((@x250 (mp (mp (|not-or-elim| @x60 (not $x15)) @x148 $x146) (|rewrite*| (= $x146 $x146)) $x146)))
+(let ((@x674 (|unit-resolution| (mp (mp @x250 @x359 $x357) @x491 $x471) (hypothesis $x351) $x342)))
+(let (($x493 (not $x16)))
+(let (($x494 (or $x493 $x348)))
+(let ((@x500 (monotonicity (rewrite (= (and $x16 $x351) (not $x494))) (= (not (and $x16 $x351)) (not (not $x494))))))
+(let ((@x504 (trans @x500 (rewrite (= (not (not $x494)) $x494)) (= (not (and $x16 $x351)) $x494))))
+(let (($x361 (and $x16 $x351)))
+(let (($x364 (not $x361)))
+(let ((@x366 (monotonicity (monotonicity @x353 (= (and $x16 $x140) $x361)) (= (not (and $x16 $x140)) $x364))))
+(let (($x150 (and $x16 $x140)))
+(let (($x153 (not $x150)))
+(let ((@x155 (monotonicity (monotonicity @x142 (= $x17 $x150)) (= (not $x17) $x153))))
+(let ((@x64 (|not-or-elim| @x60 (not (or $x17 (or $x19 (or $x21 (or $x23 (or $x25 $x42)))))))))
+(let ((@x253 (mp (mp (|not-or-elim| @x64 (not $x17)) @x155 $x153) (|rewrite*| (= $x153 $x153)) $x153)))
+(let ((@x675 (|unit-resolution| (mp (mp @x253 @x366 $x364) @x504 $x494) (hypothesis $x351) $x493)))
+(let (($x395 (<= (+ |$n| (* (~ 1) |$na|)) 0)))
+(let (($x506 (not $x18)))
+(let (($x531 (not $x22)))
+(let (($x319 (>= (+ |$m| (* (~ 1) |$na|)) 0)))
+(let (($x398 (not $x395)))
+(let ((@x654 (hypothesis $x398)))
+(let (($x606 (or $x319 $x395)))
+(let ((@x612 (monotonicity (rewrite (= (and (not $x319) $x398) (not $x606))) (= (not (and (not $x319) $x398)) (not (not $x606))))))
+(let ((@x616 (trans @x612 (rewrite (= (not (not $x606)) $x606)) (= (not (and (not $x319) $x398)) $x606))))
+(let (($x324 (not $x319)))
+(let (($x436 (and $x324 $x398)))
+(let (($x439 (not $x436)))
+(let ((@x400 (monotonicity (rewrite (= (<= |$n| |$na|) $x395)) (= (not (<= |$n| |$na|)) $x398))))
+(let ((@x326 (monotonicity (rewrite (= (<= |$na| |$m|) $x319)) (= (not (<= |$na| |$m|)) $x324))))
+(let ((@x438 (monotonicity @x326 @x400 (= (and (not (<= |$na| |$m|)) (not (<= |$n| |$na|))) $x436))))
+(let ((@x441 (monotonicity @x438 (= (not (and (not (<= |$na| |$m|)) (not (<= |$n| |$na|)))) $x439))))
+(let (($x183 (not (<= |$n| |$na|))))
+(let (($x118 (not (<= |$na| |$m|))))
+(let (($x221 (and $x118 $x183)))
+(let (($x224 (not $x221)))
+(let ((@x185 (rewrite (= $x24 $x183))))
+(let ((@x120 (rewrite (= $x9 $x118))))
+(let ((@x226 (monotonicity (monotonicity @x120 @x185 (= $x32 $x221)) (= (not $x32) $x224))))
+(let (($x87 (not (or (and (= |$na| |$m|) $x20) (or $x30 (or $x31 (or $x32 $x37)))))))
+(let ((@x68 (|not-or-elim| @x64 (not (or $x19 (or $x21 (or $x23 (or $x25 $x42))))))))
+(let ((@x76 (|not-or-elim| (|not-or-elim| @x68 (not (or $x21 (or $x23 (or $x25 $x42))))) (not (or $x23 (or $x25 $x42))))))
+(let ((@x88 (|not-or-elim| (|not-or-elim| (|not-or-elim| @x76 (not (or $x25 $x42))) (not $x42)) $x87)))
+(let ((@x96 (|not-or-elim| (|not-or-elim| @x88 (not (or $x30 (or $x31 (or $x32 $x37))))) (not (or $x31 (or $x32 $x37))))))
+(let ((@x227 (mp (|not-or-elim| (|not-or-elim| @x96 (not (or $x32 $x37))) (not $x32)) @x226 $x224)))
+(let ((@x617 (mp (mp (mp @x227 (|rewrite*| (= $x224 $x224)) $x224) @x441 $x439) @x616 $x606)))
+(let (($x476 (not $x11)))
+(let (($x630 (or $x476 $x395)))
+(let ((@x636 (monotonicity (rewrite (= (and $x11 $x398) (not $x630))) (= (not (and $x11 $x398)) (not (not $x630))))))
+(let ((@x640 (trans @x636 (rewrite (= (not (not $x630)) $x630)) (= (not (and $x11 $x398)) $x630))))
+(let (($x450 (and $x11 $x398)))
+(let (($x453 (not $x450)))
+(let ((@x455 (monotonicity (monotonicity @x400 (= (and $x11 $x183) $x450)) (= (not (and $x11 $x183)) $x453))))
+(let (($x235 (and $x11 $x183)))
+(let (($x238 (not $x235)))
+(let ((@x240 (monotonicity (monotonicity @x185 (= (and $x11 $x24) $x235)) (= (not (and $x11 $x24)) $x238))))
+(let ((@x108 (|not-or-elim| (|not-or-elim| (|not-or-elim| @x96 (not (or $x32 $x37))) (not $x37)) (not (or (and $x11 $x24) (and (= |$na| |$m|) $x22))))))
+(let ((@x286 (mp (mp (|not-or-elim| @x108 (not (and $x11 $x24))) @x240 $x238) (|rewrite*| (= $x238 $x238)) $x238)))
+(let ((@x659 ((_ |th-lemma| arith triangle-eq) (or $x11 $x351 $x324))))
+(let ((@x660 (|unit-resolution| @x659 (|unit-resolution| (mp (mp @x286 @x455 $x453) @x640 $x630) @x654 $x476) (|unit-resolution| @x617 @x654 $x319) $x351)))
+(let (($x532 (or $x348 $x531)))
+(let ((@x538 (monotonicity (rewrite (= (and $x351 $x22) (not $x532))) (= (not (and $x351 $x22)) (not (not $x532))))))
+(let ((@x542 (trans @x538 (rewrite (= (not (not $x532)) $x532)) (= (not (and $x351 $x22)) $x532))))
+(let (($x388 (and $x351 $x22)))
+(let (($x391 (not $x388)))
+(let ((@x393 (monotonicity (monotonicity @x353 (= (and $x140 $x22) $x388)) (= (not (and $x140 $x22)) $x391))))
+(let (($x175 (and $x140 $x22)))
+(let (($x178 (not $x175)))
+(let ((@x180 (monotonicity (monotonicity @x142 (= $x23 $x175)) (= (not $x23) $x178))))
+(let ((@x262 (mp (mp (|not-or-elim| @x76 (not $x23)) @x180 $x178) (|rewrite*| (= $x178 $x178)) $x178)))
+(let ((@x670 (mp (|unit-resolution| (mp (mp @x262 @x393 $x391) @x542 $x532) @x660 $x531) (monotonicity (commutativity (= $x22 $x18)) (= $x531 $x506)) $x506)))
+(let (($x544 (or $x395 $x312)))
+(let ((@x550 (monotonicity (rewrite (= (and $x398 (not $x312)) (not $x544))) (= (not (and $x398 (not $x312))) (not (not $x544))))))
+(let ((@x554 (trans @x550 (rewrite (= (not (not $x544)) $x544)) (= (not (and $x398 (not $x312))) $x544))))
+(let (($x316 (not $x312)))
+(let (($x401 (and $x398 $x316)))
+(let (($x404 (not $x401)))
+(let ((@x318 (monotonicity (rewrite (= (<= |$m| |$n|) $x312)) (= (not (<= |$m| |$n|)) $x316))))
+(let ((@x406 (monotonicity (monotonicity @x400 @x318 (= (and $x183 (not (<= |$m| |$n|))) $x401)) (= (not (and $x183 (not (<= |$m| |$n|)))) $x404))))
+(let (($x114 (not (<= |$m| |$n|))))
+(let (($x186 (and $x183 $x114)))
+(let (($x189 (not $x186)))
+(let ((@x191 (monotonicity (monotonicity @x185 (rewrite (= $x7 $x114)) (= $x25 $x186)) (= (not $x25) $x189))))
+(let ((@x192 (mp (|not-or-elim| (|not-or-elim| @x76 (not (or $x25 $x42))) (not $x25)) @x191 $x189)))
+(let ((@x555 (mp (mp (mp @x192 (|rewrite*| (= $x189 $x189)) $x189) @x406 $x404) @x554 $x544)))
+(let (($x375 (<= (+ |$n| (* (~ 1) |$m|)) 0)))
+(let (($x519 (or $x348 $x375)))
+(let ((@x525 (monotonicity (rewrite (= (and $x351 (not $x375)) (not $x519))) (= (not (and $x351 (not $x375))) (not (not $x519))))))
+(let ((@x529 (trans @x525 (rewrite (= (not (not $x519)) $x519)) (= (not (and $x351 (not $x375))) $x519))))
+(let (($x378 (not $x375)))
+(let (($x381 (and $x351 $x378)))
+(let (($x384 (not $x381)))
+(let ((@x380 (monotonicity (rewrite (= (<= |$n| |$m|) $x375)) (= (not (<= |$n| |$m|)) $x378))))
+(let ((@x386 (monotonicity (monotonicity @x353 @x380 (= (and $x140 (not (<= |$n| |$m|))) $x381)) (= (not (and $x140 (not (<= |$n| |$m|)))) $x384))))
+(let (($x165 (not (<= |$n| |$m|))))
+(let (($x168 (and $x140 $x165)))
+(let (($x171 (not $x168)))
+(let ((@x173 (monotonicity (monotonicity @x142 (rewrite (= $x20 $x165)) (= $x21 $x168)) (= (not $x21) $x171))))
+(let ((@x74 (|not-or-elim| (|not-or-elim| @x68 (not (or $x21 (or $x23 (or $x25 $x42))))) (not $x21))))
+(let ((@x387 (mp (mp (mp @x74 @x173 $x171) (|rewrite*| (= $x171 $x171)) $x171) @x386 $x384)))
+(let ((@x664 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x18 $x378 $x316)) (|unit-resolution| (mp @x387 @x529 $x519) @x660 $x375) (|unit-resolution| @x555 @x654 $x312) $x18)))
+(let ((@x679 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x16 $x398 $x345)) (lemma (|unit-resolution| @x664 @x670 false) $x395) (or $x16 $x345))))
+(let (($x478 (or $x312 $x319)))
+(let ((@x480 (monotonicity (rewrite (= (and $x316 $x324) (not $x478))) (= (not (and $x316 $x324)) (not (not $x478))))))
+(let ((@x482 (trans @x480 (rewrite (= (not (not $x478)) $x478)) (= (not (and $x316 $x324)) $x478))))
+(let (($x327 (and $x316 $x324)))
+(let (($x330 (not $x327)))
+(let ((@x332 (monotonicity (monotonicity @x318 @x326 (= (and $x114 $x118) $x327)) (= (not (and $x114 $x118)) $x330))))
+(let (($x121 (and $x114 $x118)))
+(let (($x124 (not $x121)))
+(let ((@x116 (rewrite (= $x7 $x114))))
+(let ((@x126 (monotonicity (monotonicity @x116 @x120 (= (and $x7 $x9) $x121)) (= (not (and $x7 $x9)) $x124))))
+(let ((@x54 (|not-or-elim| (asserted (not (or (and $x7 $x9) $x49))) (not (and $x7 $x9)))))
+(let ((@x333 (mp (mp (mp @x54 @x126 $x124) (|rewrite*| (= $x124 $x124)) $x124) @x332 $x330)))
+(let (($x477 (or $x312 $x476)))
+(let ((@x465 (monotonicity (rewrite (= (and $x316 $x11) (not $x477))) (= (not (and $x316 $x11)) (not (not $x477))))))
+(let ((@x457 (trans @x465 (rewrite (= (not (not $x477)) $x477)) (= (not (and $x316 $x11)) $x477))))
+(let (($x334 (and $x316 $x11)))
+(let (($x337 (not $x334)))
+(let ((@x339 (monotonicity (monotonicity @x318 (= (and $x114 $x11) $x334)) (= (not (and $x114 $x11)) $x337))))
+(let (($x128 (and $x114 $x11)))
+(let (($x131 (not $x128)))
+(let ((@x133 (monotonicity (monotonicity @x116 (= $x12 $x128)) (= (not $x12) $x131))))
+(let ((@x58 (|not-or-elim| (|not-or-elim| (asserted (not (or (and $x7 $x9) $x49))) (not $x49)) (not $x12))))
+(let ((@x340 (mp (mp (mp @x58 @x133 $x131) (|rewrite*| (= $x131 $x131)) $x131) @x339 $x337)))
+(let ((@x685 (|unit-resolution| @x659 (|unit-resolution| (mp @x340 @x457 $x477) (hypothesis $x316) $x476) (|unit-resolution| (mp @x333 @x482 $x478) (hypothesis $x316) $x319) (lemma (|unit-resolution| @x679 @x675 @x674 false) $x348) false)))
+(let (($x556 (not $x26)))
+(let (($x594 (or $x375 $x556)))
+(let ((@x600 (monotonicity (rewrite (= (and $x378 $x26) (not $x594))) (= (not (and $x378 $x26)) (not (not $x594))))))
+(let ((@x604 (trans @x600 (rewrite (= (not (not $x594)) $x594)) (= (not (and $x378 $x26)) $x594))))
+(let (($x429 (and $x378 $x26)))
+(let (($x432 (not $x429)))
+(let ((@x434 (monotonicity (monotonicity @x380 (= (and $x165 $x26) $x429)) (= (not (and $x165 $x26)) $x432))))
+(let (($x214 (and $x165 $x26)))
+(let (($x217 (not $x214)))
+(let ((@x219 (monotonicity (monotonicity (rewrite (= $x20 $x165)) (= $x31 $x214)) (= (not $x31) $x217))))
+(let ((@x277 (mp (mp (|not-or-elim| @x96 (not $x31)) @x219 $x217) (|rewrite*| (= $x217 $x217)) $x217)))
+(let ((@x690 (|unit-resolution| (mp (mp @x277 @x434 $x432) @x604 $x594) (hypothesis $x378) $x556)))
+(let ((@x695 (mp @x690 (monotonicity (commutativity (= $x26 $x16)) (= $x556 $x493)) $x493)))
+(let (($x582 (or $x375 $x342)))
+(let ((@x588 (monotonicity (rewrite (= (and $x378 $x345) (not $x582))) (= (not (and $x378 $x345)) (not (not $x582))))))
+(let ((@x592 (trans @x588 (rewrite (= (not (not $x582)) $x582)) (= (not (and $x378 $x345)) $x582))))
+(let (($x422 (and $x378 $x345)))
+(let (($x425 (not $x422)))
+(let ((@x427 (monotonicity (monotonicity @x380 @x347 (= (and $x165 $x136) $x422)) (= (not (and $x165 $x136)) $x425))))
+(let (($x207 (and $x165 $x136)))
+(let (($x210 (not $x207)))
+(let ((@x167 (rewrite (= $x20 $x165))))
+(let ((@x212 (monotonicity (monotonicity @x167 (rewrite (= $x13 $x136)) (= $x30 $x207)) (= (not $x30) $x210))))
+(let ((@x94 (|not-or-elim| (|not-or-elim| @x88 (not (or $x30 (or $x31 (or $x32 $x37))))) (not $x30))))
+(let ((@x428 (mp (mp (mp @x94 @x212 $x210) (|rewrite*| (= $x210 $x210)) $x210) @x427 $x425)))
+(let ((@x689 (|unit-resolution| @x679 (|unit-resolution| (mp @x428 @x592 $x582) (hypothesis $x378) $x342) $x16)))
+(let ((@x698 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x18 $x378 $x316)) (lemma (|unit-resolution| @x689 @x695 false) $x375) (lemma @x685 $x312) $x18)))
+(let (($x28 (= |$na| |$m|)))
+(let (($x507 (or $x506 $x319)))
+(let ((@x513 (monotonicity (rewrite (= (and $x18 $x324) (not $x507))) (= (not (and $x18 $x324)) (not (not $x507))))))
+(let ((@x517 (trans @x513 (rewrite (= (not (not $x507)) $x507)) (= (not (and $x18 $x324)) $x507))))
+(let (($x368 (and $x18 $x324)))
+(let (($x371 (not $x368)))
+(let ((@x373 (monotonicity (monotonicity @x326 (= (and $x18 $x118) $x368)) (= (not (and $x18 $x118)) $x371))))
+(let (($x157 (and $x18 $x118)))
+(let (($x160 (not $x157)))
+(let ((@x162 (monotonicity (monotonicity @x120 (= $x19 $x157)) (= (not $x19) $x160))))
+(let ((@x256 (mp (mp (|not-or-elim| @x68 (not $x19)) @x162 $x160) (|rewrite*| (= $x160 $x160)) $x160)))
+(let ((@x703 (|unit-resolution| @x659 (|unit-resolution| (mp (mp @x256 @x373 $x371) @x517 $x507) @x698 $x319) (lemma (|unit-resolution| @x679 @x675 @x674 false) $x348) $x11)))
+(let (($x642 (or (not $x28) $x531)))
+(let ((@x648 (monotonicity (rewrite (= (and $x28 $x22) (not $x642))) (= (not (and $x28 $x22)) (not (not $x642))))))
+(let ((@x652 (trans @x648 (rewrite (= (not (not $x642)) $x642)) (= (not (and $x28 $x22)) $x642))))
+(let (($x35 (and $x28 $x22)))
+(let (($x111 (not $x35)))
+(let ((@x653 (mp (mp (|not-or-elim| @x108 $x111) (|rewrite*| (= $x111 $x111)) $x111) @x652 $x642)))
+(|unit-resolution| @x653 (mp @x703 (symm (commutativity (= $x28 $x11)) (= $x11 $x28)) $x28) (mp @x698 @x700 $x22) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+9e63d8092c53223ccff8c08c4046aa1f12b21575 888 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x917 (>= (+ |$x7| (* (~ 1) (ite (>= |$x7| 0) |$x7| (* (~ 1) |$x7|)))) 0)))
+(let (($x954 (not $x917)))
+(let (($x904 (<= (+ |$x2| (* (~ 1) |$x11|)) 0)))
+(let (($x1013 (not $x904)))
+(let (($x71 (= |$x2| |$x11|)))
+(let (($x806 (not $x71)))
+(let (($x70 (= |$x1| |$x10|)))
+(let (($x900 (<= (+ |$x1| (* (~ 1) |$x10|)) 0)))
+(let (($x925 (<= (+ |$x4| (* (~ 1) (ite (>= |$x4| 0) |$x4| (* (~ 1) |$x4|)))) 0)))
+(let (($x1023 (>= (+ |$x5| (* (~ 1) (ite (>= |$x5| 0) |$x5| (* (~ 1) |$x5|)))) 0)))
+(let ((?x180 (* (~ 1) |$x5|)))
+(let (($x642 (>= |$x5| 0)))
+(let ((?x645 (ite $x642 |$x5| ?x180)))
+(let (($x845 (= |$x5| ?x645)))
+(let (($x1628 (<= (+ |$x10| (* (~ 1) (ite (>= |$x10| 0) |$x10| (* (~ 1) |$x10|)))) 0)))
+(let ((?x335 (* (~ 1) |$x10|)))
+(let (($x782 (>= |$x10| 0)))
+(let ((?x785 (ite $x782 |$x10| ?x335)))
+(let (($x890 (= |$x10| ?x785)))
+(let (($x891 (= ?x335 ?x785)))
+(let (($x1368 (not $x891)))
+(let (($x1496 (<= (+ ?x335 (* (~ 1) ?x785)) 0)))
+(let (($x1508 (not $x1496)))
+(let ((?x304 (* (~ 1) |$x9|)))
+(let (($x754 (>= |$x9| 0)))
+(let ((?x757 (ite $x754 |$x9| ?x304)))
+(let ((?x766 (* (~ 1) ?x757)))
+(let (($x1616 (>= (+ ?x304 ?x766) 0)))
+(let (($x882 (= ?x304 ?x757)))
+(let (($x883 (not $x754)))
+(let (($x847 (not $x642)))
+(let ((@x1091 (hypothesis $x847)))
+(let (($x670 (>= |$x6| 0)))
+(let ((?x149 (* (~ 1) |$x4|)))
+(let (($x614 (>= |$x4| 0)))
+(let ((?x617 (ite $x614 |$x4| ?x149)))
+(let (($x836 (= |$x4| ?x617)))
+(let ((@x1325 (hypothesis $x754)))
+(let (($x914 (>= (+ |$x8| (* (~ 1) (ite (>= |$x8| 0) |$x8| (* (~ 1) |$x8|)))) 0)))
+(let (($x1107 (not $x914)))
+(let (($x838 (not $x614)))
+(let ((@x1010 (hypothesis $x838)))
+(let ((?x654 (* (~ 1) ?x645)))
+(let ((?x655 (+ |$x4| |$x6| ?x654)))
+(let (($x853 (>= ?x655 0)))
+(let (($x656 (= ?x655 0)))
+(let (($x171 (<= 0 |$x5|)))
+(let ((?x186 (ite $x171 |$x5| ?x180)))
+(let ((?x636 (+ ?x149 ?x186)))
+(let (($x639 (= |$x6| ?x636)))
+(let ((@x650 (monotonicity (monotonicity (rewrite (= $x171 $x642)) (= ?x186 ?x645)) (= ?x636 (+ ?x149 ?x645)))))
+(let ((@x660 (trans (monotonicity @x650 (= $x639 (= |$x6| (+ ?x149 ?x645)))) (rewrite (= (= |$x6| (+ ?x149 ?x645)) $x656)) (= $x639 $x656))))
+(let ((@x641 (monotonicity (rewrite (= (+ ?x186 ?x149) ?x636)) (= (= |$x6| (+ ?x186 ?x149)) $x639))))
+(let ((?x194 (+ ?x186 ?x149)))
+(let (($x199 (= |$x6| ?x194)))
+(let ((@x492 (monotonicity (monotonicity (rewrite (= $x171 $x171)) (= ?x186 ?x186)) (= ?x194 ?x194))))
+(let (($x326 (<= 0 |$x10|)))
+(let ((?x341 (ite $x326 |$x10| ?x335)))
+(let ((?x349 (+ ?x341 ?x304)))
+(let (($x354 (= |$x11| ?x349)))
+(let ((?x273 (* (~ 1) |$x8|)))
+(let (($x295 (<= 0 |$x9|)))
+(let ((?x310 (ite $x295 |$x9| ?x304)))
+(let ((?x318 (+ ?x310 ?x273)))
+(let (($x323 (= |$x10| ?x318)))
+(let ((?x242 (* (~ 1) |$x7|)))
+(let (($x264 (<= 0 |$x8|)))
+(let ((?x279 (ite $x264 |$x8| ?x273)))
+(let ((?x287 (+ ?x279 ?x242)))
+(let (($x292 (= |$x9| ?x287)))
+(let ((?x211 (* (~ 1) |$x6|)))
+(let (($x233 (<= 0 |$x7|)))
+(let ((?x248 (ite $x233 |$x7| ?x242)))
+(let ((?x256 (+ ?x248 ?x211)))
+(let (($x261 (= |$x8| ?x256)))
+(let (($x202 (<= 0 |$x6|)))
+(let ((?x217 (ite $x202 |$x6| ?x211)))
+(let ((?x225 (+ ?x217 ?x180)))
+(let (($x230 (= |$x7| ?x225)))
+(let ((?x118 (* (~ 1) |$x3|)))
+(let (($x140 (<= 0 |$x4|)))
+(let ((?x155 (ite $x140 |$x4| ?x149)))
+(let ((?x163 (+ ?x155 ?x118)))
+(let (($x168 (= |$x5| ?x163)))
+(let ((?x86 (* (~ 1) |$x2|)))
+(let (($x109 (<= 0 |$x3|)))
+(let ((?x124 (ite $x109 |$x3| ?x118)))
+(let ((?x132 (+ ?x124 ?x86)))
+(let (($x137 (= |$x4| ?x132)))
+(let ((?x100 (* (~ 1) |$x1|)))
+(let (($x76 (<= 0 |$x2|)))
+(let ((?x92 (ite $x76 |$x2| ?x86)))
+(let ((?x101 (+ ?x92 ?x100)))
+(let (($x106 (= |$x3| ?x101)))
+(let (($x411 (and $x106 $x137 $x168 $x199 $x230 $x261 $x292 $x323 $x354)))
+(let (($x72 (and $x70 $x71)))
+(let (($x62 (and (= |$x10| (- (ite (< |$x9| 0) (- |$x9|) |$x9|) |$x8|)) (= |$x11| (- (ite (< |$x10| 0) (- |$x10|) |$x10|) |$x9|)))))
+(let (($x63 (and (= |$x9| (- (ite (< |$x8| 0) (- |$x8|) |$x8|) |$x7|)) $x62)))
+(let (($x64 (and (= |$x8| (- (ite (< |$x7| 0) (- |$x7|) |$x7|) |$x6|)) $x63)))
+(let (($x65 (and (= |$x7| (- (ite (< |$x6| 0) (- |$x6|) |$x6|) |$x5|)) $x64)))
+(let (($x66 (and (= |$x6| (- (ite (< |$x5| 0) (- |$x5|) |$x5|) |$x4|)) $x65)))
+(let (($x67 (and (= |$x5| (- (ite (< |$x4| 0) (- |$x4|) |$x4|) |$x3|)) $x66)))
+(let (($x68 (and (= |$x4| (- (ite (< |$x3| 0) (- |$x3|) |$x3|) |$x2|)) $x67)))
+(let (($x69 (and (= |$x3| (- (ite (< |$x2| 0) (- |$x2|) |$x2|) |$x1|)) $x68)))
+(let (($x73 (=> $x69 $x72)))
+(let (($x74 (not $x73)))
+(let ((@x413 (rewrite (= (and $x106 (and $x137 $x168 $x199 $x230 $x261 $x292 $x323 $x354)) $x411))))
+(let (($x403 (and $x137 $x168 $x199 $x230 $x261 $x292 $x323 $x354)))
+(let ((@x405 (rewrite (= (and $x137 (and $x168 $x199 $x230 $x261 $x292 $x323 $x354)) $x403))))
+(let (($x395 (and $x168 $x199 $x230 $x261 $x292 $x323 $x354)))
+(let (($x387 (and $x199 $x230 $x261 $x292 $x323 $x354)))
+(let (($x379 (and $x230 $x261 $x292 $x323 $x354)))
+(let ((@x373 (rewrite (= (and $x261 (and $x292 $x323 $x354)) (and $x261 $x292 $x323 $x354)))))
+(let (($x355 (= (= |$x11| (- (ite (< |$x10| 0) (- |$x10|) |$x10|) |$x9|)) $x354)))
+(let ((?x59 (ite (< |$x10| 0) (- |$x10|) |$x10|)))
+(let ((?x60 (- ?x59 |$x9|)))
+(let ((@x334 (trans (rewrite (= (< |$x10| 0) (not $x326))) (monotonicity (rewrite (= $x326 $x326)) (= (not $x326) (not $x326))) (= (< |$x10| 0) (not $x326)))))
+(let ((@x340 (monotonicity @x334 (rewrite (= (- |$x10|) ?x335)) (= ?x59 (ite (not $x326) ?x335 |$x10|)))))
+(let ((@x345 (trans @x340 (rewrite (= (ite (not $x326) ?x335 |$x10|) ?x341)) (= ?x59 ?x341))))
+(let ((@x353 (trans (monotonicity @x345 (= ?x60 (- ?x341 |$x9|))) (rewrite (= (- ?x341 |$x9|) ?x349)) (= ?x60 ?x349))))
+(let (($x324 (= (= |$x10| (- (ite (< |$x9| 0) (- |$x9|) |$x9|) |$x8|)) $x323)))
+(let ((@x303 (trans (rewrite (= (< |$x9| 0) (not $x295))) (monotonicity (rewrite (= $x295 $x295)) (= (not $x295) (not $x295))) (= (< |$x9| 0) (not $x295)))))
+(let ((@x309 (monotonicity @x303 (rewrite (= (- |$x9|) ?x304)) (= (ite (< |$x9| 0) (- |$x9|) |$x9|) (ite (not $x295) ?x304 |$x9|)))))
+(let ((@x314 (trans @x309 (rewrite (= (ite (not $x295) ?x304 |$x9|) ?x310)) (= (ite (< |$x9| 0) (- |$x9|) |$x9|) ?x310))))
+(let ((@x317 (monotonicity @x314 (= (- (ite (< |$x9| 0) (- |$x9|) |$x9|) |$x8|) (- ?x310 |$x8|)))))
+(let ((@x322 (trans @x317 (rewrite (= (- ?x310 |$x8|) ?x318)) (= (- (ite (< |$x9| 0) (- |$x9|) |$x9|) |$x8|) ?x318))))
+(let ((@x359 (monotonicity (monotonicity @x322 $x324) (monotonicity @x353 $x355) (= $x62 (and $x323 $x354)))))
+(let ((@x272 (trans (rewrite (= (< |$x8| 0) (not $x264))) (monotonicity (rewrite (= $x264 $x264)) (= (not $x264) (not $x264))) (= (< |$x8| 0) (not $x264)))))
+(let ((@x278 (monotonicity @x272 (rewrite (= (- |$x8|) ?x273)) (= (ite (< |$x8| 0) (- |$x8|) |$x8|) (ite (not $x264) ?x273 |$x8|)))))
+(let ((@x283 (trans @x278 (rewrite (= (ite (not $x264) ?x273 |$x8|) ?x279)) (= (ite (< |$x8| 0) (- |$x8|) |$x8|) ?x279))))
+(let ((@x286 (monotonicity @x283 (= (- (ite (< |$x8| 0) (- |$x8|) |$x8|) |$x7|) (- ?x279 |$x7|)))))
+(let ((@x291 (trans @x286 (rewrite (= (- ?x279 |$x7|) ?x287)) (= (- (ite (< |$x8| 0) (- |$x8|) |$x8|) |$x7|) ?x287))))
+(let ((@x294 (monotonicity @x291 (= (= |$x9| (- (ite (< |$x8| 0) (- |$x8|) |$x8|) |$x7|)) $x292))))
+(let ((@x367 (trans (monotonicity @x294 @x359 (= $x63 (and $x292 (and $x323 $x354)))) (rewrite (= (and $x292 (and $x323 $x354)) (and $x292 $x323 $x354))) (= $x63 (and $x292 $x323 $x354)))))
+(let ((@x241 (trans (rewrite (= (< |$x7| 0) (not $x233))) (monotonicity (rewrite (= $x233 $x233)) (= (not $x233) (not $x233))) (= (< |$x7| 0) (not $x233)))))
+(let ((@x247 (monotonicity @x241 (rewrite (= (- |$x7|) ?x242)) (= (ite (< |$x7| 0) (- |$x7|) |$x7|) (ite (not $x233) ?x242 |$x7|)))))
+(let ((@x252 (trans @x247 (rewrite (= (ite (not $x233) ?x242 |$x7|) ?x248)) (= (ite (< |$x7| 0) (- |$x7|) |$x7|) ?x248))))
+(let ((@x255 (monotonicity @x252 (= (- (ite (< |$x7| 0) (- |$x7|) |$x7|) |$x6|) (- ?x248 |$x6|)))))
+(let ((@x260 (trans @x255 (rewrite (= (- ?x248 |$x6|) ?x256)) (= (- (ite (< |$x7| 0) (- |$x7|) |$x7|) |$x6|) ?x256))))
+(let ((@x263 (monotonicity @x260 (= (= |$x8| (- (ite (< |$x7| 0) (- |$x7|) |$x7|) |$x6|)) $x261))))
+(let ((@x375 (trans (monotonicity @x263 @x367 (= $x64 (and $x261 (and $x292 $x323 $x354)))) @x373 (= $x64 (and $x261 $x292 $x323 $x354)))))
+(let ((@x210 (trans (rewrite (= (< |$x6| 0) (not $x202))) (monotonicity (rewrite (= $x202 $x202)) (= (not $x202) (not $x202))) (= (< |$x6| 0) (not $x202)))))
+(let ((@x216 (monotonicity @x210 (rewrite (= (- |$x6|) ?x211)) (= (ite (< |$x6| 0) (- |$x6|) |$x6|) (ite (not $x202) ?x211 |$x6|)))))
+(let ((@x221 (trans @x216 (rewrite (= (ite (not $x202) ?x211 |$x6|) ?x217)) (= (ite (< |$x6| 0) (- |$x6|) |$x6|) ?x217))))
+(let ((@x224 (monotonicity @x221 (= (- (ite (< |$x6| 0) (- |$x6|) |$x6|) |$x5|) (- ?x217 |$x5|)))))
+(let ((@x229 (trans @x224 (rewrite (= (- ?x217 |$x5|) ?x225)) (= (- (ite (< |$x6| 0) (- |$x6|) |$x6|) |$x5|) ?x225))))
+(let ((@x232 (monotonicity @x229 (= (= |$x7| (- (ite (< |$x6| 0) (- |$x6|) |$x6|) |$x5|)) $x230))))
+(let ((@x378 (monotonicity @x232 @x375 (= $x65 (and $x230 (and $x261 $x292 $x323 $x354))))))
+(let ((@x383 (trans @x378 (rewrite (= (and $x230 (and $x261 $x292 $x323 $x354)) $x379)) (= $x65 $x379))))
+(let ((@x179 (trans (rewrite (= (< |$x5| 0) (not $x171))) (monotonicity (rewrite (= $x171 $x171)) (= (not $x171) (not $x171))) (= (< |$x5| 0) (not $x171)))))
+(let ((@x185 (monotonicity @x179 (rewrite (= (- |$x5|) ?x180)) (= (ite (< |$x5| 0) (- |$x5|) |$x5|) (ite (not $x171) ?x180 |$x5|)))))
+(let ((@x190 (trans @x185 (rewrite (= (ite (not $x171) ?x180 |$x5|) ?x186)) (= (ite (< |$x5| 0) (- |$x5|) |$x5|) ?x186))))
+(let ((@x193 (monotonicity @x190 (= (- (ite (< |$x5| 0) (- |$x5|) |$x5|) |$x4|) (- ?x186 |$x4|)))))
+(let ((@x198 (trans @x193 (rewrite (= (- ?x186 |$x4|) ?x194)) (= (- (ite (< |$x5| 0) (- |$x5|) |$x5|) |$x4|) ?x194))))
+(let ((@x201 (monotonicity @x198 (= (= |$x6| (- (ite (< |$x5| 0) (- |$x5|) |$x5|) |$x4|)) $x199))))
+(let ((@x391 (trans (monotonicity @x201 @x383 (= $x66 (and $x199 $x379))) (rewrite (= (and $x199 $x379) $x387)) (= $x66 $x387))))
+(let ((@x148 (trans (rewrite (= (< |$x4| 0) (not $x140))) (monotonicity (rewrite (= $x140 $x140)) (= (not $x140) (not $x140))) (= (< |$x4| 0) (not $x140)))))
+(let ((@x154 (monotonicity @x148 (rewrite (= (- |$x4|) ?x149)) (= (ite (< |$x4| 0) (- |$x4|) |$x4|) (ite (not $x140) ?x149 |$x4|)))))
+(let ((@x159 (trans @x154 (rewrite (= (ite (not $x140) ?x149 |$x4|) ?x155)) (= (ite (< |$x4| 0) (- |$x4|) |$x4|) ?x155))))
+(let ((@x162 (monotonicity @x159 (= (- (ite (< |$x4| 0) (- |$x4|) |$x4|) |$x3|) (- ?x155 |$x3|)))))
+(let ((@x167 (trans @x162 (rewrite (= (- ?x155 |$x3|) ?x163)) (= (- (ite (< |$x4| 0) (- |$x4|) |$x4|) |$x3|) ?x163))))
+(let ((@x170 (monotonicity @x167 (= (= |$x5| (- (ite (< |$x4| 0) (- |$x4|) |$x4|) |$x3|)) $x168))))
+(let ((@x399 (trans (monotonicity @x170 @x391 (= $x67 (and $x168 $x387))) (rewrite (= (and $x168 $x387) $x395)) (= $x67 $x395))))
+(let ((@x117 (trans (rewrite (= (< |$x3| 0) (not $x109))) (monotonicity (rewrite (= $x109 $x109)) (= (not $x109) (not $x109))) (= (< |$x3| 0) (not $x109)))))
+(let ((@x123 (monotonicity @x117 (rewrite (= (- |$x3|) ?x118)) (= (ite (< |$x3| 0) (- |$x3|) |$x3|) (ite (not $x109) ?x118 |$x3|)))))
+(let ((@x128 (trans @x123 (rewrite (= (ite (not $x109) ?x118 |$x3|) ?x124)) (= (ite (< |$x3| 0) (- |$x3|) |$x3|) ?x124))))
+(let ((@x131 (monotonicity @x128 (= (- (ite (< |$x3| 0) (- |$x3|) |$x3|) |$x2|) (- ?x124 |$x2|)))))
+(let ((@x136 (trans @x131 (rewrite (= (- ?x124 |$x2|) ?x132)) (= (- (ite (< |$x3| 0) (- |$x3|) |$x3|) |$x2|) ?x132))))
+(let ((@x139 (monotonicity @x136 (= (= |$x4| (- (ite (< |$x3| 0) (- |$x3|) |$x3|) |$x2|)) $x137))))
+(let ((@x407 (trans (monotonicity @x139 @x399 (= $x68 (and $x137 $x395))) @x405 (= $x68 $x403))))
+(let ((@x84 (trans (rewrite (= (< |$x2| 0) (not $x76))) (monotonicity (rewrite (= $x76 $x76)) (= (not $x76) (not $x76))) (= (< |$x2| 0) (not $x76)))))
+(let ((@x91 (monotonicity @x84 (rewrite (= (- |$x2|) ?x86)) (= (ite (< |$x2| 0) (- |$x2|) |$x2|) (ite (not $x76) ?x86 |$x2|)))))
+(let ((@x96 (trans @x91 (rewrite (= (ite (not $x76) ?x86 |$x2|) ?x92)) (= (ite (< |$x2| 0) (- |$x2|) |$x2|) ?x92))))
+(let ((@x99 (monotonicity @x96 (= (- (ite (< |$x2| 0) (- |$x2|) |$x2|) |$x1|) (- ?x92 |$x1|)))))
+(let ((@x105 (trans @x99 (rewrite (= (- ?x92 |$x1|) ?x101)) (= (- (ite (< |$x2| 0) (- |$x2|) |$x2|) |$x1|) ?x101))))
+(let ((@x108 (monotonicity @x105 (= (= |$x3| (- (ite (< |$x2| 0) (- |$x2|) |$x2|) |$x1|)) $x106))))
+(let ((@x415 (trans (monotonicity @x108 @x407 (= $x69 (and $x106 $x403))) @x413 (= $x69 $x411))))
+(let ((@x424 (trans (monotonicity @x415 (= $x73 (=> $x411 $x72))) (rewrite (= (=> $x411 $x72) (or (not $x411) $x72))) (= $x73 (or (not $x411) $x72)))))
+(let ((@x428 (mp (asserted $x74) (monotonicity @x424 (= $x74 (not (or (not $x411) $x72)))) (not (or (not $x411) $x72)))))
+(let ((@x429 (|not-or-elim| @x428 $x411)))
+(let ((@x494 (mp (mp (|and-elim| @x429 $x199) (|rewrite*| (= $x199 $x199)) $x199) (monotonicity @x492 (= $x199 $x199)) $x199)))
+(let ((@x663 (mp (mp @x494 (monotonicity @x492 (= $x199 $x199)) $x199) (trans @x641 @x660 (= $x199 $x656)) $x656)))
+(let ((@x1046 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x656) $x853)) @x663 $x853)))
+(let (($x1180 (<= (+ ?x180 ?x654) 0)))
+(let (($x846 (= ?x180 ?x645)))
+(let ((@x1247 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x846) $x1180)) (|unit-resolution| (|def-axiom| (or $x642 $x846)) @x1091 $x846) $x1180)))
+(let (($x726 (>= |$x8| 0)))
+(let ((?x729 (ite $x726 |$x8| ?x273)))
+(let ((?x738 (* (~ 1) ?x729)))
+(let ((?x739 (+ |$x7| |$x9| ?x738)))
+(let (($x879 (<= ?x739 0)))
+(let (($x740 (= ?x739 0)))
+(let ((@x734 (monotonicity (monotonicity (rewrite (= $x264 $x726)) (= ?x279 ?x729)) (= (+ ?x242 ?x279) (+ ?x242 ?x729)))))
+(let ((@x737 (monotonicity @x734 (= (= |$x9| (+ ?x242 ?x279)) (= |$x9| (+ ?x242 ?x729))))))
+(let ((@x744 (trans @x737 (rewrite (= (= |$x9| (+ ?x242 ?x729)) $x740)) (= (= |$x9| (+ ?x242 ?x279)) $x740))))
+(let ((@x725 (monotonicity (rewrite (= ?x287 (+ ?x242 ?x279))) (= $x292 (= |$x9| (+ ?x242 ?x279))))))
+(let ((@x510 (monotonicity (monotonicity (rewrite (= $x264 $x264)) (= ?x279 ?x279)) (= ?x287 ?x287))))
+(let ((@x512 (mp (mp (|and-elim| @x429 $x292) (|rewrite*| (= $x292 $x292)) $x292) (monotonicity @x510 (= $x292 $x292)) $x292)))
+(let ((@x747 (mp (mp @x512 (monotonicity @x510 (= $x292 $x292)) $x292) (trans @x725 @x744 (= $x292 $x740)) $x740)))
+(let ((@x1104 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x740) $x879)) @x747 $x879)))
+(let (($x698 (>= |$x7| 0)))
+(let ((?x701 (ite $x698 |$x7| ?x242)))
+(let (($x863 (= |$x7| ?x701)))
+(let (($x1027 (<= (+ ?x211 (* (~ 1) (ite $x670 |$x6| ?x211))) 0)))
+(let ((?x673 (ite $x670 |$x6| ?x211)))
+(let (($x855 (= ?x211 ?x673)))
+(let (($x856 (not $x670)))
+(let (($x865 (not $x698)))
+(let ((@x1274 (hypothesis $x865)))
+(let ((@x1273 (hypothesis $x670)))
+(let ((?x682 (* (~ 1) ?x673)))
+(let ((?x683 (+ |$x5| |$x7| ?x682)))
+(let (($x862 (>= ?x683 0)))
+(let (($x684 (= ?x683 0)))
+(let ((@x678 (monotonicity (monotonicity (rewrite (= $x202 $x670)) (= ?x217 ?x673)) (= (+ ?x180 ?x217) (+ ?x180 ?x673)))))
+(let ((@x681 (monotonicity @x678 (= (= |$x7| (+ ?x180 ?x217)) (= |$x7| (+ ?x180 ?x673))))))
+(let ((@x688 (trans @x681 (rewrite (= (= |$x7| (+ ?x180 ?x673)) $x684)) (= (= |$x7| (+ ?x180 ?x217)) $x684))))
+(let ((@x669 (monotonicity (rewrite (= ?x225 (+ ?x180 ?x217))) (= $x230 (= |$x7| (+ ?x180 ?x217))))))
+(let ((@x498 (monotonicity (monotonicity (rewrite (= $x202 $x202)) (= ?x217 ?x217)) (= ?x225 ?x225))))
+(let ((@x500 (mp (mp (|and-elim| @x429 $x230) (|rewrite*| (= $x230 $x230)) $x230) (monotonicity @x498 (= $x230 $x230)) $x230)))
+(let ((@x691 (mp (mp @x500 (monotonicity @x498 (= $x230 $x230)) $x230) (trans @x669 @x688 (= $x230 $x684)) $x684)))
+(let ((@x1100 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x684) $x862)) @x691 $x862)))
+(let (($x1183 (<= (+ |$x6| ?x682) 0)))
+(let (($x854 (= |$x6| ?x673)))
+(let ((@x858 (|def-axiom| (or $x856 $x854))))
+(let ((@x1197 ((_ |th-lemma| arith triangle-eq) (or (not $x854) $x1183))))
+(let ((@x1276 (|unit-resolution| @x1197 (|unit-resolution| @x858 @x1273 $x854) $x1183)))
+(let ((@x1279 (lemma ((_ |th-lemma| arith farkas 1 1 1 1 1) @x1276 @x1100 @x1274 @x1091 @x1273 false) (or $x698 $x642 $x856))))
+(let ((@x860 (|def-axiom| (or $x670 $x855))))
+(let ((@x1310 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x855) $x1027)) (|unit-resolution| @x860 (|unit-resolution| @x1279 @x1274 @x1091 $x856) $x855) $x1027)))
+(let ((@x1311 ((_ |th-lemma| arith farkas 1 1 1 1 1) (|unit-resolution| @x1279 @x1274 @x1091 $x856) @x1274 @x1100 @x1091 @x1310 false)))
+(let ((@x867 (|def-axiom| (or $x865 $x863))))
+(let ((@x1334 (|unit-resolution| @x867 (|unit-resolution| (lemma @x1311 (or $x698 $x642)) @x1091 $x698) $x863)))
+(let ((@x1173 ((_ |th-lemma| arith triangle-eq) (or (not $x863) $x917))))
+(let ((@x1335 (|unit-resolution| @x1173 @x1334 $x917)))
+(let ((?x710 (* (~ 1) ?x701)))
+(let ((?x711 (+ |$x6| |$x8| ?x710)))
+(let (($x870 (<= ?x711 0)))
+(let (($x712 (= ?x711 0)))
+(let ((@x706 (monotonicity (monotonicity (rewrite (= $x233 $x698)) (= ?x248 ?x701)) (= (+ ?x211 ?x248) (+ ?x211 ?x701)))))
+(let ((@x709 (monotonicity @x706 (= (= |$x8| (+ ?x211 ?x248)) (= |$x8| (+ ?x211 ?x701))))))
+(let ((@x716 (trans @x709 (rewrite (= (= |$x8| (+ ?x211 ?x701)) $x712)) (= (= |$x8| (+ ?x211 ?x248)) $x712))))
+(let ((@x697 (monotonicity (rewrite (= ?x256 (+ ?x211 ?x248))) (= $x261 (= |$x8| (+ ?x211 ?x248))))))
+(let ((@x504 (monotonicity (monotonicity (rewrite (= $x233 $x233)) (= ?x248 ?x248)) (= ?x256 ?x256))))
+(let ((@x506 (mp (mp (|and-elim| @x429 $x261) (|rewrite*| (= $x261 $x261)) $x261) (monotonicity @x504 (= $x261 $x261)) $x261)))
+(let ((@x719 (mp (mp @x506 (monotonicity @x504 (= $x261 $x261)) $x261) (trans @x697 @x716 (= $x261 $x712)) $x712)))
+(let ((@x950 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x712) $x870)) @x719 $x870)))
+(let ((@x1105 (hypothesis $x914)))
+(let ((@x1351 (lemma ((_ |th-lemma| arith farkas 1 1 1 1 1 1 1 1 1) @x1105 @x950 @x1335 @x1104 @x1010 @x1247 @x1091 @x1046 @x1325 false) (or $x614 $x1107 $x642 $x883))))
+(let (($x872 (= |$x8| ?x729)))
+(let (($x1087 (<= (+ |$x7| ?x710) 0)))
+(let ((@x1112 ((_ |th-lemma| arith triangle-eq) (or (not $x863) $x1087))))
+(let ((@x1336 (|unit-resolution| @x1112 @x1334 $x1087)))
+(let (($x871 (>= ?x711 0)))
+(let ((@x1082 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x712) $x871)) @x719 $x871)))
+(let ((@x1488 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x614 (not $x1180) $x642 (not $x853) $x670)) @x1010 @x1046 @x1247 @x1091 $x670)))
+(let ((@x1341 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x726 (not $x871) (not $x1087) (not $x1183) (not $x862) $x642))))
+(let ((@x1491 (|unit-resolution| @x1341 (|unit-resolution| @x1197 (|unit-resolution| @x858 @x1488 $x854) $x1183) @x1082 @x1091 @x1336 @x1100 $x726)))
+(let ((@x876 (|def-axiom| (or (not $x726) $x872))))
+(let ((@x1364 ((_ |th-lemma| arith triangle-eq) (or (not $x872) $x914))))
+(let ((@x1493 (|unit-resolution| @x1364 (|unit-resolution| @x876 @x1491 $x872) (|unit-resolution| @x1351 @x1010 @x1091 @x1325 $x1107) false)))
+(let ((@x840 (|def-axiom| (or $x838 $x836))))
+(let ((@x1574 (|unit-resolution| @x840 (|unit-resolution| (lemma @x1493 (or $x614 $x642 $x883)) @x1091 @x1325 $x614) $x836)))
+(let ((@x940 ((_ |th-lemma| arith triangle-eq) (or (not $x836) $x925))))
+(let (($x908 (>= (+ |$x9| ?x766) 0)))
+(let (($x881 (= |$x9| ?x757)))
+(let ((@x885 (|def-axiom| (or $x883 $x881))))
+(let ((@x1393 ((_ |th-lemma| arith triangle-eq) (or (not $x881) $x908))))
+(let ((@x1394 (|unit-resolution| @x1393 (|unit-resolution| @x885 @x1325 $x881) $x908)))
+(let (($x907 (<= (+ |$x9| ?x766) 0)))
+(let ((@x1398 ((_ |th-lemma| arith triangle-eq) (or (not $x881) $x907))))
+(let ((@x1399 (|unit-resolution| @x1398 (|unit-resolution| @x885 @x1325 $x881) $x907)))
+(let (($x905 (>= (+ |$x2| (* (~ 1) |$x11|)) 0)))
+(let (($x920 (>= (+ |$x6| ?x682) 0)))
+(let (($x953 (not $x920)))
+(let (($x910 (<= (+ |$x8| ?x738) 0)))
+(let ((?x767 (+ |$x8| |$x10| ?x766)))
+(let (($x889 (>= ?x767 0)))
+(let (($x768 (= ?x767 0)))
+(let ((@x762 (monotonicity (monotonicity (rewrite (= $x295 $x754)) (= ?x310 ?x757)) (= (+ ?x273 ?x310) (+ ?x273 ?x757)))))
+(let ((@x765 (monotonicity @x762 (= (= |$x10| (+ ?x273 ?x310)) (= |$x10| (+ ?x273 ?x757))))))
+(let ((@x772 (trans @x765 (rewrite (= (= |$x10| (+ ?x273 ?x757)) $x768)) (= (= |$x10| (+ ?x273 ?x310)) $x768))))
+(let ((@x753 (monotonicity (rewrite (= ?x318 (+ ?x273 ?x310))) (= $x323 (= |$x10| (+ ?x273 ?x310))))))
+(let ((@x516 (monotonicity (monotonicity (rewrite (= $x295 $x295)) (= ?x310 ?x310)) (= ?x318 ?x318))))
+(let ((@x518 (mp (mp (|and-elim| @x429 $x323) (|rewrite*| (= $x323 $x323)) $x323) (monotonicity @x516 (= $x323 $x323)) $x323)))
+(let ((@x775 (mp (mp @x518 (monotonicity @x516 (= $x323 $x323)) $x323) (trans @x753 @x772 (= $x323 $x768)) $x768)))
+(let ((@x1385 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x768) $x889)) @x775 $x889)))
+(let (($x892 (not $x782)))
+(let (($x1411 (not $x890)))
+(let (($x911 (>= (+ |$x10| (* (~ 1) ?x785)) 0)))
+(let (($x981 (not $x911)))
+(let (($x957 (not $x905)))
+(let ((@x958 (hypothesis $x957)))
+(let (($x586 (>= |$x3| 0)))
+(let ((@x978 (hypothesis $x908)))
+(let ((@x963 (hypothesis $x911)))
+(let (($x864 (= ?x242 ?x701)))
+(let (($x1070 (not $x864)))
+(let (($x1026 (<= (+ ?x242 ?x710) 0)))
+(let (($x1149 (not $x1026)))
+(let (($x916 (>= (+ |$x4| (* (~ 1) ?x617)) 0)))
+(let (($x829 (not $x586)))
+(let ((@x935 (hypothesis $x829)))
+(let (($x1094 (not $x855)))
+(let (($x1086 (>= (+ ?x211 ?x682) 0)))
+(let (($x1119 (not $x1086)))
+(let (($x928 (<= (+ |$x3| (* (~ 1) (ite $x586 |$x3| ?x118))) 0)))
+(let (($x926 (<= (+ ?x118 (* (~ 1) (ite $x586 |$x3| ?x118))) 0)))
+(let ((?x589 (ite $x586 |$x3| ?x118)))
+(let (($x828 (= ?x118 ?x589)))
+(let ((@x1005 (|unit-resolution| (|def-axiom| (or $x586 $x828)) @x935 $x828)))
+(let ((@x1009 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x828) $x926)) @x1005 $x926)))
+(let (($x922 (<= (+ ?x149 (* (~ 1) ?x617)) 0)))
+(let (($x837 (= ?x149 ?x617)))
+(let ((@x1188 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x837) $x922)) (|unit-resolution| (|def-axiom| (or $x614 $x837)) @x1010 $x837) $x922)))
+(let ((@x1191 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1) (or $x925 $x614 (not $x922))) @x1188 @x1010 $x925)))
+(let ((@x1116 (hypothesis $x928)))
+(let ((@x1115 (hypothesis $x925)))
+(let ((@x1114 (hypothesis $x1086)))
+(let ((@x1113 (|unit-resolution| @x1112 (|unit-resolution| @x867 (hypothesis $x698) $x863) $x1087)))
+(let ((@x1088 (hypothesis $x698)))
+(let (($x861 (<= ?x683 0)))
+(let ((@x945 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x684) $x861)) @x691 $x861)))
+(let ((?x626 (* (~ 1) ?x617)))
+(let ((?x627 (+ |$x3| |$x5| ?x626)))
+(let (($x844 (>= ?x627 0)))
+(let (($x628 (= ?x627 0)))
+(let ((@x622 (monotonicity (monotonicity (rewrite (= $x140 $x614)) (= ?x155 ?x617)) (= (+ ?x118 ?x155) (+ ?x118 ?x617)))))
+(let ((@x625 (monotonicity @x622 (= (= |$x5| (+ ?x118 ?x155)) (= |$x5| (+ ?x118 ?x617))))))
+(let ((@x632 (trans @x625 (rewrite (= (= |$x5| (+ ?x118 ?x617)) $x628)) (= (= |$x5| (+ ?x118 ?x155)) $x628))))
+(let ((@x613 (monotonicity (rewrite (= ?x163 (+ ?x118 ?x155))) (= $x168 (= |$x5| (+ ?x118 ?x155))))))
+(let ((@x486 (monotonicity (monotonicity (rewrite (= $x140 $x140)) (= ?x155 ?x155)) (= ?x163 ?x163))))
+(let ((@x488 (mp (mp (|and-elim| @x429 $x168) (|rewrite*| (= $x168 $x168)) $x168) (monotonicity @x486 (= $x168 $x168)) $x168)))
+(let ((@x635 (mp (mp @x488 (monotonicity @x486 (= $x168 $x168)) $x168) (trans @x613 @x632 (= $x168 $x628)) $x628)))
+(let ((@x934 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x628) $x844)) @x635 $x844)))
+(let ((?x794 (* (~ 1) ?x785)))
+(let ((?x795 (+ |$x9| |$x11| ?x794)))
+(let (($x897 (<= ?x795 0)))
+(let (($x796 (= ?x795 0)))
+(let ((@x790 (monotonicity (monotonicity (rewrite (= $x326 $x782)) (= ?x341 ?x785)) (= (+ ?x304 ?x341) (+ ?x304 ?x785)))))
+(let ((@x793 (monotonicity @x790 (= (= |$x11| (+ ?x304 ?x341)) (= |$x11| (+ ?x304 ?x785))))))
+(let ((@x800 (trans @x793 (rewrite (= (= |$x11| (+ ?x304 ?x785)) $x796)) (= (= |$x11| (+ ?x304 ?x341)) $x796))))
+(let ((@x781 (monotonicity (rewrite (= ?x349 (+ ?x304 ?x341))) (= $x354 (= |$x11| (+ ?x304 ?x341))))))
+(let ((@x522 (monotonicity (monotonicity (rewrite (= $x326 $x326)) (= ?x341 ?x341)) (= ?x349 ?x349))))
+(let ((@x524 (mp (mp (|and-elim| @x429 $x354) (|rewrite*| (= $x354 $x354)) $x354) (monotonicity @x522 (= $x354 $x354)) $x354)))
+(let ((@x803 (mp (mp @x524 (monotonicity @x522 (= $x354 $x354)) $x354) (trans @x781 @x800 (= $x354 $x796)) $x796)))
+(let ((@x962 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x796) $x897)) @x803 $x897)))
+(let ((?x598 (* (~ 1) ?x589)))
+(let ((?x599 (+ |$x2| |$x4| ?x598)))
+(let (($x835 (>= ?x599 0)))
+(let (($x600 (= ?x599 0)))
+(let ((@x594 (monotonicity (monotonicity (rewrite (= $x109 $x586)) (= ?x124 ?x589)) (= (+ ?x86 ?x124) (+ ?x86 ?x589)))))
+(let ((@x597 (monotonicity @x594 (= (= |$x4| (+ ?x86 ?x124)) (= |$x4| (+ ?x86 ?x589))))))
+(let ((@x604 (trans @x597 (rewrite (= (= |$x4| (+ ?x86 ?x589)) $x600)) (= (= |$x4| (+ ?x86 ?x124)) $x600))))
+(let ((@x585 (monotonicity (rewrite (= ?x132 (+ ?x86 ?x124))) (= $x137 (= |$x4| (+ ?x86 ?x124))))))
+(let ((@x480 (monotonicity (monotonicity (rewrite (= $x109 $x109)) (= ?x124 ?x124)) (= ?x132 ?x132))))
+(let ((@x482 (mp (mp (|and-elim| @x429 $x137) (|rewrite*| (= $x137 $x137)) $x137) (monotonicity @x480 (= $x137 $x137)) $x137)))
+(let ((@x607 (mp (mp @x482 (monotonicity @x480 (= $x137 $x137)) $x137) (trans @x585 @x604 (= $x137 $x600)) $x600)))
+(let ((@x967 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x600) $x835)) @x607 $x835)))
+(let (($x888 (<= ?x767 0)))
+(let ((@x977 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x768) $x888)) @x775 $x888)))
+(let ((@x1117 ((_ |th-lemma| arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -2 1) @x1082 @x1116 @x978 @x977 @x967 @x963 @x962 @x958 @x934 @x1115 @x945 @x1114 @x1088 @x1113 false)))
+(let ((@x1121 (lemma @x1117 (or $x865 (not $x928) (not $x908) $x981 $x905 (not $x925) $x1119))))
+(let ((@x869 (|def-axiom| (or $x698 $x864))))
+(let ((@x1127 (|unit-resolution| @x869 (|unit-resolution| @x1121 @x1114 @x978 @x963 @x958 @x1115 @x1116 $x865) $x864)))
+(let ((@x1129 ((_ |th-lemma| arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1) @x1082 @x1116 @x978 @x977 @x967 @x963 @x962 @x958 @x934 @x1115 @x945 @x1114 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1070 $x1026)) @x1127 $x1026) false)))
+(let ((@x1131 (lemma @x1129 (or $x1119 (not $x928) (not $x908) $x981 $x905 (not $x925)))))
+(let ((@x1192 (|unit-resolution| @x1131 @x1191 @x978 @x963 @x958 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x928 (not $x926) $x586)) @x1009 @x935 $x928) $x1119)))
+(let ((@x1139 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1094 $x1086)) (hypothesis $x855) (hypothesis $x1119) false)))
+(let ((@x1140 (lemma @x1139 (or $x1094 $x1086))))
+(let ((@x1195 (|unit-resolution| @x858 (|unit-resolution| @x860 (|unit-resolution| @x1140 @x1192 $x1094) $x670) $x854)))
+(let (($x1022 (<= (+ |$x5| ?x654) 0)))
+(let ((@x1201 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x642 (not $x922) (not $x844) $x586 $x614)) @x1010 @x934 @x935 @x1188 $x642)))
+(let ((@x849 (|def-axiom| (or $x847 $x845))))
+(let ((@x1041 ((_ |th-lemma| arith triangle-eq) (or (not $x845) $x1022))))
+(let ((@x1207 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x698 (not $x1183) (not $x862) $x614 (not $x1022) (not $x853)))))
+(let ((@x1208 (|unit-resolution| @x1207 @x1010 @x1100 @x1046 (|unit-resolution| @x1041 (|unit-resolution| @x849 @x1201 $x845) $x1022) (|unit-resolution| @x1197 @x1195 $x1183) $x698)))
+(let (($x843 (<= ?x627 0)))
+(let ((@x1079 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x628) $x843)) @x635 $x843)))
+(let (($x1179 (>= (+ ?x149 ?x626) 0)))
+(let ((@x1213 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x837) $x1179)) (|unit-resolution| (|def-axiom| (or $x614 $x837)) @x1010 $x837) $x1179)))
+(let ((@x1214 ((_ |th-lemma| arith farkas -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1) @x1082 @x978 @x977 @x1009 @x967 @x963 @x962 @x958 (|unit-resolution| @x1197 @x1195 $x1183) @x1100 @x1213 @x1079 (|unit-resolution| @x1112 (|unit-resolution| @x867 @x1208 $x863) $x1087) false)))
+(let ((@x1221 (|unit-resolution| (lemma @x1214 (or $x614 (not $x908) $x981 $x905 $x586)) @x935 @x963 @x958 @x978 $x614)))
+(let ((@x1075 ((_ |th-lemma| arith triangle-eq) (or (not $x836) $x916))))
+(let ((@x1225 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x642 (not $x844) $x586 $x838 (not $x925))) (|unit-resolution| @x940 (|unit-resolution| @x840 @x1221 $x836) $x925) @x934 @x935 @x1221 $x642)))
+(let ((@x1038 ((_ |th-lemma| arith triangle-eq) (or (not $x845) $x1023))))
+(let ((@x1228 (|unit-resolution| @x1131 (|unit-resolution| @x940 (|unit-resolution| @x840 @x1221 $x836) $x925) @x978 @x963 @x958 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x928 (not $x926) $x586)) @x1009 @x935 $x928) $x1119)))
+(let ((@x1231 (|unit-resolution| @x858 (|unit-resolution| @x860 (|unit-resolution| @x1140 @x1228 $x1094) $x670) $x854)))
+(let ((@x1055 ((_ |th-lemma| arith triangle-eq) (or (not $x854) $x920))))
+(let (($x1150 (not $x916)))
+(let (($x1064 (not $x1023)))
+(let (($x1060 (not $x926)))
+(let (($x980 (not $x908)))
+(let ((@x1147 (hypothesis $x916)))
+(let (($x852 (<= ?x655 0)))
+(let ((@x1059 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x656) $x852)) @x663 $x852)))
+(let ((@x946 (hypothesis $x920)))
+(let ((@x1181 (hypothesis $x926)))
+(let ((@x1182 ((_ |th-lemma| arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -1 1 1) @x1082 @x978 @x977 @x1181 @x967 @x963 @x962 @x958 @x946 @x945 (hypothesis $x1023) @x1059 @x1147 @x1079 (hypothesis $x1026) false)))
+(let ((@x1233 (|unit-resolution| (lemma @x1182 (or $x1149 $x980 $x1060 $x981 $x905 $x953 $x1064 $x1150)) @x1009 @x978 @x963 @x958 (|unit-resolution| @x1055 @x1231 $x920) (|unit-resolution| @x1038 (|unit-resolution| @x849 @x1225 $x845) $x1023) (|unit-resolution| @x1075 (|unit-resolution| @x840 @x1221 $x836) $x916) $x1149)))
+(let ((@x1153 (hypothesis $x1149)))
+(let ((@x1155 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1070 $x1026)) (hypothesis $x864) @x1153 false)))
+(let ((@x1156 (lemma @x1155 (or $x1070 $x1026))))
+(let ((@x1236 (|unit-resolution| @x867 (|unit-resolution| @x869 (|unit-resolution| @x1156 @x1233 $x1070) $x698) $x863)))
+(let ((@x1238 ((_ |th-lemma| arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -2 -1 1 1) @x1082 @x978 @x977 @x1009 @x967 @x963 @x962 @x958 (|unit-resolution| @x1055 @x1231 $x920) @x945 (|unit-resolution| @x1038 (|unit-resolution| @x849 @x1225 $x845) $x1023) @x1059 (|unit-resolution| @x869 (|unit-resolution| @x1156 @x1233 $x1070) $x698) (|unit-resolution| @x1075 (|unit-resolution| @x840 @x1221 $x836) $x916) @x1079 (|unit-resolution| @x1112 @x1236 $x1087) false)))
+(let ((@x1219 (|unit-resolution| (lemma @x1238 (or $x586 $x980 $x981 $x905)) @x963 @x978 @x958 $x586)))
+(let (($x827 (= |$x3| ?x589)))
+(let ((@x831 (|def-axiom| (or $x829 $x827))))
+(let ((@x972 ((_ |th-lemma| arith triangle-eq) (or (not $x827) $x928))))
+(let ((@x1241 (|unit-resolution| @x972 (|unit-resolution| @x831 @x1219 $x827) $x928)))
+(let ((@x1258 (|unit-resolution| @x1140 (|unit-resolution| @x1131 @x1191 @x978 @x963 @x958 @x1241 $x1119) $x1094)))
+(let ((@x1261 (|unit-resolution| @x1197 (|unit-resolution| @x858 (|unit-resolution| @x860 @x1258 $x670) $x854) $x1183)))
+(let ((@x1248 (hypothesis $x1183)))
+(let ((@x1251 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 2) (or $x698 (not $x1183) (not $x862) $x614 (not $x853) (not $x1180) $x642))))
+(let ((@x1253 (|unit-resolution| @x867 (|unit-resolution| @x1251 @x1091 @x1046 @x1100 @x1010 @x1248 @x1247 $x698) $x863)))
+(let ((@x1011 (hypothesis $x904)))
+(let ((@x1255 ((_ |th-lemma| arith farkas 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1) @x1082 @x1248 @x1100 @x1091 @x978 @x977 @x967 @x963 @x962 @x1011 @x934 @x1188 @x1116 @x1010 (|unit-resolution| @x1112 @x1253 $x1087) false)))
+(let ((@x1262 (|unit-resolution| (lemma @x1255 (or $x642 (not $x1183) $x980 $x981 $x1013 (not $x928) $x614)) @x1261 @x978 @x963 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x905 $x904)) @x958 $x904) @x1241 @x1010 $x642)))
+(let ((@x1265 (|unit-resolution| @x1207 (|unit-resolution| @x1041 (|unit-resolution| @x849 @x1262 $x845) $x1022) @x1100 @x1010 @x1261 @x1046 $x698)))
+(let ((@x1268 ((_ |th-lemma| arith farkas -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) @x1079 @x1213 (|unit-resolution| @x1112 (|unit-resolution| @x867 @x1265 $x863) $x1087) @x1082 @x1261 @x1100 @x978 @x977 @x967 @x963 @x962 @x958 @x1241 @x1219 false)))
+(let ((@x1272 (|unit-resolution| (lemma @x1268 (or $x614 $x980 $x981 $x905)) @x963 @x978 @x958 $x614)))
+(let ((@x1282 (|unit-resolution| @x1131 (|unit-resolution| @x940 (|unit-resolution| @x840 @x1272 $x836) $x925) @x978 @x963 @x958 @x1241 $x1119)))
+(let ((@x1284 (|unit-resolution| @x860 (|unit-resolution| @x1140 @x1282 $x1094) $x670)))
+(let (($x1271 (>= (+ ?x180 ?x654) 0)))
+(let ((@x1287 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x846) $x1271)) (|unit-resolution| (|def-axiom| (or $x642 $x846)) @x1091 $x846) $x1271)))
+(let ((@x1290 (|unit-resolution| @x1112 (|unit-resolution| @x867 (|unit-resolution| @x1279 @x1091 @x1284 $x698) $x863) $x1087)))
+(let ((@x1293 ((_ |th-lemma| arith farkas -1 1 -1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1) (|unit-resolution| @x1197 (|unit-resolution| @x858 @x1284 $x854) $x1183) @x1100 @x1290 @x1082 @x978 @x977 @x967 @x963 @x962 @x958 @x1241 @x1287 @x1059 @x1219 @x1284 false)))
+(let ((@x1298 (|unit-resolution| (lemma @x1293 (or $x642 $x980 $x981 $x905)) @x963 @x978 @x958 $x642)))
+(let ((@x1144 (|unit-resolution| @x972 (|unit-resolution| @x831 (hypothesis $x586) $x827) $x928)))
+(let ((@x1148 ((_ |th-lemma| arith farkas -1/2 1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1) @x1079 @x1147 (hypothesis $x1023) @x1059 (hypothesis $x1026) @x1082 @x1144 @x978 @x977 @x967 @x963 @x962 @x958 @x945 @x946 (hypothesis $x586) false)))
+(let ((@x1301 (|unit-resolution| (lemma @x1148 (or $x1149 $x1150 $x1064 $x980 $x981 $x905 $x953 $x829)) (|unit-resolution| @x1038 (|unit-resolution| @x849 @x1298 $x845) $x1023) @x1219 @x978 @x963 @x958 (|unit-resolution| @x1075 (|unit-resolution| @x840 @x1272 $x836) $x916) (|unit-resolution| @x1055 (|unit-resolution| @x858 @x1284 $x854) $x920) $x1149)))
+(let ((@x1304 (|unit-resolution| @x867 (|unit-resolution| @x869 (|unit-resolution| @x1156 @x1301 $x1070) $x698) $x863)))
+(let ((@x1306 ((_ |th-lemma| arith farkas 1 -1 1/2 -1/2 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) (|unit-resolution| @x1038 (|unit-resolution| @x849 @x1298 $x845) $x1023) @x1059 (|unit-resolution| @x1075 (|unit-resolution| @x840 @x1272 $x836) $x916) @x1079 (|unit-resolution| @x869 (|unit-resolution| @x1156 @x1301 $x1070) $x698) (|unit-resolution| @x1055 (|unit-resolution| @x858 @x1284 $x854) $x920) @x945 (|unit-resolution| @x1112 @x1304 $x1087) @x1082 @x978 @x977 @x967 @x963 @x962 @x958 @x1241 @x1219 false)))
+(let ((@x1414 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1411 $x911)) (hypothesis $x890) (hypothesis $x981) false)))
+(let ((@x1415 (lemma @x1414 (or $x1411 $x911))))
+(let ((@x1417 (|unit-resolution| @x1415 (|unit-resolution| (lemma @x1306 (or $x981 $x980 $x905)) @x958 @x1394 $x981) $x1411)))
+(let ((@x894 (|def-axiom| (or $x892 $x890))))
+(let ((@x1418 (|unit-resolution| @x894 @x1417 $x892)))
+(let ((@x1440 ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x726 $x782 (not $x907) (not $x889) $x883))))
+(let ((@x1465 (|unit-resolution| @x876 (|unit-resolution| @x1440 @x1418 @x1385 @x1325 @x1399 $x726) $x872)))
+(let ((@x1376 ((_ |th-lemma| arith triangle-eq) (or (not $x872) $x910))))
+(let ((@x1466 (|unit-resolution| @x1376 @x1465 $x910)))
+(let (($x1031 (not $x925)))
+(let (($x992 (not $x922)))
+(let ((@x1092 (hypothesis $x856)))
+(let ((@x1050 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x670 (not $x1022) (not $x844) $x586 $x1031 (not $x853)))))
+(let ((@x1317 (|unit-resolution| @x1050 @x1092 @x1046 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x1022 (not $x1180) $x642)) @x1247 @x1091 $x1022) @x935 @x934 $x1031)))
+(let ((@x1320 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x614 (not $x1180) $x642 (not $x853) $x670)) @x1092 @x1046 @x1091 @x1247 $x614)))
+(let ((@x1324 (lemma (|unit-resolution| @x940 (|unit-resolution| @x840 @x1320 $x836) @x1317 false) (or $x670 $x586 $x642))))
+(let ((@x1330 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1 -1 1 -1) (or $x992 (not $x844) $x586 (not $x1271) (not $x852) $x856)) (|unit-resolution| @x1324 @x935 @x1091 $x670) @x1059 @x934 @x935 @x1287 $x992)))
+(let ((@x1332 (|unit-resolution| @x1055 (|unit-resolution| @x858 (|unit-resolution| @x1324 @x935 @x1091 $x670) $x854) $x920)))
+(let ((@x1337 (|unit-resolution| @x1197 (|unit-resolution| @x858 (|unit-resolution| @x1324 @x935 @x1091 $x670) $x854) $x1183)))
+(let ((@x930 (hypothesis $x917)))
+(let ((@x941 (|unit-resolution| @x940 (|unit-resolution| @x840 (hypothesis $x614) $x836) $x925)))
+(let ((@x952 ((_ |th-lemma| arith farkas 1 -1 1 -1 1 -1 -1 1 1) (hypothesis $x726) @x950 @x946 @x945 (hypothesis $x614) @x941 @x935 @x934 @x930 false)))
+(let ((@x1343 (|unit-resolution| (lemma @x952 (or $x586 (not $x726) $x953 $x838 $x954)) (|unit-resolution| @x1341 @x1337 @x1082 @x1091 @x1100 @x1336 $x726) @x1335 @x935 @x1332 $x838)))
+(let ((@x1345 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x837) $x922)) (|unit-resolution| (|def-axiom| (or $x614 $x837)) @x1343 $x837) @x1330 false)))
+(let ((@x1379 (|unit-resolution| @x831 (|unit-resolution| (lemma @x1345 (or $x586 $x642)) @x1091 $x586) $x827)))
+(let ((@x1380 (|unit-resolution| @x972 @x1379 $x928)))
+(let (($x1352 (>= (+ ?x335 ?x794) 0)))
+(let ((@x1407 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1368 $x1352)) (hypothesis $x891) (hypothesis (not $x1352)) false)))
+(let ((@x1408 (lemma @x1407 (or $x1368 $x1352))))
+(let ((@x1420 (|unit-resolution| @x1408 (|unit-resolution| (|def-axiom| (or $x782 $x891)) @x1418 $x891) $x1352)))
+(let ((@x1097 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1094 $x1027)) (|unit-resolution| @x860 @x1092 $x855) $x1027)))
+(let ((@x1359 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x1183 $x920)) (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x953 (not $x1027) $x670)) @x1097 @x1092 $x953) $x1183)))
+(let ((@x1361 (|unit-resolution| @x876 (|unit-resolution| @x1341 @x1359 @x1082 @x1100 @x1091 @x1336 $x726) $x872)))
+(let ((@x1106 ((_ |th-lemma| arith farkas 1 1 1 1 1 1 1 1 1) @x1105 @x1104 @x1100 @x1092 @x978 @x977 @x1097 @x1091 (hypothesis $x782) false)))
+(let ((@x1366 (|unit-resolution| (lemma @x1106 (or $x642 $x1107 $x670 $x980 $x892)) (|unit-resolution| @x1364 @x1361 $x914) @x1091 @x978 @x1092 $x892)))
+(let ((@x896 (|def-axiom| (or $x782 $x891))))
+(let ((@x1371 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1368 $x1352)) (|unit-resolution| @x896 @x1366 $x891) $x1352)))
+(let (($x880 (>= ?x739 0)))
+(let ((@x1374 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x740) $x880)) @x747 $x880)))
+(let ((@x1382 (|unit-resolution| @x1140 (|unit-resolution| @x860 @x1092 $x855) $x1086)))
+(let ((@x1386 (hypothesis $x907)))
+(let ((@x1387 ((_ |th-lemma| arith farkas 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 -2 2 1) @x1082 @x1386 @x1385 @x1336 @x945 @x1382 @x962 @x958 @x967 (|unit-resolution| @x940 (|unit-resolution| @x840 @x1320 $x836) $x925) @x934 @x1380 (|unit-resolution| @x1376 @x1361 $x910) @x1374 @x1371 false)))
+(let ((@x1421 (|unit-resolution| (lemma @x1387 (or $x670 (not $x907) $x905 $x642 $x980)) @x1091 @x958 @x1399 @x1394 $x670)))
+(let ((@x1401 ((_ |th-lemma| arith farkas -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x950 @x930 @x946 @x945 (hypothesis $x1352) @x1399 @x1385 @x962 @x958 @x967 @x1115 @x934 @x1116 @x1325 false)))
+(let ((@x1424 (|unit-resolution| (lemma @x1401 (or (not $x1352) $x954 $x953 $x905 $x1031 (not $x928) $x883)) (|unit-resolution| @x1055 (|unit-resolution| @x858 @x1421 $x854) $x920) @x1420 @x958 @x1380 @x1335 @x1325 $x1031)))
+(let ((@x1426 (|unit-resolution| @x1341 @x1336 @x1082 @x1091 (|unit-resolution| @x1197 (|unit-resolution| @x858 @x1421 $x854) $x1183) @x1100 $x726)))
+(let ((@x1429 (|unit-resolution| @x1351 (|unit-resolution| @x1364 (|unit-resolution| @x876 @x1426 $x872) $x914) @x1091 @x1325 $x614)))
+(let ((@x1433 (lemma (|unit-resolution| @x940 (|unit-resolution| @x840 @x1429 $x836) @x1424 false) (or $x642 $x883 $x905))))
+(let ((@x1469 (|unit-resolution| @x1038 (|unit-resolution| @x849 (|unit-resolution| @x1433 @x958 @x1325 $x642) $x845) $x1023)))
+(let ((@x1436 (|unit-resolution| @x1041 (|unit-resolution| @x849 (hypothesis $x642) $x845) $x1022)))
+(let ((@x1442 (|unit-resolution| @x876 (|unit-resolution| @x1440 (hypothesis $x892) @x1385 @x1325 @x1399 $x726) $x872)))
+(let ((@x1448 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x698 $x782 (not $x910) (not $x880) (not $x907) (not $x889)))))
+(let ((@x1449 (|unit-resolution| @x1448 (|unit-resolution| @x1376 @x1442 $x910) @x1385 (hypothesis $x892) @x1399 @x1374 $x698)))
+(let ((@x1434 (hypothesis $x642)))
+(let ((@x1452 ((_ |th-lemma| arith farkas -1 1 -1 -1 -1 1 1 -1 1) @x1434 @x950 (|unit-resolution| @x1173 (|unit-resolution| @x867 @x1449 $x863) $x917) @x1325 (|unit-resolution| @x1364 @x1442 $x914) @x1104 @x1010 @x1046 @x1436 false)))
+(let ((@x1470 (|unit-resolution| (lemma @x1452 (or $x614 $x847 $x883 $x782)) (|unit-resolution| @x1433 @x958 @x1325 $x642) @x1325 @x1418 $x614)))
+(let (($x1065 (not $x852)))
+(let (($x1446 (not $x880)))
+(let (($x1445 (not $x910)))
+(let (($x1438 (not $x889)))
+(let (($x1388 (not $x907)))
+(let (($x990 (not $x861)))
+(let ((@x1473 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1 -1 1 1 -1 1 1 -1) (or $x953 $x990 $x782 $x1388 $x1438 $x1064 $x1445 $x1446 $x838 $x1065)) @x1418 @x945 @x1374 @x1385 @x1059 @x1399 @x1470 @x1469 @x1466 $x953)))
+(let ((@x1474 (|unit-resolution| @x1041 (|unit-resolution| @x849 (|unit-resolution| @x1433 @x958 @x1325 $x642) $x845) $x1022)))
+(let ((@x1478 (|unit-resolution| @x867 (|unit-resolution| @x1448 @x1466 @x1385 @x1418 @x1399 @x1374 $x698) $x863)))
+(let ((@x1455 (hypothesis $x1087)))
+(let ((@x1458 (|unit-resolution| @x831 (|unit-resolution| @x1050 @x1092 @x1046 (hypothesis $x1022) @x1115 @x934 $x586) $x827)))
+(let ((@x1460 (hypothesis $x910)))
+(let ((@x1461 ((_ |th-lemma| arith farkas -1 -2 2 -1 1 1 -1 -1 1 -1 1 -1 -1 1 1) @x945 @x1460 @x1374 @x1386 @x1385 (hypothesis $x1352) @x962 @x958 @x967 (|unit-resolution| @x972 @x1458 $x928) @x1082 @x1455 @x1115 @x934 @x1382 false)))
+(let ((@x1463 (lemma @x1461 (or $x670 $x1445 $x1388 (not $x1352) $x905 (not $x1087) $x1031 (not $x1022)))))
+(let ((@x1480 (|unit-resolution| @x1463 @x1466 @x1399 @x1420 @x958 (|unit-resolution| @x1112 @x1478 $x1087) (|unit-resolution| @x940 (|unit-resolution| @x840 @x1470 $x836) $x925) @x1474 $x670)))
+(let ((@x1484 (lemma (|unit-resolution| @x1055 (|unit-resolution| @x858 @x1480 $x854) @x1473 false) (or $x905 $x883))))
+(let (($x804 (not $x70)))
+(let ((@x1514 (|unit-resolution| @x876 (|unit-resolution| @x1341 @x1359 @x1082 @x1091 @x1336 @x1100 $x726) $x872)))
+(let (($x919 (>= (+ |$x3| ?x598) 0)))
+(let ((@x1517 ((_ |th-lemma| arith triangle-eq) (or (not $x827) $x919))))
+(let ((@x1518 (|unit-resolution| @x1517 @x1379 $x919)))
+(let ((@x1519 (|unit-resolution| (lemma @x1106 (or $x642 $x1107 $x670 $x980 $x892)) (|unit-resolution| @x1364 @x1514 $x914) @x1091 @x978 @x1092 $x892)))
+(let ((@x1523 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1368 $x1496)) (|unit-resolution| @x896 @x1519 $x891) $x1496)))
+(let ((@x1497 (hypothesis $x1027)))
+(let ((@x1498 (hypothesis $x919)))
+(let (($x834 (<= ?x599 0)))
+(let ((@x1501 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x600) $x834)) @x607 $x834)))
+(let ((@x1502 (hypothesis $x1013)))
+(let (($x898 (>= ?x795 0)))
+(let ((@x1505 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x796) $x898)) @x803 $x898)))
+(let ((@x1507 ((_ |th-lemma| arith farkas 1/2 -1 -1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x930 @x1104 @x950 (hypothesis $x1496) @x1505 @x1502 @x1501 @x1498 @x1079 @x978 @x977 @x1147 @x1497 @x1100 @x1105 false)))
+(let ((@x1511 (lemma @x1507 (or $x904 $x954 $x1508 (not $x919) $x980 $x1150 (not $x1027) $x1107))))
+(let ((@x1524 (|unit-resolution| @x1511 @x1523 @x1335 @x1518 @x978 @x1147 @x1097 (|unit-resolution| @x1364 @x1514 $x914) $x904)))
+(let ((@x1526 ((_ |th-lemma| arith triangle-eq) (or $x71 $x1013 $x957))))
+(let (($x807 (or $x804 $x806)))
+(let ((@x816 (monotonicity (rewrite (= $x72 (not $x807))) (= (not $x72) (not (not $x807))))))
+(let ((@x814 (trans @x816 (rewrite (= (not (not $x807)) $x807)) (= (not $x72) $x807))))
+(let (($x439 (not $x72)))
+(let ((@x815 (mp (mp (|not-or-elim| @x428 $x439) (|rewrite*| (= $x439 $x439)) $x439) @x814 $x807)))
+(let ((@x1528 (|unit-resolution| @x815 (|unit-resolution| @x1526 @x1524 (hypothesis $x905) $x71) $x804)))
+(let (($x901 (>= (+ |$x1| ?x335) 0)))
+(let (($x558 (>= |$x2| 0)))
+(let ((?x561 (ite $x558 |$x2| ?x86)))
+(let ((?x570 (* (~ 1) ?x561)))
+(let ((?x571 (+ |$x3| |$x1| ?x570)))
+(let (($x826 (>= ?x571 0)))
+(let (($x572 (= ?x571 0)))
+(let ((@x566 (monotonicity (monotonicity (rewrite (= $x76 $x558)) (= ?x92 ?x561)) (= (+ ?x100 ?x92) (+ ?x100 ?x561)))))
+(let ((@x569 (monotonicity @x566 (= (= |$x3| (+ ?x100 ?x92)) (= |$x3| (+ ?x100 ?x561))))))
+(let ((@x576 (trans @x569 (rewrite (= (= |$x3| (+ ?x100 ?x561)) $x572)) (= (= |$x3| (+ ?x100 ?x92)) $x572))))
+(let ((@x557 (monotonicity (rewrite (= ?x101 (+ ?x100 ?x92))) (= $x106 (= |$x3| (+ ?x100 ?x92))))))
+(let ((@x474 (monotonicity (monotonicity (rewrite (= $x76 $x76)) (= ?x92 ?x92)) (= ?x101 ?x101))))
+(let ((@x476 (mp (mp (|and-elim| @x429 $x106) (|rewrite*| (= $x106 $x106)) $x106) (monotonicity @x474 (= $x106 $x106)) $x106)))
+(let ((@x579 (mp (mp @x476 (monotonicity @x474 (= $x106 $x106)) $x106) (trans @x557 @x576 (= $x106 $x572)) $x572)))
+(let ((@x1533 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x572) $x826)) @x579 $x826)))
+(let (($x1485 (<= (+ |$x2| ?x570) 0)))
+(let (($x808 (= |$x2| ?x561)))
+(let ((@x1535 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x558 (not $x835) $x642 $x1031 (not $x844) (not $x928)))))
+(let ((@x820 (|def-axiom| (or (not $x558) $x808))))
+(let ((@x1537 (|unit-resolution| @x820 (|unit-resolution| @x1535 @x1115 @x934 @x1091 @x1380 @x967 $x558) $x808)))
+(let ((@x1540 ((_ |th-lemma| arith triangle-eq) (or (not $x808) $x1485))))
+(let ((@x1542 ((_ |th-lemma| arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2) (|unit-resolution| @x1540 @x1537 $x1485) @x967 @x1380 @x1533 @x1336 @x978 @x977 @x1082 @x1287 @x1059 @x1097 @x1100 (|unit-resolution| @x1408 (|unit-resolution| @x896 @x1519 $x891) $x1352) @x962 @x1524 @x934 @x1115 $x901)))
+(let (($x825 (<= ?x571 0)))
+(let ((@x1545 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x572) $x825)) @x579 $x825)))
+(let (($x1486 (>= (+ |$x2| ?x570) 0)))
+(let ((@x1547 ((_ |th-lemma| arith triangle-eq) (or (not $x808) $x1486))))
+(let ((@x1549 ((_ |th-lemma| arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2) (|unit-resolution| @x1547 @x1537 $x1486) @x1501 @x1518 @x1545 @x1335 @x1386 @x1385 @x950 @x1247 @x1046 @x1382 @x945 @x1523 @x1505 (hypothesis $x905) @x1079 @x1147 $x900)))
+(let ((@x1553 ((_ |th-lemma| arith triangle-eq) (or $x70 (not $x900) (not $x901)))))
+(let ((@x1556 (lemma (|unit-resolution| @x1553 @x1549 @x1542 @x1528 false) (or $x670 $x1388 $x957 $x1150 $x980 $x1031 $x642))))
+(let ((@x1578 (|unit-resolution| @x1556 (|unit-resolution| @x1075 @x1574 $x916) (|unit-resolution| @x1484 @x1325 $x905) @x1399 @x1394 (|unit-resolution| @x940 @x1574 $x925) @x1091 $x670)))
+(let (($x1551 (not $x901)))
+(let ((@x1580 (|unit-resolution| @x1197 (|unit-resolution| @x858 @x1578 $x854) $x1183)))
+(let ((@x1585 (|unit-resolution| @x876 (|unit-resolution| @x1341 @x1580 @x1082 @x1091 @x1336 @x1100 $x726) $x872)))
+(let ((@x1586 (|unit-resolution| @x1364 @x1585 $x914)))
+(let ((@x1562 (|unit-resolution| @x876 (|unit-resolution| @x1341 @x1276 @x1082 @x1091 @x1336 @x1100 $x726) $x872)))
+(let ((@x1564 ((_ |th-lemma| arith farkas -1 -1 -1 1 -1 1 -1 1 1) @x1273 (hypothesis $x782) @x978 @x977 @x1100 @x1091 (|unit-resolution| @x1364 @x1562 $x914) @x1104 @x1276 false)))
+(let ((@x1587 (|unit-resolution| (lemma @x1564 (or $x892 $x856 $x980 $x642)) @x1578 @x1394 @x1091 $x892)))
+(let ((@x1558 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1368 $x1496)) (hypothesis $x891) (hypothesis $x1508) false)))
+(let ((@x1559 (lemma @x1558 (or $x1368 $x1496))))
+(let ((@x1590 (|unit-resolution| @x1511 (|unit-resolution| @x1559 (|unit-resolution| @x896 @x1587 $x891) $x1496) @x1586 @x1518 @x1394 (|unit-resolution| @x1075 @x1574 $x916) (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x1027 $x856 (not $x1183))) @x1580 @x1578 $x1027) @x1335 $x904)))
+(let ((@x1592 (|unit-resolution| @x815 (|unit-resolution| @x1526 @x1590 (|unit-resolution| @x1484 @x1325 $x905) $x71) $x804)))
+(let ((@x1593 (|unit-resolution| @x1535 (|unit-resolution| @x940 @x1574 $x925) @x934 @x1091 @x1380 @x967 $x558)))
+(let ((@x1567 (hypothesis (not $x900))))
+(let ((@x1569 ((_ |th-lemma| arith farkas 1 -1 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x930 @x950 @x1105 @x1104 @x946 @x1399 @x1385 @x945 (hypothesis $x1486) @x1501 @x1498 @x1545 @x1567 (hypothesis $x1180) @x1046 @x1325 false)))
+(let ((@x1572 (lemma @x1569 (or $x900 $x954 $x1107 $x953 (not $x1486) (not $x919) (not $x1180) $x883))))
+(let ((@x1597 (|unit-resolution| @x1572 @x1335 @x1586 (|unit-resolution| @x1055 (|unit-resolution| @x858 @x1578 $x854) $x920) (|unit-resolution| @x1547 (|unit-resolution| @x820 @x1593 $x808) $x1486) @x1518 @x1247 @x1325 $x900)))
+(let ((@x1600 ((_ |th-lemma| arith farkas -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x1580 @x1394 @x977 @x1100 @x1586 @x1104 (|unit-resolution| @x1540 (|unit-resolution| @x820 @x1593 $x808) $x1485) @x967 @x1380 @x1533 (|unit-resolution| @x1553 @x1597 @x1592 $x1551) @x1287 @x1059 @x1578 false)))
+(let ((@x887 (|def-axiom| (or $x754 $x882))))
+(let ((@x1646 (|unit-resolution| @x887 (|unit-resolution| (lemma @x1600 (or $x642 $x883)) @x1091 $x883) $x882)))
+(let ((@x1652 ((_ |th-lemma| arith triangle-eq) (or (not $x882) $x1616))))
+(let ((@x1653 (|unit-resolution| @x1652 @x1646 $x1616)))
+(let ((@x1617 (hypothesis $x883)))
+(let ((@x1620 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x1445 (not $x1087) $x1446 $x754 (not $x871) $x670)) @x1092 @x1374 @x1617 @x1113 @x1082 $x1445)))
+(let ((@x1623 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x726 $x865 (not $x1087) (not $x871) $x670)) @x1092 @x1082 @x1088 @x1113 $x726)))
+(let ((@x1627 (lemma (|unit-resolution| @x1376 (|unit-resolution| @x876 @x1623 $x872) @x1620 false) (or $x670 $x865 $x754))))
+(let ((@x1637 (|unit-resolution| @x1627 (|unit-resolution| (lemma @x1311 (or $x698 $x642)) @x1091 $x698) (|unit-resolution| (lemma @x1600 (or $x642 $x883)) @x1091 $x883) $x670)))
+(let ((@x1639 (|unit-resolution| @x1197 (|unit-resolution| @x858 @x1637 $x854) $x1183)))
+(let ((@x1642 (|unit-resolution| (|unit-resolution| @x1341 @x1082 @x1100 (or $x726 (not $x1087) (not $x1183) $x642)) @x1639 @x1091 @x1336 $x726)))
+(let ((@x1644 (|unit-resolution| @x1364 (|unit-resolution| @x876 @x1642 $x872) $x914)))
+(let ((@x1645 (|unit-resolution| @x1055 (|unit-resolution| @x858 @x1637 $x854) $x920)))
+(let (($x1607 (<= (+ ?x304 ?x766) 0)))
+(let ((@x1649 ((_ |th-lemma| arith triangle-eq) (or (not $x882) $x1607))))
+(let ((@x1650 (|unit-resolution| @x1649 @x1646 $x1607)))
+(let ((@x1654 (|unit-resolution| @x1376 (|unit-resolution| @x876 @x1642 $x872) $x910)))
+(let ((@x1658 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 2) (or $x558 (not $x835) $x642 (not $x844) $x992 (not $x928) $x614)) @x934 @x967 (or $x558 $x642 $x992 (not $x928) $x614))))
+(let ((@x1660 (|unit-resolution| @x820 (|unit-resolution| @x1658 @x1188 @x1380 @x1091 @x1010 $x558) $x808)))
+(let (($x1205 (not $x862)))
+(let (($x1204 (not $x1183)))
+(let (($x1338 (not $x871)))
+(let (($x1339 (not $x1087)))
+(let (($x1061 (not $x888)))
+(let (($x1633 (not $x1616)))
+(let (($x1327 (not $x1271)))
+(let (($x1118 (not $x928)))
+(let (($x1663 (not $x826)))
+(let (($x1062 (not $x835)))
+(let (($x1662 (not $x1485)))
+(let (($x1664 (or $x901 $x1662 $x1062 $x1663 $x1118 $x1327 $x1065 $x1633 $x1061 $x1339 $x1338 $x1204 $x1205 $x1445 $x1446)))
+(let ((@x1666 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1664) (|unit-resolution| @x1540 @x1660 $x1485) @x1059 @x1100 @x1082 @x1374 @x977 @x1533 @x1380 @x1639 @x1336 @x1287 @x1654 @x1653 @x967 $x901)))
+(let (($x1671 (not $x879)))
+(let (($x989 (not $x870)))
+(let (($x1670 (not $x1607)))
+(let (($x1048 (not $x853)))
+(let (($x1249 (not $x1180)))
+(let (($x1509 (not $x919)))
+(let (($x1669 (not $x825)))
+(let (($x1668 (not $x834)))
+(let (($x1570 (not $x1486)))
+(let (($x1672 (or $x900 $x1570 $x1668 $x1669 $x1509 $x1249 $x1048 $x1670 $x1438 $x954 $x989 $x953 $x990 $x1107 $x1671)))
+(let ((@x1673 ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1672)))
+(let ((@x1674 (|unit-resolution| @x1673 (|unit-resolution| @x1547 @x1660 $x1486) @x1046 @x945 @x950 @x1104 @x1385 @x1545 @x1645 @x1335 @x1644 @x1518 @x1247 @x1501 @x1650 $x900)))
+(let ((@x1678 ((_ |th-lemma| arith assign-bounds 1 1 2 2 1 1 1 1 1 1 1) (or $x782 $x1670 $x1438 $x954 $x989 $x953 $x990 $x1249 $x1048 $x614 $x1107 $x1671))))
+(let ((@x1679 (|unit-resolution| @x1678 @x1010 @x945 @x950 @x1104 @x1385 @x1046 @x1645 @x1335 @x1644 @x1247 @x1650 $x782)))
+(let ((@x1629 (hypothesis $x922)))
+(let ((@x1632 ((_ |th-lemma| arith farkas -1 1 1 -1 1 -1 -2 2 -1 1 3 -3 1 -1 2 -2 1) @x963 @x962 @x958 @x967 @x1116 @x934 (hypothesis $x1271) @x1059 (hypothesis $x1616) @x977 @x1455 @x1082 @x1248 @x1100 @x1460 @x1374 @x1629 false)))
+(let ((@x1682 (|unit-resolution| (lemma @x1632 (or $x905 $x981 $x1118 $x1327 $x1633 $x1339 $x1204 $x1445 $x992)) (|unit-resolution| @x1415 (|unit-resolution| @x894 @x1679 $x890) $x911) @x1380 @x1287 @x1653 @x1336 @x1639 @x1654 @x1188 $x905)))
+(let ((@x1683 (|unit-resolution| @x1526 @x1682 (|unit-resolution| @x815 (|unit-resolution| @x1553 @x1674 @x1666 $x70) $x806) $x1013)))
+(let ((@x1685 ((_ |th-lemma| arith triangle-eq) (or $x1411 $x1628))))
+(let ((@x1687 ((_ |th-lemma| arith farkas -1 1 1 -1 1 -1 -2 2 -1 1 3 -3 1 -1 2 -2 1) (|unit-resolution| @x1685 (|unit-resolution| @x894 @x1679 $x890) $x1628) @x1505 @x1683 @x1501 @x1518 @x1079 @x1247 @x1046 @x1650 @x1385 @x1335 @x950 @x1645 @x945 @x1644 @x1104 @x1213 false)))
+(let ((@x1700 (|unit-resolution| @x840 (|unit-resolution| (lemma @x1687 (or $x614 $x642)) @x1091 $x614) $x836)))
+(let ((@x1702 (|unit-resolution| @x940 @x1700 $x925)))
+(let ((@x1705 (|unit-resolution| (|unit-resolution| @x1535 @x934 @x967 (or $x558 $x642 $x1031 $x1118)) @x1702 @x1091 @x1380 $x558)))
+(let ((@x1708 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1664) (|unit-resolution| @x1540 (|unit-resolution| @x820 @x1705 $x808) $x1485) @x1059 @x1100 @x1082 @x1374 @x977 @x967 @x1380 @x1639 @x1336 @x1287 @x1654 @x1653 @x1533 $x901)))
+(let ((@x1710 (|unit-resolution| @x1673 (|unit-resolution| @x1547 (|unit-resolution| @x820 @x1705 $x808) $x1486) @x1046 @x945 @x950 @x1104 @x1385 @x1501 @x1645 @x1335 @x1644 @x1518 @x1247 @x1545 @x1650 $x900)))
+(let ((@x1715 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x922 $x838 $x1031)) @x1702 (|unit-resolution| (lemma @x1687 (or $x614 $x642)) @x1091 $x614) $x922)))
+(let ((@x1690 (|unit-resolution| (lemma @x1632 (or $x905 $x981 $x1118 $x1327 $x1633 $x1339 $x1204 $x1445 $x992)) @x958 @x1116 (hypothesis $x1271) (hypothesis $x1616) @x1455 @x1248 @x1460 @x1629 $x981)))
+(let ((@x1693 (|unit-resolution| @x896 (|unit-resolution| @x894 (|unit-resolution| @x1415 @x1690 $x1411) $x892) $x891)))
+(let ((@x1696 ((_ |th-lemma| arith farkas -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1) @x962 @x958 @x1115 @x934 @x967 @x1116 @x930 @x950 (hypothesis $x1607) @x1385 @x946 @x945 (|unit-resolution| @x1408 @x1693 $x1352) false)))
+(let ((@x1698 (lemma @x1696 (or $x905 $x1031 $x1118 $x954 $x1670 $x953 $x1327 $x1633 $x1339 $x1204 $x1445 $x992))))
+(let ((@x1716 (|unit-resolution| @x1698 @x1702 @x1380 @x1335 @x1650 @x1645 @x1287 @x1653 @x1336 @x1639 @x1654 @x1715 $x905)))
+(let ((@x1717 (|unit-resolution| @x1526 @x1716 (|unit-resolution| @x815 (|unit-resolution| @x1553 @x1710 @x1708 $x70) $x806) $x1013)))
+(let (($x1719 (not $x843)))
+(let (($x1718 (not $x898)))
+(let (($x1720 (or $x1508 $x1718 $x904 $x1150 $x1719 $x1668 $x1509 $x1339 $x1338 $x1633 $x1061 $x1204 $x1205)))
+(let ((@x1722 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1) $x1720) @x1717 @x1100 @x1082 @x977 @x1505 @x1079 (|unit-resolution| @x1075 @x1700 $x916) @x1518 @x1639 @x1336 @x1501 @x1653 $x1508)))
+(let ((@x1725 (|unit-resolution| @x894 (|unit-resolution| @x896 (|unit-resolution| @x1559 @x1722 $x1368) $x782) $x890)))
+(let ((@x1727 ((_ |th-lemma| arith farkas -1 -1 -2 -1 1 1 -1 1 -1 -1 1 1 -1 1) @x1505 @x1717 (|unit-resolution| @x896 (|unit-resolution| @x1559 @x1722 $x1368) $x782) (|unit-resolution| @x1075 @x1700 $x916) @x1079 @x1501 @x1518 @x1336 @x1082 @x1653 @x977 @x1639 @x1100 (|unit-resolution| @x1685 @x1725 $x1628) false)))
+(let ((@x1728 (lemma @x1727 $x642)))
+(let ((@x1785 (|unit-resolution| @x1038 (|unit-resolution| @x849 @x1728 $x845) $x1023)))
+(let (($x1946 (>= (+ ?x273 ?x738) 0)))
+(let (($x873 (= ?x273 ?x729)))
+(let (($x874 (not $x726)))
+(let ((@x1948 (hypothesis $x874)))
+(let ((@x878 (|def-axiom| (or $x726 $x873))))
+(let ((@x1959 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x873) $x1946)) (|unit-resolution| @x878 @x1948 $x873) $x1946)))
+(let (($x1122 (<= (+ ?x273 ?x738) 0)))
+(let ((@x1882 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x873) $x1122)) (hypothesis $x873) (hypothesis (not $x1122)) false)))
+(let ((@x1883 (lemma @x1882 (or (not $x873) $x1122))))
+(let ((@x1950 (|unit-resolution| @x1883 (|unit-resolution| @x878 @x1948 $x873) $x1122)))
+(let (($x1879 (not $x873)))
+(let (($x1876 (not $x1122)))
+(let ((@x1764 (|unit-resolution| @x1041 (|unit-resolution| @x849 @x1728 $x845) $x1022)))
+(let ((@x1606 (lemma ((_ |th-lemma| arith farkas 1 1 1 1 1) @x1434 @x1046 @x1010 @x1092 @x1436 false) (or $x614 $x847 $x670))))
+(let ((@x1767 (|unit-resolution| @x940 (|unit-resolution| @x840 (|unit-resolution| @x1606 @x1092 @x1728 $x614) $x836) $x925)))
+(let ((@x1770 (|unit-resolution| (|unit-resolution| @x1050 @x1046 @x934 (or $x670 (not $x1022) $x586 $x1031)) @x1767 @x1764 @x1092 $x586)))
+(let ((@x1772 (|unit-resolution| @x1517 (|unit-resolution| @x831 @x1770 $x827) $x919)))
+(let ((@x1773 (|unit-resolution| @x1075 (|unit-resolution| @x840 (|unit-resolution| @x1606 @x1092 @x1728 $x614) $x836) $x916)))
+(let ((@x1612 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x1026 $x865 $x1339)) (|unit-resolution| @x869 (|unit-resolution| @x1156 @x1153 $x1070) $x698) @x1153 $x1339)))
+(let ((@x1613 (|unit-resolution| @x867 (|unit-resolution| @x869 (|unit-resolution| @x1156 @x1153 $x1070) $x698) $x863)))
+(let ((@x1733 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1 -1 1 -1) (or $x1149 $x1338 $x726 $x1119 $x990 $x847)) @x1082 (lemma (|unit-resolution| @x1112 @x1613 @x1612 false) $x1026) @x945 (or $x726 $x1119 $x847))))
+(let ((@x1736 (|unit-resolution| @x1376 (|unit-resolution| @x876 (|unit-resolution| @x1733 @x1382 @x1728 $x726) $x872) $x910)))
+(let ((@x1738 ((_ |th-lemma| arith assign-bounds 1 2 2 2 2 2) (or $x1119 $x1204 $x1445 $x1339 $x1446 $x754 $x1338))))
+(let ((@x1742 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x1087 $x917)) (|unit-resolution| @x1738 @x1617 @x1374 @x1082 @x1382 @x1359 @x1736 $x1339) $x917)))
+(let ((@x1746 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1) (or $x954 $x698 $x1149)) (lemma (|unit-resolution| @x1112 @x1613 @x1612 false) $x1026) (or $x954 $x698))))
+(let ((@x1747 (|unit-resolution| @x1746 @x1742 (|unit-resolution| @x1627 @x1617 @x1092 $x865) false)))
+(let ((@x1756 (|unit-resolution| @x885 (|unit-resolution| (lemma @x1747 (or $x754 $x670)) @x1092 $x754) $x881)))
+(let ((@x1757 (|unit-resolution| @x1398 @x1756 $x907)))
+(let ((@x1755 (|unit-resolution| @x1484 (|unit-resolution| (lemma @x1747 (or $x754 $x670)) @x1092 $x754) $x905)))
+(let (($x809 (= ?x86 ?x561)))
+(let (($x1793 (not $x809)))
+(let (($x1753 (>= (+ ?x86 ?x570) 0)))
+(let (($x1805 (not $x1753)))
+(let ((@x1819 (|unit-resolution| @x1376 (|unit-resolution| @x876 (|unit-resolution| @x1733 @x1114 @x1728 $x726) $x872) $x910)))
+(let (($x1047 (not $x1022)))
+(let (($x991 (not $x844)))
+(let (($x1806 (or $x900 $x1805 $x1031 $x991 $x1062 $x1118 $x1669 $x1047 $x1048 $x1388 $x1438 $x990 $x1445 $x1446 $x1119)))
+(let ((@x1820 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1806) @x1567 @x934 @x1046 @x945 @x1374 @x1385 @x967 @x1386 @x1115 @x1764 @x1116 @x1114 @x1819 @x1545 $x1805)))
+(let ((@x1815 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1793 $x1753)) (hypothesis $x809) (hypothesis $x1805) false)))
+(let ((@x824 (|def-axiom| (or $x558 $x809))))
+(let ((@x1822 (|unit-resolution| @x824 (|unit-resolution| (lemma @x1815 (or $x1793 $x1753)) @x1820 $x1793) $x558)))
+(let ((@x1825 ((_ |th-lemma| arith farkas -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x945 @x1114 @x1386 @x1385 @x1819 @x1374 (|unit-resolution| @x1547 (|unit-resolution| @x820 @x1822 $x808) $x1486) @x1545 @x1567 @x1764 @x1046 @x1501 @x1498 @x1728 false)))
+(let ((@x1840 (|unit-resolution| (lemma @x1825 (or $x900 $x1119 $x1388 $x1509 $x1031 $x1118)) @x1382 @x1757 @x1772 @x1767 (|unit-resolution| @x972 (|unit-resolution| @x831 @x1770 $x827) $x928) $x900)))
+(let ((@x1784 (|unit-resolution| @x1364 (|unit-resolution| @x876 (|unit-resolution| @x1733 @x1382 @x1728 $x726) $x872) $x914)))
+(let ((@x1786 (|unit-resolution| @x1393 @x1756 $x908)))
+(let (($x1752 (<= (+ ?x86 ?x570) 0)))
+(let (($x1797 (not $x1752)))
+(let (($x1353 (not $x1027)))
+(let (($x1798 (or $x901 $x1797 $x1150 $x1719 $x1668 $x1509 $x1663 $x1064 $x1065 $x980 $x1061 $x1205 $x1107 $x1671 $x1353)))
+(let ((@x1832 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1798) (hypothesis $x1551) @x1079 @x1059 @x1100 @x1104 @x977 @x1501 @x978 @x1785 @x1105 @x1497 @x1147 @x1498 @x1533 $x1797)))
+(let ((@x1829 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1793 $x1752)) (hypothesis $x809) (hypothesis $x1797) false)))
+(let ((@x1834 (|unit-resolution| @x824 (|unit-resolution| (lemma @x1829 (or $x1793 $x1752)) @x1832 $x1793) $x558)))
+(let ((@x1837 ((_ |th-lemma| arith farkas 1/2 -1/2 1 -1 -1/2 1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x1100 @x1497 @x1147 @x1079 @x1501 @x1498 @x978 @x977 @x1105 @x1104 (|unit-resolution| @x1540 (|unit-resolution| @x820 @x1834 $x808) $x1485) @x1533 (hypothesis $x1551) @x1785 @x1059 @x1834 false)))
+(let ((@x1841 (|unit-resolution| (lemma @x1837 (or $x901 $x1353 $x1150 $x1509 $x980 $x1107)) @x1097 @x1773 @x1772 @x1786 @x1784 $x901)))
+(let ((@x1844 (|unit-resolution| @x1526 (|unit-resolution| @x815 (|unit-resolution| @x1553 @x1841 @x1840 $x70) $x806) @x1755 $x1013)))
+(let ((@x1760 (|unit-resolution| (|unit-resolution| @x1448 @x1385 @x1374 (or $x698 $x782 $x1445 $x1388)) @x1274 @x1736 @x1757 $x782)))
+(let (($x1750 (>= (+ ?x242 ?x710) 0)))
+(let ((@x1777 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1070 $x1750)) (|unit-resolution| @x869 @x1274 $x864) $x1750)))
+(let (($x1779 (not $x1628)))
+(let (($x1778 (not $x1750)))
+(let (($x1780 (or $x904 $x1778 $x1779 $x1718 $x989 $x1150 $x1719 $x1668 $x1509 $x1388 $x1438 $x1205 $x1353)))
+(let ((@x1781 ((_ |th-lemma| arith assign-bounds 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1) $x1780)))
+(let ((@x1782 (|unit-resolution| @x1781 @x1777 @x1100 @x950 @x1385 @x1505 @x1501 @x1757 @x1097 @x1773 @x1772 @x1079 (|unit-resolution| @x1685 (|unit-resolution| @x894 @x1760 $x890) $x1628) $x904)))
+(let (($x822 (not $x558)))
+(let ((@x1790 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 1 1) (or $x822 $x1509 $x1668 $x1719 $x1150 $x698 $x1205 $x670 $x1353)) @x1079 @x1100 @x1501 (or $x822 $x1509 $x1150 $x698 $x670 $x1353))))
+(let ((@x1792 (|unit-resolution| @x824 (|unit-resolution| @x1790 @x1274 @x1092 @x1097 @x1773 @x1772 $x822) $x809)))
+(let ((@x1800 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1798) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1793 $x1752)) @x1792 $x1752) @x1079 @x1059 @x1100 @x1104 @x977 @x1533 @x1786 @x1785 @x1784 @x1097 @x1773 @x1772 @x1501 $x901)))
+(let ((@x1808 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1806) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1793 $x1753)) @x1792 $x1753) @x934 @x1046 @x945 @x1374 @x1385 @x1545 @x1757 @x1767 @x1764 (|unit-resolution| @x972 (|unit-resolution| @x831 @x1770 $x827) $x928) @x1382 @x1736 @x967 $x900)))
+(let ((@x1810 (|unit-resolution| @x815 (|unit-resolution| @x1553 @x1808 @x1800 $x70) (|unit-resolution| @x1526 @x1782 @x1755 $x71) false)))
+(let ((@x1846 (|unit-resolution| @x867 (|unit-resolution| (lemma @x1810 (or $x698 $x670)) @x1092 $x698) $x863)))
+(let ((@x1848 (|unit-resolution| @x1511 @x1844 @x1784 @x1772 @x1786 @x1773 @x1097 (|unit-resolution| @x1173 @x1846 $x917) $x1508)))
+(let ((@x1851 (|unit-resolution| @x894 (|unit-resolution| @x896 (|unit-resolution| @x1559 @x1848 $x1368) $x782) $x890)))
+(let ((@x1855 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -2 2 -2 2 -1 -2) (or $x1750 $x980 $x1061 $x1107 $x1671 $x954 $x892)) (|unit-resolution| @x896 (|unit-resolution| @x1559 @x1848 $x1368) $x782) @x977 @x1786 (|unit-resolution| @x1173 @x1846 $x917) @x1784 @x1104 $x1750)))
+(let ((@x1856 (|unit-resolution| @x1781 @x1855 (|unit-resolution| @x1685 @x1851 $x1628) @x1100 @x950 @x1385 @x1505 @x1844 @x1757 @x1097 @x1773 @x1772 @x1079 @x1501 false)))
+(let ((@x1857 (lemma @x1856 $x670)))
+(let ((@x1884 ((_ |th-lemma| arith assign-bounds -1 -1 1 1 -1) (or $x1876 $x1446 $x1778 $x989 $x754 $x856))))
+(let ((@x1886 (|unit-resolution| @x1883 (|unit-resolution| @x1884 @x1777 @x1374 @x1617 @x1857 @x950 $x1876) $x1879)))
+(let ((@x1889 (|unit-resolution| @x1376 (|unit-resolution| @x876 (|unit-resolution| @x878 @x1886 $x726) $x872) $x910)))
+(let ((@x1890 ((_ |th-lemma| arith farkas 1 1 1 1 1) @x1617 @x1889 @x1374 @x1274 (|unit-resolution| @x878 @x1886 $x726) false)))
+(let ((@x1135 (|unit-resolution| @x867 (|unit-resolution| (lemma @x1890 (or $x698 $x754)) @x1617 $x698) $x863)))
+(let ((@x1895 (|unit-resolution| @x1484 @x958 $x883)))
+(let ((@x1897 (|unit-resolution| @x867 (|unit-resolution| (lemma @x1890 (or $x698 $x754)) @x1895 $x698) $x863)))
+(let ((@x1919 (|unit-resolution| @x1197 (|unit-resolution| @x858 @x1857 $x854) $x1183)))
+(let ((@x1894 (hypothesis $x1122)))
+(let ((@x1864 (|unit-resolution| @x1055 (|unit-resolution| @x858 @x1857 $x854) $x920)))
+(let ((@x1898 (|unit-resolution| @x1173 @x1897 $x917)))
+(let ((@x1903 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 1 1) (or $x782 $x1438 $x1670 $x754 $x954 $x953 $x847 $x990 $x989))))
+(let ((@x1904 (|unit-resolution| @x1903 @x1895 @x950 @x945 @x1385 @x1728 @x1864 @x1898 (|unit-resolution| @x1649 (|unit-resolution| @x887 @x1895 $x882) $x1607) $x782)))
+(let ((@x1907 ((_ |th-lemma| arith assign-bounds -1 1 1 -1 -1 1 -1 -1 -3 3 1 1 2 -2 -2 2) (|unit-resolution| @x1415 (|unit-resolution| @x894 @x1904 $x890) $x911) @x962 @x958 @x934 @x967 @x977 (|unit-resolution| @x1652 (|unit-resolution| @x887 @x1895 $x882) $x1616) @x1898 @x1864 @x945 @x950 @x1629 @x1894 @x1374 @x1785 @x1059 $x1118)))
+(let ((@x1909 ((_ |th-lemma| arith assign-bounds 1 1 1 2 2 1 1 1 1 1 1) (or $x586 $x991 $x992 $x954 $x953 $x990 $x989 $x1876 $x1446 $x754 $x1064 $x1065))))
+(let ((@x1910 (|unit-resolution| @x1909 @x1894 @x1059 @x945 @x950 @x1374 @x1895 @x1864 @x1898 @x1629 @x1785 @x934 $x586)))
+(let ((@x1914 (lemma (|unit-resolution| @x972 (|unit-resolution| @x831 @x1910 $x827) @x1907 false) (or $x1876 $x905 $x992))))
+(let ((@x1916 (|unit-resolution| @x878 (|unit-resolution| @x1883 (|unit-resolution| @x1914 @x1188 @x958 $x1876) $x1879) $x726)))
+(let ((@x1922 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 1 1) (or $x586 $x954 $x874 $x989 $x953 $x990 $x991 $x992 $x614)) @x934 @x945 @x950 (or $x586 $x954 $x874 $x953 $x992 $x614))))
+(let ((@x1924 (|unit-resolution| @x831 (|unit-resolution| @x1922 @x1916 @x1898 @x1188 @x1864 @x1010 $x586) $x827)))
+(let ((@x1928 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -2 -2 -2 2 2) (or $x1271 $x1064 $x874 $x954 $x953 $x990 $x989)) @x1916 @x950 @x1864 @x1898 @x1785 @x945 $x1271)))
+(let ((@x1929 (|unit-resolution| @x1698 @x1928 (|unit-resolution| @x972 @x1924 $x928) @x958 (|unit-resolution| @x1649 (|unit-resolution| @x887 @x1895 $x882) $x1607) @x1898 @x1864 @x1188 (|unit-resolution| @x1652 (|unit-resolution| @x887 @x1895 $x882) $x1616) (|unit-resolution| @x1112 @x1897 $x1087) @x1919 (|unit-resolution| @x1376 (|unit-resolution| @x876 @x1916 $x872) $x910) @x1191 false)))
+(let ((@x1935 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -2 2 -2 -2 2) (or $x1750 $x954 $x953 $x990 $x838 $x1064 $x1065)) @x1898 @x945 @x1864 @x1059 @x1785 (|unit-resolution| (lemma @x1929 (or $x614 $x905)) @x958 $x614) $x1750)))
+(let ((@x1937 (|unit-resolution| @x1883 (|unit-resolution| @x1884 @x1935 @x1374 @x1895 @x1857 @x950 $x1876) $x1879)))
+(let ((@x1940 (|unit-resolution| @x1376 (|unit-resolution| @x876 (|unit-resolution| @x878 @x1937 $x726) $x872) $x910)))
+(let ((@x1943 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -3 -2 -2 2 2 -2 -2 2) (or $x1086 $x953 $x874 $x954 $x989 $x990 $x838 $x1064 $x1065)) (|unit-resolution| @x878 @x1937 $x726) @x945 @x950 @x1059 @x1864 @x1898 @x1785 (|unit-resolution| (lemma @x1929 (or $x614 $x905)) @x958 $x614) $x1086)))
+(let ((@x1944 (|unit-resolution| @x1738 @x1943 @x1940 @x1374 @x1082 @x1895 @x1919 (|unit-resolution| @x1112 @x1897 $x1087) false)))
+(let ((@x1945 (lemma @x1944 $x905)))
+(let ((@x1859 (|unit-resolution| @x1649 (|unit-resolution| @x887 @x1617 $x882) $x1607)))
+(let ((@x1988 (|unit-resolution| (|unit-resolution| @x1207 @x1100 @x1046 (or $x698 $x1204 $x614 $x1047)) @x1010 @x1919 @x1764 $x698)))
+(let ((@x1990 (|unit-resolution| @x1173 (|unit-resolution| @x867 @x1988 $x863) $x917)))
+(let ((@x1947 (hypothesis $x1179)))
+(let ((@x1951 (|unit-resolution| @x1909 @x1950 @x1059 @x945 @x950 @x1374 @x1617 @x1864 @x930 @x1629 @x1785 @x934 $x586)))
+(let ((@x1955 (|unit-resolution| @x894 (|unit-resolution| @x1903 @x1859 @x950 @x945 @x1385 @x1728 @x1864 @x930 @x1617 $x782) $x890)))
+(let ((@x1956 (|unit-resolution| @x1685 @x1955 $x1628)))
+(let ((@x1960 ((_ |th-lemma| arith assign-bounds 1 -1 -3/2 3/2 -1 1 -1/2 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 1/2) @x1959 @x1104 @x1919 @x1100 @x1764 @x1046 @x1956 @x1505 @x1079 @x1501 (|unit-resolution| @x1517 (|unit-resolution| @x831 @x1951 $x827) $x919) @x1385 @x1859 @x1455 @x1082 @x1947 $x904)))
+(let ((@x1965 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1 1 1 1 1 1) (or $x558 $x754 $x1779 $x1718 $x957 $x1438 $x1670 $x726)) @x1948 @x1617 @x1385 @x1505 @x1945 @x1859 @x1956 $x558)))
+(let (($x1970 (not $x1179)))
+(let (($x1971 (or $x901 $x1662 $x1663 $x1779 $x1718 $x957 $x1719 $x1970 $x1339 $x1204 $x1205 $x1338 $x1062 $x1118 $x1061 $x1633)))
+(let ((@x1973 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1/2 -1/2) $x1971) (|unit-resolution| @x972 (|unit-resolution| @x831 @x1951 $x827) $x928) @x1079 @x1100 @x1082 @x977 @x1505 @x1533 @x1945 @x967 @x1919 @x1947 @x1455 (|unit-resolution| @x1652 (|unit-resolution| @x887 @x1617 $x882) $x1616) (|unit-resolution| @x1540 (|unit-resolution| @x820 @x1965 $x808) $x1485) @x1956 $x901)))
+(let (($x1063 (not $x897)))
+(let (($x1976 (or $x900 $x1570 $x1669 $x981 $x1063 $x1013 $x991 $x992 $x954 $x953 $x990 $x989 $x1668 $x1509 $x1438 $x1670)))
+(let ((@x1978 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1/2 -1/2) $x1976) @x1960 @x934 @x945 @x950 @x1385 @x962 @x1545 @x1501 (|unit-resolution| @x1415 @x1955 $x911) @x1864 @x930 @x1629 (|unit-resolution| @x1517 (|unit-resolution| @x831 @x1951 $x827) $x919) (|unit-resolution| @x1547 (|unit-resolution| @x820 @x1965 $x808) $x1486) @x1859 $x900)))
+(let ((@x1979 (|unit-resolution| @x1553 @x1978 @x1973 (|unit-resolution| @x815 (|unit-resolution| @x1526 @x1960 @x1945 $x71) $x804) false)))
+(let ((@x1992 (|unit-resolution| (lemma @x1979 (or $x726 $x954 $x992 $x1970 $x1339 $x754)) @x1617 @x1188 @x1213 (|unit-resolution| @x1112 (|unit-resolution| @x867 @x1988 $x863) $x1087) @x1990 $x726)))
+(let ((@x1994 (|unit-resolution| @x831 (|unit-resolution| @x1922 @x1992 @x1010 @x1188 @x1864 @x1990 $x586) $x827)))
+(let ((@x1997 (|unit-resolution| @x894 (|unit-resolution| @x1903 @x1859 @x950 @x945 @x1385 @x1728 @x1864 @x1990 @x1617 $x782) $x890)))
+(let ((@x1998 (|unit-resolution| @x1685 @x1997 $x1628)))
+(let ((@x1982 (hypothesis $x1628)))
+(let ((@x1983 ((_ |th-lemma| arith farkas 3/4 1/4 -1/4 -3/4 1/2 -1/2 -1/2 1/2 -1/4 1/4 1/4 -1/4 -1/4 1/4 1/4 -1/4 1/4 1) @x930 @x1864 @x945 @x950 @x1105 @x1104 @x1764 @x1046 @x1982 @x1505 @x1502 @x1079 @x1501 @x1498 @x1385 (hypothesis $x1607) @x1947 @x1728 false)))
+(let ((@x2001 (|unit-resolution| (lemma @x1983 (or $x904 $x954 $x1107 $x1779 $x1509 $x1670 $x1970)) (|unit-resolution| @x1364 (|unit-resolution| @x876 @x1992 $x872) $x914) @x1990 @x1998 (|unit-resolution| @x1517 @x1994 $x919) @x1859 @x1213 $x904)))
+(let ((@x2006 ((_ |th-lemma| arith assign-bounds 2 3/4 3/4 3/4 3/4 3/4 1/2 1/2 3/4 3/4 1/2 1/2 1/4 1/4 1/4 1/4 1/4 1/4) @x1617 @x1998 @x1505 @x1945 @x1385 @x1859 (|unit-resolution| @x1376 (|unit-resolution| @x876 @x1992 $x872) $x910) @x1374 @x1864 @x945 @x1785 @x1059 @x934 @x967 (|unit-resolution| @x972 @x1994 $x928) @x1990 @x950 @x1188 $x558)))
+(let ((@x2009 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1/2 -1/2) $x1971) (|unit-resolution| @x1540 (|unit-resolution| @x820 @x2006 $x808) $x1485) @x1079 @x1100 @x1082 @x977 @x1505 @x1533 @x1945 @x967 @x1919 @x1213 (|unit-resolution| @x1112 (|unit-resolution| @x867 @x1988 $x863) $x1087) (|unit-resolution| @x1652 (|unit-resolution| @x887 @x1617 $x882) $x1616) (|unit-resolution| @x972 @x1994 $x928) @x1998 $x901)))
+(let ((@x2014 (|unit-resolution| @x1673 (|unit-resolution| @x1547 (|unit-resolution| @x820 @x2006 $x808) $x1486) @x1046 @x945 @x950 @x1104 @x1385 @x1864 @x1859 @x1990 (|unit-resolution| @x1364 (|unit-resolution| @x876 @x1992 $x872) $x914) (|unit-resolution| @x1517 @x1994 $x919) (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x1180 $x847 $x1047)) @x1764 @x1728 $x1180) @x1501 @x1545 $x900)))
+(let ((@x2015 (|unit-resolution| @x1553 @x2014 @x2009 (|unit-resolution| @x815 (|unit-resolution| @x1526 @x2001 @x1945 $x71) $x804) false)))
+(let ((@x1138 (|unit-resolution| (lemma @x2015 (or $x754 $x614)) @x1617 $x614)))
+(let ((@x1030 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -2 2 -2 -2 2 -1) (or $x1179 $x1064 $x1065 $x953 $x865 $x990 $x1150)) @x945 @x1059 (or $x1179 $x1064 $x953 $x865 $x1150))))
+(let ((@x1042 (|unit-resolution| (|unit-resolution| @x1030 @x1785 @x1864 (or $x1179 $x865 $x1150)) (|unit-resolution| @x1075 (|unit-resolution| @x840 @x1138 $x836) $x916) (|unit-resolution| (lemma @x1890 (or $x698 $x754)) @x1617 $x698) $x1179)))
+(let ((@x1052 (|unit-resolution| (lemma @x952 (or $x586 $x874 $x953 $x838 $x954)) @x1864 (or $x586 $x874 $x838 $x954))))
+(let ((@x1068 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x922 $x838 $x1031)) (|unit-resolution| @x940 (|unit-resolution| @x840 @x1138 $x836) $x925) @x1138 $x922)))
+(let ((@x1069 (|unit-resolution| (lemma @x1979 (or $x726 $x954 $x992 $x1970 $x1339 $x754)) @x1068 (|unit-resolution| @x1052 (|unit-resolution| @x1173 @x1135 $x917) @x935 @x1138 $x874) @x1617 @x1042 (|unit-resolution| @x1112 @x1135 $x1087) (|unit-resolution| @x1173 @x1135 $x917) false)))
+(let ((@x1165 (|unit-resolution| (lemma @x1069 (or $x754 $x586)) @x935 $x754)))
+(let ((@x969 (|unit-resolution| @x1398 (|unit-resolution| @x885 @x1165 $x881) $x907)))
+(let ((@x2054 (|unit-resolution| (|unit-resolution| @x1440 @x1385 (or $x726 $x782 $x1388 $x883)) @x1948 @x1165 @x969 $x782)))
+(let ((@x1085 (|unit-resolution| (|unit-resolution| @x1207 @x1100 @x1046 (or $x698 $x1204 $x614 $x1047)) @x1919 @x1764 (or $x698 $x614))))
+(let ((@x1157 (|unit-resolution| @x867 (|unit-resolution| @x1085 @x1010 $x698) $x863)))
+(let ((@x1167 (|unit-resolution| @x1393 (|unit-resolution| @x885 @x1165 $x881) $x908)))
+(let ((@x1163 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x558 $x586 $x1060 $x1062 $x614)) @x967 (or $x558 $x586 $x1060 $x614))))
+(let ((@x1170 (|unit-resolution| @x1540 (|unit-resolution| @x820 (|unit-resolution| @x1163 @x1010 @x935 @x1009 $x558) $x808) $x1485)))
+(let ((@x1171 ((_ |th-lemma| arith assign-bounds 1 -1 1 -1 1 -1 1 3 -3 1 -1 -1 2 -2 2 -2) @x1170 @x1533 @x1009 @x967 @x977 (hypothesis $x1946) @x1104 @x1919 @x1100 @x1764 @x1046 @x1167 @x1079 @x1213 (|unit-resolution| @x1112 @x1157 $x1087) @x1082 $x901)))
+(let (($x1133 (>= (+ ?x118 ?x598) 0)))
+(let ((@x982 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x828) $x1133)) @x1005 $x1133)))
+(let ((@x983 (|unit-resolution| @x1547 (|unit-resolution| @x820 (|unit-resolution| @x1163 @x1010 @x935 @x1009 $x558) $x808) $x1486)))
+(let ((@x929 ((_ |th-lemma| arith assign-bounds 1 -1 1 -1 1 -1 1 3 -3 1 -1 -1 2 -2 2 -2) @x983 @x1545 @x982 @x1501 @x1385 @x1894 @x1374 @x1864 @x945 @x1785 @x1059 @x969 @x934 @x1188 (|unit-resolution| @x1173 @x1157 $x917) @x950 $x900)))
+(let (($x988 (not $x1133)))
+(let (($x995 (or $x904 $x988 $x1779 $x1718 $x1668 $x1438 $x953 $x990 $x991 $x992 $x954 $x989 $x1388)))
+(let ((@x997 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1) $x995) (|unit-resolution| @x1173 @x1157 $x917) @x945 @x950 @x1385 @x1505 @x1501 @x969 @x1864 @x934 @x1188 @x1982 @x982 $x904)))
+(let ((@x1002 (|unit-resolution| @x1526 @x1945 (or $x71 $x1013))))
+(let ((@x1164 (|unit-resolution| @x815 (|unit-resolution| @x1002 @x997 $x71) (|unit-resolution| @x1553 @x929 @x1171 $x70) false)))
+(let ((@x2057 (|unit-resolution| (lemma @x1164 (or $x614 $x1779 $x1876 (not $x1946) $x586)) (|unit-resolution| @x1685 (|unit-resolution| @x894 @x2054 $x890) $x1628) @x1950 @x1959 @x935 $x614)))
+(let ((@x2027 (hypothesis $x1133)))
+(let (($x2029 (or $x904 $x1778 $x988 $x1779 $x1718 $x1668 $x1438 $x1204 $x1205 $x991 $x989 $x1388 $x1031 $x1047 $x1048)))
+(let ((@x2031 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -2 2) $x2029) (hypothesis $x1750) @x1046 @x1100 @x950 @x1385 @x1505 @x1501 @x1386 @x1115 @x1764 @x1919 @x934 @x1982 @x2027 $x904)))
+(let ((@x2036 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1) (or $x558 $x726 $x1779 $x1718 $x957 $x1438 $x1388)) @x1948 @x1385 @x1505 @x1945 @x1386 @x1982 $x558)))
+(let (($x1174 (not $x1946)))
+(let (($x2039 (or $x901 $x1662 $x1663 $x988 $x1668 $x1438 $x1174 $x1671 $x1204 $x1205 $x1047 $x1048 $x1388 $x1779 $x1718 $x957)))
+(let ((@x2041 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x2039) (|unit-resolution| @x1540 (|unit-resolution| @x820 @x2036 $x808) $x1485) @x1046 @x1100 @x1104 @x1385 @x1505 @x1533 @x1945 @x1386 @x1764 @x1919 @x1501 @x1982 @x2027 @x1959 $x901)))
+(let (($x2043 (or $x900 $x1570 $x1669 $x1060 $x1062 $x1061 $x1876 $x1446 $x953 $x990 $x1064 $x1065 $x980 $x981 $x1063 $x1013)))
+(let ((@x2045 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x2043) @x2031 @x1059 @x945 @x1374 @x977 @x962 @x1545 @x967 @x978 @x963 @x1864 @x1181 @x1785 @x1950 (|unit-resolution| @x1547 (|unit-resolution| @x820 @x2036 $x808) $x1486) $x900)))
+(let ((@x2046 (|unit-resolution| @x1553 @x2045 @x2041 (|unit-resolution| @x815 (|unit-resolution| @x1002 @x2031 $x71) $x804) false)))
+(let ((@x2061 (|unit-resolution| (lemma @x2046 (or $x1778 $x980 $x981 $x1060 $x1388 $x1779 $x988 $x1031 $x726)) (|unit-resolution| @x1415 (|unit-resolution| @x894 @x2054 $x890) $x911) @x1167 @x1009 @x969 (|unit-resolution| @x1685 (|unit-resolution| @x894 @x2054 $x890) $x1628) @x982 (|unit-resolution| @x940 (|unit-resolution| @x840 @x2057 $x836) $x925) @x1948 $x1778)))
+(let ((@x2063 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -2 2 -2 -2 2) (or $x1750 $x954 $x953 $x990 $x838 $x1064 $x1065)) @x945 @x1864 @x1059 @x1785 (or $x1750 $x954 $x838))))
+(let ((@x2050 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1070 $x1750)) (hypothesis $x864) (hypothesis $x1778) false)))
+(let ((@x2051 (lemma @x2050 (or $x1070 $x1750))))
+(let ((@x2067 (|unit-resolution| @x867 (|unit-resolution| @x869 (|unit-resolution| @x2051 @x2061 $x1070) $x698) $x863)))
+(let ((@x2068 (|unit-resolution| @x1173 @x2067 (|unit-resolution| @x2063 @x2061 @x2057 $x954) false)))
+(let ((@x2108 (|unit-resolution| (lemma @x2068 (or $x726 $x586)) @x935 $x726)))
+(let ((@x2074 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 -1 -1 -1 1 1 -1) (or $x1107 $x954 $x847 $x989 $x1671 $x1047 $x1048 $x883 $x614)) @x1046 @x950 @x1104 @x1728 @x1764 (or $x1107 $x954 $x883 $x614))))
+(let ((@x2076 (|unit-resolution| @x1173 @x1157 (|unit-resolution| @x2074 @x1010 @x1325 @x1105 $x954) false)))
+(let ((@x2111 (|unit-resolution| (lemma @x2076 (or $x614 $x883 $x1107)) @x1165 (|unit-resolution| @x1364 (|unit-resolution| @x876 @x2108 $x872) $x914) $x614)))
+(let ((@x2115 (|unit-resolution| @x1376 (|unit-resolution| @x876 @x2108 $x872) $x910)))
+(let ((@x1866 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1 -1 1 1 -1 1 1 -1) (or $x953 $x990 $x782 $x1388 $x1438 $x1064 $x1445 $x1446 $x838 $x1065)) @x945 @x1374 @x1385 @x1059 (or $x953 $x782 $x1388 $x1064 $x1445 $x838))))
+(let ((@x2118 (|unit-resolution| (|unit-resolution| @x1866 @x1785 @x1864 (or $x782 $x1388 $x1445 $x838)) @x2111 @x969 @x2115 $x782)))
+(let ((@x2083 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x2043) @x1567 @x1059 @x945 @x1374 @x977 @x962 @x1545 @x967 @x978 @x963 @x1864 @x1181 @x1785 @x1894 @x1011 $x1570)))
+(let ((@x2080 ((_ |th-lemma| arith farkas 1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 1) @x1385 @x1386 @x1545 @x1567 @x1181 @x967 @x1374 @x1864 @x945 @x1785 @x1059 @x1460 (hypothesis $x1753) false)))
+(let ((@x2084 (|unit-resolution| (lemma @x2080 (or $x1805 $x1388 $x900 $x1060 $x1445)) @x1567 @x1386 @x1181 @x1460 $x1805)))
+(let ((@x2086 (|unit-resolution| @x824 (|unit-resolution| (lemma @x1815 (or $x1793 $x1753)) @x2084 $x1793) $x558)))
+(let ((@x2090 (lemma (|unit-resolution| @x1547 (|unit-resolution| @x820 @x2086 $x808) @x2083 false) (or $x900 $x1388 $x1060 $x1445 $x980 $x981 $x1876 $x1013))))
+(let ((@x2094 (|unit-resolution| @x1553 (|unit-resolution| @x2090 @x1011 @x1181 @x1460 @x978 @x963 @x1894 @x1386 $x900) (|unit-resolution| @x815 (|unit-resolution| @x1002 @x1011 $x71) $x804) $x1551)))
+(let (($x2095 (or $x1797 $x1061 $x980 $x1663 $x901 $x988 $x1668 $x1671 $x1204 $x1205 $x1047 $x1048 $x1107)))
+(let ((@x2097 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -1 1 1 1 -1 1 -1 -1) $x2095) @x2094 @x1046 @x1100 @x1104 @x977 @x1501 @x978 @x1764 @x1105 @x1919 @x1533 @x2027 $x1797)))
+(let ((@x2099 (|unit-resolution| @x824 (|unit-resolution| (lemma @x1829 (or $x1793 $x1752)) @x2097 $x1793) $x558)))
+(let ((@x2104 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -2 -2 2 2 2 -2) (or $x1946 $x1107 $x822 $x981 $x1063 $x1013 $x1061 $x980)) @x1011 @x962 @x977 @x978 @x963 @x1105 @x2099 $x1946)))
+(let ((@x2105 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x2039) @x2104 (|unit-resolution| @x1540 (|unit-resolution| @x820 @x2099 $x808) $x1485) @x1046 @x1100 @x1104 @x1385 @x1505 @x1982 @x1945 @x1386 @x1764 @x1919 @x2094 @x1501 @x2027 @x1533 false)))
+(let ((@x2125 (|unit-resolution| (lemma @x2105 (or $x1013 $x1779 $x1388 $x988 $x980 $x981 $x1107 $x1060 $x1445 $x1876)) (|unit-resolution| @x1685 (|unit-resolution| @x894 @x2118 $x890) $x1628) @x969 @x982 @x1167 (|unit-resolution| @x1415 (|unit-resolution| @x894 @x2118 $x890) $x911) (|unit-resolution| @x1364 (|unit-resolution| @x876 @x2108 $x872) $x914) @x1009 @x2115 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2) (or $x1122 $x1445 $x874)) @x2108 @x2115 $x1122) $x1013)))
+(let ((@x2126 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -2 2) $x2029) @x2125 @x1046 @x1100 @x950 @x1385 @x1505 (|unit-resolution| @x1685 (|unit-resolution| @x894 @x2118 $x890) $x1628) @x969 (|unit-resolution| @x940 (|unit-resolution| @x840 @x2111 $x836) $x925) @x1764 @x1919 @x934 @x1501 @x982 $x1778)))
+(let ((@x2129 (|unit-resolution| @x867 (|unit-resolution| @x869 (|unit-resolution| @x2051 @x2126 $x1070) $x698) $x863)))
+(let ((@x2130 (|unit-resolution| @x1173 @x2129 (|unit-resolution| @x1052 @x2111 @x935 @x2108 $x954) false)))
+(let ((@x2131 (lemma @x2130 $x586)))
+(let ((@x2190 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 1 -1 1) (or $x925 $x856 $x1719 $x1064 $x1065 $x829)) @x1079 @x1059 @x1857 @x2131 @x1785 $x925)))
+(let ((@x2153 (|unit-resolution| (lemma @x2015 (or $x754 $x614)) @x1010 $x754)))
+(let ((@x2156 (|unit-resolution| (lemma @x1452 (or $x614 $x847 $x883 $x782)) @x1728 (or $x614 $x883 $x782))))
+(let ((@x2159 (|unit-resolution| @x1415 (|unit-resolution| @x894 (|unit-resolution| @x2156 @x1010 @x2153 $x782) $x890) $x911)))
+(let ((@x2162 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x910 $x914)) (|unit-resolution| (lemma @x2076 (or $x614 $x883 $x1107)) @x2153 @x1010 $x1107) $x910)))
+(let ((@x2163 (|unit-resolution| @x1685 (|unit-resolution| @x894 (|unit-resolution| @x2156 @x1010 @x2153 $x782) $x890) $x1628)))
+(let ((@x2133 (|unit-resolution| @x1517 (|unit-resolution| @x831 @x2131 $x827) $x919)))
+(let ((@x2134 ((_ |th-lemma| arith farkas -1 1 -1 1 -3/2 3/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 1) @x1104 @x1325 @x1764 @x1046 @x1919 @x1100 @x1982 @x1505 @x1502 @x1501 @x1947 @x1079 @x2133 @x1385 @x1399 @x1455 @x1082 (hypothesis $x1946) false)))
+(let ((@x2137 (|unit-resolution| (lemma @x2134 (or $x904 $x883 $x1779 $x1970 $x1339 $x1174)) @x1959 @x1982 @x1947 @x1455 @x1325 $x904)))
+(let ((@x2019 (hypothesis $x1118)))
+(let ((@x2021 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x828) $x926)) @x1005 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x928 $x1060 $x586)) @x935 @x2019 $x1060) false)))
+(let ((@x2024 (|unit-resolution| @x831 (|unit-resolution| (lemma @x2021 (or $x586 $x928)) @x2019 $x586) $x827)))
+(let ((@x2143 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x926 $x829 $x1118)) (lemma (|unit-resolution| @x972 @x2024 @x2019 false) $x928) (or $x926 $x829))))
+(let ((@x2145 (|unit-resolution| @x2090 @x2137 (|unit-resolution| @x2143 @x2131 $x926) @x1460 @x1394 @x963 @x1950 @x1399 $x900)))
+(let ((@x2146 (|unit-resolution| @x1553 @x2145 (|unit-resolution| @x815 (|unit-resolution| @x1002 @x2137 $x71) $x804) $x1551)))
+(let ((@x2147 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1) (or $x558 $x726 $x1779 $x1718 $x957 $x1438 $x1388)) @x1948 @x1385 @x1505 @x1945 @x1399 @x1982 $x558)))
+(let ((@x2150 ((_ |th-lemma| arith farkas -1 -1 1 -2 2 -1 1 1 1 -1 -1 1 -1 1 -1 1) @x1104 @x1764 @x1046 @x1919 @x1100 @x1982 @x1505 @x1945 @x1947 @x1079 @x1455 @x1082 (|unit-resolution| @x1540 (|unit-resolution| @x820 @x2147 $x808) $x1485) @x1533 @x2146 @x1959 false)))
+(let ((@x2164 (|unit-resolution| (lemma @x2150 (or $x726 $x1779 $x1970 $x1339 $x1445 $x981 $x883)) @x2163 @x1213 (|unit-resolution| @x1112 @x1157 $x1087) @x2162 @x2159 @x2153 $x726)))
+(let ((@x2166 (|unit-resolution| @x1364 (|unit-resolution| @x876 @x2164 $x872) (|unit-resolution| (lemma @x2076 (or $x614 $x883 $x1107)) @x2153 @x1010 $x1107) false)))
+(let ((@x2167 (lemma @x2166 $x614)))
+(let ((@x2169 (|unit-resolution| @x1075 (|unit-resolution| @x840 @x2167 $x836) $x916)))
+(let ((@x2172 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -2 2 -2 -2 2) (or $x1086 $x953 $x1064 $x1065 $x829 $x1150 $x1719)) @x1079 @x1059 @x1864 @x1785 @x2131 @x2169 $x1086)))
+(let ((@x2176 (|unit-resolution| @x876 (|unit-resolution| (|unit-resolution| @x1733 @x1728 (or $x726 $x1119)) @x2172 $x726) $x872)))
+(let ((@x2177 (|unit-resolution| @x1376 @x2176 $x910)))
+(let ((@x2180 (|unit-resolution| (|unit-resolution| @x1738 @x1374 @x1082 @x1919 (or $x1119 $x1445 $x1339 $x754)) @x1617 @x2172 @x2177 $x1339)))
+(let ((@x2181 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2) (or $x1122 $x1445 $x874)) @x2177 (|unit-resolution| (|unit-resolution| @x1733 @x1728 (or $x726 $x1119)) @x2172 $x726) $x1122)))
+(let ((@x2184 (|unit-resolution| (|unit-resolution| @x1884 @x1374 @x1857 @x950 (or $x1876 $x1778 $x754)) @x1617 @x2181 $x1778)))
+(let ((@x2186 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x1087 $x917)) (|unit-resolution| @x2063 @x2184 @x2167 $x954) @x2180 false)))
+(let ((@x2192 (|unit-resolution| @x1398 (|unit-resolution| @x885 (lemma @x2186 $x754) $x881) $x907)))
+(let ((@x2194 (|unit-resolution| (lemma @x1825 (or $x900 $x1119 $x1388 $x1509 $x1031 $x1118)) (lemma (|unit-resolution| @x972 @x2024 @x2019 false) $x928) (or $x900 $x1119 $x1388 $x1509 $x1031))))
+(let ((@x2197 (|unit-resolution| @x1393 (|unit-resolution| @x885 (lemma @x2186 $x754) $x881) $x908)))
+(let ((@x2198 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x1027 $x856 $x1204)) @x1919 @x1857 $x1027)))
+(let ((@x2200 (|unit-resolution| (lemma @x1837 (or $x901 $x1353 $x1150 $x1509 $x980 $x1107)) @x2198 (or $x901 $x1150 $x1509 $x980 $x1107))))
+(let ((@x2201 (|unit-resolution| @x2200 @x2197 @x2133 @x2169 (|unit-resolution| @x1364 @x2176 $x914) $x901)))
+(let ((@x2202 (|unit-resolution| @x1553 @x2201 (|unit-resolution| @x2194 @x2192 @x2133 @x2172 @x2190 $x900) $x70)))
+(let ((@x2205 (|unit-resolution| (|unit-resolution| @x1866 @x1785 @x1864 (or $x782 $x1388 $x1445 $x838)) @x2192 @x2167 @x2177 $x782)))
+(let ((@x2210 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x1496 $x892 $x1779)) (|unit-resolution| @x1685 (|unit-resolution| @x894 @x2205 $x890) $x1628) @x2205 $x1496)))
+(let ((@x2213 (|unit-resolution| (|unit-resolution| @x1511 @x2198 (or $x904 $x954 $x1508 $x1509 $x980 $x1150 $x1107)) @x2210 @x2133 (|unit-resolution| @x1364 @x2176 $x914) @x2197 @x2169 (|unit-resolution| @x1002 (|unit-resolution| @x815 @x2202 $x806) $x1013) $x954)))
+(let ((@x2215 (|unit-resolution| @x1781 @x1100 @x950 @x1385 @x1505 @x2198 @x1079 @x1501 (or $x904 $x1778 $x1779 $x1150 $x1509 $x1388))))
+(let ((@x2216 (|unit-resolution| @x2215 (|unit-resolution| @x1685 (|unit-resolution| @x894 @x2205 $x890) $x1628) @x2133 @x2169 @x2192 (|unit-resolution| @x1002 (|unit-resolution| @x815 @x2202 $x806) $x1013) $x1778)))
+(let ((@x2219 (|unit-resolution| @x867 (|unit-resolution| @x869 (|unit-resolution| @x2051 @x2216 $x1070) $x698) $x863)))
+(|unit-resolution| @x1173 @x2219 @x2213 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+3b8c149be010bdd46d055bffc712c6ccb8a6525f 13 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let (($x11 (< (+ |$x| |$x|) (+ (* 2.0 |$x|) 1.0))))
+(let (($x16 (not $x11)))
+(let (($x32 (not (<= (+ 1.0 (* 2.0 |$x|)) (* 2.0 |$x|)))))
+(let ((@x39 (rewrite (= (<= (+ 1.0 (* 2.0 |$x|)) (* 2.0 |$x|)) false))))
+(let ((@x45 (trans (monotonicity @x39 (= $x32 (not false))) (rewrite (= (not false) true)) (= $x32 true))))
+(let ((@x30 (monotonicity (rewrite (= (+ |$x| |$x|) (* 2.0 |$x|))) (rewrite (= (+ (* 2.0 |$x|) 1.0) (+ 1.0 (* 2.0 |$x|)))) (= $x11 (< (* 2.0 |$x|) (+ 1.0 (* 2.0 |$x|)))))))
+(let ((@x36 (trans @x30 (rewrite (= (< (* 2.0 |$x|) (+ 1.0 (* 2.0 |$x|))) $x32)) (= $x11 $x32))))
+(let ((@x50 (monotonicity (trans @x36 @x45 (= $x11 true)) (= $x16 (not true)))))
+(mp (|not-or-elim| (asserted (not (or $x11 (or false $x11)))) $x16) (trans @x50 (rewrite (= (not true) false)) (= $x16 false)) false)))))))))))
+
+71bf4c070abcae0028c546a59aeed462f0041e93 168 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x368 (<= |$x| 0)))
+(let (($x382 (>= |$x| 0)))
+(let (($x689 (not $x382)))
+(let (($x345 (not $x368)))
+(let (($x690 (or $x345 $x689)))
+(let (($x649 (not $x690)))
+(let (($x653 (>= (+ (|$mod| |$x| 2) (* (~ 1) (mod |$x| 2))) 0)))
+(let ((@x595 (|unit-resolution| ((_ |th-lemma| arith) (or false (>= (mod |$x| 2) 0))) (|true-axiom| true) (>= (mod |$x| 2) 0))))
+(let ((?x12 (+ |$x| (+ (* 2 (|$mod| |$x| 2)) 1))))
+(let (($x13 (<= (+ |$x| 1) ?x12)))
+(let (($x14 (not $x13)))
+(let ((?x9 (|$mod| |$x| 2)))
+(let (($x67 (>= ?x9 0)))
+(let ((@x69 (rewrite (= (<= (+ 1 |$x|) (+ 1 |$x| (* 2 ?x9))) $x67))))
+(let ((?x10 (* 2 ?x9)))
+(let ((?x59 (+ 1 |$x| ?x10)))
+(let ((@x58 (monotonicity (rewrite (= (+ ?x10 1) (+ 1 ?x10))) (= ?x12 (+ |$x| (+ 1 ?x10))))))
+(let ((@x63 (trans @x58 (rewrite (= (+ |$x| (+ 1 ?x10)) ?x59)) (= ?x12 ?x59))))
+(let ((@x66 (monotonicity (rewrite (= (+ |$x| 1) (+ 1 |$x|))) @x63 (= $x13 (<= (+ 1 |$x|) ?x59)))))
+(let ((@x74 (monotonicity (trans @x66 @x69 (= $x13 $x67)) (= $x14 (not $x67)))))
+(let ((@x596 ((_ |th-lemma| arith farkas -1 1 1) (mp (asserted $x14) @x74 (not $x67)) @x595 (hypothesis $x653) false)))
+(let ((@x627 ((_ |th-lemma| arith triangle-eq) (or (not (= (+ ?x9 (* (~ 1) (mod |$x| 2))) 0)) $x653))))
+(let ((@x628 (|unit-resolution| @x627 (lemma @x596 (not $x653)) (not (= (+ ?x9 (* (~ 1) (mod |$x| 2))) 0)))))
+(let (($x693 (= (+ ?x9 (* (~ 1) (mod |$x| 2))) 0)))
+(let (($x675 (ite $x690 $x693 (= (+ ?x9 (mod (* (~ 1) |$x|) (~ 2))) 0))))
+(let (($x378 (= ?x9 0)))
+(let (($x377 (= |$x| 0)))
+(let (($x384 (ite $x377 $x378 $x675)))
+(let (($x713 (forall ((?v0 Int) (?v1 Int) )(!(let (($x229 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x283 (ite $x229 (= (+ (|$mod| ?v0 ?v1) (* (~ 1) (mod ?v0 ?v1))) 0) (= (+ (|$mod| ?v0 ?v1) (mod (* (~ 1) ?v0) (* (~ 1) ?v1))) 0))))
+(let (($x19 (= ?v0 0)))
+(let (($x20 (= ?v1 0)))
+(ite $x20 (= (|$mod| ?v0 ?v1) ?v0) (ite $x19 (= (|$mod| ?v0 ?v1) 0) $x283)))))) :pattern ( (|$mod| ?v0 ?v1) )))
+))
+(let (($x288 (forall ((?v0 Int) (?v1 Int) )(let (($x229 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x283 (ite $x229 (= (+ (|$mod| ?v0 ?v1) (* (~ 1) (mod ?v0 ?v1))) 0) (= (+ (|$mod| ?v0 ?v1) (mod (* (~ 1) ?v0) (* (~ 1) ?v1))) 0))))
+(let (($x19 (= ?v0 0)))
+(let (($x20 (= ?v1 0)))
+(ite $x20 (= (|$mod| ?v0 ?v1) ?v0) (ite $x19 (= (|$mod| ?v0 ?v1) 0) $x283)))))))
+))
+(let (($x229 (or (not (or (<= ?1 0) (<= ?0 0))) (not (or (>= ?1 0) (<= ?0 0))))))
+(let (($x283 (ite $x229 (= (+ (|$mod| ?1 ?0) (* (~ 1) (mod ?1 ?0))) 0) (= (+ (|$mod| ?1 ?0) (mod (* (~ 1) ?1) (* (~ 1) ?0))) 0))))
+(let (($x19 (= ?1 0)))
+(let (($x20 (= ?0 0)))
+(let (($x285 (ite $x20 (= (|$mod| ?1 ?0) ?1) (ite $x19 (= (|$mod| ?1 ?0) 0) $x283))))
+(let (($x257 (forall ((?v0 Int) (?v1 Int) )(let ((?x125 (mod (* (~ 1) ?v0) (* (~ 1) ?v1))))
+(let ((?x131 (* (~ 1) ?x125)))
+(let ((?x37 (mod ?v0 ?v1)))
+(let (($x229 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x19 (= ?v0 0)))
+(let (($x20 (= ?v1 0)))
+(let ((?x36 (|$mod| ?v0 ?v1)))
+(= ?x36 (ite $x20 ?v0 (ite $x19 0 (ite $x229 ?x37 ?x131))))))))))))
+))
+(let ((?x125 (mod (* (~ 1) ?1) (* (~ 1) ?0))))
+(let ((?x131 (* (~ 1) ?x125)))
+(let ((?x37 (mod ?1 ?0)))
+(let ((?x36 (|$mod| ?1 ?0)))
+(let (($x254 (= ?x36 (ite $x20 ?1 (ite $x19 0 (ite $x229 ?x37 ?x131))))))
+(let (($x209 (forall ((?v0 Int) (?v1 Int) )(let ((?x125 (mod (* (~ 1) ?v0) (* (~ 1) ?v1))))
+(let ((?x131 (* (~ 1) ?x125)))
+(let ((?x37 (mod ?v0 ?v1)))
+(let (($x80 (<= ?v1 0)))
+(let (($x81 (not $x80)))
+(let (($x178 (and (not (>= ?v0 0)) $x81)))
+(let (($x84 (and (not (<= ?v0 0)) $x81)))
+(let (($x181 (or $x84 $x178)))
+(let ((?x197 (ite $x181 ?x37 ?x131)))
+(let (($x19 (= ?v0 0)))
+(let ((?x200 (ite $x19 0 ?x197)))
+(let (($x20 (= ?v1 0)))
+(let ((?x203 (ite $x20 ?v0 ?x200)))
+(let ((?x36 (|$mod| ?v0 ?v1)))
+(= ?x36 ?x203))))))))))))))))
+))
+(let (($x80 (<= ?0 0)))
+(let (($x81 (not $x80)))
+(let (($x178 (and (not (>= ?1 0)) $x81)))
+(let (($x84 (and (not (<= ?1 0)) $x81)))
+(let (($x181 (or $x84 $x178)))
+(let ((?x197 (ite $x181 ?x37 ?x131)))
+(let ((?x200 (ite $x19 0 ?x197)))
+(let ((?x203 (ite $x20 ?1 ?x200)))
+(let (($x206 (= ?x36 ?x203)))
+(let ((@x231 (monotonicity (rewrite (= $x84 (not (or (<= ?1 0) $x80)))) (rewrite (= $x178 (not (or (>= ?1 0) $x80)))) (= $x181 $x229))))
+(let ((@x250 (monotonicity (monotonicity @x231 (= ?x197 (ite $x229 ?x37 ?x131))) (= ?x200 (ite $x19 0 (ite $x229 ?x37 ?x131))))))
+(let ((@x253 (monotonicity @x250 (= ?x203 (ite $x20 ?1 (ite $x19 0 (ite $x229 ?x37 ?x131)))))))
+(let (($x148 (forall ((?v0 Int) (?v1 Int) )(let ((?x125 (mod (* (~ 1) ?v0) (* (~ 1) ?v1))))
+(let ((?x131 (* (~ 1) ?x125)))
+(let ((?x37 (mod ?v0 ?v1)))
+(let (($x80 (<= ?v1 0)))
+(let (($x81 (not $x80)))
+(let (($x87 (<= 0 ?v0)))
+(let (($x88 (not $x87)))
+(let (($x96 (and $x88 $x81)))
+(let (($x84 (and (not (<= ?v0 0)) $x81)))
+(let (($x99 (or $x84 $x96)))
+(let ((?x136 (ite $x99 ?x37 ?x131)))
+(let (($x19 (= ?v0 0)))
+(let ((?x139 (ite $x19 0 ?x136)))
+(let (($x20 (= ?v1 0)))
+(let ((?x142 (ite $x20 ?v0 ?x139)))
+(let ((?x36 (|$mod| ?v0 ?v1)))
+(= ?x36 ?x142))))))))))))))))))
+))
+(let (($x87 (<= 0 ?1)))
+(let (($x88 (not $x87)))
+(let (($x96 (and $x88 $x81)))
+(let (($x99 (or $x84 $x96)))
+(let ((?x136 (ite $x99 ?x37 ?x131)))
+(let ((?x139 (ite $x19 0 ?x136)))
+(let ((?x142 (ite $x20 ?1 ?x139)))
+(let (($x145 (= ?x36 ?x142)))
+(let ((@x177 (monotonicity (rewrite (= $x87 (>= ?1 0))) (= $x88 (not (>= ?1 0))))))
+(let ((@x199 (monotonicity (monotonicity (monotonicity @x177 (= $x96 $x178)) (= $x99 $x181)) (= ?x136 ?x197))))
+(let ((@x208 (monotonicity (monotonicity (monotonicity @x199 (= ?x139 ?x200)) (= ?x142 ?x203)) (= $x145 $x206))))
+(let (($x44 (forall ((?v0 Int) (?v1 Int) )(let ((?x39 (- (mod (- ?v0) (- ?v1)))))
+(let ((?x37 (mod ?v0 ?v1)))
+(let (($x27 (or (and (< 0 ?v0) (< 0 ?v1)) (and (< ?v0 0) (< 0 ?v1)))))
+(let (($x19 (= ?v0 0)))
+(let (($x20 (= ?v1 0)))
+(let ((?x36 (|$mod| ?v0 ?v1)))
+(= ?x36 (ite $x20 ?v0 (ite $x19 0 (ite $x27 ?x37 ?x39)))))))))))
+))
+(let ((?x39 (- (mod (- ?1) (- ?0)))))
+(let (($x27 (or (and (< 0 ?1) (< 0 ?0)) (and (< ?1 0) (< 0 ?0)))))
+(let (($x146 (= (= ?x36 (ite $x20 ?1 (ite $x19 0 (ite $x27 ?x37 ?x39)))) $x145)))
+(let ((@x127 (monotonicity (rewrite (= (- ?1) (* (~ 1) ?1))) (rewrite (= (- ?0) (* (~ 1) ?0))) (= (mod (- ?1) (- ?0)) ?x125))))
+(let ((@x135 (trans (monotonicity @x127 (= ?x39 (- ?x125))) (rewrite (= (- ?x125) ?x131)) (= ?x39 ?x131))))
+(let ((@x95 (trans (rewrite (= (< ?1 0) $x88)) (monotonicity (rewrite (= $x87 $x87)) (= $x88 $x88)) (= (< ?1 0) $x88))))
+(let ((@x98 (monotonicity @x95 (rewrite (= (< 0 ?0) $x81)) (= (and (< ?1 0) (< 0 ?0)) $x96))))
+(let ((@x86 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) $x81)) (= (and (< 0 ?1) (< 0 ?0)) $x84))))
+(let ((@x138 (monotonicity (monotonicity @x86 @x98 (= $x27 $x99)) @x135 (= (ite $x27 ?x37 ?x39) ?x136))))
+(let ((@x144 (monotonicity (monotonicity @x138 (= (ite $x19 0 (ite $x27 ?x37 ?x39)) ?x139)) (= (ite $x20 ?1 (ite $x19 0 (ite $x27 ?x37 ?x39))) ?x142))))
+(let ((@x151 (mp (asserted $x44) (|quant-intro| (monotonicity @x144 $x146) (= $x44 $x148)) $x148)))
+(let ((@x220 (|mp~| (mp @x151 (|quant-intro| @x208 (= $x148 $x209)) $x209) (|nnf-pos| (refl (|~| $x206 $x206)) (|~| $x209 $x209)) $x209)))
+(let ((@x260 (mp @x220 (|quant-intro| (monotonicity @x253 (= $x206 $x254)) (= $x209 $x257)) $x257)))
+(let ((@x291 (mp @x260 (|quant-intro| (rewrite (= $x254 $x285)) (= $x257 $x288)) $x288)))
+(let (($x657 (or (not $x713) $x384)))
+(let (($x697 (or (not (or $x368 (<= 2 0))) (not (or $x382 (<= 2 0))))))
+(let (($x702 (ite $x697 $x693 (= (+ ?x9 (mod (* (~ 1) |$x|) (* (~ 1) 2))) 0))))
+(let (($x704 (ite (= 2 0) (= ?x9 |$x|) (ite $x377 $x378 $x702))))
+(let (($x405 (= (= (+ ?x9 (mod (* (~ 1) |$x|) (* (~ 1) 2))) 0) (= (+ ?x9 (mod (* (~ 1) |$x|) (~ 2))) 0))))
+(let (($x672 (= (+ ?x9 (mod (* (~ 1) |$x|) (* (~ 1) 2))) (+ ?x9 (mod (* (~ 1) |$x|) (~ 2))))))
+(let ((@x400 (monotonicity (rewrite (= (* (~ 1) 2) (~ 2))) (= (mod (* (~ 1) |$x|) (* (~ 1) 2)) (mod (* (~ 1) |$x|) (~ 2))))))
+(let ((@x685 (monotonicity (rewrite (= (<= 2 0) false)) (= (or $x382 (<= 2 0)) (or $x382 false)))))
+(let ((@x688 (trans @x685 (rewrite (= (or $x382 false) $x382)) (= (or $x382 (<= 2 0)) $x382))))
+(let ((@x339 (monotonicity (rewrite (= (<= 2 0) false)) (= (or $x368 (<= 2 0)) (or $x368 false)))))
+(let ((@x344 (trans @x339 (rewrite (= (or $x368 false) $x368)) (= (or $x368 (<= 2 0)) $x368))))
+(let ((@x692 (monotonicity (monotonicity @x344 (= (not (or $x368 (<= 2 0))) $x345)) (monotonicity @x688 (= (not (or $x382 (<= 2 0))) $x689)) (= $x697 $x690))))
+(let ((@x677 (monotonicity @x692 (monotonicity (monotonicity @x400 $x672) $x405) (= $x702 $x675))))
+(let ((@x667 (monotonicity (rewrite (= (= 2 0) false)) (monotonicity @x677 (= (ite $x377 $x378 $x702) $x384)) (= $x704 (ite false (= ?x9 |$x|) $x384)))))
+(let ((@x670 (trans @x667 (rewrite (= (ite false (= ?x9 |$x|) $x384) $x384)) (= $x704 $x384))))
+(let ((@x664 (trans (monotonicity @x670 (= (or (not $x713) $x704) $x657)) (rewrite (= $x657 $x657)) (= (or (not $x713) $x704) $x657))))
+(let ((@x640 (|unit-resolution| (mp ((_ |quant-inst| |$x| 2) (or (not $x713) $x704)) @x664 $x657) (mp @x291 (|quant-intro| (refl (= $x285 $x285)) (= $x288 $x713)) $x713) $x384)))
+(let (($x524 (not $x377)))
+(let ((@x545 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x378) $x67)) (mp (asserted $x14) @x74 (not $x67)) (not $x378))))
+(let ((@x620 (|unit-resolution| (|def-axiom| (or (not $x384) $x524 $x378)) @x545 (or (not $x384) $x524))))
+(let ((@x631 (|unit-resolution| (|def-axiom| (or (not $x384) $x377 $x675)) (|unit-resolution| @x620 @x640 $x524) @x640 $x675)))
+(let ((@x608 (|unit-resolution| (|def-axiom| (or (not $x675) $x649 $x693)) @x631 (or $x649 $x693))))
+(let ((@x589 (|unit-resolution| (|def-axiom| (or $x690 $x368)) (|unit-resolution| @x608 @x628 $x649) $x368)))
+(let ((@x590 (|unit-resolution| (|def-axiom| (or $x690 $x382)) (|unit-resolution| @x608 @x628 $x649) $x382)))
+(let ((@x629 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x377 $x345 $x689)) (|unit-resolution| @x620 @x640 $x524) $x690)))
+(|unit-resolution| @x629 @x590 @x589 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+0ca5f89642157be20564bb5024c711aeef242c7b 167 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x376 (<= |$x| 0)))
+(let (($x390 (>= |$x| 0)))
+(let (($x697 (not $x390)))
+(let (($x353 (not $x376)))
+(let (($x698 (or $x353 $x697)))
+(let (($x658 (not $x698)))
+(let ((@x603 (|unit-resolution| ((_ |th-lemma| arith) (or false (not (>= (mod |$x| 2) 2)))) (|true-axiom| true) (not (>= (mod |$x| 2) 2)))))
+(let (($x661 (<= (+ (|$mod| |$x| 2) (* (~ 1) (mod |$x| 2))) 0)))
+(let ((?x7 (|$mod| |$x| 2)))
+(let (($x67 (>= ?x7 2)))
+(let (($x12 (< (+ |$x| (+ ?x7 ?x7)) (+ |$x| 3))))
+(let (($x13 (not $x12)))
+(let ((@x72 (monotonicity (rewrite (= (<= (+ 3 |$x|) (+ |$x| (* 2 ?x7))) $x67)) (= (not (<= (+ 3 |$x|) (+ |$x| (* 2 ?x7)))) (not $x67)))))
+(let (($x62 (not (<= (+ 3 |$x|) (+ |$x| (* 2 ?x7))))))
+(let ((@x54 (monotonicity (rewrite (= (+ ?x7 ?x7) (* 2 ?x7))) (= (+ |$x| (+ ?x7 ?x7)) (+ |$x| (* 2 ?x7))))))
+(let ((@x60 (monotonicity @x54 (rewrite (= (+ |$x| 3) (+ 3 |$x|))) (= $x12 (< (+ |$x| (* 2 ?x7)) (+ 3 |$x|))))))
+(let ((@x66 (trans @x60 (rewrite (= (< (+ |$x| (* 2 ?x7)) (+ 3 |$x|)) $x62)) (= $x12 $x62))))
+(let ((@x77 (monotonicity (trans @x66 @x72 (= $x12 (not $x67))) (= $x13 (not (not $x67))))))
+(let ((@x82 (mp (asserted $x13) (trans @x77 (rewrite (= (not (not $x67)) $x67)) (= $x13 $x67)) $x67)))
+(let ((@x636 ((_ |th-lemma| arith triangle-eq) (or (not (= (+ ?x7 (* (~ 1) (mod |$x| 2))) 0)) $x661))))
+(let ((@x628 (|unit-resolution| @x636 (lemma ((_ |th-lemma| arith farkas -1 1 1) @x82 (hypothesis $x661) @x603 false) (not $x661)) (not (= (+ ?x7 (* (~ 1) (mod |$x| 2))) 0)))))
+(let (($x701 (= (+ ?x7 (* (~ 1) (mod |$x| 2))) 0)))
+(let (($x683 (ite $x698 $x701 (= (+ ?x7 (mod (* (~ 1) |$x|) (~ 2))) 0))))
+(let (($x386 (= ?x7 0)))
+(let (($x385 (= |$x| 0)))
+(let (($x392 (ite $x385 $x386 $x683)))
+(let (($x721 (forall ((?v0 Int) (?v1 Int) )(!(let (($x236 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x290 (ite $x236 (= (+ (|$mod| ?v0 ?v1) (* (~ 1) (mod ?v0 ?v1))) 0) (= (+ (|$mod| ?v0 ?v1) (mod (* (~ 1) ?v0) (* (~ 1) ?v1))) 0))))
+(let (($x18 (= ?v0 0)))
+(let (($x19 (= ?v1 0)))
+(ite $x19 (= (|$mod| ?v0 ?v1) ?v0) (ite $x18 (= (|$mod| ?v0 ?v1) 0) $x290)))))) :pattern ( (|$mod| ?v0 ?v1) )))
+))
+(let (($x295 (forall ((?v0 Int) (?v1 Int) )(let (($x236 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x290 (ite $x236 (= (+ (|$mod| ?v0 ?v1) (* (~ 1) (mod ?v0 ?v1))) 0) (= (+ (|$mod| ?v0 ?v1) (mod (* (~ 1) ?v0) (* (~ 1) ?v1))) 0))))
+(let (($x18 (= ?v0 0)))
+(let (($x19 (= ?v1 0)))
+(ite $x19 (= (|$mod| ?v0 ?v1) ?v0) (ite $x18 (= (|$mod| ?v0 ?v1) 0) $x290)))))))
+))
+(let (($x236 (or (not (or (<= ?1 0) (<= ?0 0))) (not (or (>= ?1 0) (<= ?0 0))))))
+(let (($x290 (ite $x236 (= (+ (|$mod| ?1 ?0) (* (~ 1) (mod ?1 ?0))) 0) (= (+ (|$mod| ?1 ?0) (mod (* (~ 1) ?1) (* (~ 1) ?0))) 0))))
+(let (($x18 (= ?1 0)))
+(let (($x19 (= ?0 0)))
+(let (($x292 (ite $x19 (= (|$mod| ?1 ?0) ?1) (ite $x18 (= (|$mod| ?1 ?0) 0) $x290))))
+(let (($x264 (forall ((?v0 Int) (?v1 Int) )(let ((?x132 (mod (* (~ 1) ?v0) (* (~ 1) ?v1))))
+(let ((?x138 (* (~ 1) ?x132)))
+(let ((?x36 (mod ?v0 ?v1)))
+(let (($x236 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x18 (= ?v0 0)))
+(let (($x19 (= ?v1 0)))
+(let ((?x35 (|$mod| ?v0 ?v1)))
+(= ?x35 (ite $x19 ?v0 (ite $x18 0 (ite $x236 ?x36 ?x138))))))))))))
+))
+(let ((?x132 (mod (* (~ 1) ?1) (* (~ 1) ?0))))
+(let ((?x138 (* (~ 1) ?x132)))
+(let ((?x36 (mod ?1 ?0)))
+(let ((?x35 (|$mod| ?1 ?0)))
+(let (($x261 (= ?x35 (ite $x19 ?1 (ite $x18 0 (ite $x236 ?x36 ?x138))))))
+(let (($x216 (forall ((?v0 Int) (?v1 Int) )(let ((?x132 (mod (* (~ 1) ?v0) (* (~ 1) ?v1))))
+(let ((?x138 (* (~ 1) ?x132)))
+(let ((?x36 (mod ?v0 ?v1)))
+(let (($x87 (<= ?v1 0)))
+(let (($x88 (not $x87)))
+(let (($x185 (and (not (>= ?v0 0)) $x88)))
+(let (($x91 (and (not (<= ?v0 0)) $x88)))
+(let (($x188 (or $x91 $x185)))
+(let ((?x204 (ite $x188 ?x36 ?x138)))
+(let (($x18 (= ?v0 0)))
+(let ((?x207 (ite $x18 0 ?x204)))
+(let (($x19 (= ?v1 0)))
+(let ((?x210 (ite $x19 ?v0 ?x207)))
+(let ((?x35 (|$mod| ?v0 ?v1)))
+(= ?x35 ?x210))))))))))))))))
+))
+(let (($x87 (<= ?0 0)))
+(let (($x88 (not $x87)))
+(let (($x185 (and (not (>= ?1 0)) $x88)))
+(let (($x91 (and (not (<= ?1 0)) $x88)))
+(let (($x188 (or $x91 $x185)))
+(let ((?x204 (ite $x188 ?x36 ?x138)))
+(let ((?x207 (ite $x18 0 ?x204)))
+(let ((?x210 (ite $x19 ?1 ?x207)))
+(let (($x213 (= ?x35 ?x210)))
+(let ((@x238 (monotonicity (rewrite (= $x91 (not (or (<= ?1 0) $x87)))) (rewrite (= $x185 (not (or (>= ?1 0) $x87)))) (= $x188 $x236))))
+(let ((@x257 (monotonicity (monotonicity @x238 (= ?x204 (ite $x236 ?x36 ?x138))) (= ?x207 (ite $x18 0 (ite $x236 ?x36 ?x138))))))
+(let ((@x260 (monotonicity @x257 (= ?x210 (ite $x19 ?1 (ite $x18 0 (ite $x236 ?x36 ?x138)))))))
+(let (($x155 (forall ((?v0 Int) (?v1 Int) )(let ((?x132 (mod (* (~ 1) ?v0) (* (~ 1) ?v1))))
+(let ((?x138 (* (~ 1) ?x132)))
+(let ((?x36 (mod ?v0 ?v1)))
+(let (($x87 (<= ?v1 0)))
+(let (($x88 (not $x87)))
+(let (($x94 (<= 0 ?v0)))
+(let (($x95 (not $x94)))
+(let (($x103 (and $x95 $x88)))
+(let (($x91 (and (not (<= ?v0 0)) $x88)))
+(let (($x106 (or $x91 $x103)))
+(let ((?x143 (ite $x106 ?x36 ?x138)))
+(let (($x18 (= ?v0 0)))
+(let ((?x146 (ite $x18 0 ?x143)))
+(let (($x19 (= ?v1 0)))
+(let ((?x149 (ite $x19 ?v0 ?x146)))
+(let ((?x35 (|$mod| ?v0 ?v1)))
+(= ?x35 ?x149))))))))))))))))))
+))
+(let (($x94 (<= 0 ?1)))
+(let (($x95 (not $x94)))
+(let (($x103 (and $x95 $x88)))
+(let (($x106 (or $x91 $x103)))
+(let ((?x143 (ite $x106 ?x36 ?x138)))
+(let ((?x146 (ite $x18 0 ?x143)))
+(let ((?x149 (ite $x19 ?1 ?x146)))
+(let (($x152 (= ?x35 ?x149)))
+(let ((@x184 (monotonicity (rewrite (= $x94 (>= ?1 0))) (= $x95 (not (>= ?1 0))))))
+(let ((@x206 (monotonicity (monotonicity (monotonicity @x184 (= $x103 $x185)) (= $x106 $x188)) (= ?x143 ?x204))))
+(let ((@x215 (monotonicity (monotonicity (monotonicity @x206 (= ?x146 ?x207)) (= ?x149 ?x210)) (= $x152 $x213))))
+(let (($x43 (forall ((?v0 Int) (?v1 Int) )(let ((?x38 (- (mod (- ?v0) (- ?v1)))))
+(let ((?x36 (mod ?v0 ?v1)))
+(let (($x26 (or (and (< 0 ?v0) (< 0 ?v1)) (and (< ?v0 0) (< 0 ?v1)))))
+(let (($x18 (= ?v0 0)))
+(let (($x19 (= ?v1 0)))
+(let ((?x35 (|$mod| ?v0 ?v1)))
+(= ?x35 (ite $x19 ?v0 (ite $x18 0 (ite $x26 ?x36 ?x38)))))))))))
+))
+(let ((?x38 (- (mod (- ?1) (- ?0)))))
+(let (($x26 (or (and (< 0 ?1) (< 0 ?0)) (and (< ?1 0) (< 0 ?0)))))
+(let (($x153 (= (= ?x35 (ite $x19 ?1 (ite $x18 0 (ite $x26 ?x36 ?x38)))) $x152)))
+(let ((@x134 (monotonicity (rewrite (= (- ?1) (* (~ 1) ?1))) (rewrite (= (- ?0) (* (~ 1) ?0))) (= (mod (- ?1) (- ?0)) ?x132))))
+(let ((@x142 (trans (monotonicity @x134 (= ?x38 (- ?x132))) (rewrite (= (- ?x132) ?x138)) (= ?x38 ?x138))))
+(let ((@x102 (trans (rewrite (= (< ?1 0) $x95)) (monotonicity (rewrite (= $x94 $x94)) (= $x95 $x95)) (= (< ?1 0) $x95))))
+(let ((@x105 (monotonicity @x102 (rewrite (= (< 0 ?0) $x88)) (= (and (< ?1 0) (< 0 ?0)) $x103))))
+(let ((@x93 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) $x88)) (= (and (< 0 ?1) (< 0 ?0)) $x91))))
+(let ((@x145 (monotonicity (monotonicity @x93 @x105 (= $x26 $x106)) @x142 (= (ite $x26 ?x36 ?x38) ?x143))))
+(let ((@x151 (monotonicity (monotonicity @x145 (= (ite $x18 0 (ite $x26 ?x36 ?x38)) ?x146)) (= (ite $x19 ?1 (ite $x18 0 (ite $x26 ?x36 ?x38))) ?x149))))
+(let ((@x158 (mp (asserted $x43) (|quant-intro| (monotonicity @x151 $x153) (= $x43 $x155)) $x155)))
+(let ((@x227 (|mp~| (mp @x158 (|quant-intro| @x215 (= $x155 $x216)) $x216) (|nnf-pos| (refl (|~| $x213 $x213)) (|~| $x216 $x216)) $x216)))
+(let ((@x267 (mp @x227 (|quant-intro| (monotonicity @x260 (= $x213 $x261)) (= $x216 $x264)) $x264)))
+(let ((@x298 (mp @x267 (|quant-intro| (rewrite (= $x261 $x292)) (= $x264 $x295)) $x295)))
+(let (($x665 (or (not $x721) $x392)))
+(let (($x705 (or (not (or $x376 (<= 2 0))) (not (or $x390 (<= 2 0))))))
+(let (($x710 (ite $x705 $x701 (= (+ ?x7 (mod (* (~ 1) |$x|) (* (~ 1) 2))) 0))))
+(let (($x712 (ite (= 2 0) (= ?x7 |$x|) (ite $x385 $x386 $x710))))
+(let (($x413 (= (= (+ ?x7 (mod (* (~ 1) |$x|) (* (~ 1) 2))) 0) (= (+ ?x7 (mod (* (~ 1) |$x|) (~ 2))) 0))))
+(let (($x680 (= (+ ?x7 (mod (* (~ 1) |$x|) (* (~ 1) 2))) (+ ?x7 (mod (* (~ 1) |$x|) (~ 2))))))
+(let ((@x408 (monotonicity (rewrite (= (* (~ 1) 2) (~ 2))) (= (mod (* (~ 1) |$x|) (* (~ 1) 2)) (mod (* (~ 1) |$x|) (~ 2))))))
+(let ((@x693 (monotonicity (rewrite (= (<= 2 0) false)) (= (or $x390 (<= 2 0)) (or $x390 false)))))
+(let ((@x696 (trans @x693 (rewrite (= (or $x390 false) $x390)) (= (or $x390 (<= 2 0)) $x390))))
+(let ((@x347 (monotonicity (rewrite (= (<= 2 0) false)) (= (or $x376 (<= 2 0)) (or $x376 false)))))
+(let ((@x352 (trans @x347 (rewrite (= (or $x376 false) $x376)) (= (or $x376 (<= 2 0)) $x376))))
+(let ((@x700 (monotonicity (monotonicity @x352 (= (not (or $x376 (<= 2 0))) $x353)) (monotonicity @x696 (= (not (or $x390 (<= 2 0))) $x697)) (= $x705 $x698))))
+(let ((@x685 (monotonicity @x700 (monotonicity (monotonicity @x408 $x680) $x413) (= $x710 $x683))))
+(let ((@x675 (monotonicity (rewrite (= (= 2 0) false)) (monotonicity @x685 (= (ite $x385 $x386 $x710) $x392)) (= $x712 (ite false (= ?x7 |$x|) $x392)))))
+(let ((@x678 (trans @x675 (rewrite (= (ite false (= ?x7 |$x|) $x392) $x392)) (= $x712 $x392))))
+(let ((@x672 (trans (monotonicity @x678 (= (or (not $x721) $x712) $x665)) (rewrite (= $x665 $x665)) (= (or (not $x721) $x712) $x665))))
+(let ((@x639 (|unit-resolution| (mp ((_ |quant-inst| |$x| 2) (or (not $x721) $x712)) @x672 $x665) (mp @x298 (|quant-intro| (refl (= $x292 $x292)) (= $x295 $x721)) $x721) $x392)))
+(let (($x496 (not $x385)))
+(let ((@x646 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not (<= ?x7 0)) (not $x67))) @x82 (not (<= ?x7 0)))))
+(let ((@x627 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x386) (<= ?x7 0))) @x646 (not $x386))))
+(let ((@x641 (|unit-resolution| (|def-axiom| (or (not $x392) $x496 $x386)) @x627 (or (not $x392) $x496))))
+(let ((@x597 (|unit-resolution| (|def-axiom| (or (not $x392) $x385 $x683)) (|unit-resolution| @x641 @x639 $x496) @x639 $x683)))
+(let ((@x599 (|unit-resolution| (|def-axiom| (or (not $x683) $x658 $x701)) @x597 (or $x658 $x701))))
+(let ((@x637 (|unit-resolution| (|def-axiom| (or $x698 $x376)) (|unit-resolution| @x599 @x628 $x658) $x376)))
+(let ((@x638 (|unit-resolution| (|def-axiom| (or $x698 $x390)) (|unit-resolution| @x599 @x628 $x658) $x390)))
+(let ((@x610 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x385 $x353 $x697)) (|unit-resolution| @x641 @x639 $x496) $x698)))
+(|unit-resolution| @x610 @x638 @x637 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+33f10f004f142d3fc3aecb6377a6bfe7e31da31c 29 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x7 (= |$x| 0.0)))
+(let ((?x13 (ite (< |$x| 0.0) (- |$x|) |$x|)))
+(let (($x14 (< 1.0 ?x13)))
+(let (($x15 (not $x14)))
+(let (($x16 (or $x14 $x15)))
+(let ((?x19 (ite $x16 4.0 2.0)))
+(let (($x21 (= (+ |$x| |$x|) (* ?x19 |$x|))))
+(let (($x23 (not (not $x21))))
+(let ((?x41 (* (~ 1.0) |$x|)))
+(let (($x31 (<= 0.0 |$x|)))
+(let ((?x47 (ite $x31 |$x| ?x41)))
+(let (($x55 (<= ?x47 1.0)))
+(let (($x56 (not $x55)))
+(let ((@x39 (trans (rewrite (= (< |$x| 0.0) (not $x31))) (monotonicity (rewrite (= $x31 $x31)) (= (not $x31) (not $x31))) (= (< |$x| 0.0) (not $x31)))))
+(let ((@x46 (monotonicity @x39 (rewrite (= (- |$x|) ?x41)) (= ?x13 (ite (not $x31) ?x41 |$x|)))))
+(let ((@x51 (trans @x46 (rewrite (= (ite (not $x31) ?x41 |$x|) ?x47)) (= ?x13 ?x47))))
+(let ((@x60 (trans (monotonicity @x51 (= $x14 (< 1.0 ?x47))) (rewrite (= (< 1.0 ?x47) $x56)) (= $x14 $x56))))
+(let ((@x67 (trans (monotonicity @x60 (= $x15 (not $x56))) (rewrite (= (not $x56) $x55)) (= $x15 $x55))))
+(let ((@x74 (trans (monotonicity @x60 @x67 (= $x16 (or $x56 $x55))) (rewrite (= (or $x56 $x55) true)) (= $x16 true))))
+(let ((@x81 (trans (monotonicity @x74 (= ?x19 (ite true 4.0 2.0))) (rewrite (= (ite true 4.0 2.0) 4.0)) (= ?x19 4.0))))
+(let ((@x87 (monotonicity (rewrite (= (+ |$x| |$x|) (* 2.0 |$x|))) (monotonicity @x81 (= (* ?x19 |$x|) (* 4.0 |$x|))) (= $x21 (= (* 2.0 |$x|) (* 4.0 |$x|))))))
+(let ((@x91 (trans @x87 (rewrite (= (= (* 2.0 |$x|) (* 4.0 |$x|)) $x7)) (= $x21 $x7))))
+(let ((@x96 (monotonicity (monotonicity @x91 (= (not $x21) (not $x7))) (= $x23 (not (not $x7))))))
+(let ((@x101 (mp (asserted $x23) (trans @x96 (rewrite (= (not (not $x7)) $x7)) (= $x23 $x7)) $x7)))
+(|unit-resolution| (asserted (not $x7)) @x101 false)))))))))))))))))))))))))))
+
+3b003906a8e68b23edbffcea6ebff73827a47a16 348 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x7 (+ |$n| |$m|)))
+(let ((?x694 (mod ?x7 2)))
+(let ((?x695 (* (~ 1) ?x694)))
+(let ((?x9 (|$mod| ?x7 2)))
+(let ((?x351 (+ ?x9 ?x695)))
+(let (($x638 (<= ?x351 0)))
+(let ((?x852 (* (~ 2) (div |$n| 4))))
+(let ((?x619 (* (~ 1) (mod |$n| 4))))
+(let ((?x498 (mod |$m| 2)))
+(let ((?x499 (* (~ 1) ?x498)))
+(let ((?x13 (|$mod| |$n| 4)))
+(let ((?x1079 (+ |$n| |$m| ?x9 ?x13 ?x499 ?x619 ?x695 ?x852 (* (~ 1) (div ?x7 2)) (* (~ 1) (div |$m| 2)))))
+(let (($x1080 (>= ?x1079 2)))
+(let ((?x951 (+ |$n| |$m| ?x695 (* (~ 2) (div ?x7 2)))))
+(let (($x949 (= ?x951 0)))
+(let ((@x152 (|true-axiom| true)))
+(let ((@x1084 (|unit-resolution| ((_ |th-lemma| arith) (or false $x949)) @x152 (hypothesis (not $x949)) false)))
+(let ((@x1174 (|unit-resolution| ((_ |th-lemma| arith) (or false (not (>= ?x694 2)))) @x152 (not (>= ?x694 2)))))
+(let (($x375 (<= ?x7 0)))
+(let (($x374 (= ?x7 0)))
+(let (($x480 (= ?x351 0)))
+(let (($x485 (not $x480)))
+(let (($x15 (= ?x13 3)))
+(let ((@x53 (asserted $x15)))
+(let ((@x876 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x15) (<= ?x13 3))) @x53 (<= ?x13 3))))
+(let ((@x724 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x15) (>= ?x13 3))) @x53 (>= ?x13 3))))
+(let ((?x761 (+ |$n| ?x619 (* (~ 4) (div |$n| 4)))))
+(let (($x759 (= ?x761 0)))
+(let ((@x883 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x759) (<= ?x761 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x759)) @x152 $x759) (<= ?x761 0))))
+(let ((@x752 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x759) (>= ?x761 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x759)) @x152 $x759) (>= ?x761 0))))
+(let (($x490 (<= |$m| 0)))
+(let (($x488 (= |$m| 0)))
+(let ((?x19 (|$mod| |$m| 2)))
+(let ((?x469 (+ ?x19 ?x499)))
+(let (($x470 (= ?x469 0)))
+(let (($x915 (not $x470)))
+(let (($x1110 (not $x1080)))
+(let ((@x1087 (|unit-resolution| ((_ |th-lemma| arith) (or false (>= ?x498 0))) @x152 (>= ?x498 0))))
+(let ((@x1090 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x9 0)) (<= ?x9 0))) (asserted (= ?x9 0)) (<= ?x9 0))))
+(let ((@x1097 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x949) (<= ?x951 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x949)) @x152 $x949) (<= ?x951 0))))
+(let ((?x620 (+ ?x13 ?x619)))
+(let (($x524 (<= ?x620 0)))
+(let (($x621 (= ?x620 0)))
+(let (($x627 (>= |$n| 0)))
+(let (($x597 (not $x627)))
+(let (($x617 (<= |$n| 0)))
+(let (($x587 (not $x617)))
+(let (($x577 (or $x587 $x597)))
+(let (($x573 (ite $x577 $x621 (= (+ ?x13 (mod (* (~ 1) |$n|) (~ 4))) 0))))
+(let (($x624 (= |$n| 0)))
+(let (($x507 (not $x624)))
+(let ((@x337 (trans (symm @x53 (= 3 ?x13)) (hypothesis (= ?x13 0)) (= 3 0))))
+(let ((@x345 (lemma (mp @x337 (rewrite (= (= 3 0) false)) false) (not (= ?x13 0)))))
+(let (($x625 (= ?x13 0)))
+(let (($x576 (ite $x624 $x625 $x573)))
+(let (($x710 (forall ((?v0 Int) (?v1 Int) )(!(let (($x226 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x280 (ite $x226 (= (+ (|$mod| ?v0 ?v1) (* (~ 1) (mod ?v0 ?v1))) 0) (= (+ (|$mod| ?v0 ?v1) (mod (* (~ 1) ?v0) (* (~ 1) ?v1))) 0))))
+(let (($x26 (= ?v0 0)))
+(let (($x27 (= ?v1 0)))
+(ite $x27 (= (|$mod| ?v0 ?v1) ?v0) (ite $x26 (= (|$mod| ?v0 ?v1) 0) $x280)))))) :pattern ( (|$mod| ?v0 ?v1) )))
+))
+(let (($x285 (forall ((?v0 Int) (?v1 Int) )(let (($x226 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x280 (ite $x226 (= (+ (|$mod| ?v0 ?v1) (* (~ 1) (mod ?v0 ?v1))) 0) (= (+ (|$mod| ?v0 ?v1) (mod (* (~ 1) ?v0) (* (~ 1) ?v1))) 0))))
+(let (($x26 (= ?v0 0)))
+(let (($x27 (= ?v1 0)))
+(ite $x27 (= (|$mod| ?v0 ?v1) ?v0) (ite $x26 (= (|$mod| ?v0 ?v1) 0) $x280)))))))
+))
+(let (($x226 (or (not (or (<= ?1 0) (<= ?0 0))) (not (or (>= ?1 0) (<= ?0 0))))))
+(let (($x280 (ite $x226 (= (+ (|$mod| ?1 ?0) (* (~ 1) (mod ?1 ?0))) 0) (= (+ (|$mod| ?1 ?0) (mod (* (~ 1) ?1) (* (~ 1) ?0))) 0))))
+(let (($x26 (= ?1 0)))
+(let (($x27 (= ?0 0)))
+(let (($x282 (ite $x27 (= (|$mod| ?1 ?0) ?1) (ite $x26 (= (|$mod| ?1 ?0) 0) $x280))))
+(let (($x254 (forall ((?v0 Int) (?v1 Int) )(let ((?x108 (mod (* (~ 1) ?v0) (* (~ 1) ?v1))))
+(let ((?x114 (* (~ 1) ?x108)))
+(let ((?x44 (mod ?v0 ?v1)))
+(let (($x226 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x26 (= ?v0 0)))
+(let (($x27 (= ?v1 0)))
+(let ((?x43 (|$mod| ?v0 ?v1)))
+(= ?x43 (ite $x27 ?v0 (ite $x26 0 (ite $x226 ?x44 ?x114))))))))))))
+))
+(let ((?x108 (mod (* (~ 1) ?1) (* (~ 1) ?0))))
+(let ((?x114 (* (~ 1) ?x108)))
+(let ((?x44 (mod ?1 ?0)))
+(let ((?x43 (|$mod| ?1 ?0)))
+(let (($x251 (= ?x43 (ite $x27 ?1 (ite $x26 0 (ite $x226 ?x44 ?x114))))))
+(let (($x192 (forall ((?v0 Int) (?v1 Int) )(let ((?x108 (mod (* (~ 1) ?v0) (* (~ 1) ?v1))))
+(let ((?x114 (* (~ 1) ?x108)))
+(let ((?x44 (mod ?v0 ?v1)))
+(let (($x63 (<= ?v1 0)))
+(let (($x64 (not $x63)))
+(let (($x161 (and (not (>= ?v0 0)) $x64)))
+(let (($x67 (and (not (<= ?v0 0)) $x64)))
+(let (($x164 (or $x67 $x161)))
+(let ((?x180 (ite $x164 ?x44 ?x114)))
+(let (($x26 (= ?v0 0)))
+(let ((?x183 (ite $x26 0 ?x180)))
+(let (($x27 (= ?v1 0)))
+(let ((?x186 (ite $x27 ?v0 ?x183)))
+(let ((?x43 (|$mod| ?v0 ?v1)))
+(= ?x43 ?x186))))))))))))))))
+))
+(let (($x63 (<= ?0 0)))
+(let (($x64 (not $x63)))
+(let (($x161 (and (not (>= ?1 0)) $x64)))
+(let (($x67 (and (not (<= ?1 0)) $x64)))
+(let (($x164 (or $x67 $x161)))
+(let ((?x180 (ite $x164 ?x44 ?x114)))
+(let ((?x183 (ite $x26 0 ?x180)))
+(let ((?x186 (ite $x27 ?1 ?x183)))
+(let (($x189 (= ?x43 ?x186)))
+(let ((@x228 (monotonicity (rewrite (= $x67 (not (or (<= ?1 0) $x63)))) (rewrite (= $x161 (not (or (>= ?1 0) $x63)))) (= $x164 $x226))))
+(let ((@x247 (monotonicity (monotonicity @x228 (= ?x180 (ite $x226 ?x44 ?x114))) (= ?x183 (ite $x26 0 (ite $x226 ?x44 ?x114))))))
+(let ((@x250 (monotonicity @x247 (= ?x186 (ite $x27 ?1 (ite $x26 0 (ite $x226 ?x44 ?x114)))))))
+(let (($x131 (forall ((?v0 Int) (?v1 Int) )(let ((?x108 (mod (* (~ 1) ?v0) (* (~ 1) ?v1))))
+(let ((?x114 (* (~ 1) ?x108)))
+(let ((?x44 (mod ?v0 ?v1)))
+(let (($x63 (<= ?v1 0)))
+(let (($x64 (not $x63)))
+(let (($x70 (<= 0 ?v0)))
+(let (($x71 (not $x70)))
+(let (($x79 (and $x71 $x64)))
+(let (($x67 (and (not (<= ?v0 0)) $x64)))
+(let (($x82 (or $x67 $x79)))
+(let ((?x119 (ite $x82 ?x44 ?x114)))
+(let (($x26 (= ?v0 0)))
+(let ((?x122 (ite $x26 0 ?x119)))
+(let (($x27 (= ?v1 0)))
+(let ((?x125 (ite $x27 ?v0 ?x122)))
+(let ((?x43 (|$mod| ?v0 ?v1)))
+(= ?x43 ?x125))))))))))))))))))
+))
+(let (($x70 (<= 0 ?1)))
+(let (($x71 (not $x70)))
+(let (($x79 (and $x71 $x64)))
+(let (($x82 (or $x67 $x79)))
+(let ((?x119 (ite $x82 ?x44 ?x114)))
+(let ((?x122 (ite $x26 0 ?x119)))
+(let ((?x125 (ite $x27 ?1 ?x122)))
+(let (($x128 (= ?x43 ?x125)))
+(let ((@x160 (monotonicity (rewrite (= $x70 (>= ?1 0))) (= $x71 (not (>= ?1 0))))))
+(let ((@x182 (monotonicity (monotonicity (monotonicity @x160 (= $x79 $x161)) (= $x82 $x164)) (= ?x119 ?x180))))
+(let ((@x191 (monotonicity (monotonicity (monotonicity @x182 (= ?x122 ?x183)) (= ?x125 ?x186)) (= $x128 $x189))))
+(let (($x51 (forall ((?v0 Int) (?v1 Int) )(let ((?x46 (- (mod (- ?v0) (- ?v1)))))
+(let ((?x44 (mod ?v0 ?v1)))
+(let (($x34 (or (and (< 0 ?v0) (< 0 ?v1)) (and (< ?v0 0) (< 0 ?v1)))))
+(let (($x26 (= ?v0 0)))
+(let (($x27 (= ?v1 0)))
+(let ((?x43 (|$mod| ?v0 ?v1)))
+(= ?x43 (ite $x27 ?v0 (ite $x26 0 (ite $x34 ?x44 ?x46)))))))))))
+))
+(let ((?x46 (- (mod (- ?1) (- ?0)))))
+(let (($x34 (or (and (< 0 ?1) (< 0 ?0)) (and (< ?1 0) (< 0 ?0)))))
+(let (($x129 (= (= ?x43 (ite $x27 ?1 (ite $x26 0 (ite $x34 ?x44 ?x46)))) $x128)))
+(let ((@x110 (monotonicity (rewrite (= (- ?1) (* (~ 1) ?1))) (rewrite (= (- ?0) (* (~ 1) ?0))) (= (mod (- ?1) (- ?0)) ?x108))))
+(let ((@x118 (trans (monotonicity @x110 (= ?x46 (- ?x108))) (rewrite (= (- ?x108) ?x114)) (= ?x46 ?x114))))
+(let ((@x78 (trans (rewrite (= (< ?1 0) $x71)) (monotonicity (rewrite (= $x70 $x70)) (= $x71 $x71)) (= (< ?1 0) $x71))))
+(let ((@x81 (monotonicity @x78 (rewrite (= (< 0 ?0) $x64)) (= (and (< ?1 0) (< 0 ?0)) $x79))))
+(let ((@x69 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) $x64)) (= (and (< 0 ?1) (< 0 ?0)) $x67))))
+(let ((@x121 (monotonicity (monotonicity @x69 @x81 (= $x34 $x82)) @x118 (= (ite $x34 ?x44 ?x46) ?x119))))
+(let ((@x127 (monotonicity (monotonicity @x121 (= (ite $x26 0 (ite $x34 ?x44 ?x46)) ?x122)) (= (ite $x27 ?1 (ite $x26 0 (ite $x34 ?x44 ?x46))) ?x125))))
+(let ((@x134 (mp (asserted $x51) (|quant-intro| (monotonicity @x127 $x129) (= $x51 $x131)) $x131)))
+(let ((@x154 (|mp~| (mp @x134 (|quant-intro| @x191 (= $x131 $x192)) $x192) (|nnf-pos| (refl (|~| $x189 $x189)) (|~| $x192 $x192)) $x192)))
+(let ((@x257 (mp @x154 (|quant-intro| (monotonicity @x250 (= $x189 $x251)) (= $x192 $x254)) $x254)))
+(let ((@x288 (mp @x257 (|quant-intro| (rewrite (= $x251 $x282)) (= $x254 $x285)) $x285)))
+(let ((@x715 (mp @x288 (|quant-intro| (refl (= $x282 $x282)) (= $x285 $x710)) $x710)))
+(let (($x662 (not $x710)))
+(let (($x560 (or $x662 $x576)))
+(let (($x630 (or (not (or $x617 (<= 4 0))) (not (or $x627 (<= 4 0))))))
+(let (($x609 (ite $x630 $x621 (= (+ ?x13 (mod (* (~ 1) |$n|) (* (~ 1) 4))) 0))))
+(let (($x611 (ite (= 4 0) (= ?x13 |$n|) (ite $x624 $x625 $x609))))
+(let (($x571 (= (= (+ ?x13 (mod (* (~ 1) |$n|) (* (~ 1) 4))) 0) (= (+ ?x13 (mod (* (~ 1) |$n|) (~ 4))) 0))))
+(let (($x568 (= (+ ?x13 (mod (* (~ 1) |$n|) (* (~ 1) 4))) (+ ?x13 (mod (* (~ 1) |$n|) (~ 4))))))
+(let ((@x585 (monotonicity (rewrite (= (* (~ 1) 4) (~ 4))) (= (mod (* (~ 1) |$n|) (* (~ 1) 4)) (mod (* (~ 1) |$n|) (~ 4))))))
+(let ((@x592 (monotonicity (rewrite (= (<= 4 0) false)) (= (or $x627 (<= 4 0)) (or $x627 false)))))
+(let ((@x596 (trans @x592 (rewrite (= (or $x627 false) $x627)) (= (or $x627 (<= 4 0)) $x627))))
+(let ((@x603 (monotonicity (rewrite (= (<= 4 0) false)) (= (or $x617 (<= 4 0)) (or $x617 false)))))
+(let ((@x586 (trans @x603 (rewrite (= (or $x617 false) $x617)) (= (or $x617 (<= 4 0)) $x617))))
+(let ((@x579 (monotonicity (monotonicity @x586 (= (not (or $x617 (<= 4 0))) $x587)) (monotonicity @x596 (= (not (or $x627 (<= 4 0))) $x597)) (= $x630 $x577))))
+(let ((@x575 (monotonicity @x579 (monotonicity (monotonicity @x585 $x568) $x571) (= $x609 $x573))))
+(let ((@x555 (monotonicity (rewrite (= (= 4 0) false)) (monotonicity @x575 (= (ite $x624 $x625 $x609) $x576)) (= $x611 (ite false (= ?x13 |$n|) $x576)))))
+(let ((@x559 (trans @x555 (rewrite (= (ite false (= ?x13 |$n|) $x576) $x576)) (= $x611 $x576))))
+(let ((@x549 (trans (monotonicity @x559 (= (or $x662 $x611) $x560)) (rewrite (= $x560 $x560)) (= (or $x662 $x611) $x560))))
+(let ((@x751 (|unit-resolution| (|def-axiom| (or (not $x576) $x507 $x625)) (|unit-resolution| (mp ((_ |quant-inst| |$n| 4) (or $x662 $x611)) @x549 $x560) @x715 $x576) (or $x507 $x625))))
+(let ((@x728 (|unit-resolution| @x751 @x345 $x507)))
+(let ((@x790 (|unit-resolution| (|def-axiom| (or (not $x576) $x624 $x573)) (|unit-resolution| (mp ((_ |quant-inst| |$n| 4) (or $x662 $x611)) @x549 $x560) @x715 $x576) (or $x624 $x573))))
+(let ((@x292 (|unit-resolution| (|def-axiom| (or $x577 $x617)) (hypothesis (not $x577)) $x617)))
+(let ((@x718 (|unit-resolution| (|def-axiom| (or $x577 $x627)) (hypothesis (not $x577)) $x627)))
+(let ((@x721 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x624 $x587 $x597)) @x718 @x292 @x728 false)))
+(let ((@x722 (lemma @x721 $x577)))
+(let ((@x1098 (|unit-resolution| (|def-axiom| (or (not $x573) (not $x577) $x621)) @x722 (|unit-resolution| @x790 @x728 $x573) $x621)))
+(let ((?x1000 (+ |$m| ?x499 (* (~ 2) (div |$m| 2)))))
+(let (($x998 (= ?x1000 0)))
+(let ((@x1107 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x998) (<= ?x1000 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x998)) @x152 $x998) (<= ?x1000 0))))
+(let ((@x1109 ((_ |th-lemma| arith farkas -1 2 -1 -1 -1 -1 -1 -1 1) @x876 (hypothesis $x1080) @x883 @x1107 (hypothesis $x638) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x621) $x524)) @x1098 $x524) @x1097 @x1090 @x1087 false)))
+(let ((@x945 (|unit-resolution| (lemma @x1109 (or $x1110 (not $x638))) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x485 $x638)) (hypothesis $x480) $x638) $x1110)))
+(let (($x639 (>= ?x351 0)))
+(let ((@x943 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x998) (>= ?x1000 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x998)) @x152 $x998) (>= ?x1000 0))))
+(let ((@x1026 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x9 0)) (>= ?x9 0))) (asserted (= ?x9 0)) (>= ?x9 0))))
+(let (($x957 (>= ?x951 0)))
+(let ((@x436 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x949) $x957)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x949)) @x152 $x949) $x957)))
+(let (($x487 (>= ?x620 0)))
+(let ((@x994 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x621) $x487)) @x1098 $x487)))
+(let (($x907 (>= ?x469 0)))
+(let (($x962 (not (>= ?x19 1))))
+(let (($x932 (<= ?x19 1)))
+(let ((@x1054 (|unit-resolution| ((_ |th-lemma| arith) (or false (not (>= ?x498 2)))) @x152 (not (>= ?x498 2)))))
+(let (($x906 (<= ?x469 0)))
+(let ((@x830 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x932 (>= ?x498 2) (not $x906))) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x915 $x906)) (hypothesis $x470) $x906) @x1054 $x932)))
+(let ((?x16 (|$mod| |$n| 2)))
+(let (($x18 (= ?x16 1)))
+(let (($x859 (not (>= ?x16 1))))
+(let (($x370 (<= ?x16 1)))
+(let ((@x819 (|unit-resolution| ((_ |th-lemma| arith) (or false (not (>= (mod |$n| 2) 2)))) @x152 (not (>= (mod |$n| 2) 2)))))
+(let ((?x404 (+ ?x16 (* (~ 1) (mod |$n| 2)))))
+(let (($x390 (<= ?x404 0)))
+(let (($x405 (= ?x404 0)))
+(let (($x451 (ite $x577 $x405 (= (+ ?x16 (mod (* (~ 1) |$n|) (~ 2))) 0))))
+(let (($x450 (ite $x624 (= ?x16 0) $x451)))
+(let (($x427 (or $x662 $x450)))
+(let (($x411 (or (not (or $x617 (<= 2 0))) (not (or $x627 (<= 2 0))))))
+(let (($x386 (ite $x411 $x405 (= (+ ?x16 (mod (* (~ 1) |$n|) (* (~ 1) 2))) 0))))
+(let (($x289 (= 2 0)))
+(let (($x389 (ite $x289 (= ?x16 |$n|) (ite $x624 (= ?x16 0) $x386))))
+(let (($x449 (= (= (+ ?x16 (mod (* (~ 1) |$n|) (* (~ 1) 2))) 0) (= (+ ?x16 (mod (* (~ 1) |$n|) (~ 2))) 0))))
+(let (($x446 (= (+ ?x16 (mod (* (~ 1) |$n|) (* (~ 1) 2))) (+ ?x16 (mod (* (~ 1) |$n|) (~ 2))))))
+(let ((@x671 (rewrite (= (* (~ 1) 2) (~ 2)))))
+(let ((@x453 (monotonicity @x671 (= (mod (* (~ 1) |$n|) (* (~ 1) 2)) (mod (* (~ 1) |$n|) (~ 2))))))
+(let ((@x677 (rewrite (= (<= 2 0) false))))
+(let ((@x466 (monotonicity @x677 (= (or $x627 (<= 2 0)) (or $x627 false)))))
+(let ((@x468 (trans @x466 (rewrite (= (or $x627 false) $x627)) (= (or $x627 (<= 2 0)) $x627))))
+(let ((@x477 (monotonicity @x677 (= (or $x617 (<= 2 0)) (or $x617 false)))))
+(let ((@x458 (trans @x477 (rewrite (= (or $x617 false) $x617)) (= (or $x617 (<= 2 0)) $x617))))
+(let ((@x461 (monotonicity (monotonicity @x458 (= (not (or $x617 (<= 2 0))) $x587)) (monotonicity @x468 (= (not (or $x627 (<= 2 0))) $x597)) (= $x411 $x577))))
+(let ((@x445 (monotonicity @x461 (monotonicity (monotonicity @x453 $x446) $x449) (= $x386 $x451))))
+(let ((@x691 (rewrite (= $x289 false))))
+(let ((@x441 (monotonicity @x691 (monotonicity @x445 (= (ite $x624 (= ?x16 0) $x386) $x450)) (= $x389 (ite false (= ?x16 |$n|) $x450)))))
+(let ((@x426 (trans @x441 (rewrite (= (ite false (= ?x16 |$n|) $x450) $x450)) (= $x389 $x450))))
+(let ((@x434 (trans (monotonicity @x426 (= (or $x662 $x389) $x427)) (rewrite (= $x427 $x427)) (= (or $x662 $x389) $x427))))
+(let ((@x771 (|unit-resolution| (|def-axiom| (or (not $x450) $x624 $x451)) @x728 (or (not $x450) $x451))))
+(let ((@x772 (|unit-resolution| @x771 (|unit-resolution| (mp ((_ |quant-inst| |$n| 2) (or $x662 $x389)) @x434 $x427) @x715 $x450) $x451)))
+(let ((@x774 (|unit-resolution| (|def-axiom| (or (not $x451) (not $x577) $x405)) (hypothesis $x577) @x772 $x405)))
+(let ((@x781 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x370 (>= (mod |$n| 2) 2) (not $x390))) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x405) $x390)) @x774 $x390) @x819 $x370)))
+(let ((@x787 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x18 (not $x370) $x859)) (hypothesis (not $x18)) (or (not $x370) $x859))))
+(let ((@x733 (|unit-resolution| (|def-axiom| (or (not $x573) (not $x577) $x621)) (hypothesis $x577) (|unit-resolution| @x790 @x728 $x573) $x621)))
+(let (($x391 (>= ?x404 0)))
+(let (($x324 (or (not (>= (+ |$n| ?x13 ?x619 (* (~ 1) (div |$n| 2)) ?x852) 2)) (not $x391) (not $x524) (>= ?x16 1))))
+(let ((?x737 (+ |$n| (* (~ 1) (mod |$n| 2)) (* (~ 2) (div |$n| 2)))))
+(let (($x735 (= ?x737 0)))
+(let ((@x869 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x735) (<= ?x737 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x735)) @x152 $x735) (<= ?x737 0))))
+(let ((@x870 (hypothesis (>= (+ |$n| ?x13 ?x619 (* (~ 1) (div |$n| 2)) ?x852) 2))))
+(let ((@x831 ((_ |th-lemma| arith farkas -1 1 -2 1 1 1 1) (hypothesis $x391) @x876 @x870 @x883 @x869 (hypothesis $x524) (hypothesis $x859) false)))
+(let ((@x313 (|unit-resolution| (lemma @x831 $x324) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x405) $x391)) @x774 $x391) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x621) $x524)) @x733 $x524) (|unit-resolution| @x787 @x781 $x859) (not (>= (+ |$n| ?x13 ?x619 (* (~ 1) (div |$n| 2)) ?x852) 2)))))
+(let ((@x757 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x735) (>= ?x737 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x735)) @x152 $x735) (>= ?x737 0))))
+(let ((@x763 (|unit-resolution| ((_ |th-lemma| arith) (or false (>= (mod |$n| 2) 0))) @x152 (>= (mod |$n| 2) 0))))
+(let ((@x764 ((_ |th-lemma| arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 1) @x724 @x752 @x763 @x757 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x621) $x487)) @x733 $x487) @x313 false)))
+(let (($x206 (or (not $x18) (not (= ?x19 1)))))
+(let ((@x212 (monotonicity (rewrite (= (and $x18 (= ?x19 1)) (not $x206))) (= (not (and $x18 (= ?x19 1))) (not (not $x206))))))
+(let ((@x216 (trans @x212 (rewrite (= (not (not $x206)) $x206)) (= (not (and $x18 (= ?x19 1))) $x206))))
+(let ((@x841 (|unit-resolution| (mp (asserted (not (and $x18 (= ?x19 1)))) @x216 $x206) (|unit-resolution| (lemma @x764 (or (not $x577) $x18)) @x722 $x18) (not (= ?x19 1)))))
+(let ((@x966 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (= ?x19 1) (not $x932) $x962)) @x841 (or (not $x932) $x962))))
+(let ((@x968 ((_ |th-lemma| arith farkas 1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 1) (|unit-resolution| @x966 @x830 $x962) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x915 $x907)) (hypothesis $x470) $x907) @x994 (hypothesis $x639) @x436 @x1026 @x943 @x752 @x724 (hypothesis $x1110) false)))
+(let ((@x952 (|unit-resolution| (lemma @x968 (or $x915 (not $x639) $x1080)) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x485 $x639)) (hypothesis $x480) $x639) @x945 $x915)))
+(let ((@x1043 (hypothesis $x915)))
+(let (($x494 (>= |$m| 0)))
+(let (($x302 (not $x494)))
+(let (($x319 (not $x490)))
+(let (($x293 (or $x319 $x302)))
+(let (($x770 (ite $x293 $x470 (= (+ ?x19 (mod (* (~ 1) |$m|) (~ 2))) 0))))
+(let (($x489 (= ?x19 0)))
+(let (($x801 (ite $x488 $x489 $x770)))
+(let (($x834 (or $x662 $x801)))
+(let (($x497 (or (not (or $x490 (<= 2 0))) (not (or $x494 (<= 2 0))))))
+(let (($x474 (ite $x497 $x470 (= (+ ?x19 (mod (* (~ 1) |$m|) (* (~ 1) 2))) 0))))
+(let (($x318 (ite $x289 (= ?x19 |$m|) (ite $x488 $x489 $x474))))
+(let (($x825 (= (= (+ ?x19 (mod (* (~ 1) |$m|) (* (~ 1) 2))) 0) (= (+ ?x19 (mod (* (~ 1) |$m|) (~ 2))) 0))))
+(let (($x822 (= (+ ?x19 (mod (* (~ 1) |$m|) (* (~ 1) 2))) (+ ?x19 (mod (* (~ 1) |$m|) (~ 2))))))
+(let ((@x817 (monotonicity @x671 (= (mod (* (~ 1) |$m|) (* (~ 1) 2)) (mod (* (~ 1) |$m|) (~ 2))))))
+(let ((@x297 (monotonicity @x677 (= (or $x494 (<= 2 0)) (or $x494 false)))))
+(let ((@x301 (trans @x297 (rewrite (= (or $x494 false) $x494)) (= (or $x494 (<= 2 0)) $x494))))
+(let ((@x321 (monotonicity @x677 (= (or $x490 (<= 2 0)) (or $x490 false)))))
+(let ((@x317 (trans @x321 (rewrite (= (or $x490 false) $x490)) (= (or $x490 (<= 2 0)) $x490))))
+(let ((@x716 (monotonicity (monotonicity @x317 (= (not (or $x490 (<= 2 0))) $x319)) (monotonicity @x301 (= (not (or $x494 (<= 2 0))) $x302)) (= $x497 $x293))))
+(let ((@x800 (monotonicity @x716 (monotonicity (monotonicity @x817 $x822) $x825) (= $x474 $x770))))
+(let ((@x826 (monotonicity @x691 (monotonicity @x800 (= (ite $x488 $x489 $x474) $x801)) (= $x318 (ite false (= ?x19 |$m|) $x801)))))
+(let ((@x833 (trans @x826 (rewrite (= (ite false (= ?x19 |$m|) $x801) $x801)) (= $x318 $x801))))
+(let ((@x897 (trans (monotonicity @x833 (= (or $x662 $x318) $x834)) (rewrite (= $x834 $x834)) (= (or $x662 $x318) $x834))))
+(let ((@x1029 (|unit-resolution| (|def-axiom| (or (not $x801) $x488 $x770)) (|unit-resolution| (mp ((_ |quant-inst| |$m| 2) (or $x662 $x318)) @x897 $x834) @x715 $x801) (or $x488 $x770))))
+(let (($x922 (not $x488)))
+(let ((@x1071 (|unit-resolution| @x1029 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x922 $x494)) (hypothesis $x302) $x922) $x770)))
+(let ((@x1048 (|unit-resolution| (|def-axiom| (or (not $x770) (not $x293) $x470)) @x1071 (|unit-resolution| (|def-axiom| (or $x293 $x494)) (hypothesis $x302) $x293) @x1043 false)))
+(let ((@x352 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x488 $x319 $x302)) (hypothesis $x922) (|unit-resolution| (lemma @x1048 (or $x494 $x470)) @x1043 $x494) $x319)))
+(let ((@x990 (|unit-resolution| (|def-axiom| (or (not $x770) (not $x293) $x470)) (|unit-resolution| (|def-axiom| (or $x293 $x490)) @x352 $x293) (|unit-resolution| @x1029 (hypothesis $x922) $x770) @x1043 false)))
+(let ((@x1031 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x922 $x490)) (|unit-resolution| (lemma @x990 (or $x488 $x470)) @x952 $x488) $x490)))
+(let ((@x858 (|unit-resolution| (|def-axiom| (or (not $x801) $x922 $x489)) (|unit-resolution| (mp ((_ |quant-inst| |$m| 2) (or $x662 $x318)) @x897 $x834) @x715 $x801) (or $x922 $x489))))
+(let ((@x417 (|unit-resolution| @x858 (|unit-resolution| (lemma @x990 (or $x488 $x470)) @x952 $x488) $x489)))
+(let ((@x413 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x489) (<= ?x19 0))) @x417 (<= ?x19 0))))
+(let ((@x392 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x489) (>= ?x19 0))) @x417 (>= ?x19 0))))
+(let ((@x393 ((_ |th-lemma| arith gcd-test 1 1 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2) @x392 @x413 @x994 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x621) $x524)) @x1098 $x524) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x485 $x639)) (hypothesis $x480) $x639) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x485 $x638)) (hypothesis $x480) $x638) @x436 @x1097 @x1026 @x1090 (|unit-resolution| (lemma @x1048 (or $x494 $x470)) @x952 $x494) @x1031 @x752 @x883 @x724 @x876 false)))
+(let (($x378 (>= ?x7 0)))
+(let (($x688 (not $x378)))
+(let (($x681 (not $x375)))
+(let (($x676 (or $x681 $x688)))
+(let (($x388 (ite $x676 $x480 (= (+ ?x9 (mod (+ (* (~ 1) |$n|) (* (~ 1) |$m|)) (~ 2))) 0))))
+(let (($x534 (not $x374)))
+(let ((@x346 (hypothesis $x534)))
+(let (($x11 (= ?x9 0)))
+(let (($x667 (ite $x374 $x11 $x388)))
+(let (($x500 (or $x662 $x667)))
+(let (($x359 (or (not (or $x375 (<= 2 0))) (not (or $x378 (<= 2 0))))))
+(let (($x698 (ite $x359 $x480 (= (+ ?x9 (mod (* (~ 1) ?x7) (* (~ 1) 2))) 0))))
+(let (($x700 (ite $x289 (= ?x9 ?x7) (ite $x374 $x11 $x698))))
+(let ((@x659 (rewrite (= (ite false (= (+ |$n| |$m| (* (~ 1) ?x9)) 0) $x667) $x667))))
+(let (($x663 (= (= (+ ?x9 (mod (* (~ 1) ?x7) (* (~ 1) 2))) 0) (= (+ ?x9 (mod (+ (* (~ 1) |$n|) (* (~ 1) |$m|)) (~ 2))) 0))))
+(let (($x382 (= (+ ?x9 (mod (* (~ 1) ?x7) (* (~ 1) 2))) (+ ?x9 (mod (+ (* (~ 1) |$n|) (* (~ 1) |$m|)) (~ 2))))))
+(let (($x673 (= (mod (* (~ 1) ?x7) (* (~ 1) 2)) (mod (+ (* (~ 1) |$n|) (* (~ 1) |$m|)) (~ 2)))))
+(let ((@x674 (monotonicity (rewrite (= (* (~ 1) ?x7) (+ (* (~ 1) |$n|) (* (~ 1) |$m|)))) @x671 $x673)))
+(let ((@x685 (monotonicity @x677 (= (or $x378 (<= 2 0)) (or $x378 false)))))
+(let ((@x687 (trans @x685 (rewrite (= (or $x378 false) $x378)) (= (or $x378 (<= 2 0)) $x378))))
+(let ((@x341 (monotonicity @x677 (= (or $x375 (<= 2 0)) (or $x375 false)))))
+(let ((@x680 (trans @x341 (rewrite (= (or $x375 false) $x375)) (= (or $x375 (<= 2 0)) $x375))))
+(let ((@x395 (monotonicity (monotonicity @x680 (= (not (or $x375 (<= 2 0))) $x681)) (monotonicity @x687 (= (not (or $x378 (<= 2 0))) $x688)) (= $x359 $x676))))
+(let ((@x666 (monotonicity @x395 (monotonicity (monotonicity @x674 $x382) $x663) (= $x698 $x388))))
+(let ((@x354 (rewrite (= (= ?x9 ?x7) (= (+ |$n| |$m| (* (~ 1) ?x9)) 0)))))
+(let ((@x657 (monotonicity @x691 @x354 (monotonicity @x666 (= (ite $x374 $x11 $x698) $x667)) (= $x700 (ite false (= (+ |$n| |$m| (* (~ 1) ?x9)) 0) $x667)))))
+(let ((@x645 (monotonicity (trans @x657 @x659 (= $x700 $x667)) (= (or $x662 $x700) $x500))))
+(let ((@x649 (mp ((_ |quant-inst| (+ |$n| |$m|) 2) (or $x662 $x700)) (trans @x645 (rewrite (= $x500 $x500)) (= (or $x662 $x700) $x500)) $x500)))
+(let ((@x981 (|unit-resolution| (|def-axiom| (or (not $x667) $x374 $x388)) (|unit-resolution| @x649 @x715 $x667) (or $x374 $x388))))
+(let ((@x348 (|unit-resolution| (|def-axiom| (or $x676 $x375)) (hypothesis (not $x676)) $x375)))
+(let ((@x349 (|unit-resolution| (|def-axiom| (or $x676 $x378)) (hypothesis (not $x676)) $x378)))
+(let ((@x332 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x374 $x681 $x688)) @x349 @x348 @x346 false)))
+(let ((@x984 (|unit-resolution| (|def-axiom| (or (not $x388) (not $x676) $x480)) (|unit-resolution| (lemma @x332 (or $x676 $x374)) @x346 $x676) (|unit-resolution| @x981 @x346 $x388) (lemma @x393 $x485) false)))
+(let (($x1167 (>= (+ |$n| |$m| ?x13 ?x499 ?x619 ?x852 (* (~ 1) (div |$m| 2))) 2)))
+(let ((@x792 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x922 $x490)) (|unit-resolution| (lemma @x990 (or $x488 $x470)) @x1043 $x488) $x490)))
+(let ((@x809 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1) (or $x627 $x688 $x319)) @x792 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x534 $x378)) (lemma @x984 $x374) $x378) $x627)))
+(let ((@x1035 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1) (or $x617 $x681 $x302)) (|unit-resolution| (lemma @x1048 (or $x494 $x470)) @x1043 $x494) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x534 $x375)) (lemma @x984 $x374) $x375) $x617)))
+(let ((@x1039 (|unit-resolution| (|unit-resolution| (|def-axiom| (or (not $x577) $x587 $x597)) @x722 $x577) @x1035 @x809 false)))
+(let ((@x1177 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x932 (>= ?x498 2) (not $x906))) @x1054 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x915 $x906)) (lemma @x1039 $x470) $x906) $x932)))
+(let ((@x1179 ((_ |th-lemma| arith) @x943 (|unit-resolution| @x966 @x1177 $x962) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x915 $x907)) (lemma @x1039 $x470) $x907) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x534 $x378)) (lemma @x984 $x374) $x378) @x994 @x752 @x724 $x1167)))
+(let ((@x1181 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x949) $x957)) (hypothesis $x949) $x957)))
+(let ((@x1182 ((_ |th-lemma| arith farkas -2 -1 2 -2 1 1) @x1026 @x1181 (hypothesis $x1110) @x1179 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x534 $x375)) (lemma @x984 $x374) $x375) @x1174 false)))
+(let ((@x1213 (|unit-resolution| (lemma @x1182 (or (not $x949) $x1080)) (lemma @x1084 $x949) $x1080)))
+(let ((@x1215 ((_ |th-lemma| arith farkas -1 1 1) @x1090 (|unit-resolution| (lemma @x1109 (or $x1110 (not $x638))) @x1213 (not $x638)) (hypothesis (>= ?x694 0)) false)))
+(|unit-resolution| ((_ |th-lemma| arith) (or false (>= ?x694 0))) @x152 (lemma @x1215 (not (>= ?x694 0))) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+6b708fee38e9bf7615ccc8723328495d7f62521e 11 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x6 (exists ((?v0 Int) )false)
+))
+(let (($x5 (not $x6)))
+(let (($x7 (not $x5)))
+(let ((@x13 (monotonicity (|elim-unused| (= $x6 false)) (= $x5 (not false)))))
+(let ((@x20 (monotonicity (trans @x13 (rewrite (= (not false) true)) (= $x5 true)) (= $x7 (not true)))))
+(mp (asserted $x7) (trans @x20 (rewrite (= (not true) false)) (= $x7 false)) false))))))))
+
+365761b65f00d147ff0728b709645c1e95a5cb22 22 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x54 (forall ((?v0 Int) )(<= ?v0 0))
+))
+(let (($x46 (forall ((?v0 Int) )(let (($x11 (<= ?v0 0)))
+(let (($x12 (not $x11)))
+(not $x12))))
+))
+(let ((@x56 (|quant-intro| (rewrite (= (not (not (<= ?0 0))) (<= ?0 0))) (= $x46 $x54))))
+(let (($x15 (exists ((?v0 Int) )(let (($x11 (<= ?v0 0)))
+(not $x11)))
+))
+(let (($x18 (not $x15)))
+(let ((@x48 (|nnf-neg| (refl (|~| (not (not (<= ?0 0))) (not (not (<= ?0 0))))) (|~| $x18 $x46))))
+(let (($x8 (exists ((?v0 Int) )(< 0 ?v0))
+))
+(let (($x9 (not $x8)))
+(let ((@x17 (|quant-intro| (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x8 $x15))))
+(let ((@x24 (mp (mp (asserted $x9) (monotonicity @x17 (= $x9 $x18)) $x18) (|rewrite*| (= $x18 $x18)) $x18)))
+(mp (mp (|mp~| @x24 @x48 $x46) @x56 $x54) (rewrite (= $x54 false)) false)))))))))))))
+
+531451869d81515a9a811b564209ab76519736be 11 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let (($x6 (exists ((?v0 Real) )false)
+))
+(let (($x5 (not $x6)))
+(let (($x7 (not $x5)))
+(let ((@x13 (monotonicity (|elim-unused| (= $x6 false)) (= $x5 (not false)))))
+(let ((@x20 (monotonicity (trans @x13 (rewrite (= (not false) true)) (= $x5 true)) (= $x7 (not true)))))
+(mp (asserted $x7) (trans @x20 (rewrite (= (not true) false)) (= $x7 false)) false))))))))
+
+52fc23e5db1b35bf2465aff4abeba68b99d17123 40 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!0 () Int)
+(proof
+(let (($x89 (forall ((?v1 Int) )(<= (+ ?v1 (* (~ 1) ?v0!0)) 0))
+))
+(let (($x79 (forall ((?v1 Int) )(not (not (<= (+ ?v1 (* (~ 1) ?v0!0)) 0))))
+))
+(let (($x70 (<= (+ ?0 (* (~ 1) ?v0!0)) 0)))
+(let (($x76 (not (not $x70))))
+(let (($x61 (forall ((?v0 Int) )(exists ((?v1 Int) )(not (<= (+ ?v1 (* (~ 1) ?v0)) 0)))
+)
+))
+(let (($x64 (not $x61)))
+(let (($x72 (exists ((?v1 Int) )(let (($x70 (<= (+ ?v1 (* (~ 1) ?v0!0)) 0)))
+(not $x70)))
+))
+(let ((@x83 (trans (sk (|~| $x64 (not $x72))) (|nnf-neg| (refl (|~| $x76 $x76)) (|~| (not $x72) $x79)) (|~| $x64 $x79))))
+(let (($x19 (forall ((?v0 Int) )(exists ((?v1 Int) )(not (<= ?v1 ?v0)))
+)
+))
+(let (($x22 (not $x19)))
+(let (($x58 (exists ((?v1 Int) )(not (<= (+ ?v1 (* (~ 1) ?0)) 0)))
+))
+(let (($x16 (exists ((?v1 Int) )(not (<= ?v1 ?0)))
+))
+(let ((@x57 (monotonicity (rewrite (= (<= ?0 ?1) (<= (+ ?0 (* (~ 1) ?1)) 0))) (= (not (<= ?0 ?1)) (not (<= (+ ?0 (* (~ 1) ?1)) 0))))))
+(let ((@x66 (monotonicity (|quant-intro| (|quant-intro| @x57 (= $x16 $x58)) (= $x19 $x61)) (= $x22 $x64))))
+(let (($x9 (forall ((?v0 Int) )(exists ((?v1 Int) )(< ?v0 ?v1))
+)
+))
+(let (($x10 (not $x9)))
+(let (($x8 (exists ((?v1 Int) )(< ?0 ?v1))
+))
+(let ((@x18 (|quant-intro| (rewrite (= (< ?1 ?0) (not (<= ?0 ?1)))) (= $x8 $x16))))
+(let ((@x25 (mp (asserted $x10) (monotonicity (|quant-intro| @x18 (= $x9 $x19)) (= $x10 $x22)) $x22)))
+(let ((@x84 (|mp~| (mp (mp @x25 (|rewrite*| (= $x22 $x22)) $x22) @x66 $x64) @x83 $x79)))
+(let ((@x85 (mp @x84 (|quant-intro| (rewrite (= $x76 $x70)) (= $x79 $x89)) $x89)))
+(mp @x85 (rewrite (= $x89 false)) false))))))))))))))))))))))))
+
+a524cbe0a36c63dd22a617bca8ac628c3c4e0003 22 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let (($x54 (forall ((?v0 Real) )(<= ?v0 0.0))
+))
+(let (($x46 (forall ((?v0 Real) )(let (($x11 (<= ?v0 0.0)))
+(let (($x12 (not $x11)))
+(not $x12))))
+))
+(let ((@x56 (|quant-intro| (rewrite (= (not (not (<= ?0 0.0))) (<= ?0 0.0))) (= $x46 $x54))))
+(let (($x15 (exists ((?v0 Real) )(let (($x11 (<= ?v0 0.0)))
+(not $x11)))
+))
+(let (($x18 (not $x15)))
+(let ((@x48 (|nnf-neg| (refl (|~| (not (not (<= ?0 0.0))) (not (not (<= ?0 0.0))))) (|~| $x18 $x46))))
+(let (($x8 (exists ((?v0 Real) )(< 0.0 ?v0))
+))
+(let (($x9 (not $x8)))
+(let ((@x17 (|quant-intro| (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x8 $x15))))
+(let ((@x24 (mp (mp (asserted $x9) (monotonicity @x17 (= $x9 $x18)) $x18) (|rewrite*| (= $x18 $x18)) $x18)))
+(mp (mp (|mp~| @x24 @x48 $x46) @x56 $x54) (rewrite (= $x54 false)) false)))))))))))))
+
+76c68fc9857d9b1bea2540fac5de5d93a85faffa 30 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x14 (exists ((?v0 Int) )(forall ((?v1 Int) )(let (($x10 (<= 0 ?v1)))
+(let (($x11 (or (< ?v1 0) $x10)))
+(=> (< ?v0 ?v1) $x11))))
+)
+))
+(let (($x15 (not $x14)))
+(let (($x50 (exists ((?v0 Int) )true)
+))
+(let (($x13 (forall ((?v1 Int) )(let (($x10 (<= 0 ?v1)))
+(let (($x11 (or (< ?v1 0) $x10)))
+(=> (< ?0 ?v1) $x11))))
+))
+(let (($x43 (forall ((?v1 Int) )true)
+))
+(let (($x10 (<= 0 ?0)))
+(let (($x11 (or (< ?0 0) $x10)))
+(let (($x12 (=> (< ?1 ?0) $x11)))
+(let ((@x28 (trans (rewrite (= (< ?0 0) (not $x10))) (monotonicity (rewrite (= $x10 $x10)) (= (not $x10) (not $x10))) (= (< ?0 0) (not $x10)))))
+(let ((@x31 (monotonicity @x28 (rewrite (= $x10 $x10)) (= $x11 (or (not $x10) $x10)))))
+(let ((@x35 (trans @x31 (rewrite (= (or (not $x10) $x10) true)) (= $x11 true))))
+(let ((@x38 (monotonicity (rewrite (= (< ?1 ?0) (not (<= ?0 ?1)))) @x35 (= $x12 (=> (not (<= ?0 ?1)) true)))))
+(let ((@x42 (trans @x38 (rewrite (= (=> (not (<= ?0 ?1)) true) true)) (= $x12 true))))
+(let ((@x49 (trans (|quant-intro| @x42 (= $x13 $x43)) (|elim-unused| (= $x43 true)) (= $x13 true))))
+(let ((@x56 (trans (|quant-intro| @x49 (= $x14 $x50)) (|elim-unused| (= $x50 true)) (= $x14 true))))
+(let ((@x63 (trans (monotonicity @x56 (= $x15 (not true))) (rewrite (= (not true) false)) (= $x15 false))))
+(mp (asserted $x15) @x63 false)))))))))))))))))))
+
+750c85c0e2958b1508ba7c582f2bdbbb46fc0552 20 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v1!0 () Int)
+(declare-fun ?v0!1 () Int)
+(proof
+(let (($x58 (or (not (and (= ?v0!1 0) (= ?v1!0 1))) (not (= ?v0!1 ?v1!0)))))
+(let (($x22 (forall ((?v0 Int) (?v1 Int) )(or (not (and (= ?v0 0) (= ?v1 1))) (not (= ?v0 ?v1))))
+))
+(let (($x25 (not $x22)))
+(let (($x15 (forall ((?v0 Int) (?v1 Int) )(=> (and (= ?v0 0) (= ?v1 1)) (not (= ?v0 ?v1))))
+))
+(let (($x16 (not $x15)))
+(let (($x20 (= (=> (and (= ?1 0) (= ?0 1)) (not (= ?1 ?0))) (or (not (and (= ?1 0) (= ?0 1))) (not (= ?1 ?0))))))
+(let ((@x27 (monotonicity (|quant-intro| (rewrite $x20) (= $x15 $x22)) (= $x16 $x25))))
+(let ((@x62 (|mp~| (mp (mp (asserted $x16) @x27 $x25) (|rewrite*| (= $x25 $x25)) $x25) (sk (|~| $x25 (not $x58))) (not $x58))))
+(let ((@x67 (|and-elim| (|not-or-elim| @x62 (and (= ?v0!1 0) (= ?v1!0 1))) (= ?v1!0 1))))
+(let ((@x66 (|and-elim| (|not-or-elim| @x62 (and (= ?v0!1 0) (= ?v1!0 1))) (= ?v0!1 0))))
+(let ((@x70 (trans (symm @x66 (= 0 ?v0!1)) (|not-or-elim| @x62 (= ?v0!1 ?v1!0)) (= 0 ?v1!0))))
+(mp (trans @x70 @x67 (= 0 1)) (rewrite (= (= 0 1) false)) false))))))))))))))
+
+a26ec0d452d6ecde84fa66db969e7d6c80150605 38 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x47 (forall ((?v0 Int) (?v1 Int) )(let ((?x22 (+ 1 (* 2 ?v0))))
+(let ((?x12 (* 2 ?v1)))
+(let (($x28 (<= ?x12 ?x22)))
+(let (($x29 (not $x28)))
+(let (($x18 (<= ?v1 ?v0)))
+(or $x18 $x29)))))))
+))
+(let (($x50 (not $x47)))
+(let (($x95 (forall ((?v0 Int) (?v1 Int) )true)
+))
+(let ((?x22 (+ 1 (* 2 ?1))))
+(let ((?x12 (* 2 ?0)))
+(let (($x28 (<= ?x12 ?x22)))
+(let (($x29 (not $x28)))
+(let (($x18 (<= ?0 ?1)))
+(let (($x42 (or $x18 $x29)))
+(let (($x79 (>= (+ ?1 (* (~ 1) ?0)) 0)))
+(let ((@x90 (monotonicity (rewrite (= $x18 $x79)) (monotonicity (rewrite (= $x28 $x79)) (= $x29 (not $x79))) (= $x42 (or $x79 (not $x79))))))
+(let ((@x94 (trans @x90 (rewrite (= (or $x79 (not $x79)) true)) (= $x42 true))))
+(let ((@x101 (trans (|quant-intro| @x94 (= $x47 $x95)) (|elim-unused| (= $x95 true)) (= $x47 true))))
+(let ((@x108 (trans (monotonicity @x101 (= $x50 (not true))) (rewrite (= (not true) false)) (= $x50 false))))
+(let (($x15 (forall ((?v0 Int) (?v1 Int) )(let ((?x12 (* 2 ?v1)))
+(let (($x13 (< (+ (* 2 ?v0) 1) ?x12)))
+(=> (< ?v0 ?v1) $x13))))
+))
+(let (($x16 (not $x15)))
+(let (($x13 (< (+ (* 2 ?1) 1) ?x12)))
+(let (($x14 (=> (< ?1 ?0) $x13)))
+(let ((@x27 (monotonicity (rewrite (= (+ (* 2 ?1) 1) ?x22)) (= $x13 (< ?x22 ?x12)))))
+(let ((@x38 (trans (trans @x27 (rewrite (= (< ?x22 ?x12) $x29)) (= $x13 $x29)) (monotonicity (rewrite (= $x28 $x28)) (= $x29 $x29)) (= $x13 $x29))))
+(let ((@x41 (monotonicity (rewrite (= (< ?1 ?0) (not $x18))) @x38 (= $x14 (=> (not $x18) $x29)))))
+(let ((@x46 (trans @x41 (rewrite (= (=> (not $x18) $x29) $x42)) (= $x14 $x42))))
+(let ((@x53 (mp (asserted $x16) (monotonicity (|quant-intro| @x46 (= $x15 $x47)) (= $x16 $x50)) $x50)))
+(mp (mp @x53 (|rewrite*| (= $x50 $x50)) $x50) @x108 false))))))))))))))))))))))))))
+
+bd9c4497c082a3945939358cc22879f4906afd6a 29 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x33 (forall ((?v0 Int) (?v1 Int) )(let ((?x8 (* 2 ?v0)))
+(let (($x25 (= ?x8 (+ (~ 1) (* 2 ?v1)))))
+(not $x25))))
+))
+(let (($x36 (not $x33)))
+(let (($x72 (forall ((?v0 Int) (?v1 Int) )true)
+))
+(let ((?x8 (* 2 ?1)))
+(let (($x25 (= ?x8 (+ (~ 1) (* 2 ?0)))))
+(let (($x30 (not $x25)))
+(let ((@x71 (trans (monotonicity (rewrite (= $x25 false)) (= $x30 (not false))) (rewrite (= (not false) true)) (= $x30 true))))
+(let ((@x78 (trans (|quant-intro| @x71 (= $x33 $x72)) (|elim-unused| (= $x72 true)) (= $x33 true))))
+(let ((@x85 (trans (monotonicity @x78 (= $x36 (not true))) (rewrite (= (not true) false)) (= $x36 false))))
+(let (($x14 (forall ((?v0 Int) (?v1 Int) )(let ((?x11 (* 2 ?v1)))
+(let (($x12 (= (+ (* 2 ?v0) 1) ?x11)))
+(not $x12))))
+))
+(let (($x15 (not $x14)))
+(let ((?x11 (* 2 ?0)))
+(let (($x12 (= (+ ?x8 1) ?x11)))
+(let ((@x22 (monotonicity (rewrite (= (+ ?x8 1) (+ 1 ?x8))) (= $x12 (= (+ 1 ?x8) ?x11)))))
+(let ((@x29 (trans @x22 (rewrite (= (= (+ 1 ?x8) ?x11) $x25)) (= $x12 $x25))))
+(let ((@x35 (|quant-intro| (monotonicity @x29 (= (not $x12) $x30)) (= $x14 $x33))))
+(let ((@x42 (mp (mp (asserted $x15) (monotonicity @x35 (= $x15 $x36)) $x36) (|rewrite*| (= $x36 $x36)) $x36)))
+(mp @x42 @x85 false))))))))))))))))))))
+
+4561e7f574918fb0fcb2d1c3600b5565bf981ede 52 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!1 () Int)
+(declare-fun ?v1!0 () Int)
+(proof
+(let ((?x101 (+ ?v1!0 ?v0!1)))
+(let (($x113 (>= ?x101 2)))
+(let (($x116 (not $x113)))
+(let (($x110 (= ?x101 2)))
+(let (($x104 (<= ?x101 2)))
+(let (($x107 (not $x104)))
+(let (($x94 (or (not (<= (+ ?v0!1 ?v1!0) 2)) (= (+ ?v0!1 ?v1!0) 2) (not (>= (+ ?v0!1 ?v1!0) 2)))))
+(let (($x95 (not $x94)))
+(let ((@x103 (rewrite (= (+ ?v0!1 ?v1!0) ?x101))))
+(let ((@x118 (monotonicity (monotonicity @x103 (= (>= (+ ?v0!1 ?v1!0) 2) $x113)) (= (not (>= (+ ?v0!1 ?v1!0) 2)) $x116))))
+(let ((@x109 (monotonicity (monotonicity @x103 (= (<= (+ ?v0!1 ?v1!0) 2) $x104)) (= (not (<= (+ ?v0!1 ?v1!0) 2)) $x107))))
+(let ((@x121 (monotonicity @x109 (monotonicity @x103 (= (= (+ ?v0!1 ?v1!0) 2) $x110)) @x118 (= $x94 (or $x107 $x110 $x116)))))
+(let (($x80 (forall ((?v0 Int) (?v1 Int) )(let ((?x8 (+ ?v0 ?v1)))
+(let (($x10 (= ?x8 2)))
+(let (($x18 (not (<= ?x8 2))))
+(or $x18 $x10 (not (>= ?x8 2)))))))
+))
+(let (($x83 (not $x80)))
+(let (($x41 (forall ((?v0 Int) (?v1 Int) )(let ((?x8 (+ ?v0 ?v1)))
+(let (($x21 (<= 2 ?x8)))
+(let (($x22 (not $x21)))
+(let (($x10 (= ?x8 2)))
+(let (($x18 (not (<= ?x8 2))))
+(or $x18 $x10 $x22)))))))
+))
+(let (($x44 (not $x41)))
+(let ((?x8 (+ ?1 ?0)))
+(let (($x10 (= ?x8 2)))
+(let (($x18 (not (<= ?x8 2))))
+(let (($x21 (<= 2 ?x8)))
+(let (($x22 (not $x21)))
+(let (($x36 (or $x18 $x10 $x22)))
+(let ((@x76 (monotonicity (rewrite (= $x21 (>= ?x8 2))) (= $x22 (not (>= ?x8 2))))))
+(let ((@x82 (|quant-intro| (monotonicity @x76 (= $x36 (or $x18 $x10 (not (>= ?x8 2))))) (= $x41 $x80))))
+(let (($x14 (forall ((?v0 Int) (?v1 Int) )(or (< 2 (+ ?v0 ?v1)) (or (= (+ ?v0 ?v1) 2) (< (+ ?v0 ?v1) 2))))
+))
+(let (($x15 (not $x14)))
+(let (($x13 (or (< 2 ?x8) (or $x10 (< ?x8 2)))))
+(let ((@x29 (trans (rewrite (= (< ?x8 2) $x22)) (monotonicity (rewrite (= $x21 $x21)) (= $x22 $x22)) (= (< ?x8 2) $x22))))
+(let ((@x35 (monotonicity (rewrite (= (< 2 ?x8) $x18)) (monotonicity @x29 (= (or $x10 (< ?x8 2)) (or $x10 $x22))) (= $x13 (or $x18 (or $x10 $x22))))))
+(let ((@x40 (trans @x35 (rewrite (= (or $x18 (or $x10 $x22)) $x36)) (= $x13 $x36))))
+(let ((@x47 (mp (asserted $x15) (monotonicity (|quant-intro| @x40 (= $x14 $x41)) (= $x15 $x44)) $x44)))
+(let ((@x86 (mp (mp @x47 (|rewrite*| (= $x44 $x44)) $x44) (monotonicity @x82 (= $x44 $x83)) $x83)))
+(let ((@x99 (mp (|mp~| @x86 (sk (|~| $x83 $x95)) $x95) (monotonicity @x121 (= $x95 (not (or $x107 $x110 $x116)))) (not (or $x107 $x110 $x116)))))
+(let ((@x131 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x110 $x107 $x116)) (|not-or-elim| @x99 $x104) (or $x110 $x116))))
+(|unit-resolution| @x131 (|not-or-elim| @x99 $x113) (|not-or-elim| @x99 (not $x110)) false)))))))))))))))))))))))))))))))))))))
+
+230760924531c91da933509839308feff344fdd2 50 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!0 () Int)
+(proof
+(let (($x103 (<= ?v0!0 0)))
+(let (($x106 (<= ?v0!0 (~ 1))))
+(let (($x107 (not $x106)))
+(let ((@x125 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x107 $x103)) (hypothesis (not $x103)) $x107)))
+(let (($x96 (forall ((?v0 Int) )(let (($x36 (not (<= ?v0 (~ 1)))))
+(let (($x16 (<= ?v0 0)))
+(ite $x16 (not (>= ?v0 1)) $x36))))
+))
+(let (($x99 (not $x96)))
+(let (($x58 (forall ((?v0 Int) )(let (($x36 (not (<= ?v0 (~ 1)))))
+(let (($x41 (<= 1 ?v0)))
+(let (($x42 (not $x41)))
+(let (($x16 (<= ?v0 0)))
+(ite $x16 $x42 $x36))))))
+))
+(let (($x61 (not $x58)))
+(let (($x36 (not (<= ?0 (~ 1)))))
+(let (($x41 (<= 1 ?0)))
+(let (($x42 (not $x41)))
+(let (($x16 (<= ?0 0)))
+(let (($x53 (ite $x16 $x42 $x36)))
+(let ((@x92 (monotonicity (rewrite (= $x41 (>= ?0 1))) (= $x42 (not (>= ?0 1))))))
+(let ((@x98 (|quant-intro| (monotonicity @x92 (= $x53 (ite $x16 (not (>= ?0 1)) $x36))) (= $x58 $x96))))
+(let (($x13 (forall ((?v0 Int) )(let (($x10 (< 0 (+ ?v0 1))))
+(ite (< 0 ?v0) $x10 (< ?v0 1))))
+))
+(let (($x14 (not $x13)))
+(let (($x10 (< 0 (+ ?0 1))))
+(let (($x12 (ite (< 0 ?0) $x10 (< ?0 1))))
+(let ((@x49 (trans (rewrite (= (< ?0 1) $x42)) (monotonicity (rewrite (= $x41 $x41)) (= $x42 $x42)) (= (< ?0 1) $x42))))
+(let ((@x38 (monotonicity (rewrite (= (<= (+ 1 ?0) 0) (<= ?0 (~ 1)))) (= (not (<= (+ 1 ?0) 0)) $x36))))
+(let ((@x29 (rewrite (= (< 0 (+ 1 ?0)) (not (<= (+ 1 ?0) 0))))))
+(let ((@x25 (monotonicity (rewrite (= (+ ?0 1) (+ 1 ?0))) (= $x10 (< 0 (+ 1 ?0))))))
+(let ((@x40 (trans (trans @x25 @x29 (= $x10 (not (<= (+ 1 ?0) 0)))) @x38 (= $x10 $x36))))
+(let ((@x52 (monotonicity (rewrite (= (< 0 ?0) (not $x16))) @x40 @x49 (= $x12 (ite (not $x16) $x36 $x42)))))
+(let ((@x57 (trans @x52 (rewrite (= (ite (not $x16) $x36 $x42) $x53)) (= $x12 $x53))))
+(let ((@x64 (mp (asserted $x14) (monotonicity (|quant-intro| @x57 (= $x13 $x58)) (= $x14 $x61)) $x61)))
+(let ((@x102 (mp (mp @x64 (|rewrite*| (= $x61 $x61)) $x61) (monotonicity @x98 (= $x61 $x99)) $x99)))
+(let ((@x112 (|mp~| @x102 (sk (|~| $x99 (not (ite $x103 (not (>= ?v0!0 1)) $x107)))) (not (ite $x103 (not (>= ?v0!0 1)) $x107)))))
+(let ((@x127 (|unit-resolution| (|def-axiom| (or (ite $x103 (not (>= ?v0!0 1)) $x107) $x103 $x106)) @x112 (or $x103 $x106))))
+(let ((@x129 (lemma (|unit-resolution| @x127 @x125 (hypothesis (not $x103)) false) $x103)))
+(let (($x104 (>= ?v0!0 1)))
+(let (($x105 (not $x104)))
+(let ((@x134 (|unit-resolution| (|def-axiom| (or (ite $x103 $x105 $x107) (not $x103) $x104)) @x112 (or (not $x103) $x104))))
+(|unit-resolution| @x134 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x105 (not $x103))) @x129 $x105) @x129 false)))))))))))))))))))))))))))))))))))))
+
+1e9c0d6f38cf8e68fc9ae85612e77618e349b0b4 40 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x80 (forall ((?v0 Int) )(let (($x24 (not (<= ?v0 0))))
+(or (not (>= ?v0 0)) $x24)))
+))
+(let (($x479 (not $x80)))
+(let (($x89 (not (<= 0 0))))
+(let (($x164 (not (>= 0 0))))
+(let (($x175 (or $x164 $x89)))
+(let (($x140 (or $x479 $x175)))
+(let ((@x501 (monotonicity (rewrite (= (<= 0 0) true)) (= $x89 (not true)))))
+(let ((@x160 (monotonicity (rewrite (= (>= 0 0) true)) (= $x164 (not true)))))
+(let ((@x156 (monotonicity (trans @x160 (rewrite (= (not true) false)) (= $x164 false)) (trans @x501 (rewrite (= (not true) false)) (= $x89 false)) (= $x175 (or false false)))))
+(let ((@x137 (trans @x156 (rewrite (= (or false false) false)) (= $x175 false))))
+(let ((@x484 (trans (monotonicity @x137 (= $x140 (or $x479 false))) (rewrite (= (or $x479 false) $x479)) (= $x140 $x479))))
+(let (($x24 (not (<= ?0 0))))
+(let (($x77 (or (not (>= ?0 0)) $x24)))
+(let (($x30 (forall ((?v0 Int) )(let (($x24 (not (<= ?v0 0))))
+(let (($x14 (<= 0 ?v0)))
+(let (($x15 (not $x14)))
+(or $x15 $x24)))))
+))
+(let ((@x76 (monotonicity (rewrite (= (<= 0 ?0) (>= ?0 0))) (= (not (<= 0 ?0)) (not (>= ?0 0))))))
+(let ((@x82 (|quant-intro| (monotonicity @x76 (= (or (not (<= 0 ?0)) $x24) $x77)) (= $x30 $x80))))
+(let (($x10 (forall ((?v0 Int) )(or (< ?v0 0) (< 0 ?v0)))
+))
+(let (($x11 (ite $x10 false true)))
+(let (($x12 (not $x11)))
+(let (($x14 (<= 0 ?0)))
+(let (($x15 (not $x14)))
+(let (($x27 (or $x15 $x24)))
+(let ((@x22 (trans (rewrite (= (< ?0 0) $x15)) (monotonicity (rewrite (= $x14 $x14)) (= $x15 $x15)) (= (< ?0 0) $x15))))
+(let ((@x29 (monotonicity @x22 (rewrite (= (< 0 ?0) $x24)) (= (or (< ?0 0) (< 0 ?0)) $x27))))
+(let ((@x35 (monotonicity (|quant-intro| @x29 (= $x10 $x30)) (= $x11 (ite $x30 false true)))))
+(let ((@x40 (trans @x35 (rewrite (= (ite $x30 false true) (not $x30))) (= $x11 (not $x30)))))
+(let ((@x47 (trans (monotonicity @x40 (= $x12 (not (not $x30)))) (rewrite (= (not (not $x30)) $x30)) (= $x12 $x30))))
+(let ((@x83 (mp (mp (mp (asserted $x12) @x47 $x30) (|rewrite*| (= $x30 $x30)) $x30) @x82 $x80)))
+(|unit-resolution| (|mp~| @x83 (|nnf-pos| (refl (|~| $x77 $x77)) (|~| $x80 $x80)) $x80) (mp ((_ |quant-inst| 0) $x140) @x484 $x479) false)))))))))))))))))))))))))))))))
+
+a8c954d45da95df62d2ec9e6e7c43aa1fee0cd56 21 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x39 (exists ((?v0 Int) (?v1 Int) )(= (+ (* 4 ?v0) (* (~ 6) ?v1)) 1))
+))
+(let (($x79 (exists ((?v0 Int) (?v1 Int) )false)
+))
+(let ((@x83 (|quant-intro| (rewrite (= (= (+ (* 4 ?1) (* (~ 6) ?0)) 1) false)) (= $x39 $x79))))
+(let (($x16 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(= (+ (* 4 ?v0) (* (- 6) ?v1)) 1))
+))
+(let (($x17 (not (not $x16))))
+(let (($x31 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(= (+ (* 4 ?v0) (* (~ 6) ?v1)) 1))
+))
+(let (($x29 (= (= (+ (* 4 ?2) (* (- 6) ?1)) 1) (= (+ (* 4 ?2) (* (~ 6) ?1)) 1))))
+(let (($x26 (= (+ (* 4 ?2) (* (- 6) ?1)) (+ (* 4 ?2) (* (~ 6) ?1)))))
+(let ((@x24 (monotonicity (rewrite (= (- 6) (~ 6))) (= (* (- 6) ?1) (* (~ 6) ?1)))))
+(let ((@x33 (|quant-intro| (monotonicity (monotonicity @x24 $x26) $x29) (= $x16 $x31))))
+(let ((@x46 (monotonicity (trans @x33 (|elim-unused| (= $x31 $x39)) (= $x16 $x39)) (= (not $x16) (not $x39)))))
+(let ((@x53 (trans (monotonicity @x46 (= $x17 (not (not $x39)))) (rewrite (= (not (not $x39)) $x39)) (= $x17 $x39))))
+(mp (mp (mp (asserted $x17) @x53 $x39) (|rewrite*| (= $x39 $x39)) $x39) (trans @x83 (|elim-unused| (= $x79 false)) (= $x39 false)) false)))))))))))))))
+
+ce79a1fda8f32a486e67471071f239d5db3b39f0 47 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x111 (forall ((?v0 Int) )(let (($x28 (not (<= ?v0 0))))
+(or (not (>= ?v0 0)) $x28)))
+))
+(let (($x507 (not $x111)))
+(let (($x119 (not (<= 0 0))))
+(let (($x193 (not (>= 0 0))))
+(let (($x204 (or $x193 $x119)))
+(let (($x169 (or $x507 $x204)))
+(let ((@x529 (monotonicity (rewrite (= (<= 0 0) true)) (= $x119 (not true)))))
+(let ((@x189 (monotonicity (rewrite (= (>= 0 0) true)) (= $x193 (not true)))))
+(let ((@x185 (monotonicity (trans @x189 (rewrite (= (not true) false)) (= $x193 false)) (trans @x529 (rewrite (= (not true) false)) (= $x119 false)) (= $x204 (or false false)))))
+(let ((@x166 (trans @x185 (rewrite (= (or false false) false)) (= $x204 false))))
+(let ((@x512 (trans (monotonicity @x166 (= $x169 (or $x507 false))) (rewrite (= (or $x507 false) $x507)) (= $x169 $x507))))
+(let (($x28 (not (<= ?0 0))))
+(let (($x108 (or (not (>= ?0 0)) $x28)))
+(let (($x34 (forall ((?v0 Int) )(let (($x28 (not (<= ?v0 0))))
+(let (($x18 (<= 0 ?v0)))
+(let (($x19 (not $x18)))
+(or $x19 $x28)))))
+))
+(let ((@x107 (monotonicity (rewrite (= (<= 0 ?0) (>= ?0 0))) (= (not (<= 0 ?0)) (not (>= ?0 0))))))
+(let ((@x113 (|quant-intro| (monotonicity @x107 (= (or (not (<= 0 ?0)) $x28) $x108)) (= $x34 $x111))))
+(let (($x67 (ite $x34 (<= (~ 1) 0) (<= 3 0))))
+(let ((@x76 (monotonicity (rewrite (= (<= (~ 1) 0) true)) (rewrite (= (<= 3 0) false)) (= $x67 (ite $x34 true false)))))
+(let ((@x80 (trans @x76 (rewrite (= (ite $x34 true false) $x34)) (= $x67 $x34))))
+(let ((@x82 (trans (rewrite (= (<= (ite $x34 (~ 1) 3) 0) $x67)) @x80 (= (<= (ite $x34 (~ 1) 3) 0) $x34))))
+(let ((?x40 (ite $x34 (~ 1) 3)))
+(let (($x46 (<= ?x40 0)))
+(let (($x10 (forall ((?v0 Int) )(or (< ?v0 0) (< 0 ?v0)))
+))
+(let (($x15 (< 0 (ite $x10 (- 1) 3))))
+(let (($x16 (not $x15)))
+(let (($x18 (<= 0 ?0)))
+(let (($x19 (not $x18)))
+(let (($x31 (or $x19 $x28)))
+(let ((@x26 (trans (rewrite (= (< ?0 0) $x19)) (monotonicity (rewrite (= $x18 $x18)) (= $x19 $x19)) (= (< ?0 0) $x19))))
+(let ((@x33 (monotonicity @x26 (rewrite (= (< 0 ?0) $x28)) (= (or (< ?0 0) (< 0 ?0)) $x31))))
+(let ((@x42 (monotonicity (|quant-intro| @x33 (= $x10 $x34)) (rewrite (= (- 1) (~ 1))) (= (ite $x10 (- 1) 3) ?x40))))
+(let ((@x51 (trans (monotonicity @x42 (= $x15 (< 0 ?x40))) (rewrite (= (< 0 ?x40) (not $x46))) (= $x15 (not $x46)))))
+(let ((@x58 (trans (monotonicity @x51 (= $x16 (not (not $x46)))) (rewrite (= (not (not $x46)) $x46)) (= $x16 $x46))))
+(let ((@x83 (mp (mp (mp (asserted $x16) @x58 $x46) (|rewrite*| (= $x46 $x46)) $x46) @x82 $x34)))
+(let ((@x117 (|mp~| (mp @x83 @x113 $x111) (|nnf-pos| (refl (|~| $x108 $x108)) (|~| $x111 $x111)) $x111)))
+(|unit-resolution| @x117 (mp ((_ |quant-inst| 0) $x169) @x512 $x507) false))))))))))))))))))))))))))))))))))))))
+
+a029fa4a7b0e95c1814546efbbdea2800c05d654 41 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v1!1 () Int)
+(declare-fun ?v2!0 () Int)
+(proof
+(let (($x107 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0)))) (not (<= (+ ?v2!0 ?v1!1) 0)))))
+(let (($x89 (forall ((?v1 Int) (?v2 Int) )(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0)))) (not (<= (+ ?v2 ?v1) 0))))
+))
+(let (($x92 (not $x89)))
+(let (($x42 (forall ((?v1 Int) (?v2 Int) )(let (($x30 (not (<= (+ ?v1 ?v2) 0))))
+(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0)))) $x30)))
+))
+(let (($x52 (not $x42)))
+(let (($x86 (or (not (and (not (<= ?1 0)) (not (<= ?0 0)))) (not (<= (+ ?0 ?1) 0)))))
+(let (($x30 (not (<= (+ ?1 ?0) 0))))
+(let (($x37 (or (not (and (not (<= ?1 0)) (not (<= ?0 0)))) $x30)))
+(let ((@x82 (monotonicity (rewrite (= (+ ?1 ?0) (+ ?0 ?1))) (= (<= (+ ?1 ?0) 0) (<= (+ ?0 ?1) 0)))))
+(let ((@x88 (monotonicity (monotonicity @x82 (= $x30 (not (<= (+ ?0 ?1) 0)))) (= $x37 $x86))))
+(let (($x15 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(=> (and (< 0 ?v1) (< 0 ?v2)) (< 0 (+ ?v1 ?v2))))
+)
+))
+(let (($x16 (not $x15)))
+(let (($x45 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(let (($x30 (not (<= (+ ?v1 ?v2) 0))))
+(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0)))) $x30)))
+)
+))
+(let (($x14 (forall ((?v1 Int) (?v2 Int) )(=> (and (< 0 ?v1) (< 0 ?v2)) (< 0 (+ ?v1 ?v2))))
+))
+(let (($x13 (=> (and (< 0 ?1) (< 0 ?0)) (< 0 (+ ?1 ?0)))))
+(let (($x38 (= (=> (and (not (<= ?1 0)) (not (<= ?0 0))) $x30) $x37)))
+(let (($x34 (= $x13 (=> (and (not (<= ?1 0)) (not (<= ?0 0))) $x30))))
+(let (($x26 (and (not (<= ?1 0)) (not (<= ?0 0)))))
+(let ((@x28 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= (and (< 0 ?1) (< 0 ?0)) $x26))))
+(let ((@x41 (trans (monotonicity @x28 (rewrite (= (< 0 (+ ?1 ?0)) $x30)) $x34) (rewrite $x38) (= $x13 $x37))))
+(let ((@x51 (trans (|quant-intro| (|quant-intro| @x41 (= $x14 $x42)) (= $x15 $x45)) (|elim-unused| (= $x45 $x42)) (= $x15 $x42))))
+(let ((@x58 (mp (mp (asserted $x16) (monotonicity @x51 (= $x16 $x52)) $x52) (|rewrite*| (= $x52 $x52)) $x52)))
+(let ((@x97 (mp @x58 (monotonicity (|quant-intro| @x88 (= $x42 $x89)) (= $x52 $x92)) $x92)))
+(let ((@x117 (|not-or-elim| (|mp~| @x97 (sk (|~| $x92 (not $x107))) (not $x107)) (<= (+ ?v2!0 ?v1!1) 0))))
+(let ((@x114 (|not-or-elim| (|mp~| @x97 (sk (|~| $x92 (not $x107))) (not $x107)) (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0))))))
+((_ |th-lemma| arith farkas 1 1 1) (|and-elim| @x114 (not (<= ?v2!0 0))) (|and-elim| @x114 (not (<= ?v1!1 0))) @x117 false))))))))))))))))))))))))))))
+
+d41dfe74c924188d8570a9d71b541c5781066b63 41 0
+unsat
+((set-logic AUFLIRA)
+(declare-fun ?v1!1 () Int)
+(declare-fun ?v2!0 () Real)
+(proof
+(let (($x95 (not (<= ?v1!1 (~ 1)))))
+(let (($x96 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0.0)))) $x95)))
+(let (($x52 (forall ((?v1 Int) (?v2 Real) )(let (($x38 (not (<= ?v1 (~ 1)))))
+(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0.0)))) $x38)))
+))
+(let (($x62 (not $x52)))
+(let (($x18 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x15 (< (- 1) ?v1)))
+(=> (and (< 0 ?v1) (< 0.0 ?v2)) $x15)))
+)
+))
+(let (($x5 (not $x18)))
+(let (($x55 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x38 (not (<= ?v1 (~ 1)))))
+(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0.0)))) $x38)))
+)
+))
+(let (($x17 (forall ((?v1 Int) (?v2 Real) )(let (($x15 (< (- 1) ?v1)))
+(=> (and (< 0 ?v1) (< 0.0 ?v2)) $x15)))
+))
+(let (($x38 (not (<= ?1 (~ 1)))))
+(let (($x47 (or (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))) $x38)))
+(let (($x15 (< (- 1) ?1)))
+(let (($x16 (=> (and (< 0 ?1) (< 0.0 ?0)) $x15)))
+(let (($x48 (= (=> (and (not (<= ?1 0)) (not (<= ?0 0.0))) $x38) $x47)))
+(let (($x44 (= $x16 (=> (and (not (<= ?1 0)) (not (<= ?0 0.0))) $x38))))
+(let ((@x36 (monotonicity (rewrite (= (- 1) (~ 1))) (= $x15 (< (~ 1) ?1)))))
+(let (($x28 (and (not (<= ?1 0)) (not (<= ?0 0.0)))))
+(let ((@x30 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= (and (< 0 ?1) (< 0.0 ?0)) $x28))))
+(let ((@x45 (monotonicity @x30 (trans @x36 (rewrite (= (< (~ 1) ?1) $x38)) (= $x15 $x38)) $x44)))
+(let ((@x54 (|quant-intro| (trans @x45 (rewrite $x48) (= $x16 $x47)) (= $x17 $x52))))
+(let ((@x61 (trans (|quant-intro| @x54 (= $x18 $x55)) (|elim-unused| (= $x55 $x52)) (= $x18 $x52))))
+(let ((@x68 (mp (mp (asserted $x5) (monotonicity @x61 (= $x5 $x62)) $x62) (|rewrite*| (= $x62 $x62)) $x62)))
+(let ((@x106 (|not-or-elim| (|mp~| @x68 (sk (|~| $x62 (not $x96))) (not $x96)) (<= ?v1!1 (~ 1)))))
+(let ((@x103 (|not-or-elim| (|mp~| @x68 (sk (|~| $x62 (not $x96))) (not $x96)) (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0.0))))))
+(let ((@x107 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x95 (<= ?v1!1 0))) (|and-elim| @x103 (not (<= ?v1!1 0))) $x95)))
+(|unit-resolution| @x107 @x106 false)))))))))))))))))))))))))))
+
+9c97136863512513fe9fd8b8cb83fdb885e5f3a5 115 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x156 (forall ((?v0 Int) )(let (($x16 (<= ?v0 0)))
+(let (($x17 (not $x16)))
+(let (($x150 (or (not false) $x17)))
+(not $x150)))))
+))
+(let (($x178 (forall ((?v0 Int) )false)
+))
+(let (($x16 (<= ?0 0)))
+(let (($x17 (not $x16)))
+(let (($x150 (or (not false) $x17)))
+(let ((@x166 (monotonicity (rewrite (= (not false) true)) (= $x150 (or true $x17)))))
+(let ((@x170 (trans @x166 (rewrite (= (or true $x17) true)) (= $x150 true))))
+(let ((@x177 (trans (monotonicity @x170 (= (not $x150) (not true))) (rewrite (= (not true) false)) (= (not $x150) false))))
+(let ((@x184 (trans (|quant-intro| @x177 (= $x156 $x178)) (|elim-unused| (= $x178 false)) (= $x156 false))))
+(let (($x126 (forall ((?v0 Int) )(let (($x16 (<= ?v0 0)))
+(let (($x17 (not $x16)))
+(let (($x82 (forall ((?v1 Int) )(let (($x16 (<= ?v1 0)))
+(let (($x17 (not $x16)))
+(or (not (>= (+ ?v1 (* (~ 1) ?v0)) 0)) $x17))))
+))
+(let (($x85 (not $x82)))
+(let (($x88 (or $x85 $x17)))
+(not $x88)))))))
+))
+(let (($x142 (forall ((?v0 Int) )(let (($x16 (<= ?v0 0)))
+(let (($x17 (not $x16)))
+(let (($x130 (forall ((?v1 Int) )(let (($x16 (<= ?v1 0)))
+(not $x16)))
+))
+(not (or (not $x130) $x17))))))
+))
+(let ((@x160 (trans (rewrite (= $x126 $x142)) (rewrite (= $x142 $x156)) (= $x126 $x156))))
+(let (($x122 (forall ((?v0 Int) )(let (($x16 (<= ?v0 0)))
+(let (($x82 (forall ((?v1 Int) )(let (($x16 (<= ?v1 0)))
+(let (($x17 (not $x16)))
+(or (not (>= (+ ?v1 (* (~ 1) ?v0)) 0)) $x17))))
+))
+(and $x82 $x16))))
+))
+(let (($x82 (forall ((?v1 Int) )(let (($x16 (<= ?v1 0)))
+(let (($x17 (not $x16)))
+(or (not (>= (+ ?v1 (* (~ 1) ?0)) 0)) $x17))))
+))
+(let (($x85 (not $x82)))
+(let (($x88 (or $x85 $x17)))
+(let (($x108 (not $x88)))
+(let (($x119 (and $x82 $x16)))
+(let (($x111 (forall ((?v0 Int) )(let (($x16 (<= ?v0 0)))
+(let (($x17 (not $x16)))
+(let (($x104 (not $x17)))
+(let (($x82 (forall ((?v1 Int) )(let (($x16 (<= ?v1 0)))
+(let (($x17 (not $x16)))
+(or (not (>= (+ ?v1 (* (~ 1) ?v0)) 0)) $x17))))
+))
+(and $x82 $x104))))))
+))
+(let ((@x121 (monotonicity (rewrite (= (not $x17) $x16)) (= (and $x82 (not $x17)) $x119))))
+(let (($x91 (exists ((?v0 Int) )(let (($x16 (<= ?v0 0)))
+(let (($x17 (not $x16)))
+(let (($x82 (forall ((?v1 Int) )(let (($x16 (<= ?v1 0)))
+(let (($x17 (not $x16)))
+(or (not (>= (+ ?v1 (* (~ 1) ?v0)) 0)) $x17))))
+))
+(let (($x85 (not $x82)))
+(or $x85 $x17))))))
+))
+(let (($x94 (not $x91)))
+(let (($x79 (or (not (>= (+ ?0 (* (~ 1) ?1)) 0)) $x17)))
+(let ((@x103 (|nnf-neg| (|nnf-pos| (refl (|~| $x79 $x79)) (|~| $x82 $x82)) (|~| (not $x85) $x82))))
+(let ((@x110 (|nnf-neg| @x103 (refl (|~| (not $x17) (not $x17))) (|~| $x108 (and $x82 (not $x17))))))
+(let (($x41 (exists ((?v0 Int) )(let (($x16 (<= ?v0 0)))
+(let (($x17 (not $x16)))
+(let (($x29 (forall ((?v1 Int) )(let (($x16 (<= ?v1 0)))
+(let (($x17 (not $x16)))
+(or (not (<= ?v0 ?v1)) $x17))))
+))
+(or (not $x29) $x17)))))
+))
+(let (($x44 (not $x41)))
+(let (($x29 (forall ((?v1 Int) )(let (($x16 (<= ?v1 0)))
+(let (($x17 (not $x16)))
+(or (not (<= ?0 ?v1)) $x17))))
+))
+(let (($x36 (or (not $x29) $x17)))
+(let ((@x78 (monotonicity (rewrite (= (<= ?1 ?0) (>= (+ ?0 (* (~ 1) ?1)) 0))) (= (not (<= ?1 ?0)) (not (>= (+ ?0 (* (~ 1) ?1)) 0))))))
+(let ((@x84 (|quant-intro| (monotonicity @x78 (= (or (not (<= ?1 ?0)) $x17) $x79)) (= $x29 $x82))))
+(let ((@x90 (monotonicity (monotonicity @x84 (= (not $x29) $x85)) (= $x36 $x88))))
+(let (($x13 (exists ((?v0 Int) )(let (($x9 (< 0 ?v0)))
+(let (($x11 (forall ((?v1 Int) )(let (($x9 (< 0 ?v1)))
+(let (($x7 (<= ?v0 ?v1)))
+(=> $x7 $x9))))
+))
+(=> $x11 $x9))))
+))
+(let (($x14 (not $x13)))
+(let (($x9 (< 0 ?0)))
+(let (($x11 (forall ((?v1 Int) )(let (($x9 (< 0 ?v1)))
+(let (($x7 (<= ?0 ?v1)))
+(=> $x7 $x9))))
+))
+(let (($x12 (=> $x11 $x9)))
+(let ((@x26 (rewrite (= (=> (<= ?1 ?0) $x17) (or (not (<= ?1 ?0)) $x17)))))
+(let ((@x22 (monotonicity (rewrite (= $x9 $x17)) (= (=> (<= ?1 ?0) $x9) (=> (<= ?1 ?0) $x17)))))
+(let ((@x28 (trans @x22 @x26 (= (=> (<= ?1 ?0) $x9) (or (not (<= ?1 ?0)) $x17)))))
+(let ((@x34 (monotonicity (|quant-intro| @x28 (= $x11 $x29)) (rewrite (= $x9 $x17)) (= $x12 (=> $x29 $x17)))))
+(let ((@x43 (|quant-intro| (trans @x34 (rewrite (= (=> $x29 $x17) $x36)) (= $x12 $x36)) (= $x13 $x41))))
+(let ((@x50 (mp (mp (asserted $x14) (monotonicity @x43 (= $x14 $x44)) $x44) (|rewrite*| (= $x44 $x44)) $x44)))
+(let ((@x97 (mp @x50 (monotonicity (|quant-intro| @x90 (= $x41 $x91)) (= $x44 $x94)) $x94)))
+(let ((@x115 (mp (|mp~| @x97 (|nnf-neg| @x110 (|~| $x94 $x111)) $x111) (|quant-intro| @x121 (= $x111 $x122)) $x122)))
+(let ((@x129 (mp @x115 (|quant-intro| (rewrite (= $x119 $x108)) (= $x122 $x126)) $x126)))
+(mp (mp @x129 @x160 $x156) @x184 false)))))))))))))))))))))))))))))))))))))))))))))))))
+
+419cefdf46cfbd38d5875f00d00c97a5b2a4a327 28 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x32 (forall ((?v0 Int) )(let (($x21 (not (<= (* 2 |$a|) (* 2 ?v0)))))
+(let (($x16 (<= |$a| ?v0)))
+(or $x16 $x21))))
+))
+(let (($x35 (not $x32)))
+(let (($x80 (forall ((?v0 Int) )true)
+))
+(let (($x21 (not (<= (* 2 |$a|) (* 2 ?0)))))
+(let (($x16 (<= |$a| ?0)))
+(let (($x27 (or $x16 $x21)))
+(let (($x64 (>= (+ ?0 (* (~ 1) |$a|)) 0)))
+(let ((@x72 (monotonicity (rewrite (= (<= (* 2 |$a|) (* 2 ?0)) $x64)) (= $x21 (not $x64)))))
+(let ((@x75 (monotonicity (rewrite (= $x16 $x64)) @x72 (= $x27 (or $x64 (not $x64))))))
+(let ((@x79 (trans @x75 (rewrite (= (or $x64 (not $x64)) true)) (= $x27 true))))
+(let ((@x86 (trans (|quant-intro| @x79 (= $x32 $x80)) (|elim-unused| (= $x80 true)) (= $x32 true))))
+(let ((@x93 (trans (monotonicity @x86 (= $x35 (not true))) (rewrite (= (not true) false)) (= $x35 false))))
+(let (($x13 (forall ((?v0 Int) )(=> (< ?v0 |$a|) (< (* 2 ?v0) (* 2 |$a|))))
+))
+(let (($x14 (not $x13)))
+(let (($x12 (=> (< ?0 |$a|) (< (* 2 ?0) (* 2 |$a|)))))
+(let ((@x26 (monotonicity (rewrite (= (< ?0 |$a|) (not $x16))) (rewrite (= (< (* 2 ?0) (* 2 |$a|)) $x21)) (= $x12 (=> (not $x16) $x21)))))
+(let ((@x31 (trans @x26 (rewrite (= (=> (not $x16) $x21) $x27)) (= $x12 $x27))))
+(let ((@x38 (mp (asserted $x14) (monotonicity (|quant-intro| @x31 (= $x13 $x32)) (= $x14 $x35)) $x35)))
+(mp (mp @x38 (|rewrite*| (= $x35 $x35)) $x35) @x93 false)))))))))))))))))))))
+
+2cfb4d9213b7aff75941c49db378297fcba62a29 38 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v1!0 () Int)
+(proof
+(let (($x73 (forall ((?v1 Int) )(let (($x15 (not (<= ?v1 0))))
+(or $x15 (not (>= ?v1 1)))))
+))
+(let (($x76 (not $x73)))
+(let (($x86 (|~| $x76 (not (or (not (<= ?v1!0 0)) (not (>= ?v1!0 1)))))))
+(let (($x33 (forall ((?v1 Int) )(let (($x18 (<= 1 ?v1)))
+(let (($x19 (not $x18)))
+(let (($x15 (not (<= ?v1 0))))
+(or $x15 $x19)))))
+))
+(let (($x38 (not $x33)))
+(let (($x18 (<= 1 ?0)))
+(let (($x19 (not $x18)))
+(let (($x15 (not (<= ?0 0))))
+(let (($x27 (or $x15 $x19)))
+(let ((@x69 (monotonicity (rewrite (= $x18 (>= ?0 1))) (= $x19 (not (>= ?0 1))))))
+(let ((@x75 (|quant-intro| (monotonicity @x69 (= $x27 (or $x15 (not (>= ?0 1))))) (= $x33 $x73))))
+(let (($x12 (forall ((?v0 Int) (?v1 Int) )(or (< 0 ?v1) (< ?v1 1)))
+))
+(let (($x5 (not $x12)))
+(let (($x30 (forall ((?v0 Int) (?v1 Int) )(let (($x18 (<= 1 ?v1)))
+(let (($x19 (not $x18)))
+(let (($x15 (not (<= ?v1 0))))
+(or $x15 $x19)))))
+))
+(let ((@x26 (trans (rewrite (= (< ?0 1) $x19)) (monotonicity (rewrite (= $x18 $x18)) (= $x19 $x19)) (= (< ?0 1) $x19))))
+(let ((@x29 (monotonicity (rewrite (= (< 0 ?0) $x15)) @x26 (= (or (< 0 ?0) (< ?0 1)) $x27))))
+(let ((@x37 (trans (|quant-intro| @x29 (= $x12 $x30)) (|elim-unused| (= $x30 $x33)) (= $x12 $x33))))
+(let ((@x44 (mp (mp (asserted $x5) (monotonicity @x37 (= $x5 $x38)) $x38) (|rewrite*| (= $x38 $x38)) $x38)))
+(let ((@x88 (|mp~| (mp @x44 (monotonicity @x75 (= $x38 $x76)) $x76) (sk $x86) (not (or (not (<= ?v1!0 0)) (not (>= ?v1!0 1)))))))
+(let (($x83 (not (>= ?v1!0 1))))
+(let ((@x93 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x83 (not (<= ?v1!0 0)))) (|not-or-elim| @x88 (<= ?v1!0 0)) $x83)))
+(|unit-resolution| @x93 (|not-or-elim| @x88 (>= ?v1!0 1)) false))))))))))))))))))))))))
+
+039e00529b5710a37c45e179d64fb8c15f276c50 19 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x29 (<= |$b| 0)))
+(let (($x30 (not $x29)))
+(let (($x37 (or (not (and (not (<= |$a| 0)) (not (<= (* |$a| |$b|) 0)))) $x30)))
+(let (($x13 (=> (and (< 0 |$a|) (< 0 (* |$a| |$b|))) (< 0 |$b|))))
+(let (($x14 (not $x13)))
+(let (($x23 (not (<= (* |$a| |$b|) 0))))
+(let (($x19 (not (<= |$a| 0))))
+(let (($x26 (and $x19 $x23)))
+(let ((@x28 (monotonicity (rewrite (= (< 0 |$a|) $x19)) (rewrite (= (< 0 (* |$a| |$b|)) $x23)) (= (and (< 0 |$a|) (< 0 (* |$a| |$b|))) $x26))))
+(let ((@x35 (monotonicity @x28 (rewrite (= (< 0 |$b|) $x30)) (= $x13 (=> $x26 $x30)))))
+(let ((@x44 (monotonicity (trans @x35 (rewrite (= (=> $x26 $x30) $x37)) (= $x13 $x37)) (= $x14 (not $x37)))))
+(let ((@x58 (mp (|not-or-elim| (mp (asserted $x14) @x44 (not $x37)) $x29) (|rewrite*| (= $x29 $x29)) $x29)))
+(let ((@x47 (|and-elim| (|not-or-elim| (mp (asserted $x14) @x44 (not $x37)) $x26) $x19)))
+(let ((@x48 (|and-elim| (|not-or-elim| (mp (asserted $x14) @x44 (not $x37)) $x26) $x23)))
+((_ |th-lemma| arith farkas 1 1 1) (mp @x48 (|rewrite*| (= $x23 $x23)) $x23) (mp @x47 (|rewrite*| (= $x19 $x19)) $x19) @x58 false)))))))))))))))))
+
+74227d4cc6e0018267b0d51f292f9c4c917cf7f4 28 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x35 (+ 1 |$y|)))
+(let ((?x38 (* |$a| ?x35)))
+(let ((?x41 (+ (* |$a| |$x|) ?x38)))
+(let ((?x27 (+ 1 |$x| |$y|)))
+(let ((?x32 (* |$a| ?x27)))
+(let (($x44 (= ?x32 ?x41)))
+(let (($x47 (not $x44)))
+(let ((@x72 (monotonicity (rewrite (= ?x35 ?x35)) (= (+ |$x| ?x35) (+ |$x| ?x35)))))
+(let ((@x75 (trans @x72 (rewrite (= (+ |$x| ?x35) ?x27)) (= (+ |$x| ?x35) ?x27))))
+(let ((@x80 (monotonicity (monotonicity @x75 (= (* |$a| (+ |$x| ?x35)) ?x32)) (= (+ (* |$a| (+ |$x| ?x35)) 0) (+ ?x32 0)))))
+(let ((@x84 (trans @x80 (rewrite (= (+ ?x32 0) ?x32)) (= (+ (* |$a| (+ |$x| ?x35)) 0) ?x32))))
+(let ((@x63 (monotonicity (monotonicity (rewrite (= ?x35 ?x35)) (= ?x38 ?x38)) (= ?x41 ?x41))))
+(let ((@x70 (trans @x63 (rewrite (= ?x41 (+ (* |$a| (+ |$x| ?x35)) 0))) (= ?x41 (+ (* |$a| (+ |$x| ?x35)) 0)))))
+(let ((@x88 (monotonicity (monotonicity (rewrite (= ?x27 ?x27)) (= ?x32 ?x32)) (trans @x70 @x84 (= ?x41 ?x32)) (= $x44 (= ?x32 ?x32)))))
+(let ((@x95 (monotonicity (trans @x88 (rewrite (= (= ?x32 ?x32) true)) (= $x44 true)) (= $x47 (not true)))))
+(let (($x16 (= (* |$a| (+ (+ |$x| 1) |$y|)) (+ (* |$a| |$x|) (* |$a| (+ |$y| 1))))))
+(let (($x17 (not $x16)))
+(let ((@x40 (monotonicity (rewrite (= (+ |$y| 1) ?x35)) (= (* |$a| (+ |$y| 1)) ?x38))))
+(let ((@x43 (monotonicity @x40 (= (+ (* |$a| |$x|) (* |$a| (+ |$y| 1))) ?x41))))
+(let ((@x26 (monotonicity (rewrite (= (+ |$x| 1) (+ 1 |$x|))) (= (+ (+ |$x| 1) |$y|) (+ (+ 1 |$x|) |$y|)))))
+(let ((@x31 (trans @x26 (rewrite (= (+ (+ 1 |$x|) |$y|) ?x27)) (= (+ (+ |$x| 1) |$y|) ?x27))))
+(let ((@x46 (monotonicity (monotonicity @x31 (= (* |$a| (+ (+ |$x| 1) |$y|)) ?x32)) @x43 (= $x16 $x44))))
+(let ((@x53 (mp (mp (asserted $x17) (monotonicity @x46 (= $x17 $x47)) $x47) (|rewrite*| (= $x47 $x47)) $x47)))
+(mp @x53 (trans @x95 (rewrite (= (not true) false)) (= $x47 false)) false))))))))))))))))))))))))))
+
+7944c6a284f0d8735dd19b47d3fb37f5810defb5 75 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x171 (* (~ 1) |$e|)))
+(let ((?x169 (* (~ 1) |$b|)))
+(let ((?x182 (+ ?x169 ?x171)))
+(let ((?x8 (+ 1 |$p|)))
+(let ((?x187 (* ?x8 ?x182)))
+(let ((?x57 (+ 2 (* 2 |$p|))))
+(let ((?x11 (+ |$b| |$e|)))
+(let ((?x65 (* ?x11 ?x57)))
+(let ((?x193 (+ ?x65 ?x187)))
+(let ((?x34 (* ?x11 ?x8)))
+(let (($x200 (= ?x34 ?x193)))
+(let (($x203 (not $x200)))
+(let ((?x226 (* |$p| |$e|)))
+(let ((?x225 (* |$p| |$b|)))
+(let ((?x227 (+ |$b| |$e| ?x225 ?x226)))
+(let ((?x242 (+ (+ (* 2 |$b|) (* 2 |$e|) (* 2 ?x225) (* 2 ?x226)) (+ ?x169 ?x171 (* (~ 1) ?x225) (* (~ 1) ?x226)))))
+(let (($x235 (= ?x65 (+ (* 2 |$b|) (* 2 |$e|) (* 2 ?x225) (* 2 ?x226)))))
+(let ((@x244 (monotonicity (rewrite $x235) (rewrite (= ?x187 (+ ?x169 ?x171 (* (~ 1) ?x225) (* (~ 1) ?x226)))) (= ?x193 ?x242))))
+(let ((@x251 (monotonicity (rewrite (= ?x34 ?x227)) (trans @x244 (rewrite (= ?x242 ?x227)) (= ?x193 ?x227)) (= $x200 (= ?x227 ?x227)))))
+(let ((@x258 (monotonicity (trans @x251 (rewrite (= (= ?x227 ?x227) true)) (= $x200 true)) (= $x203 (not true)))))
+(let ((?x92 (+ |$b| |$d| |$e|)))
+(let ((?x95 (* ?x8 ?x92)))
+(let ((?x102 (* (~ 1) ?x95)))
+(let ((?x70 (* |$d| ?x8)))
+(let ((?x127 (+ ?x65 ?x70 ?x102)))
+(let (($x130 (= ?x34 ?x127)))
+(let (($x133 (not $x130)))
+(let ((?x163 (+ ?x65 (* ?x8 (+ |$d| (* (~ 1) ?x92))) 0)))
+(let ((?x172 (+ ?x169 (* (~ 1) |$d|) ?x171)))
+(let ((?x160 (* (~ 1) ?x92)))
+(let (($x173 (= ?x160 ?x172)))
+(let ((@x175 (trans (monotonicity (rewrite (= ?x92 ?x92)) (= ?x160 ?x160)) (rewrite $x173) $x173)))
+(let ((@x181 (monotonicity (trans @x175 (rewrite (= ?x172 ?x172)) $x173) (= (+ |$d| ?x160) (+ |$d| ?x172)))))
+(let ((@x186 (trans @x181 (rewrite (= (+ |$d| ?x172) ?x182)) (= (+ |$d| ?x160) ?x182))))
+(let ((@x143 (rewrite (= ?x8 ?x8))))
+(let ((@x149 (monotonicity (rewrite (= ?x11 ?x11)) (rewrite (= ?x57 ?x57)) (= ?x65 ?x65))))
+(let ((@x192 (monotonicity @x149 (monotonicity @x143 @x186 (= (* ?x8 (+ |$d| ?x160)) ?x187)) (= ?x163 (+ ?x65 ?x187 0)))))
+(let ((@x157 (monotonicity (monotonicity @x143 (rewrite (= ?x92 ?x92)) (= ?x95 ?x95)) (= ?x102 ?x102))))
+(let ((@x159 (monotonicity @x149 (monotonicity @x143 (= ?x70 ?x70)) @x157 (= ?x127 ?x127))))
+(let ((@x199 (trans (trans @x159 (rewrite (= ?x127 ?x163)) (= ?x127 ?x163)) (trans @x192 (rewrite (= (+ ?x65 ?x187 0) ?x193)) (= ?x163 ?x193)) (= ?x127 ?x193))))
+(let ((@x202 (monotonicity (monotonicity (rewrite (= ?x11 ?x11)) @x143 (= ?x34 ?x34)) @x199 (= $x130 $x200))))
+(let ((@x132 (monotonicity (rewrite (= (+ 0 ?x65 ?x70 ?x102) ?x127)) (= (= ?x34 (+ 0 ?x65 ?x70 ?x102)) $x130))))
+(let ((@x135 (monotonicity @x132 (= (not (= ?x34 (+ 0 ?x65 ?x70 ?x102))) $x133))))
+(let (($x118 (= ?x34 (+ 0 ?x65 ?x70 ?x102))))
+(let (($x123 (not $x118)))
+(let ((?x22 (* |$d| |$p|)))
+(let ((?x23 (+ (+ (* (* 2 ?x8) ?x11) (* ?x8 |$d|)) ?x22)))
+(let ((?x24 (+ |$u| ?x23)))
+(let ((?x28 (- ?x24 (* ?x8 (+ (+ |$b| |$d|) |$e|)))))
+(let ((?x16 (+ (+ |$u| (* ?x8 ?x11)) (* |$p| |$d|))))
+(let (($x29 (= ?x16 ?x28)))
+(let (($x30 (not $x29)))
+(let ((@x120 (rewrite (= (= (+ |$u| ?x34 ?x22) (+ |$u| ?x65 ?x70 ?x22 ?x102)) $x118))))
+(let ((@x110 (rewrite (= (+ (+ |$u| ?x65 ?x70 ?x22) ?x102) (+ |$u| ?x65 ?x70 ?x22 ?x102)))))
+(let ((?x87 (+ |$u| ?x65 ?x70 ?x22)))
+(let ((?x103 (+ ?x87 ?x102)))
+(let ((@x97 (monotonicity (rewrite (= (+ (+ |$b| |$d|) |$e|) ?x92)) (= (* ?x8 (+ (+ |$b| |$d|) |$e|)) ?x95))))
+(let ((@x59 (monotonicity (rewrite (= (* 2 1) 2)) (= (+ (* 2 1) (* 2 |$p|)) ?x57))))
+(let ((@x61 (trans (rewrite (= (* 2 ?x8) (+ (* 2 1) (* 2 |$p|)))) @x59 (= (* 2 ?x8) ?x57))))
+(let ((@x69 (trans (monotonicity @x61 (= (* (* 2 ?x8) ?x11) (* ?x57 ?x11))) (rewrite (= (* ?x57 ?x11) ?x65)) (= (* (* 2 ?x8) ?x11) ?x65))))
+(let ((@x75 (monotonicity @x69 (rewrite (= (* ?x8 |$d|) ?x70)) (= (+ (* (* 2 ?x8) ?x11) (* ?x8 |$d|)) (+ ?x65 ?x70)))))
+(let ((@x83 (trans (monotonicity @x75 (= ?x23 (+ (+ ?x65 ?x70) ?x22))) (rewrite (= (+ (+ ?x65 ?x70) ?x22) (+ ?x65 ?x70 ?x22))) (= ?x23 (+ ?x65 ?x70 ?x22)))))
+(let ((@x91 (trans (monotonicity @x83 (= ?x24 (+ |$u| (+ ?x65 ?x70 ?x22)))) (rewrite (= (+ |$u| (+ ?x65 ?x70 ?x22)) ?x87)) (= ?x24 ?x87))))
+(let ((@x107 (trans (monotonicity @x91 @x97 (= ?x28 (- ?x87 ?x95))) (rewrite (= (- ?x87 ?x95) ?x103)) (= ?x28 ?x103))))
+(let ((@x39 (monotonicity (rewrite (= (* ?x8 ?x11) ?x34)) (= (+ |$u| (* ?x8 ?x11)) (+ |$u| ?x34)))))
+(let ((@x44 (monotonicity @x39 (rewrite (= (* |$p| |$d|) ?x22)) (= ?x16 (+ (+ |$u| ?x34) ?x22)))))
+(let ((@x49 (trans @x44 (rewrite (= (+ (+ |$u| ?x34) ?x22) (+ |$u| ?x34 ?x22))) (= ?x16 (+ |$u| ?x34 ?x22)))))
+(let ((@x115 (monotonicity @x49 (trans @x107 @x110 (= ?x28 (+ |$u| ?x65 ?x70 ?x22 ?x102))) (= $x29 (= (+ |$u| ?x34 ?x22) (+ |$u| ?x65 ?x70 ?x22 ?x102))))))
+(let ((@x126 (mp (asserted $x30) (monotonicity (trans @x115 @x120 (= $x29 $x118)) (= $x30 $x123)) $x123)))
+(let ((@x206 (mp (mp (mp @x126 @x135 $x133) (|rewrite*| (= $x133 $x133)) $x133) (monotonicity @x202 (= $x133 $x203)) $x203)))
+(mp @x206 (trans @x258 (rewrite (= (not true) false)) (= $x203 false)) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+0795b8d99cb059e79a0bd193807871920dc7cdc1 97 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x8 (* 2 (|$of_nat| |$x|))))
+(let ((?x545 (+ ?x8 (* (~ 1) (|$of_nat| (|$nat| ?x8))))))
+(let (($x543 (= ?x545 0)))
+(let (($x205 (>= (|$of_nat| |$x|) 0)))
+(let ((?x224 (|$of_nat| (|$nat| ?x8))))
+(let (($x499 (>= ?x224 1)))
+(let (($x517 (= (|$of_nat| (|$nat| 1)) 1)))
+(let (($x558 (forall ((?v0 Int) )(!(let (($x25 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x25)) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x109 (forall ((?v0 Int) )(let (($x25 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x25)))
+))
+(let (($x25 (= (|$of_nat| (|$nat| ?0)) ?0)))
+(let (($x106 (or (not (>= ?0 0)) $x25)))
+(let (($x48 (forall ((?v0 Int) )(let (($x25 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x22 (<= 0 ?v0)))
+(let (($x43 (not $x22)))
+(or $x43 $x25)))))
+))
+(let ((@x105 (monotonicity (rewrite (= (<= 0 ?0) (>= ?0 0))) (= (not (<= 0 ?0)) (not (>= ?0 0))))))
+(let ((@x111 (|quant-intro| (monotonicity @x105 (= (or (not (<= 0 ?0)) $x25) $x106)) (= $x48 $x109))))
+(let (($x27 (forall ((?v0 Int) )(let (($x25 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x22 (<= 0 ?v0)))
+(=> $x22 $x25))))
+))
+(let ((@x46 (rewrite (= (=> (<= 0 ?0) $x25) (or (not (<= 0 ?0)) $x25)))))
+(let ((@x42 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (=> (<= 0 ?0) $x25) (=> (<= 0 ?0) $x25)))))
+(let ((@x47 (trans @x42 @x46 (= (=> (<= 0 ?0) $x25) (or (not (<= 0 ?0)) $x25)))))
+(let ((@x77 (mp (mp (asserted $x27) (|quant-intro| @x47 (= $x27 $x48)) $x48) (|rewrite*| (= $x48 $x48)) $x48)))
+(let ((@x128 (|mp~| (mp @x77 @x111 $x109) (|nnf-pos| (refl (|~| $x106 $x106)) (|~| $x109 $x109)) $x109)))
+(let (($x538 (not $x558)))
+(let (($x501 (or $x538 $x517)))
+(let ((@x521 (monotonicity (rewrite (= (>= 1 0) true)) (= (not (>= 1 0)) (not true)))))
+(let ((@x231 (trans @x521 (rewrite (= (not true) false)) (= (not (>= 1 0)) false))))
+(let ((@x235 (monotonicity @x231 (= (or (not (>= 1 0)) $x517) (or false $x517)))))
+(let ((@x515 (trans @x235 (rewrite (= (or false $x517) $x517)) (= (or (not (>= 1 0)) $x517) $x517))))
+(let ((@x505 (monotonicity @x515 (= (or $x538 (or (not (>= 1 0)) $x517)) $x501))))
+(let ((@x508 (trans @x505 (rewrite (= $x501 $x501)) (= (or $x538 (or (not (>= 1 0)) $x517)) $x501))))
+(let ((@x509 (mp ((_ |quant-inst| 1) (or $x538 (or (not (>= 1 0)) $x517))) @x508 $x501)))
+(let ((@x329 (|unit-resolution| @x509 (mp @x128 (|quant-intro| (refl (= $x106 $x106)) (= $x109 $x558)) $x558) $x517)))
+(let (($x12 (= (|$nat| ?x8) (|$nat| 1))))
+(let ((@x38 (mp (asserted (not (not $x12))) (rewrite (= (not (not $x12)) $x12)) $x12)))
+(let ((@x367 (monotonicity (mp @x38 (|rewrite*| (= $x12 $x12)) $x12) (= ?x224 (|$of_nat| (|$nat| 1))))))
+(let ((@x479 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x224 1)) $x499)) (trans @x367 @x329 (= ?x224 1)) $x499)))
+(let ((@x383 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x499) (not (<= ?x224 0)))) @x479 (not (<= ?x224 0)))))
+(let ((@x386 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x224 0)) (<= ?x224 0))) @x383 (not (= ?x224 0)))))
+(let (($x527 (= ?x224 0)))
+(let (($x529 (or $x205 $x527)))
+(let (($x564 (forall ((?v0 Int) )(!(let (($x29 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x102 (>= ?v0 0)))
+(or $x102 $x29))) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x116 (forall ((?v0 Int) )(let (($x29 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x102 (>= ?v0 0)))
+(or $x102 $x29))))
+))
+(let (($x29 (= (|$of_nat| (|$nat| ?0)) 0)))
+(let (($x102 (>= ?0 0)))
+(let (($x113 (or $x102 $x29)))
+(let (($x65 (forall ((?v0 Int) )(let (($x29 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x22 (<= 0 ?v0)))
+(or $x22 $x29))))
+))
+(let ((@x115 (monotonicity (rewrite (= (<= 0 ?0) $x102)) (= (or (<= 0 ?0) $x29) $x113))))
+(let (($x31 (forall ((?v0 Int) )(let (($x29 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(=> (< ?v0 0) $x29)))
+))
+(let ((@x62 (rewrite (= (=> (not (<= 0 ?0)) $x29) (or (<= 0 ?0) $x29)))))
+(let ((@x55 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (not (<= 0 ?0)) (not (<= 0 ?0))))))
+(let ((@x56 (trans (rewrite (= (< ?0 0) (not (<= 0 ?0)))) @x55 (= (< ?0 0) (not (<= 0 ?0))))))
+(let ((@x59 (monotonicity @x56 (= (=> (< ?0 0) $x29) (=> (not (<= 0 ?0)) $x29)))))
+(let ((@x64 (trans @x59 @x62 (= (=> (< ?0 0) $x29) (or (<= 0 ?0) $x29)))))
+(let ((@x80 (mp (mp (asserted $x31) (|quant-intro| @x64 (= $x31 $x65)) $x65) (|rewrite*| (= $x65 $x65)) $x65)))
+(let ((@x133 (|mp~| (mp @x80 (|quant-intro| @x115 (= $x65 $x116)) $x116) (|nnf-pos| (refl (|~| $x113 $x113)) (|~| $x116 $x116)) $x116)))
+(let (($x168 (not $x564)))
+(let (($x532 (or $x168 $x205 $x527)))
+(let ((@x531 (monotonicity (rewrite (= (>= ?x8 0) $x205)) (= (or (>= ?x8 0) $x527) $x529))))
+(let ((@x535 (monotonicity @x531 (= (or $x168 (or (>= ?x8 0) $x527)) (or $x168 $x529)))))
+(let ((@x227 (trans @x535 (rewrite (= (or $x168 $x529) $x532)) (= (or $x168 (or (>= ?x8 0) $x527)) $x532))))
+(let ((@x387 (|unit-resolution| (mp ((_ |quant-inst| (* 2 (|$of_nat| |$x|))) (or $x168 (or (>= ?x8 0) $x527))) @x227 $x532) (mp @x133 (|quant-intro| (refl (= $x113 $x113)) (= $x116 $x564)) $x564) $x529)))
+(let (($x197 (not $x205)))
+(let (($x546 (or $x197 $x543)))
+(let (($x200 (or $x538 $x197 $x543)))
+(let (($x201 (or $x538 (or (not (>= ?x8 0)) (= ?x224 ?x8)))))
+(let ((@x537 (monotonicity (rewrite (= (>= ?x8 0) $x205)) (= (not (>= ?x8 0)) $x197))))
+(let ((@x548 (monotonicity @x537 (rewrite (= (= ?x224 ?x8) $x543)) (= (or (not (>= ?x8 0)) (= ?x224 ?x8)) $x546))))
+(let ((@x187 (trans (monotonicity @x548 (= $x201 (or $x538 $x546))) (rewrite (= (or $x538 $x546) $x200)) (= $x201 $x200))))
+(let ((@x389 (|unit-resolution| (mp ((_ |quant-inst| (* 2 (|$of_nat| |$x|))) $x201) @x187 $x200) (mp @x128 (|quant-intro| (refl (= $x106 $x106)) (= $x109 $x558)) $x558) $x546)))
+(let ((@x472 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x543) (<= ?x545 0))) (|unit-resolution| @x389 (|unit-resolution| @x387 @x386 $x205) $x543) (<= ?x545 0))))
+(let ((@x463 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x543) (>= ?x545 0))) (|unit-resolution| @x389 (|unit-resolution| @x387 @x386 $x205) $x543) (>= ?x545 0))))
+(let ((@x475 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x224 1)) (<= ?x224 1))) (trans @x367 @x329 (= ?x224 1)) (<= ?x224 1))))
+((_ |th-lemma| arith gcd-test -1/2 -1/2 -1/2 -1/2) @x479 @x475 @x463 @x472 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+2df65ee611ccc99a6ae4d2a639004e2a750b3f15 23 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x6 (|$of_nat| |$a|)))
+(let (($x50 (>= ?x6 4)))
+(let (($x12 (< (* 2 ?x6) 7)))
+(let (($x13 (=> (< ?x6 3) $x12)))
+(let (($x14 (not $x13)))
+(let (($x53 (not $x50)))
+(let (($x36 (<= 3 ?x6)))
+(let (($x61 (or $x36 $x53)))
+(let ((@x55 (monotonicity (rewrite (= (<= 7 (* 2 ?x6)) $x50)) (= (not (<= 7 (* 2 ?x6))) $x53))))
+(let ((@x57 (trans (rewrite (= $x12 (not (<= 7 (* 2 ?x6))))) @x55 (= $x12 $x53))))
+(let ((@x43 (monotonicity (rewrite (= $x36 $x36)) (= (not $x36) (not $x36)))))
+(let ((@x44 (trans (rewrite (= (< ?x6 3) (not $x36))) @x43 (= (< ?x6 3) (not $x36)))))
+(let ((@x65 (trans (monotonicity @x44 @x57 (= $x13 (=> (not $x36) $x53))) (rewrite (= (=> (not $x36) $x53) $x61)) (= $x13 $x61))))
+(let ((@x69 (mp (asserted $x14) (monotonicity @x65 (= $x14 (not $x61))) (not $x61))))
+(let ((@x142 (monotonicity (rewrite (= $x36 (>= ?x6 3))) (= (not $x36) (not (>= ?x6 3))))))
+(let (($x37 (not $x36)))
+(let ((@x116 (mp (mp (|not-or-elim| @x69 $x37) (|rewrite*| (= $x37 $x37)) $x37) @x43 $x37)))
+(let ((@x265 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x53 (>= ?x6 3))) (mp (mp @x116 @x43 $x37) @x142 (not (>= ?x6 3))) $x53)))
+(|unit-resolution| @x265 (mp (|not-or-elim| @x69 $x50) (|rewrite*| (= $x50 $x50)) $x50) false)))))))))))))))))))))
+
+d05374a460269b4494280b75139b4ebf7e6e6d90 115 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x11 (|$of_nat| (|$nat| (+ 1 (|$of_nat| |$y|))))))
+(let ((?x128 (+ (* (~ 1) (|$of_nat| |$y|)) ?x11)))
+(let ((?x134 (|$of_nat| (|$nat| ?x128))))
+(let ((?x8 (|$of_nat| |$y|)))
+(let (($x554 (= (+ ?x8 (* (~ 1) ?x11) ?x134) 0)))
+(let ((?x589 (+ ?x8 (* (~ 1) ?x11))))
+(let (($x270 (<= ?x589 0)))
+(let (($x572 (<= ?x589 (~ 1))))
+(let (($x579 (= ?x589 (~ 1))))
+(let (($x251 (>= ?x8 (~ 1))))
+(let (($x409 (>= ?x8 0)))
+(let (($x519 (= (|$of_nat| (|$nat| ?x8)) 0)))
+(let (($x605 (forall ((?v0 Int) )(!(let (($x31 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x143 (>= ?v0 0)))
+(or $x143 $x31))) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x158 (forall ((?v0 Int) )(let (($x31 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x143 (>= ?v0 0)))
+(or $x143 $x31))))
+))
+(let (($x31 (= (|$of_nat| (|$nat| ?0)) 0)))
+(let (($x143 (>= ?0 0)))
+(let (($x155 (or $x143 $x31)))
+(let (($x94 (forall ((?v0 Int) )(let (($x31 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x24 (<= 0 ?v0)))
+(or $x24 $x31))))
+))
+(let ((@x157 (monotonicity (rewrite (= (<= 0 ?0) $x143)) (= (or (<= 0 ?0) $x31) $x155))))
+(let (($x33 (forall ((?v0 Int) )(let (($x31 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(=> (< ?v0 0) $x31)))
+))
+(let ((@x91 (rewrite (= (=> (not (<= 0 ?0)) $x31) (or (<= 0 ?0) $x31)))))
+(let ((@x84 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (not (<= 0 ?0)) (not (<= 0 ?0))))))
+(let ((@x85 (trans (rewrite (= (< ?0 0) (not (<= 0 ?0)))) @x84 (= (< ?0 0) (not (<= 0 ?0))))))
+(let ((@x88 (monotonicity @x85 (= (=> (< ?0 0) $x31) (=> (not (<= 0 ?0)) $x31)))))
+(let ((@x93 (trans @x88 @x91 (= (=> (< ?0 0) $x31) (or (<= 0 ?0) $x31)))))
+(let ((@x109 (mp (mp (asserted $x33) (|quant-intro| @x93 (= $x33 $x94)) $x94) (|rewrite*| (= $x94 $x94)) $x94)))
+(let ((@x175 (|mp~| (mp @x109 (|quant-intro| @x157 (= $x94 $x158)) $x158) (|nnf-pos| (refl (|~| $x155 $x155)) (|~| $x158 $x158)) $x158)))
+(let ((@x425 (rewrite (= (or (not $x605) (or $x409 $x519)) (or (not $x605) $x409 $x519)))))
+(let ((@x418 (mp ((_ |quant-inst| (|$of_nat| |$y|)) (or (not $x605) (or $x409 $x519))) @x425 (or (not $x605) $x409 $x519))))
+(let ((@x508 (|unit-resolution| @x418 (mp @x175 (|quant-intro| (refl (= $x155 $x155)) (= $x158 $x605)) $x605) (or $x409 $x519))))
+(let (($x591 (forall ((?v0 |$Nat|) )(!(= (|$nat| (|$of_nat| ?v0)) ?v0) :pattern ( (|$of_nat| ?v0) )))
+))
+(let (($x22 (forall ((?v0 |$Nat|) )(= (|$nat| (|$of_nat| ?v0)) ?v0))
+))
+(let ((@x596 (trans (rewrite (= $x22 $x591)) (rewrite (= $x591 $x591)) (= $x22 $x591))))
+(let ((@x168 (refl (|~| (= (|$nat| (|$of_nat| ?0)) ?0) (= (|$nat| (|$of_nat| ?0)) ?0)))))
+(let ((@x163 (|mp~| (mp (asserted $x22) (|rewrite*| (= $x22 $x22)) $x22) (|nnf-pos| @x168 (|~| $x22 $x22)) $x22)))
+(let ((@x510 (|unit-resolution| ((_ |quant-inst| |$y|) (or (not $x591) (= (|$nat| ?x8) |$y|))) (mp @x163 @x596 $x591) (= (|$nat| ?x8) |$y|))))
+(let ((@x497 (monotonicity (symm @x510 (= |$y| (|$nat| ?x8))) (= ?x8 (|$of_nat| (|$nat| ?x8))))))
+(let ((@x498 (trans @x497 (|unit-resolution| @x508 (hypothesis (not $x409)) $x519) (= ?x8 0))))
+(let ((@x502 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x8 0)) $x409)) (hypothesis (not $x409)) @x498 false)))
+(let ((@x490 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x409) $x251)) (lemma @x502 $x409) $x251)))
+(let (($x585 (not $x251)))
+(let (($x580 (or $x585 $x579)))
+(let (($x599 (forall ((?v0 Int) )(!(let (($x27 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x27)) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x151 (forall ((?v0 Int) )(let (($x27 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x27)))
+))
+(let (($x27 (= (|$of_nat| (|$nat| ?0)) ?0)))
+(let (($x148 (or (not $x143) $x27)))
+(let (($x77 (forall ((?v0 Int) )(let (($x27 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x24 (<= 0 ?v0)))
+(let (($x72 (not $x24)))
+(or $x72 $x27)))))
+))
+(let ((@x147 (monotonicity (rewrite (= (<= 0 ?0) $x143)) (= (not (<= 0 ?0)) (not $x143)))))
+(let ((@x153 (|quant-intro| (monotonicity @x147 (= (or (not (<= 0 ?0)) $x27) $x148)) (= $x77 $x151))))
+(let (($x29 (forall ((?v0 Int) )(let (($x27 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x24 (<= 0 ?v0)))
+(=> $x24 $x27))))
+))
+(let ((@x75 (rewrite (= (=> (<= 0 ?0) $x27) (or (not (<= 0 ?0)) $x27)))))
+(let ((@x71 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (=> (<= 0 ?0) $x27) (=> (<= 0 ?0) $x27)))))
+(let ((@x76 (trans @x71 @x75 (= (=> (<= 0 ?0) $x27) (or (not (<= 0 ?0)) $x27)))))
+(let ((@x106 (mp (mp (asserted $x29) (|quant-intro| @x76 (= $x29 $x77)) $x77) (|rewrite*| (= $x77 $x77)) $x77)))
+(let ((@x170 (|mp~| (mp @x106 @x153 $x151) (|nnf-pos| (refl (|~| $x148 $x148)) (|~| $x151 $x151)) $x151)))
+(let (($x224 (not $x599)))
+(let (($x565 (or $x224 $x585 $x579)))
+(let (($x227 (or $x224 (or (not (>= (+ 1 ?x8) 0)) (= ?x11 (+ 1 ?x8))))))
+(let (($x245 (= (or (not (>= (+ 1 ?x8) 0)) (= ?x11 (+ 1 ?x8))) $x580)))
+(let ((@x587 (monotonicity (rewrite (= (>= (+ 1 ?x8) 0) $x251)) (= (not (>= (+ 1 ?x8) 0)) $x585))))
+(let ((@x566 (monotonicity (monotonicity @x587 (rewrite (= (= ?x11 (+ 1 ?x8)) $x579)) $x245) (= $x227 (or $x224 $x580)))))
+(let ((@x571 (mp ((_ |quant-inst| (+ 1 ?x8)) $x227) (trans @x566 (rewrite (= (or $x224 $x580) $x565)) (= $x227 $x565)) $x565)))
+(let ((@x491 (|unit-resolution| @x571 (mp @x170 (|quant-intro| (refl (= $x148 $x148)) (= $x151 $x599)) $x599) $x580)))
+(let ((@x475 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x579) $x572)) (|unit-resolution| @x491 @x490 $x579) $x572)))
+(let (($x551 (not $x270)))
+(let (($x542 (or $x551 $x554)))
+(let (($x545 (or $x224 $x551 $x554)))
+(let (($x546 (or $x224 (or (not (>= ?x128 0)) (= ?x134 ?x128)))))
+(let ((@x276 (monotonicity (rewrite (= (>= ?x128 0) $x270)) (= (not (>= ?x128 0)) $x551))))
+(let ((@x544 (monotonicity @x276 (rewrite (= (= ?x134 ?x128) $x554)) (= (or (not (>= ?x128 0)) (= ?x134 ?x128)) $x542))))
+(let ((@x532 (trans (monotonicity @x544 (= $x546 (or $x224 $x542))) (rewrite (= (or $x224 $x542) $x545)) (= $x546 $x545))))
+(let ((@x480 (|unit-resolution| (mp ((_ |quant-inst| (+ (* (~ 1) ?x8) ?x11)) $x546) @x532 $x545) (mp @x170 (|quant-intro| (refl (= $x148 $x148)) (= $x151 $x599)) $x599) $x542)))
+(let ((@x481 (|unit-resolution| @x480 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x572) $x270)) @x475 $x270) $x554)))
+(let ((@x485 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x554) (>= (+ ?x8 (* (~ 1) ?x11) ?x134) 0))) @x481 (>= (+ ?x8 (* (~ 1) ?x11) ?x134) 0))))
+(let ((?x42 (+ ?x11 (* (~ 1) ?x8))))
+(let ((?x45 (|$nat| ?x42)))
+(let ((?x48 (|$of_nat| ?x45)))
+(let (($x54 (<= ?x48 0)))
+(let ((@x136 (monotonicity (monotonicity (rewrite (= ?x42 ?x128)) (= ?x45 (|$nat| ?x128))) (= ?x48 ?x134))))
+(let (($x16 (< (* 0 ?x11) (|$of_nat| (|$nat| (- ?x11 ?x8))))))
+(let (($x17 (not $x16)))
+(let ((@x47 (monotonicity (rewrite (= (- ?x11 ?x8) ?x42)) (= (|$nat| (- ?x11 ?x8)) ?x45))))
+(let ((@x53 (monotonicity (rewrite (= (* 0 ?x11) 0)) (monotonicity @x47 (= (|$of_nat| (|$nat| (- ?x11 ?x8))) ?x48)) (= $x16 (< 0 ?x48)))))
+(let ((@x59 (trans @x53 (rewrite (= (< 0 ?x48) (not $x54))) (= $x16 (not $x54)))))
+(let ((@x66 (trans (monotonicity @x59 (= $x17 (not (not $x54)))) (rewrite (= (not (not $x54)) $x54)) (= $x17 $x54))))
+(let ((@x142 (mp (mp (mp (asserted $x17) @x66 $x54) (|rewrite*| (= $x54 $x54)) $x54) (monotonicity @x136 (= $x54 (<= ?x134 0))) (<= ?x134 0))))
+((_ |th-lemma| arith farkas -1 -1 1) @x142 @x475 @x485 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+049eda1e4e3a4643566f2dfb3050e8b4420d33c6 112 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x11 (|$of_nat| (|$nat| (+ 1 (|$of_nat| |$y|))))))
+(let ((?x75 (+ (~ 1) ?x11)))
+(let ((?x82 (|$nat| ?x75)))
+(let ((?x335 (|$of_nat| ?x82)))
+(let ((?x8 (|$of_nat| |$y|)))
+(let (($x419 (>= (+ ?x8 (* (~ 1) ?x335)) 0)))
+(let (($x85 (= ?x82 |$y|)))
+(let (($x54 (<= ?x11 0)))
+(let (($x13 (ite (< 0 ?x11) true false)))
+(let (($x18 (not $x13)))
+(let (($x19 (=> $x18 false)))
+(let (($x46 (not $x19)))
+(let ((@x60 (monotonicity (rewrite (= (< 0 ?x11) (not $x54))) (= $x13 (ite (not $x54) true false)))))
+(let ((@x64 (trans @x60 (rewrite (= (ite (not $x54) true false) (not $x54))) (= $x13 (not $x54)))))
+(let ((@x106 (trans (monotonicity @x64 (= $x18 (not (not $x54)))) (rewrite (= (not (not $x54)) $x54)) (= $x18 $x54))))
+(let ((@x113 (trans (monotonicity @x106 (= $x19 (=> $x54 false))) (rewrite (= (=> $x54 false) (not $x54))) (= $x19 (not $x54)))))
+(let ((@x117 (trans (monotonicity @x113 (= $x46 (not (not $x54)))) (rewrite (= (not (not $x54)) $x54)) (= $x46 $x54))))
+(let (($x22 (not (or false (or (= $x13 (= (|$nat| (- ?x11 1)) |$y|)) $x19)))))
+(let ((@x43 (|not-or-elim| (asserted $x22) (not (or (= $x13 (= (|$nat| (- ?x11 1)) |$y|)) $x19)))))
+(let ((@x51 (monotonicity (|iff-true| (mp (|not-or-elim| @x43 $x46) @x117 $x54) (= $x54 true)) (= (= $x54 $x85) (= true $x85)))))
+(let ((@x152 (trans @x51 (rewrite (= (= true $x85) $x85)) (= (= $x54 $x85) $x85))))
+(let (($x94 (= $x54 $x85)))
+(let (($x17 (= $x13 (= (|$nat| (- ?x11 1)) |$y|))))
+(let (($x44 (not $x17)))
+(let ((@x74 (monotonicity (rewrite (= (* (~ 1) 1) (~ 1))) (= (+ ?x11 (* (~ 1) 1)) (+ ?x11 (~ 1))))))
+(let ((@x79 (trans @x74 (rewrite (= (+ ?x11 (~ 1)) ?x75)) (= (+ ?x11 (* (~ 1) 1)) ?x75))))
+(let ((@x81 (trans (rewrite (= (- ?x11 1) (+ ?x11 (* (~ 1) 1)))) @x79 (= (- ?x11 1) ?x75))))
+(let ((@x87 (monotonicity (monotonicity @x81 (= (|$nat| (- ?x11 1)) ?x82)) (= (= (|$nat| (- ?x11 1)) |$y|) $x85))))
+(let ((@x93 (monotonicity (monotonicity @x64 @x87 (= $x17 (= (not $x54) $x85))) (= $x44 (not (= (not $x54) $x85))))))
+(let ((@x98 (trans @x93 (rewrite (= (not (= (not $x54) $x85)) $x94)) (= $x44 $x94))))
+(let ((@x156 (mp (mp (mp (|not-or-elim| @x43 $x44) @x98 $x94) @x152 $x85) (|rewrite*| (= $x85 $x85)) $x85)))
+(let ((@x569 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x8 ?x335)) $x419)) (monotonicity (symm @x156 (= |$y| ?x82)) (= ?x8 ?x335)) $x419)))
+(let (($x631 (= (+ ?x8 (* (~ 1) ?x11)) (~ 1))))
+(let (($x629 (>= ?x8 (~ 1))))
+(let (($x577 (>= ?x335 0)))
+(let (($x579 (= ?x335 0)))
+(let ((@x159 (mp (mp (|not-or-elim| @x43 $x46) @x117 $x54) (|rewrite*| (= $x54 $x54)) $x54)))
+(let ((@x558 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not (>= ?x11 1)) (not $x54))) @x159 (not (>= ?x11 1)))))
+(let (($x651 (forall ((?v0 Int) )(!(let (($x36 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x189 (>= ?v0 0)))
+(or $x189 $x36))) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x204 (forall ((?v0 Int) )(let (($x36 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x189 (>= ?v0 0)))
+(or $x189 $x36))))
+))
+(let (($x36 (= (|$of_nat| (|$nat| ?0)) 0)))
+(let (($x189 (>= ?0 0)))
+(let (($x201 (or $x189 $x36)))
+(let (($x145 (forall ((?v0 Int) )(let (($x36 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x29 (<= 0 ?v0)))
+(or $x29 $x36))))
+))
+(let ((@x203 (monotonicity (rewrite (= (<= 0 ?0) $x189)) (= (or (<= 0 ?0) $x36) $x201))))
+(let (($x38 (forall ((?v0 Int) )(let (($x36 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(=> (< ?v0 0) $x36)))
+))
+(let ((@x142 (rewrite (= (=> (not (<= 0 ?0)) $x36) (or (<= 0 ?0) $x36)))))
+(let ((@x135 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (not (<= 0 ?0)) (not (<= 0 ?0))))))
+(let ((@x136 (trans (rewrite (= (< ?0 0) (not (<= 0 ?0)))) @x135 (= (< ?0 0) (not (<= 0 ?0))))))
+(let ((@x139 (monotonicity @x136 (= (=> (< ?0 0) $x36) (=> (not (<= 0 ?0)) $x36)))))
+(let ((@x144 (trans @x139 @x142 (= (=> (< ?0 0) $x36) (or (<= 0 ?0) $x36)))))
+(let ((@x168 (mp (mp (asserted $x38) (|quant-intro| @x144 (= $x38 $x145)) $x145) (|rewrite*| (= $x145 $x145)) $x145)))
+(let ((@x221 (|mp~| (mp @x168 (|quant-intro| @x203 (= $x145 $x204)) $x204) (|nnf-pos| (refl (|~| $x201 $x201)) (|~| $x204 $x204)) $x204)))
+(let (($x606 (>= ?x11 1)))
+(let (($x620 (not $x651)))
+(let (($x584 (or $x620 $x606 $x579)))
+(let ((@x583 (monotonicity (rewrite (= (>= ?x75 0) $x606)) (= (or (>= ?x75 0) $x579) (or $x606 $x579)))))
+(let ((@x415 (monotonicity @x583 (= (or $x620 (or (>= ?x75 0) $x579)) (or $x620 (or $x606 $x579))))))
+(let ((@x574 (trans @x415 (rewrite (= (or $x620 (or $x606 $x579)) $x584)) (= (or $x620 (or (>= ?x75 0) $x579)) $x584))))
+(let ((@x559 (|unit-resolution| (mp ((_ |quant-inst| (+ (~ 1) ?x11)) (or $x620 (or (>= ?x75 0) $x579))) @x574 $x584) (mp @x221 (|quant-intro| (refl (= $x201 $x201)) (= $x204 $x651)) $x651) @x558 $x579)))
+(let ((@x552 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x629 (not $x577) (not $x419))) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x579) $x577)) @x559 $x577) @x569 $x629)))
+(let (($x624 (not $x629)))
+(let (($x635 (or $x624 $x631)))
+(let (($x645 (forall ((?v0 Int) )(!(let (($x32 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x32)) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x197 (forall ((?v0 Int) )(let (($x32 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x32)))
+))
+(let (($x32 (= (|$of_nat| (|$nat| ?0)) ?0)))
+(let (($x194 (or (not $x189) $x32)))
+(let (($x128 (forall ((?v0 Int) )(let (($x32 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x29 (<= 0 ?v0)))
+(let (($x123 (not $x29)))
+(or $x123 $x32)))))
+))
+(let ((@x193 (monotonicity (rewrite (= (<= 0 ?0) $x189)) (= (not (<= 0 ?0)) (not $x189)))))
+(let ((@x199 (|quant-intro| (monotonicity @x193 (= (or (not (<= 0 ?0)) $x32) $x194)) (= $x128 $x197))))
+(let (($x34 (forall ((?v0 Int) )(let (($x32 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x29 (<= 0 ?v0)))
+(=> $x29 $x32))))
+))
+(let ((@x126 (rewrite (= (=> (<= 0 ?0) $x32) (or (not (<= 0 ?0)) $x32)))))
+(let ((@x122 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (=> (<= 0 ?0) $x32) (=> (<= 0 ?0) $x32)))))
+(let ((@x127 (trans @x122 @x126 (= (=> (<= 0 ?0) $x32) (or (not (<= 0 ?0)) $x32)))))
+(let ((@x165 (mp (mp (asserted $x34) (|quant-intro| @x127 (= $x34 $x128)) $x128) (|rewrite*| (= $x128 $x128)) $x128)))
+(let ((@x216 (|mp~| (mp @x165 @x199 $x197) (|nnf-pos| (refl (|~| $x194 $x194)) (|~| $x197 $x197)) $x197)))
+(let (($x289 (not $x645)))
+(let (($x626 (or $x289 $x624 $x631)))
+(let (($x291 (or $x289 (or (not (>= (+ 1 ?x8) 0)) (= ?x11 (+ 1 ?x8))))))
+(let (($x625 (= (or (not (>= (+ 1 ?x8) 0)) (= ?x11 (+ 1 ?x8))) $x635)))
+(let ((@x298 (monotonicity (rewrite (= (>= (+ 1 ?x8) 0) $x629)) (= (not (>= (+ 1 ?x8) 0)) $x624))))
+(let ((@x273 (monotonicity (monotonicity @x298 (rewrite (= (= ?x11 (+ 1 ?x8)) $x631)) $x625) (= $x291 (or $x289 $x635)))))
+(let ((@x613 (mp ((_ |quant-inst| (+ 1 ?x8)) $x291) (trans @x273 (rewrite (= (or $x289 $x635) $x626)) (= $x291 $x626)) $x626)))
+(let ((@x553 (|unit-resolution| @x613 (mp @x216 (|quant-intro| (refl (= $x194 $x194)) (= $x197 $x645)) $x645) $x635)))
+(let ((@x541 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x631) (<= (+ ?x8 (* (~ 1) ?x11)) (~ 1)))) (|unit-resolution| @x553 @x552 $x631) (<= (+ ?x8 (* (~ 1) ?x11)) (~ 1)))))
+((_ |th-lemma| arith farkas 1 -1 -1 1) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x579) $x577)) @x559 $x577) @x159 @x541 @x569 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+cff8ff54877b840f88a871fff0fa5d6bcdc3d367 60 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x44 (* (~ 1) |$x|)))
+(let (($x140 (>= |$x| 0)))
+(let ((?x143 (ite $x140 |$x| ?x44)))
+(let (($x279 (= ?x44 ?x143)))
+(let (($x193 (= |$x| ?x143)))
+(let ((@x585 (|unit-resolution| (|def-axiom| (or (not $x140) $x193)) (hypothesis $x140) $x193)))
+(let ((@x589 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x193) (<= (+ |$x| (* (~ 1) ?x143)) 0))) @x585 (<= (+ |$x| (* (~ 1) ?x143)) 0))))
+(let (($x286 (not (>= ?x143 0))))
+(let (($x617 (forall ((?v0 Int) )(!(let (($x23 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x23)) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x168 (forall ((?v0 Int) )(let (($x23 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x23)))
+))
+(let (($x23 (= (|$of_nat| (|$nat| ?0)) ?0)))
+(let (($x165 (or (not (>= ?0 0)) $x23)))
+(let (($x77 (forall ((?v0 Int) )(let (($x23 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (<= 0 ?v0)) $x23)))
+))
+(let ((@x164 (monotonicity (rewrite (= (<= 0 ?0) (>= ?0 0))) (= (not (<= 0 ?0)) (not (>= ?0 0))))))
+(let ((@x170 (|quant-intro| (monotonicity @x164 (= (or (not (<= 0 ?0)) $x23) $x165)) (= $x77 $x168))))
+(let (($x25 (forall ((?v0 Int) )(let (($x23 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x20 (<= 0 ?v0)))
+(=> $x20 $x23))))
+))
+(let ((@x75 (rewrite (= (=> (<= 0 ?0) $x23) (or (not (<= 0 ?0)) $x23)))))
+(let ((@x71 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (=> (<= 0 ?0) $x23) (=> (<= 0 ?0) $x23)))))
+(let ((@x76 (trans @x71 @x75 (= (=> (<= 0 ?0) $x23) (or (not (<= 0 ?0)) $x23)))))
+(let ((@x106 (mp (mp (asserted $x25) (|quant-intro| @x76 (= $x25 $x77)) $x77) (|rewrite*| (= $x77 $x77)) $x77)))
+(let ((@x187 (|mp~| (mp @x106 @x170 $x168) (|nnf-pos| (refl (|~| $x165 $x165)) (|~| $x168 $x168)) $x168)))
+(let (($x34 (<= 0 |$x|)))
+(let ((?x50 (ite $x34 |$x| ?x44)))
+(let ((?x55 (|$nat| ?x50)))
+(let ((?x58 (|$of_nat| ?x55)))
+(let (($x61 (= ?x58 ?x50)))
+(let (($x64 (not $x61)))
+(let ((@x148 (monotonicity (monotonicity (rewrite (= $x34 $x140)) (= ?x50 ?x143)) (= ?x55 (|$nat| ?x143)))))
+(let ((@x154 (monotonicity (monotonicity @x148 (= ?x58 (|$of_nat| (|$nat| ?x143)))) (monotonicity (rewrite (= $x34 $x140)) (= ?x50 ?x143)) (= $x61 (= (|$of_nat| (|$nat| ?x143)) ?x143)))))
+(let ((@x113 (monotonicity (monotonicity (rewrite (= $x34 $x34)) (= ?x50 ?x50)) (= ?x55 ?x55))))
+(let ((@x117 (monotonicity (monotonicity @x113 (= ?x58 ?x58)) (monotonicity (rewrite (= $x34 $x34)) (= ?x50 ?x50)) (= $x61 $x61))))
+(let ((?x9 (ite (< |$x| 0) (- |$x|) |$x|)))
+(let (($x13 (not (= (|$of_nat| (|$nat| ?x9)) ?x9))))
+(let ((@x42 (trans (rewrite (= (< |$x| 0) (not $x34))) (monotonicity (rewrite (= $x34 $x34)) (= (not $x34) (not $x34))) (= (< |$x| 0) (not $x34)))))
+(let ((@x49 (monotonicity @x42 (rewrite (= (- |$x|) ?x44)) (= ?x9 (ite (not $x34) ?x44 |$x|)))))
+(let ((@x54 (trans @x49 (rewrite (= (ite (not $x34) ?x44 |$x|) ?x50)) (= ?x9 ?x50))))
+(let ((@x60 (monotonicity (monotonicity @x54 (= (|$nat| ?x9) ?x55)) (= (|$of_nat| (|$nat| ?x9)) ?x58))))
+(let ((@x66 (monotonicity (monotonicity @x60 @x54 (= (= (|$of_nat| (|$nat| ?x9)) ?x9) $x61)) (= $x13 $x64))))
+(let ((@x119 (mp (mp (mp (asserted $x13) @x66 $x64) (|rewrite*| (= $x64 $x64)) $x64) (monotonicity @x117 (= $x64 $x64)) $x64)))
+(let ((@x158 (mp (mp @x119 (monotonicity @x117 (= $x64 $x64)) $x64) (monotonicity @x154 (= $x64 (not (= (|$of_nat| (|$nat| ?x143)) ?x143)))) (not (= (|$of_nat| (|$nat| ?x143)) ?x143)))))
+(let (($x604 (= (or (not $x617) (or $x286 (= (|$of_nat| (|$nat| ?x143)) ?x143))) (or (not $x617) $x286 (= (|$of_nat| (|$nat| ?x143)) ?x143)))))
+(let ((@x606 (mp ((_ |quant-inst| (ite $x140 |$x| ?x44)) (or (not $x617) (or $x286 (= (|$of_nat| (|$nat| ?x143)) ?x143)))) (rewrite $x604) (or (not $x617) $x286 (= (|$of_nat| (|$nat| ?x143)) ?x143)))))
+(let ((@x590 (|unit-resolution| @x606 @x158 (mp @x187 (|quant-intro| (refl (= $x165 $x165)) (= $x168 $x617)) $x617) $x286)))
+(let ((@x233 (|unit-resolution| (|def-axiom| (or $x140 $x279)) (lemma ((_ |th-lemma| arith farkas -1 1 1) (hypothesis $x140) @x590 @x589 false) (not $x140)) $x279)))
+(let ((@x581 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x279) (<= (+ ?x44 (* (~ 1) ?x143)) 0))) @x233 (<= (+ ?x44 (* (~ 1) ?x143)) 0))))
+(let ((@x301 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (<= ?x143 0) (>= ?x143 0))) @x590 (<= ?x143 0))))
+((_ |th-lemma| arith farkas 1 1 1) @x301 (lemma ((_ |th-lemma| arith farkas -1 1 1) (hypothesis $x140) @x590 @x589 false) (not $x140)) @x581 false)))))))))))))))))))))))))))))))))))))))))))))))))
+
+23e3bfd5b682cd11b8d1551b496550b3918a4c94 255 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v1!0 (|$Nat|) |$Nat|)
+(proof
+(let ((?x23 (|$of_nat| |$m|)))
+(let ((?x24 (* 4 ?x23)))
+(let (($x601 (= (+ ?x24 (* (~ 1) (|$of_nat| (|$nat| (+ 1 ?x24))))) (~ 1))))
+(let (($x614 (>= ?x23 0)))
+(let (($x705 (forall ((?v1 |$Nat|) )(!(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?v1 ?x12)))
+(or (not (|$dvd| ?v1 (|$nat| (+ 1 (* 4 (|$of_nat| |$m|)))))) $x13 (= ?v1 (|$nat| (+ 1 (* 4 (|$of_nat| |$m|)))))))) :pattern ( (|$dvd| ?v1 (|$nat| (+ 1 (* 4 (|$of_nat| |$m|))))) )))
+))
+(let ((?x72 (+ 1 ?x24)))
+(let ((?x75 (|$nat| ?x72)))
+(let ((?x299 (|$of_nat| ?x75)))
+(let (($x384 (<= ?x299 1)))
+(let (($x373 (not (or $x384 (not $x705)))))
+(let (($x78 (|$prime_nat| ?x75)))
+(let (($x86 (not $x78)))
+(let (($x374 (or $x86 $x373)))
+(let (($x703 (or (not (|$dvd| (?v1!0 ?x75) ?x75)) (= (?v1!0 ?x75) (|$nat| 1)) (= (?v1!0 ?x75) ?x75))))
+(let (($x707 (not $x374)))
+(let (($x742 (forall ((?v0 |$Nat|) )(!(let (($x223 (or (not (|$dvd| (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (|$nat| 1)) (= (?v1!0 ?v0) ?v0))))
+(let (($x224 (not $x223)))
+(let ((?x8 (|$of_nat| ?v0)))
+(let (($x51 (<= ?x8 1)))
+(let (($x6 (|$prime_nat| ?v0)))
+(let (($x251 (or $x6 $x51 $x224)))
+(let (($x714 (forall ((?v1 |$Nat|) )(!(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?v1 ?x12)))
+(or (not (|$dvd| ?v1 ?v0)) $x13 (= ?v1 ?v0)))) :pattern ( (|$dvd| ?v1 ?v0) )))
+))
+(let (($x204 (not $x6)))
+(not (or (not (or $x204 (not (or $x51 (not $x714))))) (not $x251))))))))))) :pattern ( (|$prime_nat| ?v0) ) :pattern ( (|$of_nat| ?v0) )))
+))
+(let (($x294 (forall ((?v0 |$Nat|) )(let (($x223 (or (not (|$dvd| (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (|$nat| 1)) (= (?v1!0 ?v0) ?v0))))
+(let (($x224 (not $x223)))
+(let ((?x8 (|$of_nat| ?v0)))
+(let (($x51 (<= ?x8 1)))
+(let (($x6 (|$prime_nat| ?v0)))
+(let (($x251 (or $x6 $x51 $x224)))
+(let (($x59 (forall ((?v1 |$Nat|) )(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?v1 ?x12)))
+(or (not (|$dvd| ?v1 ?v0)) $x13 (= ?v1 ?v0)))))
+))
+(let (($x225 (not $x59)))
+(let (($x279 (not (or $x51 $x225))))
+(let (($x204 (not $x6)))
+(let (($x280 (or $x204 $x279)))
+(not (or (not $x280) (not $x251)))))))))))))))
+))
+(let (($x223 (or (not (|$dvd| (?v1!0 ?0) ?0)) (= (?v1!0 ?0) (|$nat| 1)) (= (?v1!0 ?0) ?0))))
+(let (($x224 (not $x223)))
+(let ((?x8 (|$of_nat| ?0)))
+(let (($x51 (<= ?x8 1)))
+(let (($x6 (|$prime_nat| ?0)))
+(let (($x251 (or $x6 $x51 $x224)))
+(let (($x714 (forall ((?v1 |$Nat|) )(!(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?v1 ?x12)))
+(or (not (|$dvd| ?v1 ?0)) $x13 (= ?v1 ?0)))) :pattern ( (|$dvd| ?v1 ?0) )))
+))
+(let (($x204 (not $x6)))
+(let (($x59 (forall ((?v1 |$Nat|) )(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?v1 ?x12)))
+(or (not (|$dvd| ?v1 ?0)) $x13 (= ?v1 ?0)))))
+))
+(let (($x225 (not $x59)))
+(let (($x279 (not (or $x51 $x225))))
+(let (($x280 (or $x204 $x279)))
+(let (($x289 (not (or (not $x280) (not $x251)))))
+(let (($x738 (= $x289 (not (or (not (or $x204 (not (or $x51 (not $x714))))) (not $x251))))))
+(let (($x735 (= (or (not $x280) (not $x251)) (or (not (or $x204 (not (or $x51 (not $x714))))) (not $x251)))))
+(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?0 ?x12)))
+(let (($x56 (or (not (|$dvd| ?0 ?1)) $x13 (= ?0 ?1))))
+(let ((@x721 (monotonicity (|quant-intro| (refl (= $x56 $x56)) (= $x59 $x714)) (= $x225 (not $x714)))))
+(let ((@x727 (monotonicity (monotonicity @x721 (= (or $x51 $x225) (or $x51 (not $x714)))) (= $x279 (not (or $x51 (not $x714)))))))
+(let ((@x733 (monotonicity (monotonicity @x727 (= $x280 (or $x204 (not (or $x51 (not $x714)))))) (= (not $x280) (not (or $x204 (not (or $x51 (not $x714)))))))))
+(let ((@x744 (|quant-intro| (monotonicity (monotonicity @x733 $x735) $x738) (= $x294 $x742))))
+(let (($x259 (forall ((?v0 |$Nat|) )(let (($x223 (or (not (|$dvd| (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (|$nat| 1)) (= (?v1!0 ?v0) ?v0))))
+(let (($x224 (not $x223)))
+(let ((?x8 (|$of_nat| ?v0)))
+(let (($x51 (<= ?x8 1)))
+(let (($x6 (|$prime_nat| ?v0)))
+(let (($x251 (or $x6 $x51 $x224)))
+(let (($x59 (forall ((?v1 |$Nat|) )(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?v1 ?x12)))
+(or (not (|$dvd| ?v1 ?v0)) $x13 (= ?v1 ?v0)))))
+))
+(let (($x52 (not $x51)))
+(let (($x62 (and $x52 $x59)))
+(let (($x204 (not $x6)))
+(let (($x233 (or $x204 $x62)))
+(and $x233 $x251)))))))))))))
+))
+(let ((@x282 (monotonicity (rewrite (= (and (not $x51) $x59) $x279)) (= (or $x204 (and (not $x51) $x59)) $x280))))
+(let ((@x285 (monotonicity @x282 (= (and (or $x204 (and (not $x51) $x59)) $x251) (and $x280 $x251)))))
+(let ((@x293 (trans @x285 (rewrite (= (and $x280 $x251) $x289)) (= (and (or $x204 (and (not $x51) $x59)) $x251) $x289))))
+(let (($x237 (forall ((?v0 |$Nat|) )(let (($x223 (or (not (|$dvd| (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (|$nat| 1)) (= (?v1!0 ?v0) ?v0))))
+(let (($x224 (not $x223)))
+(let ((?x8 (|$of_nat| ?v0)))
+(let (($x51 (<= ?x8 1)))
+(let (($x52 (not $x51)))
+(let (($x215 (not $x52)))
+(let (($x228 (or $x215 $x224)))
+(let (($x6 (|$prime_nat| ?v0)))
+(let (($x232 (or $x6 $x228)))
+(let (($x59 (forall ((?v1 |$Nat|) )(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?v1 ?x12)))
+(or (not (|$dvd| ?v1 ?v0)) $x13 (= ?v1 ?v0)))))
+))
+(let (($x62 (and $x52 $x59)))
+(let (($x204 (not $x6)))
+(let (($x233 (or $x204 $x62)))
+(and $x233 $x232)))))))))))))))
+))
+(let (($x52 (not $x51)))
+(let (($x62 (and $x52 $x59)))
+(let (($x233 (or $x204 $x62)))
+(let (($x256 (and $x233 $x251)))
+(let (($x215 (not $x52)))
+(let (($x228 (or $x215 $x224)))
+(let (($x232 (or $x6 $x228)))
+(let (($x234 (and $x233 $x232)))
+(let ((@x250 (monotonicity (monotonicity (rewrite (= $x215 $x51)) (= $x228 (or $x51 $x224))) (= $x232 (or $x6 (or $x51 $x224))))))
+(let ((@x255 (trans @x250 (rewrite (= (or $x6 (or $x51 $x224)) $x251)) (= $x232 $x251))))
+(let (($x171 (forall ((?v0 |$Nat|) )(let (($x59 (forall ((?v1 |$Nat|) )(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?v1 ?x12)))
+(or (not (|$dvd| ?v1 ?v0)) $x13 (= ?v1 ?v0)))))
+))
+(let ((?x8 (|$of_nat| ?v0)))
+(let (($x51 (<= ?x8 1)))
+(let (($x52 (not $x51)))
+(let (($x62 (and $x52 $x59)))
+(let (($x6 (|$prime_nat| ?v0)))
+(= $x6 $x62))))))))
+))
+(let ((@x231 (|nnf-neg| (refl (|~| $x215 $x215)) (sk (|~| $x225 $x224)) (|~| (not $x62) $x228))))
+(let ((@x214 (monotonicity (refl (|~| $x52 $x52)) (|nnf-pos| (refl (|~| $x56 $x56)) (|~| $x59 $x59)) (|~| $x62 $x62))))
+(let ((@x236 (|nnf-pos| (refl (|~| $x6 $x6)) (refl (|~| $x204 $x204)) @x214 @x231 (|~| (= $x6 $x62) $x234))))
+(let (($x68 (forall ((?v0 |$Nat|) )(let (($x59 (forall ((?v1 |$Nat|) )(let ((?x12 (|$nat| 1)))
+(let (($x13 (= ?v1 ?x12)))
+(or (not (|$dvd| ?v1 ?v0)) $x13 (= ?v1 ?v0)))))
+))
+(let ((?x8 (|$of_nat| ?v0)))
+(let (($x51 (<= ?x8 1)))
+(let (($x52 (not $x51)))
+(let (($x62 (and $x52 $x59)))
+(let (($x6 (|$prime_nat| ?v0)))
+(= $x6 $x62))))))))
+))
+(let ((@x173 (|quant-intro| (rewrite (= (= $x6 $x62) (= $x6 $x62))) (= $x68 $x171))))
+(let (($x20 (forall ((?v0 |$Nat|) )(let (($x17 (forall ((?v1 |$Nat|) )(let (($x11 (|$dvd| ?v1 ?v0)))
+(=> $x11 (or (= ?v1 (|$nat| 1)) (= ?v1 ?v0)))))
+))
+(let (($x6 (|$prime_nat| ?v0)))
+(= $x6 (and (< 1 (|$of_nat| ?v0)) $x17)))))
+))
+(let (($x65 (= $x6 $x62)))
+(let (($x17 (forall ((?v1 |$Nat|) )(let (($x11 (|$dvd| ?v1 ?0)))
+(=> $x11 (or (= ?v1 (|$nat| 1)) (= ?v1 ?0)))))
+))
+(let ((@x61 (|quant-intro| (rewrite (= (=> (|$dvd| ?0 ?1) (or $x13 (= ?0 ?1))) $x56)) (= $x17 $x59))))
+(let ((@x64 (monotonicity (rewrite (= (< 1 ?x8) $x52)) @x61 (= (and (< 1 ?x8) $x17) $x62))))
+(let ((@x70 (|quant-intro| (monotonicity @x64 (= (= $x6 (and (< 1 ?x8) $x17)) $x65)) (= $x20 $x68))))
+(let ((@x176 (mp (mp (mp (asserted $x20) @x70 $x68) (|rewrite*| (= $x68 $x68)) $x68) @x173 $x171)))
+(let ((@x241 (mp (|mp~| @x176 (|nnf-pos| @x236 (|~| $x171 $x237)) $x237) (|quant-intro| (monotonicity @x255 (= $x234 $x256)) (= $x237 $x259)) $x259)))
+(let ((@x691 ((_ |quant-inst| (|$nat| ?x72)) (or (not $x742) (not (or $x707 (not (or $x78 $x384 (not $x703)))))))))
+(let ((@x572 (|unit-resolution| @x691 (mp (mp @x241 (|quant-intro| @x293 (= $x259 $x294)) $x294) @x744 $x742) (not (or $x707 (not (or $x78 $x384 (not $x703))))))))
+(let ((@x573 (|unit-resolution| (|def-axiom| (or (or $x707 (not (or $x78 $x384 (not $x703)))) $x374)) @x572 $x374)))
+(let (($x28 (<= 1 ?x23)))
+(let (($x29 (=> (|$prime_nat| (|$nat| (+ ?x24 1))) $x28)))
+(let (($x30 (not $x29)))
+(let ((@x77 (monotonicity (rewrite (= (+ ?x24 1) ?x72)) (= (|$nat| (+ ?x24 1)) ?x75))))
+(let ((@x85 (monotonicity (monotonicity @x77 (= (|$prime_nat| (|$nat| (+ ?x24 1))) $x78)) (rewrite (= $x28 $x28)) (= $x29 (=> $x78 $x28)))))
+(let ((@x91 (trans @x85 (rewrite (= (=> $x78 $x28) (or $x86 $x28))) (= $x29 (or $x86 $x28)))))
+(let ((@x95 (mp (asserted $x30) (monotonicity @x91 (= $x30 (not (or $x86 $x28)))) (not (or $x86 $x28)))))
+(let ((@x575 (|unit-resolution| (|def-axiom| (or $x707 $x86 $x373)) (mp (|not-or-elim| @x95 $x78) (|rewrite*| (= $x78 $x78)) $x78) (or $x707 $x373))))
+(let ((@x577 (|unit-resolution| (|def-axiom| (or (or $x384 (not $x705)) (not $x384))) (|unit-resolution| @x575 @x573 $x373) (not $x384))))
+(let ((@x534 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not (<= ?x299 0)) $x384)) @x577 (not (<= ?x299 0)))))
+(let ((@x565 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x299 0)) (<= ?x299 0))) @x534 (not (= ?x299 0)))))
+(let (($x579 (= ?x299 0)))
+(let (($x581 (or $x614 $x579)))
+(let (($x760 (forall ((?v0 Int) )(!(let (($x43 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x178 (>= ?v0 0)))
+(or $x178 $x43))) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x192 (forall ((?v0 Int) )(let (($x43 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x178 (>= ?v0 0)))
+(or $x178 $x43))))
+))
+(let (($x43 (= (|$of_nat| (|$nat| ?0)) 0)))
+(let (($x178 (>= ?0 0)))
+(let (($x189 (or $x178 $x43)))
+(let (($x125 (forall ((?v0 Int) )(let (($x43 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(let (($x36 (<= 0 ?v0)))
+(or $x36 $x43))))
+))
+(let ((@x191 (monotonicity (rewrite (= (<= 0 ?0) $x178)) (= (or (<= 0 ?0) $x43) $x189))))
+(let (($x45 (forall ((?v0 Int) )(let (($x43 (= (|$of_nat| (|$nat| ?v0)) 0)))
+(=> (< ?v0 0) $x43)))
+))
+(let ((@x122 (rewrite (= (=> (not (<= 0 ?0)) $x43) (or (<= 0 ?0) $x43)))))
+(let ((@x115 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (not (<= 0 ?0)) (not (<= 0 ?0))))))
+(let ((@x116 (trans (rewrite (= (< ?0 0) (not (<= 0 ?0)))) @x115 (= (< ?0 0) (not (<= 0 ?0))))))
+(let ((@x119 (monotonicity @x116 (= (=> (< ?0 0) $x43) (=> (not (<= 0 ?0)) $x43)))))
+(let ((@x124 (trans @x119 @x122 (= (=> (< ?0 0) $x43) (or (<= 0 ?0) $x43)))))
+(let ((@x143 (mp (mp (asserted $x45) (|quant-intro| @x124 (= $x45 $x125)) $x125) (|rewrite*| (= $x125 $x125)) $x125)))
+(let ((@x275 (|mp~| (mp @x143 (|quant-intro| @x191 (= $x125 $x192)) $x192) (|nnf-pos| (refl (|~| $x189 $x189)) (|~| $x192 $x192)) $x192)))
+(let (($x584 (not $x760)))
+(let (($x585 (or $x584 $x614 $x579)))
+(let ((@x583 (monotonicity (rewrite (= (>= ?x72 0) $x614)) (= (or (>= ?x72 0) $x579) $x581))))
+(let ((@x559 (monotonicity @x583 (= (or $x584 (or (>= ?x72 0) $x579)) (or $x584 $x581)))))
+(let ((@x568 (trans @x559 (rewrite (= (or $x584 $x581) $x585)) (= (or $x584 (or (>= ?x72 0) $x579)) $x585))))
+(let ((@x533 (|unit-resolution| (mp ((_ |quant-inst| (+ 1 ?x24)) (or $x584 (or (>= ?x72 0) $x579))) @x568 $x585) (mp @x275 (|quant-intro| (refl (= $x189 $x189)) (= $x192 $x760)) $x760) $x581)))
+(let (($x617 (not $x614)))
+(let (($x604 (or $x617 $x601)))
+(let (($x754 (forall ((?v0 Int) )(!(let (($x39 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x39)) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x185 (forall ((?v0 Int) )(let (($x39 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x39)))
+))
+(let (($x39 (= (|$of_nat| (|$nat| ?0)) ?0)))
+(let (($x182 (or (not $x178) $x39)))
+(let (($x108 (forall ((?v0 Int) )(let (($x39 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x36 (<= 0 ?v0)))
+(let (($x103 (not $x36)))
+(or $x103 $x39)))))
+))
+(let ((@x181 (monotonicity (rewrite (= (<= 0 ?0) $x178)) (= (not (<= 0 ?0)) (not $x178)))))
+(let ((@x187 (|quant-intro| (monotonicity @x181 (= (or (not (<= 0 ?0)) $x39) $x182)) (= $x108 $x185))))
+(let (($x41 (forall ((?v0 Int) )(let (($x39 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x36 (<= 0 ?v0)))
+(=> $x36 $x39))))
+))
+(let ((@x106 (rewrite (= (=> (<= 0 ?0) $x39) (or (not (<= 0 ?0)) $x39)))))
+(let ((@x102 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (=> (<= 0 ?0) $x39) (=> (<= 0 ?0) $x39)))))
+(let ((@x107 (trans @x102 @x106 (= (=> (<= 0 ?0) $x39) (or (not (<= 0 ?0)) $x39)))))
+(let ((@x140 (mp (mp (asserted $x41) (|quant-intro| @x107 (= $x41 $x108)) $x108) (|rewrite*| (= $x108 $x108)) $x108)))
+(let ((@x270 (|mp~| (mp @x140 @x187 $x185) (|nnf-pos| (refl (|~| $x182 $x182)) (|~| $x185 $x185)) $x185)))
+(let (($x607 (not $x754)))
+(let (($x608 (or $x607 $x617 $x601)))
+(let (($x609 (or $x607 (or (not (>= ?x72 0)) (= ?x299 ?x72)))))
+(let ((@x598 (monotonicity (rewrite (= (>= ?x72 0) $x614)) (= (not (>= ?x72 0)) $x617))))
+(let ((@x606 (monotonicity @x598 (rewrite (= (= ?x299 ?x72) $x601)) (= (or (not (>= ?x72 0)) (= ?x299 ?x72)) $x604))))
+(let ((@x594 (trans (monotonicity @x606 (= $x609 (or $x607 $x604))) (rewrite (= (or $x607 $x604) $x608)) (= $x609 $x608))))
+(let ((@x498 (|unit-resolution| (mp ((_ |quant-inst| (+ 1 ?x24)) $x609) @x594 $x608) (mp @x270 (|quant-intro| (refl (= $x182 $x182)) (= $x185 $x754)) $x754) $x604)))
+(let ((@x542 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x601) (>= (+ ?x24 (* (~ 1) ?x299)) (~ 1)))) (|unit-resolution| @x498 (|unit-resolution| @x533 @x565 $x614) $x601) (>= (+ ?x24 (* (~ 1) ?x299)) (~ 1)))))
+(let ((@x201 (monotonicity (rewrite (= $x28 (>= ?x23 1))) (= (not $x28) (not (>= ?x23 1))))))
+(let (($x97 (not $x28)))
+(let ((@x152 (mp (mp (|not-or-elim| @x95 $x97) (|rewrite*| (= $x97 $x97)) $x97) (monotonicity (rewrite (= $x28 $x28)) (= $x97 $x97)) $x97)))
+(let ((@x153 (mp @x152 (monotonicity (rewrite (= $x28 $x28)) (= $x97 $x97)) $x97)))
+((_ |th-lemma| arith farkas -4 1 1) (mp @x153 @x201 (not (>= ?x23 1))) @x577 @x542 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+0d59d2e2a5050359aa00d734af5ae9b8e43235b6 20 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x17 (= |$x| |$a|)))
+(let ((?x14 (|$fst| (|$pair| |$x| |$y|))))
+(let (($x16 (= ?x14 |$a|)))
+(let ((@x28 (monotonicity (rewrite (= (=> $x16 $x17) (or (not $x16) $x17))) (= (not (=> $x16 $x17)) (not (or (not $x16) $x17))))))
+(let ((@x30 (|not-or-elim| (mp (asserted (not (=> $x16 $x17))) @x28 (not (or (not $x16) $x17))) $x16)))
+(let (($x484 (forall ((?v0 |$A|) (?v1 |$B|) )(!(= (|$fst| (|$pair| ?v0 ?v1)) ?v0) :pattern ( (|$pair| ?v0 ?v1) )))
+))
+(let (($x10 (forall ((?v0 |$A|) (?v1 |$B|) )(= (|$fst| (|$pair| ?v0 ?v1)) ?v0))
+))
+(let (($x9 (= (|$fst| (|$pair| ?1 ?0)) ?1)))
+(let ((@x61 (|mp~| (mp (asserted $x10) (|rewrite*| (= $x10 $x10)) $x10) (|nnf-pos| (refl (|~| $x9 $x9)) (|~| $x10 $x10)) $x10)))
+(let ((@x153 (|unit-resolution| ((_ |quant-inst| |$x| |$y|) (or (not $x484) (= ?x14 |$x|))) (mp @x61 (|quant-intro| (refl (= $x9 $x9)) (= $x10 $x484)) $x484) (= ?x14 |$x|))))
+(let ((@x156 (trans (symm @x153 (= |$x| ?x14)) (mp @x30 (|rewrite*| (= $x16 $x16)) $x16) $x17)))
+(let (($x31 (not $x17)))
+(let ((@x32 (|not-or-elim| (mp (asserted (not (=> $x16 $x17))) @x28 (not (or (not $x16) $x17))) $x31)))
+(|unit-resolution| (mp @x32 (|rewrite*| (= $x31 $x31)) $x31) @x156 false))))))))))))))))
+
+9499a084f782f96b329870eecf982225513179cd 32 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x33 (|$snda| |$p2|)))
+(let ((?x32 (|$fsta| |$p1|)))
+(let (($x34 (= ?x32 ?x33)))
+(let (($x30 (= |$p2| (|$pair| |$y| |$x|))))
+(let (($x27 (= |$p1| (|$paira| |$x| |$y|))))
+(let (($x31 (and $x27 $x30)))
+(let ((@x48 (monotonicity (rewrite (= (=> $x31 $x34) (or (not $x31) $x34))) (= (not (=> $x31 $x34)) (not (or (not $x31) $x34))))))
+(let ((@x50 (|not-or-elim| (mp (asserted (not (=> $x31 $x34))) @x48 (not (or (not $x31) $x34))) $x31)))
+(let ((@x531 (monotonicity (mp (|and-elim| @x50 $x30) (|rewrite*| (= $x30 $x30)) $x30) (= ?x33 (|$snda| (|$pair| |$y| |$x|))))))
+(let (($x552 (forall ((?v0 |$B|) (?v1 |$A|) )(!(= (|$snda| (|$pair| ?v0 ?v1)) ?v1) :pattern ( (|$pair| ?v0 ?v1) )))
+))
+(let (($x22 (forall ((?v0 |$B|) (?v1 |$A|) )(= (|$snda| (|$pair| ?v0 ?v1)) ?v1))
+))
+(let (($x21 (= (|$snda| (|$pair| ?1 ?0)) ?0)))
+(let ((@x114 (|mp~| (mp (asserted $x22) (|rewrite*| (= $x22 $x22)) $x22) (|nnf-pos| (refl (|~| $x21 $x21)) (|~| $x22 $x22)) $x22)))
+(let ((@x520 (|unit-resolution| ((_ |quant-inst| |$y| |$x|) (or (not $x552) (= (|$snda| (|$pair| |$y| |$x|)) |$x|))) (mp @x114 (|quant-intro| (refl (= $x21 $x21)) (= $x22 $x552)) $x552) (= (|$snda| (|$pair| |$y| |$x|)) |$x|))))
+(let (($x540 (forall ((?v0 |$A|) (?v1 |$B|) )(!(= (|$fsta| (|$paira| ?v0 ?v1)) ?v0) :pattern ( (|$paira| ?v0 ?v1) )))
+))
+(let (($x16 (forall ((?v0 |$A|) (?v1 |$B|) )(= (|$fsta| (|$paira| ?v0 ?v1)) ?v0))
+))
+(let (($x15 (= (|$fsta| (|$paira| ?1 ?0)) ?1)))
+(let ((@x106 (|mp~| (mp (asserted $x16) (|rewrite*| (= $x16 $x16)) $x16) (|nnf-pos| (refl (|~| $x15 $x15)) (|~| $x16 $x16)) $x16)))
+(let ((@x192 (|unit-resolution| ((_ |quant-inst| |$x| |$y|) (or (not $x540) (= (|$fsta| (|$paira| |$x| |$y|)) |$x|))) (mp @x106 (|quant-intro| (refl (= $x15 $x15)) (= $x16 $x540)) $x540) (= (|$fsta| (|$paira| |$x| |$y|)) |$x|))))
+(let ((@x529 (monotonicity (mp (|and-elim| @x50 $x27) (|rewrite*| (= $x27 $x27)) $x27) (= ?x32 (|$fsta| (|$paira| |$x| |$y|))))))
+(let ((@x507 (trans (trans @x529 @x192 (= ?x32 |$x|)) (symm @x520 (= |$x| (|$snda| (|$pair| |$y| |$x|)))) (= ?x32 (|$snda| (|$pair| |$y| |$x|))))))
+(let (($x53 (not $x34)))
+(let ((@x54 (|not-or-elim| (mp (asserted (not (=> $x31 $x34))) @x48 (not (or (not $x31) $x34))) $x53)))
+(|unit-resolution| (mp @x54 (|rewrite*| (= $x53 $x53)) $x53) (trans @x507 (symm @x531 (= (|$snda| (|$pair| |$y| |$x|)) ?x33)) $x34) false))))))))))))))))))))))))))
+
+59c048bf2a7d60122a476dc3f13a0fb43ee841cc 42 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x41 (|$fun_appb| (|$fun_upd| (|$fun_appa| (|$fun_appb| (|$fun_upd| |$f|) |$i1|) |$v1|)) |$i2|)))
+(let ((?x44 (|$fun_app| (|$fun_appa| ?x41 |$v2|) |$i|)))
+(let (($x46 (= ?x44 (|$fun_app| |$f| |$i|))))
+(let ((?x39 (|$fun_appa| (|$fun_appb| (|$fun_upd| |$f|) |$i1|) |$v1|)))
+(let ((?x209 (|$fun_app| ?x39 |$i|)))
+(let (($x217 (= ?x209 (|$fun_app| |$f| |$i|))))
+(let (($x29 (= |$i| |$i1|)))
+(let (($x496 (ite $x29 (= ?x209 |$v1|) $x217)))
+(let (($x543 (forall ((?v0 |$A_b_fun|) (?v1 |$A|) (?v2 |$B|) (?v3 |$A|) )(!(let ((?x21 (|$fun_app| (|$fun_appa| (|$fun_appb| (|$fun_upd| ?v0) ?v1) ?v2) ?v3)))
+(ite (= ?v3 ?v1) (= ?x21 ?v2) (= ?x21 (|$fun_app| ?v0 ?v3)))) :pattern ( (|$fun_app| (|$fun_appa| (|$fun_appb| (|$fun_upd| ?v0) ?v1) ?v2) ?v3) )))
+))
+(let (($x114 (forall ((?v0 |$A_b_fun|) (?v1 |$A|) (?v2 |$B|) (?v3 |$A|) )(let ((?x21 (|$fun_app| (|$fun_appa| (|$fun_appb| (|$fun_upd| ?v0) ?v1) ?v2) ?v3)))
+(ite (= ?v3 ?v1) (= ?x21 ?v2) (= ?x21 (|$fun_app| ?v0 ?v3)))))
+))
+(let ((?x21 (|$fun_app| (|$fun_appa| (|$fun_appb| (|$fun_upd| ?3) ?2) ?1) ?0)))
+(let (($x111 (ite (= ?0 ?2) (= ?x21 ?1) (= ?x21 (|$fun_app| ?3 ?0)))))
+(let (($x26 (forall ((?v0 |$A_b_fun|) (?v1 |$A|) (?v2 |$B|) (?v3 |$A|) )(let ((?x21 (|$fun_app| (|$fun_appa| (|$fun_appb| (|$fun_upd| ?v0) ?v1) ?v2) ?v3)))
+(= ?x21 (ite (= ?v3 ?v1) ?v2 (|$fun_app| ?v0 ?v3)))))
+))
+(let ((@x113 (rewrite (= (= ?x21 (ite (= ?0 ?2) ?1 (|$fun_app| ?3 ?0))) $x111))))
+(let (($x25 (= ?x21 (ite (= ?0 ?2) ?1 (|$fun_app| ?3 ?0)))))
+(let ((@x100 (|mp~| (mp (asserted $x26) (|rewrite*| (= $x26 $x26)) $x26) (|nnf-pos| (refl (|~| $x25 $x25)) (|~| $x26 $x26)) $x26)))
+(let ((@x548 (mp (mp @x100 (|quant-intro| @x113 (= $x26 $x114)) $x114) (|quant-intro| (refl (= $x111 $x111)) (= $x114 $x543)) $x543)))
+(let (($x30 (not $x29)))
+(let (($x32 (= |$i| |$i2|)))
+(let (($x33 (not $x32)))
+(let (($x34 (and $x30 $x33)))
+(let ((@x58 (monotonicity (rewrite (= (=> $x34 $x46) (or (not $x34) $x46))) (= (not (=> $x34 $x46)) (not (or (not $x34) $x46))))))
+(let ((@x60 (|not-or-elim| (mp (asserted (not (=> $x34 $x46))) @x58 (not (or (not $x34) $x46))) $x34)))
+(let ((@x333 (|unit-resolution| (|def-axiom| (or (not $x496) $x29 $x217)) (mp (|and-elim| @x60 $x30) (|rewrite*| (= $x30 $x30)) $x30) (or (not $x496) $x217))))
+(let ((@x334 (|unit-resolution| @x333 (|unit-resolution| ((_ |quant-inst| |$f| |$i1| |$v1| |$i|) (or (not $x543) $x496)) @x548 $x496) $x217)))
+(let (($x212 (= ?x44 ?x209)))
+(let (($x191 (ite $x32 (= ?x44 |$v2|) $x212)))
+(let ((@x478 (|unit-resolution| (|def-axiom| (or (not $x191) $x32 $x212)) (mp (|and-elim| @x60 $x33) (|rewrite*| (= $x33 $x33)) $x33) (or (not $x191) $x212))))
+(let ((@x479 (|unit-resolution| @x478 (|unit-resolution| ((_ |quant-inst| (|$fun_appa| (|$fun_appb| (|$fun_upd| |$f|) |$i1|) |$v1|) |$i2| |$v2| |$i|) (or (not $x543) $x191)) @x548 $x191) $x212)))
+(let (($x63 (not $x46)))
+(let ((@x64 (|not-or-elim| (mp (asserted (not (=> $x34 $x46))) @x58 (not (or (not $x34) $x46))) $x63)))
+(|unit-resolution| (mp @x64 (|rewrite*| (= $x63 $x63)) $x63) (trans @x479 @x334 $x46) false))))))))))))))))))))))))))))))))))
+
+cd391af480e0c3d271f0cc3c384ce7ec49007dc1 19 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x8 (|$fun_app| |$g| |$x|)))
+(let (($x7 (|$f| |$g| |$x|)))
+(let (($x33 (not $x7)))
+(let (($x34 (= $x33 $x8)))
+(let ((@x49 (monotonicity (rewrite (= (= $x8 true) $x8)) (= (not (= $x8 true)) (not $x8)))))
+(let (($x10 (= $x7 (and $x8 true))))
+(let (($x15 (not (or $x10 (or (= $x7 true) (= $x8 true))))))
+(let ((@x20 (|not-or-elim| (asserted $x15) (not (or (= $x7 true) (= $x8 true))))))
+(let ((@x54 (|iff-false| (mp (|not-or-elim| @x20 (not (= $x8 true))) @x49 (not $x8)) (= $x8 false))))
+(let ((@x43 (monotonicity (rewrite (= (= $x7 true) $x7)) (= (not (= $x7 true)) $x33))))
+(let ((@x52 (|iff-true| (mp (|not-or-elim| @x20 (not (= $x7 true))) @x43 $x33) (= $x33 true))))
+(let ((@x61 (trans (monotonicity @x52 @x54 (= $x34 (= true false))) (rewrite (= (= true false) false)) (= $x34 false))))
+(let ((@x29 (monotonicity (rewrite (= (and $x8 true) $x8)) (= $x10 (= $x7 $x8)))))
+(let ((@x38 (trans (monotonicity @x29 (= (not $x10) (not (= $x7 $x8)))) (rewrite (= (not (= $x7 $x8)) $x34)) (= (not $x10) $x34))))
+(mp (mp (|not-or-elim| (asserted $x15) (not $x10)) @x38 $x34) @x61 false)))))))))))))))))
+
+0f8c0159c699f2cb74fa9820bbc085e92721cc1f 12 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x7 (exists ((?v0 |$A|) )(|$g| ?v0))
+))
+(let (($x10 (=> (|$f| (ite $x7 true false)) true)))
+(let (($x11 (not $x10)))
+(let ((@x17 (monotonicity (rewrite (= (ite $x7 true false) $x7)) (= (|$f| (ite $x7 true false)) (|$f| $x7)))))
+(let ((@x24 (trans (monotonicity @x17 (= $x10 (=> (|$f| $x7) true))) (rewrite (= (=> (|$f| $x7) true) true)) (= $x10 true))))
+(let ((@x31 (trans (monotonicity @x24 (= $x11 (not true))) (rewrite (= (not true) false)) (= $x11 false))))
+(mp (asserted $x11) @x31 false)))))))))
+
+95cc63a79c38eed3aaee760e83b303db4eacd1c3 12 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x7 (forall ((?v0 |$A|) )(|$g| ?v0))
+))
+(let (($x10 (=> (|$f| (ite $x7 true false)) true)))
+(let (($x11 (not $x10)))
+(let ((@x17 (monotonicity (rewrite (= (ite $x7 true false) $x7)) (= (|$f| (ite $x7 true false)) (|$f| $x7)))))
+(let ((@x24 (trans (monotonicity @x17 (= $x10 (=> (|$f| $x7) true))) (rewrite (= (=> (|$f| $x7) true) true)) (= $x10 true))))
+(let ((@x31 (trans (monotonicity @x24 (= $x11 (not true))) (rewrite (= (not true) false)) (= $x11 false))))
+(mp (asserted $x11) @x31 false)))))))))
+
+1dea09df2cf0a146c1ac7bb23a8e5ccad1c8522d 43 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x19 (|$fun_app| (|$fun_appa| |$le| 3) 42)))
+(let (($x33 (not $x19)))
+(let (($x15 (= |$le| |$uu|)))
+(let ((@x30 (monotonicity (rewrite (= (=> $x15 $x19) (or (not $x15) $x19))) (= (not (=> $x15 $x19)) (not (or (not $x15) $x19))))))
+(let ((@x32 (|not-or-elim| (mp (asserted (not (=> $x15 $x19))) @x30 (not (or (not $x15) $x19))) $x15)))
+(let ((@x487 (monotonicity (symm (mp @x32 (|rewrite*| (= $x15 $x15)) $x15) (= |$uu| |$le|)) (= (|$fun_appa| |$uu| 3) (|$fun_appa| |$le| 3)))))
+(let ((@x489 (symm (monotonicity @x487 (= (|$fun_app| (|$fun_appa| |$uu| 3) 42) $x19)) (= $x19 (|$fun_app| (|$fun_appa| |$uu| 3) 42)))))
+(let ((@x477 (monotonicity @x489 (= $x33 (not (|$fun_app| (|$fun_appa| |$uu| 3) 42))))))
+(let ((@x34 (|not-or-elim| (mp (asserted (not (=> $x15 $x19))) @x30 (not (or (not $x15) $x19))) $x33)))
+(let ((@x195 (mp (mp @x34 (|rewrite*| (= $x33 $x33)) $x33) @x477 (not (|$fun_app| (|$fun_appa| |$uu| 3) 42)))))
+(let (($x174 (|$fun_app| (|$fun_appa| |$uu| 3) 42)))
+(let (($x78 (forall ((?v0 Int) (?v1 Int) )(!(let (($x9 (|$fun_app| (|$fun_appa| |$uu| ?v0) ?v1)))
+(= $x9 (<= (+ ?v0 (* (~ 1) ?v1)) 0))) :pattern ( (|$fun_app| (|$fun_appa| |$uu| ?v0) ?v1) )))
+))
+(let (($x9 (|$fun_app| (|$fun_appa| |$uu| ?1) ?0)))
+(let (($x75 (= $x9 (<= (+ ?1 (* (~ 1) ?0)) 0))))
+(let (($x13 (forall ((?v0 Int) (?v1 Int) )(!(let (($x10 (<= ?v0 ?v1)))
+(let (($x9 (|$fun_app| (|$fun_appa| |$uu| ?v0) ?v1)))
+(= $x9 $x10))) :pattern ( (|$fun_app| (|$fun_appa| |$uu| ?v0) ?v1) )))
+))
+(let (($x66 (forall ((?v0 Int) (?v1 Int) )(!(let (($x10 (<= ?v0 ?v1)))
+(let (($x9 (|$fun_app| (|$fun_appa| |$uu| ?v0) ?v1)))
+(= $x9 $x10))) :pattern ( (|$fun_app| (|$fun_appa| |$uu| ?v0) ?v1) )))
+))
+(let ((@x77 (monotonicity (rewrite (= (<= ?1 ?0) (<= (+ ?1 (* (~ 1) ?0)) 0))) (= (= $x9 (<= ?1 ?0)) $x75))))
+(let ((@x68 (|quant-intro| (rewrite (= (= $x9 (<= ?1 ?0)) (= $x9 (<= ?1 ?0)))) (= $x13 $x66))))
+(let ((@x83 (mp (mp (asserted $x13) (|rewrite*| (= $x13 $x13)) $x13) (trans @x68 (|quant-intro| @x77 (= $x66 $x78)) (= $x13 $x78)) $x78)))
+(let (($x140 (or (not $x78) $x174)))
+(let (($x143 (= (or (not $x78) (= $x174 (<= (+ 3 (* (~ 1) 42)) 0))) $x140)))
+(let ((?x176 (+ 3 (* (~ 1) 42))))
+(let (($x166 (<= ?x176 0)))
+(let (($x177 (= $x174 $x166)))
+(let ((@x495 (monotonicity (rewrite (= (* (~ 1) 42) (~ 42))) (= ?x176 (+ 3 (~ 42))))))
+(let ((@x498 (monotonicity (trans @x495 (rewrite (= (+ 3 (~ 42)) (~ 39))) (= ?x176 (~ 39))) (= $x166 (<= (~ 39) 0)))))
+(let ((@x502 (trans @x498 (rewrite (= (<= (~ 39) 0) true)) (= $x166 true))))
+(let ((@x137 (trans (monotonicity @x502 (= $x177 (= $x174 true))) (rewrite (= (= $x174 true) $x174)) (= $x177 $x174))))
+(let ((@x483 (mp ((_ |quant-inst| 3 42) (or (not $x78) $x177)) (trans (monotonicity @x137 $x143) (rewrite (= $x140 $x140)) $x143) $x140)))
+(let ((@x484 (|unit-resolution| @x483 (|mp~| @x83 (|nnf-pos| (refl (|~| $x75 $x75)) (|~| $x78 $x78)) $x78) $x174)))
+(|unit-resolution| @x484 @x195 false)))))))))))))))))))))))))))))))))
+
+1e6464a8407a2a74a0364e3a44847cf73870c006 143 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x37 (|$nat| 2)))
+(let ((?x38 (|$cons| ?x37 |$nil|)))
+(let ((?x32 (|$nat| 1)))
+(let ((?x39 (|$cons| ?x32 ?x38)))
+(let ((?x33 (|$cons| ?x32 |$nil|)))
+(let ((?x285 (|$map| |$uu| ?x33)))
+(let ((?x31 (|$nat| 0)))
+(let ((?x284 (|$fun_app| |$uu| ?x31)))
+(let ((?x286 (|$cons| ?x284 ?x285)))
+(let (($x619 (forall ((?v0 |$Nat_nat_fun|) (?v1 |$Nat|) (?v2 |$Nat_list|) )(!(= (|$map| ?v0 (|$cons| ?v1 ?v2)) (|$cons| (|$fun_app| ?v0 ?v1) (|$map| ?v0 ?v2))) :pattern ( (|$map| ?v0 (|$cons| ?v1 ?v2)) ) :pattern ( (|$cons| (|$fun_app| ?v0 ?v1) (|$map| ?v0 ?v2)) )))
+))
+(let (($x29 (forall ((?v0 |$Nat_nat_fun|) (?v1 |$Nat|) (?v2 |$Nat_list|) )(= (|$map| ?v0 (|$cons| ?v1 ?v2)) (|$cons| (|$fun_app| ?v0 ?v1) (|$map| ?v0 ?v2))))
+))
+(let (($x28 (= (|$map| ?2 (|$cons| ?1 ?0)) (|$cons| (|$fun_app| ?2 ?1) (|$map| ?2 ?0)))))
+(let ((@x179 (|mp~| (mp (asserted $x29) (|rewrite*| (= $x29 $x29)) $x29) (|nnf-pos| (refl (|~| $x28 $x28)) (|~| $x29 $x29)) $x29)))
+(let (($x545 (or (not $x619) (= ?x285 (|$cons| (|$fun_app| |$uu| ?x32) (|$map| |$uu| |$nil|))))))
+(let ((@x378 (|unit-resolution| ((_ |quant-inst| |$uu| (|$nat| 1) |$nil|) $x545) (mp @x179 (|quant-intro| (refl (= $x28 $x28)) (= $x29 $x619)) $x619) (= ?x285 (|$cons| (|$fun_app| |$uu| ?x32) (|$map| |$uu| |$nil|))))))
+(let ((@x335 (symm @x378 (= (|$cons| (|$fun_app| |$uu| ?x32) (|$map| |$uu| |$nil|)) ?x285))))
+(let (($x611 (forall ((?v0 |$Nat_nat_fun|) )(!(= (|$map| ?v0 |$nil|) |$nil|) :pattern ( (|$map| ?v0 |$nil|) )))
+))
+(let (($x19 (forall ((?v0 |$Nat_nat_fun|) )(= (|$map| ?v0 |$nil|) |$nil|))
+))
+(let ((@x613 (refl (= (= (|$map| ?0 |$nil|) |$nil|) (= (|$map| ?0 |$nil|) |$nil|)))))
+(let ((@x171 (refl (|~| (= (|$map| ?0 |$nil|) |$nil|) (= (|$map| ?0 |$nil|) |$nil|)))))
+(let ((@x170 (|mp~| (mp (asserted $x19) (|rewrite*| (= $x19 $x19)) $x19) (|nnf-pos| @x171 (|~| $x19 $x19)) $x19)))
+(let ((@x379 (|unit-resolution| ((_ |quant-inst| |$uu|) (or (not $x611) (= (|$map| |$uu| |$nil|) |$nil|))) (mp @x170 (|quant-intro| @x613 (= $x19 $x611)) $x611) (= (|$map| |$uu| |$nil|) |$nil|))))
+(let (($x72 (forall ((?v0 |$Nat|) )(!(let ((?x7 (|$fun_app| |$uu| ?v0)))
+(= ?x7 (|$nat| (+ 1 (|$of_nat| ?v0))))) :pattern ( (|$fun_app| |$uu| ?v0) )))
+))
+(let ((?x7 (|$fun_app| |$uu| ?0)))
+(let (($x69 (= ?x7 (|$nat| (+ 1 (|$of_nat| ?0))))))
+(let (($x14 (forall ((?v0 |$Nat|) )(!(let ((?x7 (|$fun_app| |$uu| ?v0)))
+(= ?x7 (|$nat| (+ (|$of_nat| ?v0) 1)))) :pattern ( (|$fun_app| |$uu| ?v0) )))
+))
+(let ((@x68 (monotonicity (rewrite (= (+ (|$of_nat| ?0) 1) (+ 1 (|$of_nat| ?0)))) (= (|$nat| (+ (|$of_nat| ?0) 1)) (|$nat| (+ 1 (|$of_nat| ?0)))))))
+(let ((@x71 (monotonicity @x68 (= (= ?x7 (|$nat| (+ (|$of_nat| ?0) 1))) $x69))))
+(let ((@x108 (mp (mp (asserted $x14) (|quant-intro| @x71 (= $x14 $x72)) $x72) (|rewrite*| (= $x72 $x72)) $x72)))
+(let (($x515 (or (not $x72) (= (|$fun_app| |$uu| ?x32) (|$nat| (+ 1 (|$of_nat| ?x32)))))))
+(let ((@x225 (|unit-resolution| ((_ |quant-inst| (|$nat| 1)) $x515) (|mp~| @x108 (|nnf-pos| (refl (|~| $x69 $x69)) (|~| $x72 $x72)) $x72) (= (|$fun_app| |$uu| ?x32) (|$nat| (+ 1 (|$of_nat| ?x32)))))))
+(let ((?x302 (|$of_nat| ?x32)))
+(let ((?x537 (+ 1 ?x302)))
+(let ((?x538 (|$nat| ?x537)))
+(let (($x626 (forall ((?v0 |$Nat|) )(!(= (|$nat| (|$of_nat| ?v0)) ?v0) :pattern ( (|$of_nat| ?v0) )))
+))
+(let (($x44 (forall ((?v0 |$Nat|) )(= (|$nat| (|$of_nat| ?v0)) ?v0))
+))
+(let ((@x631 (trans (rewrite (= $x44 $x626)) (rewrite (= $x626 $x626)) (= $x44 $x626))))
+(let ((@x180 (refl (|~| (= (|$nat| (|$of_nat| ?0)) ?0) (= (|$nat| (|$of_nat| ?0)) ?0)))))
+(let ((@x184 (|mp~| (mp (asserted $x44) (|rewrite*| (= $x44 $x44)) $x44) (|nnf-pos| @x180 (|~| $x44 $x44)) $x44)))
+(let ((@x384 (|unit-resolution| ((_ |quant-inst| (|$nat| ?x537)) (or (not $x626) (= (|$nat| (|$of_nat| ?x538)) ?x538))) (mp @x184 @x631 $x626) (= (|$nat| (|$of_nat| ?x538)) ?x538))))
+(let ((?x431 (+ ?x302 (* (~ 1) (|$of_nat| ?x538)))))
+(let (($x399 (= ?x431 (~ 1))))
+(let (($x469 (>= ?x302 (~ 1))))
+(let (($x463 (>= ?x302 1)))
+(let (($x303 (= ?x302 1)))
+(let (($x634 (forall ((?v0 Int) )(!(let (($x49 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x49)) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x155 (forall ((?v0 Int) )(let (($x49 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x49)))
+))
+(let (($x49 (= (|$of_nat| (|$nat| ?0)) ?0)))
+(let (($x152 (or (not (>= ?0 0)) $x49)))
+(let (($x85 (forall ((?v0 Int) )(let (($x49 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (<= 0 ?v0)) $x49)))
+))
+(let ((@x151 (monotonicity (rewrite (= (<= 0 ?0) (>= ?0 0))) (= (not (<= 0 ?0)) (not (>= ?0 0))))))
+(let ((@x157 (|quant-intro| (monotonicity @x151 (= (or (not (<= 0 ?0)) $x49) $x152)) (= $x85 $x155))))
+(let (($x51 (forall ((?v0 Int) )(let (($x49 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x46 (<= 0 ?v0)))
+(=> $x46 $x49))))
+))
+(let ((@x83 (rewrite (= (=> (<= 0 ?0) $x49) (or (not (<= 0 ?0)) $x49)))))
+(let ((@x79 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (=> (<= 0 ?0) $x49) (=> (<= 0 ?0) $x49)))))
+(let ((@x84 (trans @x79 @x83 (= (=> (<= 0 ?0) $x49) (or (not (<= 0 ?0)) $x49)))))
+(let ((@x123 (mp (mp (asserted $x51) (|quant-intro| @x84 (= $x51 $x85)) $x85) (|rewrite*| (= $x85 $x85)) $x85)))
+(let ((@x189 (|mp~| (mp @x123 @x157 $x155) (|nnf-pos| (refl (|~| $x152 $x152)) (|~| $x155 $x155)) $x155)))
+(let ((@x639 (mp @x189 (|quant-intro| (refl (= $x152 $x152)) (= $x155 $x634)) $x634)))
+(let (($x248 (not $x634)))
+(let (($x292 (or $x248 $x303)))
+(let ((@x578 (monotonicity (rewrite (= (>= 1 0) true)) (= (not (>= 1 0)) (not true)))))
+(let ((@x310 (trans @x578 (rewrite (= (not true) false)) (= (not (>= 1 0)) false))))
+(let ((@x581 (monotonicity @x310 (= (or (not (>= 1 0)) $x303) (or false $x303)))))
+(let ((@x291 (trans @x581 (rewrite (= (or false $x303) $x303)) (= (or (not (>= 1 0)) $x303) $x303))))
+(let ((@x573 (monotonicity @x291 (= (or $x248 (or (not (>= 1 0)) $x303)) $x292))))
+(let ((@x576 (trans @x573 (rewrite (= $x292 $x292)) (= (or $x248 (or (not (>= 1 0)) $x303)) $x292))))
+(let ((@x562 (mp ((_ |quant-inst| 1) (or $x248 (or (not (>= 1 0)) $x303))) @x576 $x292)))
+(let ((@x372 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x303) $x463)) (|unit-resolution| @x562 @x639 $x303) $x463)))
+(let (($x472 (not $x469)))
+(let (($x430 (or $x248 $x472 $x399)))
+(let (($x432 (or $x248 (or (not (>= ?x537 0)) (= (|$of_nat| ?x538) ?x537)))))
+(let (($x461 (= (or (not (>= ?x537 0)) (= (|$of_nat| ?x538) ?x537)) (or $x472 $x399))))
+(let ((@x474 (monotonicity (rewrite (= (>= ?x537 0) $x469)) (= (not (>= ?x537 0)) $x472))))
+(let ((@x436 (monotonicity (monotonicity @x474 (rewrite (= (= (|$of_nat| ?x538) ?x537) $x399)) $x461) (= $x432 (or $x248 (or $x472 $x399))))))
+(let ((@x441 (trans @x436 (rewrite (= (or $x248 (or $x472 $x399)) $x430)) (= $x432 $x430))))
+(let ((@x364 (|unit-resolution| (mp ((_ |quant-inst| (+ 1 ?x302)) $x432) @x441 $x430) @x639 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x463) $x469)) @x372 $x469) $x399)))
+(let ((@x370 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x399) (<= ?x431 (~ 1)))) @x364 (<= ?x431 (~ 1)))))
+(let ((@x351 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x399) (>= ?x431 (~ 1)))) @x364 (>= ?x431 (~ 1)))))
+(let ((@x356 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x303) (<= ?x302 1))) (|unit-resolution| @x562 @x639 $x303) (<= ?x302 1))))
+(let ((@x363 (symm ((_ |th-lemma| arith eq-propagate -1 -1 1 1) @x372 @x356 @x351 @x370 (= (|$of_nat| ?x538) 2)) (= 2 (|$of_nat| ?x538)))))
+(let ((@x348 (trans (monotonicity @x363 (= ?x37 (|$nat| (|$of_nat| ?x538)))) @x384 (= ?x37 ?x538))))
+(let ((@x350 (trans @x348 (symm @x225 (= ?x538 (|$fun_app| |$uu| ?x32))) (= ?x37 (|$fun_app| |$uu| ?x32)))))
+(let ((@x333 (monotonicity @x350 (symm @x379 (= |$nil| (|$map| |$uu| |$nil|))) (= ?x38 (|$cons| (|$fun_app| |$uu| ?x32) (|$map| |$uu| |$nil|))))))
+(let ((@x338 (|unit-resolution| ((_ |quant-inst| (|$nat| 0)) (or (not $x72) (= ?x284 (|$nat| (+ 1 (|$of_nat| ?x31)))))) (|mp~| @x108 (|nnf-pos| (refl (|~| $x69 $x69)) (|~| $x72 $x72)) $x72) (= ?x284 (|$nat| (+ 1 (|$of_nat| ?x31)))))))
+(let ((?x598 (|$of_nat| ?x31)))
+(let ((?x543 (+ 1 ?x598)))
+(let ((?x544 (|$nat| ?x543)))
+(let ((@x339 (|unit-resolution| ((_ |quant-inst| (|$nat| ?x543)) (or (not $x626) (= (|$nat| (|$of_nat| ?x544)) ?x544))) (mp @x184 @x631 $x626) (= (|$nat| (|$of_nat| ?x544)) ?x544))))
+(let ((?x517 (|$of_nat| ?x544)))
+(let ((?x512 (+ ?x517 (* (~ 1) ?x598))))
+(let (($x513 (= ?x512 1)))
+(let (($x520 (>= ?x598 (~ 1))))
+(let (($x523 (>= ?x598 0)))
+(let (($x270 (= ?x598 0)))
+(let (($x249 (or $x248 $x270)))
+(let ((@x608 (monotonicity (rewrite (= (>= 0 0) true)) (= (not (>= 0 0)) (not true)))))
+(let ((@x262 (trans @x608 (rewrite (= (not true) false)) (= (not (>= 0 0)) false))))
+(let ((@x601 (monotonicity @x262 (= (or (not (>= 0 0)) $x270) (or false $x270)))))
+(let ((@x247 (trans @x601 (rewrite (= (or false $x270) $x270)) (= (or (not (>= 0 0)) $x270) $x270))))
+(let ((@x589 (monotonicity @x247 (= (or $x248 (or (not (>= 0 0)) $x270)) $x249))))
+(let ((@x592 (trans @x589 (rewrite (= $x249 $x249)) (= (or $x248 (or (not (>= 0 0)) $x270)) $x249))))
+(let ((@x229 (mp ((_ |quant-inst| 0) (or $x248 (or (not (>= 0 0)) $x270))) @x592 $x249)))
+(let ((@x344 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x270) $x523)) (|unit-resolution| @x229 @x639 $x270) $x523)))
+(let (($x508 (not $x520)))
+(let (($x498 (or $x248 $x508 $x513)))
+(let (($x499 (or $x248 (or (not (>= ?x543 0)) (= ?x517 ?x543)))))
+(let ((@x510 (monotonicity (rewrite (= (>= ?x543 0) $x520)) (= (not (>= ?x543 0)) $x508))))
+(let ((@x497 (monotonicity @x510 (rewrite (= (= ?x517 ?x543) $x513)) (= (or (not (>= ?x543 0)) (= ?x517 ?x543)) (or $x508 $x513)))))
+(let ((@x507 (trans (monotonicity @x497 (= $x499 (or $x248 (or $x508 $x513)))) (rewrite (= (or $x248 (or $x508 $x513)) $x498)) (= $x499 $x498))))
+(let ((@x325 (|unit-resolution| (mp ((_ |quant-inst| (+ 1 ?x598)) $x499) @x507 $x498) @x639 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x523) $x520)) @x344 $x520) $x513)))
+(let ((@x329 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x513) (<= ?x512 1))) @x325 (<= ?x512 1))))
+(let ((@x316 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x513) (>= ?x512 1))) @x325 (>= ?x512 1))))
+(let ((@x319 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x270) (<= ?x598 0))) (|unit-resolution| @x229 @x639 $x270) (<= ?x598 0))))
+(let ((@x311 (monotonicity (symm ((_ |th-lemma| arith eq-propagate -1 -1 -1 -1) @x344 @x319 @x316 @x329 (= ?x517 1)) (= 1 ?x517)) (= ?x32 (|$nat| ?x517)))))
+(let ((@x294 (trans (trans @x311 @x339 (= ?x32 ?x544)) (symm @x338 (= ?x544 ?x284)) (= ?x32 ?x284))))
+(let ((@x300 (symm (monotonicity @x294 (trans @x333 @x335 (= ?x38 ?x285)) (= ?x39 ?x286)) (= ?x286 ?x39))))
+(let ((@x295 (|unit-resolution| ((_ |quant-inst| |$uu| (|$nat| 0) (|$cons| ?x32 |$nil|)) (or (not $x619) (= (|$map| |$uu| (|$cons| ?x31 ?x33)) ?x286))) (mp @x179 (|quant-intro| (refl (= $x28 $x28)) (= $x29 $x619)) $x619) (= (|$map| |$uu| (|$cons| ?x31 ?x33)) ?x286))))
+(let (($x41 (not (= (|$map| |$uu| (|$cons| ?x31 ?x33)) ?x39))))
+(|unit-resolution| (mp (asserted $x41) (|rewrite*| (= $x41 $x41)) $x41) (trans @x295 @x300 (= (|$map| |$uu| (|$cons| ?x31 ?x33)) ?x39)) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+80d9ca4e8920b44a5c1bad34695b60f3988a5d38 7 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x7 (forall ((?v0 |$A|) )(|$p| ?v0))
+))
+(|unit-resolution| (|not-or-elim| (asserted (not (or $x7 (not $x7)))) (not $x7)) (|not-or-elim| (asserted (not (or $x7 (not $x7)))) $x7) false))))
+
+2110aa6b6a5a6839fd1a76b987a3dec58880070c 147 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x24 (|$nat| 6)))
+(let ((?x17 (|$nat| 4)))
+(let ((?x18 (|$dec_10| ?x17)))
+(let ((?x19 (|$of_nat| ?x18)))
+(let ((?x20 (* 4 ?x19)))
+(let ((?x21 (|$nat| ?x20)))
+(let ((?x22 (|$dec_10| ?x21)))
+(let ((?x496 (|$dec_10| ?x24)))
+(let (($x456 (= ?x496 ?x24)))
+(let ((?x522 (|$of_nat| ?x24)))
+(let (($x495 (>= ?x522 10)))
+(let (($x484 (ite $x495 (= ?x496 (|$dec_10| (|$nat| (+ (~ 10) ?x522)))) $x456)))
+(let (($x637 (forall ((?v0 |$Nat|) )(!(let ((?x7 (|$of_nat| ?v0)))
+(let (($x160 (>= ?x7 10)))
+(ite $x160 (= (|$dec_10| ?v0) (|$dec_10| (|$nat| (+ (~ 10) ?x7)))) (= (|$dec_10| ?v0) ?v0)))) :pattern ( (|$of_nat| ?v0) ) :pattern ( (|$dec_10| ?v0) )))
+))
+(let (($x216 (forall ((?v0 |$Nat|) )(let ((?x7 (|$of_nat| ?v0)))
+(let (($x160 (>= ?x7 10)))
+(ite $x160 (= (|$dec_10| ?v0) (|$dec_10| (|$nat| (+ (~ 10) ?x7)))) (= (|$dec_10| ?v0) ?v0)))))
+))
+(let ((?x7 (|$of_nat| ?0)))
+(let (($x160 (>= ?x7 10)))
+(let (($x213 (ite $x160 (= (|$dec_10| ?0) (|$dec_10| (|$nat| (+ (~ 10) ?x7)))) (= (|$dec_10| ?0) ?0))))
+(let (($x168 (forall ((?v0 |$Nat|) )(let ((?x77 (|$dec_10| (|$nat| (+ (~ 10) (|$of_nat| ?v0))))))
+(let ((?x7 (|$of_nat| ?v0)))
+(let (($x160 (>= ?x7 10)))
+(let ((?x6 (|$dec_10| ?v0)))
+(= ?x6 (ite $x160 ?x77 ?v0)))))))
+))
+(let ((?x6 (|$dec_10| ?0)))
+(let (($x165 (= ?x6 (ite $x160 (|$dec_10| (|$nat| (+ (~ 10) ?x7))) ?0))))
+(let (($x91 (forall ((?v0 |$Nat|) )(let ((?x77 (|$dec_10| (|$nat| (+ (~ 10) (|$of_nat| ?v0))))))
+(let ((?x7 (|$of_nat| ?v0)))
+(let (($x47 (<= 10 ?x7)))
+(let ((?x83 (ite $x47 ?x77 ?v0)))
+(let ((?x6 (|$dec_10| ?v0)))
+(= ?x6 ?x83)))))))
+))
+(let ((?x77 (|$dec_10| (|$nat| (+ (~ 10) ?x7)))))
+(let (($x47 (<= 10 ?x7)))
+(let ((?x83 (ite $x47 ?x77 ?0)))
+(let (($x88 (= ?x6 ?x83)))
+(let ((@x167 (monotonicity (monotonicity (rewrite (= $x47 $x160)) (= ?x83 (ite $x160 ?x77 ?0))) (= $x88 $x165))))
+(let (($x15 (forall ((?v0 |$Nat|) )(let ((?x13 (ite (< (|$of_nat| ?v0) 10) ?v0 (|$dec_10| (|$nat| (- (|$of_nat| ?v0) 10))))))
+(let ((?x6 (|$dec_10| ?v0)))
+(= ?x6 ?x13))))
+))
+(let (($x89 (= (= ?x6 (ite (< ?x7 10) ?0 (|$dec_10| (|$nat| (- ?x7 10))))) $x88)))
+(let ((?x13 (ite (< ?x7 10) ?0 (|$dec_10| (|$nat| (- ?x7 10))))))
+(let ((@x66 (monotonicity (rewrite (= (* (~ 1) 10) (~ 10))) (= (+ ?x7 (* (~ 1) 10)) (+ ?x7 (~ 10))))))
+(let ((@x71 (trans @x66 (rewrite (= (+ ?x7 (~ 10)) (+ (~ 10) ?x7))) (= (+ ?x7 (* (~ 1) 10)) (+ (~ 10) ?x7)))))
+(let ((@x73 (trans (rewrite (= (- ?x7 10) (+ ?x7 (* (~ 1) 10)))) @x71 (= (- ?x7 10) (+ (~ 10) ?x7)))))
+(let ((@x79 (monotonicity (monotonicity @x73 (= (|$nat| (- ?x7 10)) (|$nat| (+ (~ 10) ?x7)))) (= (|$dec_10| (|$nat| (- ?x7 10))) ?x77))))
+(let ((@x55 (trans (rewrite (= (< ?x7 10) (not $x47))) (monotonicity (rewrite (= $x47 $x47)) (= (not $x47) (not $x47))) (= (< ?x7 10) (not $x47)))))
+(let ((@x87 (trans (monotonicity @x55 @x79 (= ?x13 (ite (not $x47) ?0 ?x77))) (rewrite (= (ite (not $x47) ?0 ?x77) ?x83)) (= ?x13 ?x83))))
+(let ((@x94 (mp (asserted $x15) (|quant-intro| (monotonicity @x87 $x89) (= $x15 $x91)) $x91)))
+(let ((@x171 (mp (mp @x94 (|rewrite*| (= $x91 $x91)) $x91) (|quant-intro| @x167 (= $x91 $x168)) $x168)))
+(let ((@x219 (mp (|mp~| @x171 (|nnf-pos| (refl (|~| $x165 $x165)) (|~| $x168 $x168)) $x168) (|quant-intro| (rewrite (= $x165 $x213)) (= $x168 $x216)) $x216)))
+(let ((@x642 (mp @x219 (|quant-intro| (refl (= $x213 $x213)) (= $x216 $x637)) $x637)))
+(let (($x485 (<= ?x522 6)))
+(let (($x523 (= ?x522 6)))
+(let (($x651 (forall ((?v0 Int) )(!(let (($x35 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x35)) :pattern ( (|$nat| ?v0) )))
+))
+(let (($x181 (forall ((?v0 Int) )(let (($x35 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (>= ?v0 0)) $x35)))
+))
+(let (($x35 (= (|$of_nat| (|$nat| ?0)) ?0)))
+(let (($x178 (or (not (>= ?0 0)) $x35)))
+(let (($x104 (forall ((?v0 Int) )(let (($x35 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(or (not (<= 0 ?v0)) $x35)))
+))
+(let ((@x177 (monotonicity (rewrite (= (<= 0 ?0) (>= ?0 0))) (= (not (<= 0 ?0)) (not (>= ?0 0))))))
+(let ((@x183 (|quant-intro| (monotonicity @x177 (= (or (not (<= 0 ?0)) $x35) $x178)) (= $x104 $x181))))
+(let (($x37 (forall ((?v0 Int) )(let (($x35 (= (|$of_nat| (|$nat| ?v0)) ?v0)))
+(let (($x32 (<= 0 ?v0)))
+(=> $x32 $x35))))
+))
+(let ((@x102 (rewrite (= (=> (<= 0 ?0) $x35) (or (not (<= 0 ?0)) $x35)))))
+(let ((@x98 (monotonicity (rewrite (= (<= 0 ?0) (<= 0 ?0))) (= (=> (<= 0 ?0) $x35) (=> (<= 0 ?0) $x35)))))
+(let ((@x103 (trans @x98 @x102 (= (=> (<= 0 ?0) $x35) (or (not (<= 0 ?0)) $x35)))))
+(let ((@x136 (mp (mp (asserted $x37) (|quant-intro| @x103 (= $x37 $x104)) $x104) (|rewrite*| (= $x104 $x104)) $x104)))
+(let ((@x205 (|mp~| (mp @x136 @x183 $x181) (|nnf-pos| (refl (|~| $x178 $x178)) (|~| $x181 $x181)) $x181)))
+(let ((@x656 (mp @x205 (|quant-intro| (refl (= $x178 $x178)) (= $x181 $x651)) $x651)))
+(let (($x579 (not $x651)))
+(let (($x515 (or $x579 $x523)))
+(let ((@x528 (monotonicity (rewrite (= (>= 6 0) true)) (= (not (>= 6 0)) (not true)))))
+(let ((@x530 (trans @x528 (rewrite (= (not true) false)) (= (not (>= 6 0)) false))))
+(let ((@x510 (monotonicity @x530 (= (or (not (>= 6 0)) $x523) (or false $x523)))))
+(let ((@x514 (trans @x510 (rewrite (= (or false $x523) $x523)) (= (or (not (>= 6 0)) $x523) $x523))))
+(let ((@x500 (monotonicity @x514 (= (or $x579 (or (not (>= 6 0)) $x523)) $x515))))
+(let ((@x503 (trans @x500 (rewrite (= $x515 $x515)) (= (or $x579 (or (not (>= 6 0)) $x523)) $x515))))
+(let ((@x504 (mp ((_ |quant-inst| 6) (or $x579 (or (not (>= 6 0)) $x523))) @x503 $x515)))
+(let ((@x450 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x523) $x485)) (|unit-resolution| @x504 @x656 $x523) $x485)))
+(let ((@x419 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x485) (not $x495))) @x450 (not $x495))))
+(let ((@x421 (|unit-resolution| (|def-axiom| (or (not $x484) $x495 $x456)) @x419 (|unit-resolution| ((_ |quant-inst| (|$nat| 6)) (or (not $x637) $x484)) @x642 $x484) $x456)))
+(let (($x273 (= ?x18 ?x17)))
+(let ((?x624 (|$of_nat| ?x17)))
+(let (($x287 (>= ?x624 10)))
+(let (($x274 (ite $x287 (= ?x18 (|$dec_10| (|$nat| (+ (~ 10) ?x624)))) $x273)))
+(let (($x415 (<= ?x624 4)))
+(let (($x598 (= ?x624 4)))
+(let (($x580 (or $x579 $x598)))
+(let ((@x589 (monotonicity (rewrite (= (>= 4 0) true)) (= (not (>= 4 0)) (not true)))))
+(let ((@x593 (trans @x589 (rewrite (= (not true) false)) (= (not (>= 4 0)) false))))
+(let ((@x433 (monotonicity @x593 (= (or (not (>= 4 0)) $x598) (or false $x598)))))
+(let ((@x578 (trans @x433 (rewrite (= (or false $x598) $x598)) (= (or (not (>= 4 0)) $x598) $x598))))
+(let ((@x584 (monotonicity @x578 (= (or $x579 (or (not (>= 4 0)) $x598)) $x580))))
+(let ((@x412 (trans @x584 (rewrite (= $x580 $x580)) (= (or $x579 (or (not (>= 4 0)) $x598)) $x580))))
+(let ((@x414 (mp ((_ |quant-inst| 4) (or $x579 (or (not (>= 4 0)) $x598))) @x412 $x580)))
+(let ((@x428 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x598) $x415)) (|unit-resolution| @x414 @x656 $x598) $x415)))
+(let ((@x432 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x415) (not $x287))) @x428 (not $x287))))
+(let ((@x402 (|unit-resolution| (|def-axiom| (or (not $x274) $x287 $x273)) @x432 (|unit-resolution| ((_ |quant-inst| (|$nat| 4)) (or (not $x637) $x274)) @x642 $x274) $x273)))
+(let ((@x408 ((_ |th-lemma| arith triangle-eq) (or (not (= ?x19 ?x624)) (<= (+ ?x19 (* (~ 1) ?x624)) 0)))))
+(let ((@x251 (|unit-resolution| @x408 (monotonicity @x402 (= ?x19 ?x624)) (<= (+ ?x19 (* (~ 1) ?x624)) 0))))
+(let (($x492 (>= (+ ?x19 (* (~ 1) ?x624)) 0)))
+(let ((@x411 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x19 ?x624)) $x492)) (monotonicity @x402 (= ?x19 ?x624)) $x492)))
+(let (($x571 (>= ?x624 4)))
+(let ((@x397 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x598) $x571)) (|unit-resolution| @x414 @x656 $x598) $x571)))
+(let ((?x475 (+ ?x20 (* (~ 1) (|$of_nat| ?x21)))))
+(let (($x552 (<= ?x475 0)))
+(let (($x473 (= ?x475 0)))
+(let (($x567 (>= ?x19 0)))
+(let ((@x389 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x567 (not $x571) (not $x492))) @x397 @x411 $x567)))
+(let (($x469 (not $x567)))
+(let (($x568 (or $x469 $x473)))
+(let (($x557 (or $x579 $x469 $x473)))
+(let (($x558 (or $x579 (or (not (>= ?x20 0)) (= (|$of_nat| ?x21) ?x20)))))
+(let ((@x463 (monotonicity (rewrite (= (>= ?x20 0) $x567)) (= (not (>= ?x20 0)) $x469))))
+(let ((@x570 (monotonicity @x463 (rewrite (= (= (|$of_nat| ?x21) ?x20) $x473)) (= (or (not (>= ?x20 0)) (= (|$of_nat| ?x21) ?x20)) $x568))))
+(let ((@x563 (trans (monotonicity @x570 (= $x558 (or $x579 $x568))) (rewrite (= (or $x579 $x568) $x557)) (= $x558 $x557))))
+(let ((@x393 (|unit-resolution| (|unit-resolution| (mp ((_ |quant-inst| (* 4 ?x19)) $x558) @x563 $x557) @x656 $x568) @x389 $x473)))
+(let ((@x380 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x473) (>= ?x475 0))) @x393 (>= ?x475 0))))
+(let ((@x382 ((_ |th-lemma| arith eq-propagate 1 1 -4 -4 -4 -4) @x380 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x473) $x552)) @x393 $x552) @x397 @x428 @x411 @x251 (= (+ (~ 10) (|$of_nat| ?x21)) 6))))
+(let ((@x374 (monotonicity (monotonicity @x382 (= (|$nat| (+ (~ 10) (|$of_nat| ?x21))) ?x24)) (= (|$dec_10| (|$nat| (+ (~ 10) (|$of_nat| ?x21)))) ?x496))))
+(let (($x328 (= ?x22 (|$dec_10| (|$nat| (+ (~ 10) (|$of_nat| ?x21)))))))
+(let ((?x275 (|$of_nat| ?x21)))
+(let (($x611 (>= ?x275 10)))
+(let (($x330 (ite $x611 $x328 (= ?x22 ?x21))))
+(let ((@x371 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 4 4) (or $x611 (not $x552) (not $x571) (not $x492))) @x397 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x473) $x552)) @x393 $x552) @x411 $x611)))
+(let ((@x372 (|unit-resolution| (|def-axiom| (or (not $x330) (not $x611) $x328)) @x371 (|unit-resolution| ((_ |quant-inst| (|$nat| ?x20)) (or (not $x637) $x330)) @x642 $x330) $x328)))
+(let (($x26 (not (= ?x22 ?x24))))
+(|unit-resolution| (mp (asserted $x26) (|rewrite*| (= $x26 $x26)) $x26) (trans (trans @x372 @x374 (= ?x22 ?x496)) @x421 (= ?x22 ?x24)) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+be3717834fa67273b146b9ecf6b175dc9f573a89 795 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x43 (|$eval_dioph| |$ks| (|$map| |$uu| |$xs|))))
+(let ((?x1186 (+ |$l| ?x43)))
+(let ((?x1223 (mod ?x1186 2)))
+(let ((@x272 (|true-axiom| true)))
+(let ((@x1481 (|unit-resolution| ((_ |th-lemma| arith) (or false (not (>= ?x1223 2)))) @x272 (not (>= ?x1223 2)))))
+(let (($x508 (<= (+ (|$mod| ?x43 2) (* (~ 1) (|$mod| |$l| 2))) 0)))
+(let ((?x45 (|$mod| |$l| 2)))
+(let ((?x44 (|$mod| ?x43 2)))
+(let (($x46 (= ?x44 ?x45)))
+(let ((?x39 (|$eval_dioph| |$ks| |$xs|)))
+(let ((?x799 (|$mod| ?x39 2)))
+(let (($x1108 (= ?x799 ?x45)))
+(let (($x41 (= ?x39 |$l|)))
+(let ((?x124 (* (~ 1) ?x43)))
+(let ((?x125 (+ |$l| ?x124)))
+(let ((?x128 (|$div| ?x125 2)))
+(let ((?x48 (|$eval_dioph| |$ks| (|$map| |$uua| |$xs|))))
+(let (($x131 (= ?x48 ?x128)))
+(let (($x402 (not $x131)))
+(let (($x401 (not $x46)))
+(let (($x403 (or $x401 $x402)))
+(let (($x410 (= $x41 $x403)))
+(let ((@x409 (monotonicity (rewrite (= (and $x46 $x131) (not $x403))) (= (= (not $x41) (and $x46 $x131)) (= (not $x41) (not $x403))))))
+(let ((@x414 (trans @x409 (rewrite (= (= (not $x41) (not $x403)) $x410)) (= (= (not $x41) (and $x46 $x131)) $x410))))
+(let (($x134 (and $x46 $x131)))
+(let (($x143 (not $x41)))
+(let (($x144 (= $x143 $x134)))
+(let (($x54 (not (= $x41 (and $x46 (= ?x48 (|$div| (- |$l| ?x43) 2)))))))
+(let (($x138 (= (= $x41 (and $x46 (= ?x48 (|$div| (- |$l| ?x43) 2)))) (= $x41 $x134))))
+(let ((@x130 (monotonicity (rewrite (= (- |$l| ?x43) ?x125)) (= (|$div| (- |$l| ?x43) 2) ?x128))))
+(let ((@x136 (monotonicity (monotonicity @x130 (= (= ?x48 (|$div| (- |$l| ?x43) 2)) $x131)) (= (and $x46 (= ?x48 (|$div| (- |$l| ?x43) 2))) $x134))))
+(let ((@x148 (trans (monotonicity (monotonicity @x136 $x138) (= $x54 (not (= $x41 $x134)))) (rewrite (= (not (= $x41 $x134)) $x144)) (= $x54 $x144))))
+(let ((@x896 (|unit-resolution| (|def-axiom| (or $x41 (not $x403) (not $x410))) (mp (mp (asserted $x54) @x148 $x144) @x414 $x410) (or $x41 (not $x403)))))
+(let ((@x2104 (|unit-resolution| @x896 (|unit-resolution| (|def-axiom| (or $x403 $x46)) (hypothesis $x401) $x403) $x41)))
+(let (($x966 (= ?x44 ?x799)))
+(let (($x800 (= ?x799 ?x44)))
+(let (($x902 (forall ((?v0 |$Int_list|) (?v1 |$Nat_list|) )(!(= (|$mod| (|$eval_dioph| ?v0 ?v1) 2) (|$mod| (|$eval_dioph| ?v0 (|$map| |$uu| ?v1)) 2)) :pattern ( (|$eval_dioph| ?v0 (|$map| |$uu| ?v1)) )))
+))
+(let (($x30 (forall ((?v0 |$Int_list|) (?v1 |$Nat_list|) )(= (|$mod| (|$eval_dioph| ?v0 ?v1) 2) (|$mod| (|$eval_dioph| ?v0 (|$map| |$uu| ?v1)) 2)))
+))
+(let (($x29 (= (|$mod| (|$eval_dioph| ?1 ?0) 2) (|$mod| (|$eval_dioph| ?1 (|$map| |$uu| ?0)) 2))))
+(let ((@x360 (|mp~| (asserted $x30) (|nnf-pos| (refl (|~| $x29 $x29)) (|~| $x30 $x30)) $x30)))
+(let ((@x1107 (|unit-resolution| ((_ |quant-inst| |$ks| |$xs|) (or (not $x902) $x800)) (mp @x360 (|quant-intro| (refl (= $x29 $x29)) (= $x30 $x902)) $x902) $x800)))
+(let ((@x2108 (|unit-resolution| (hypothesis $x401) (trans (symm @x1107 $x966) (monotonicity @x2104 $x1108) $x46) false)))
+(let ((@x2109 (lemma @x2108 $x46)))
+(let ((@x1106 (hypothesis $x46)))
+(let ((@x1031 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x401 $x508)) @x1106 (hypothesis (not $x508)) false)))
+(let ((@x2368 (|unit-resolution| (lemma @x1031 (or $x508 $x401)) @x2109 $x508)))
+(let (($x514 (>= (+ ?x44 (* (~ 1) ?x45)) 0)))
+(let ((@x976 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x401 $x514)) @x1106 (hypothesis (not $x514)) false)))
+(let ((@x2064 (|unit-resolution| (lemma @x976 (or $x514 $x401)) @x2109 $x514)))
+(let ((?x776 (* (~ 1) (mod |$l| 2))))
+(let ((?x777 (+ ?x45 ?x776)))
+(let (($x717 (<= ?x777 0)))
+(let (($x778 (= ?x777 0)))
+(let ((?x660 (mod ?x43 2)))
+(let (($x1724 (= ?x660 ?x1223)))
+(let (($x1728 (not $x1724)))
+(let (($x1699 (>= (+ ?x660 (* (~ 1) ?x1223)) 0)))
+(let (($x1713 (not $x1699)))
+(let (($x529 (>= (+ ?x48 (* (~ 1) ?x128)) 0)))
+(let (($x891 (= ?x128 0)))
+(let ((?x1017 (|$div| 0 2)))
+(let (($x1018 (= ?x1017 0)))
+(let (($x937 (forall ((?v0 Int) (?v1 Int) )(!(let (($x462 (= (+ (|$div| ?v0 ?v1) (* (~ 1) (div (* (~ 1) ?v0) (* (~ 1) ?v1)))) 0)))
+(let (($x424 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x463 (ite $x424 (= (+ (|$div| ?v0 ?v1) (* (~ 1) (div ?v0 ?v1))) 0) $x462)))
+(let (($x73 (= ?v1 0)))
+(let (($x72 (= ?v0 0)))
+(let (($x74 (or $x72 $x73)))
+(ite $x74 (= (|$div| ?v0 ?v1) 0) $x463))))))) :pattern ( (|$div| ?v0 ?v1) )))
+))
+(let (($x467 (forall ((?v0 Int) (?v1 Int) )(let (($x462 (= (+ (|$div| ?v0 ?v1) (* (~ 1) (div (* (~ 1) ?v0) (* (~ 1) ?v1)))) 0)))
+(let (($x424 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x463 (ite $x424 (= (+ (|$div| ?v0 ?v1) (* (~ 1) (div ?v0 ?v1))) 0) $x462)))
+(let (($x73 (= ?v1 0)))
+(let (($x72 (= ?v0 0)))
+(let (($x74 (or $x72 $x73)))
+(ite $x74 (= (|$div| ?v0 ?v1) 0) $x463))))))))
+))
+(let (($x462 (= (+ (|$div| ?1 ?0) (* (~ 1) (div (* (~ 1) ?1) (* (~ 1) ?0)))) 0)))
+(let (($x424 (or (not (or (<= ?1 0) (<= ?0 0))) (not (or (>= ?1 0) (<= ?0 0))))))
+(let (($x463 (ite $x424 (= (+ (|$div| ?1 ?0) (* (~ 1) (div ?1 ?0))) 0) $x462)))
+(let (($x73 (= ?0 0)))
+(let (($x72 (= ?1 0)))
+(let (($x74 (or $x72 $x73)))
+(let (($x464 (ite $x74 (= (|$div| ?1 ?0) 0) $x463)))
+(let (($x436 (forall ((?v0 Int) (?v1 Int) )(let ((?x209 (* (~ 1) ?v1)))
+(let ((?x206 (* (~ 1) ?v0)))
+(let ((?x212 (div ?x206 ?x209)))
+(let ((?x81 (div ?v0 ?v1)))
+(let (($x424 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x73 (= ?v1 0)))
+(let (($x72 (= ?v0 0)))
+(let (($x74 (or $x72 $x73)))
+(let ((?x71 (|$div| ?v0 ?v1)))
+(= ?x71 (ite $x74 0 (ite $x424 ?x81 ?x212)))))))))))))
+))
+(let ((?x430 (ite $x74 0 (ite $x424 (div ?1 ?0) (div (* (~ 1) ?1) (* (~ 1) ?0))))))
+(let ((?x71 (|$div| ?1 ?0)))
+(let (($x433 (= ?x71 ?x430)))
+(let (($x338 (forall ((?v0 Int) (?v1 Int) )(let ((?x209 (* (~ 1) ?v1)))
+(let ((?x206 (* (~ 1) ?v0)))
+(let ((?x212 (div ?x206 ?x209)))
+(let ((?x81 (div ?v0 ?v1)))
+(let (($x184 (<= ?v1 0)))
+(let (($x185 (not $x184)))
+(let (($x323 (and (not (>= ?v0 0)) $x185)))
+(let (($x188 (and (not (<= ?v0 0)) $x185)))
+(let (($x326 (or $x188 $x323)))
+(let ((?x329 (ite $x326 ?x81 ?x212)))
+(let (($x73 (= ?v1 0)))
+(let (($x72 (= ?v0 0)))
+(let (($x74 (or $x72 $x73)))
+(let ((?x332 (ite $x74 0 ?x329)))
+(let ((?x71 (|$div| ?v0 ?v1)))
+(= ?x71 ?x332)))))))))))))))))
+))
+(let ((?x209 (* (~ 1) ?0)))
+(let ((?x206 (* (~ 1) ?1)))
+(let ((?x212 (div ?x206 ?x209)))
+(let ((?x81 (div ?1 ?0)))
+(let (($x184 (<= ?0 0)))
+(let (($x185 (not $x184)))
+(let (($x323 (and (not (>= ?1 0)) $x185)))
+(let (($x188 (and (not (<= ?1 0)) $x185)))
+(let (($x326 (or $x188 $x323)))
+(let ((?x329 (ite $x326 ?x81 ?x212)))
+(let ((?x332 (ite $x74 0 ?x329)))
+(let (($x335 (= ?x71 ?x332)))
+(let ((@x426 (monotonicity (rewrite (= $x188 (not (or (<= ?1 0) $x184)))) (rewrite (= $x323 (not (or (>= ?1 0) $x184)))) (= $x326 $x424))))
+(let ((@x432 (monotonicity (monotonicity @x426 (= ?x329 (ite $x424 ?x81 ?x212))) (= ?x332 ?x430))))
+(let (($x224 (forall ((?v0 Int) (?v1 Int) )(let ((?x209 (* (~ 1) ?v1)))
+(let ((?x206 (* (~ 1) ?v0)))
+(let ((?x212 (div ?x206 ?x209)))
+(let ((?x81 (div ?v0 ?v1)))
+(let (($x184 (<= ?v1 0)))
+(let (($x185 (not $x184)))
+(let (($x191 (<= 0 ?v0)))
+(let (($x192 (not $x191)))
+(let (($x200 (and $x192 $x185)))
+(let (($x188 (and (not (<= ?v0 0)) $x185)))
+(let (($x203 (or $x188 $x200)))
+(let ((?x215 (ite $x203 ?x81 ?x212)))
+(let (($x73 (= ?v1 0)))
+(let (($x72 (= ?v0 0)))
+(let (($x74 (or $x72 $x73)))
+(let ((?x218 (ite $x74 0 ?x215)))
+(let ((?x71 (|$div| ?v0 ?v1)))
+(= ?x71 ?x218)))))))))))))))))))
+))
+(let (($x191 (<= 0 ?1)))
+(let (($x192 (not $x191)))
+(let (($x200 (and $x192 $x185)))
+(let (($x203 (or $x188 $x200)))
+(let ((?x215 (ite $x203 ?x81 ?x212)))
+(let ((?x218 (ite $x74 0 ?x215)))
+(let (($x221 (= ?x71 ?x218)))
+(let ((@x322 (monotonicity (rewrite (= $x191 (>= ?1 0))) (= $x192 (not (>= ?1 0))))))
+(let ((@x331 (monotonicity (monotonicity (monotonicity @x322 (= $x200 $x323)) (= $x203 $x326)) (= ?x215 ?x329))))
+(let ((@x340 (|quant-intro| (monotonicity (monotonicity @x331 (= ?x218 ?x332)) (= $x221 $x335)) (= $x224 $x338))))
+(let (($x88 (forall ((?v0 Int) (?v1 Int) )(let ((?x81 (div ?v0 ?v1)))
+(let (($x80 (or (and (< 0 ?v0) (< 0 ?v1)) (and (< ?v0 0) (< 0 ?v1)))))
+(let (($x73 (= ?v1 0)))
+(let (($x72 (= ?v0 0)))
+(let (($x74 (or $x72 $x73)))
+(let ((?x71 (|$div| ?v0 ?v1)))
+(= ?x71 (ite $x74 0 (ite $x80 ?x81 (div (- ?v0) (- ?v1))))))))))))
+))
+(let (($x80 (or (and (< 0 ?1) (< 0 ?0)) (and (< ?1 0) (< 0 ?0)))))
+(let (($x222 (= (= ?x71 (ite $x74 0 (ite $x80 ?x81 (div (- ?1) (- ?0))))) $x221)))
+(let ((@x214 (monotonicity (rewrite (= (- ?1) ?x206)) (rewrite (= (- ?0) ?x209)) (= (div (- ?1) (- ?0)) ?x212))))
+(let ((@x199 (trans (rewrite (= (< ?1 0) $x192)) (monotonicity (rewrite (= $x191 $x191)) (= $x192 $x192)) (= (< ?1 0) $x192))))
+(let ((@x202 (monotonicity @x199 (rewrite (= (< 0 ?0) $x185)) (= (and (< ?1 0) (< 0 ?0)) $x200))))
+(let ((@x190 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) $x185)) (= (and (< 0 ?1) (< 0 ?0)) $x188))))
+(let ((@x217 (monotonicity (monotonicity @x190 @x202 (= $x80 $x203)) @x214 (= (ite $x80 ?x81 (div (- ?1) (- ?0))) ?x215))))
+(let ((@x220 (monotonicity @x217 (= (ite $x74 0 (ite $x80 ?x81 (div (- ?1) (- ?0)))) ?x218))))
+(let ((@x227 (mp (asserted $x88) (|quant-intro| (monotonicity @x220 $x222) (= $x88 $x224)) $x224)))
+(let ((@x395 (|mp~| (mp @x227 @x340 $x338) (|nnf-pos| (refl (|~| $x335 $x335)) (|~| $x338 $x338)) $x338)))
+(let ((@x439 (mp @x395 (|quant-intro| (monotonicity @x432 (= $x335 $x433)) (= $x338 $x436)) $x436)))
+(let ((@x470 (mp @x439 (|quant-intro| (rewrite (= $x433 $x464)) (= $x436 $x467)) $x467)))
+(let (($x841 (not $x937)))
+(let (($x1199 (or $x841 $x1018)))
+(let (($x892 (<= 2 0)))
+(let (($x1027 (or (>= 0 0) $x892)))
+(let (($x1029 (not $x1027)))
+(let (($x1021 (or (<= 0 0) $x892)))
+(let (($x990 (not $x1021)))
+(let (($x1030 (or $x990 $x1029)))
+(let (($x1268 (ite $x1030 (= (+ ?x1017 (* (~ 1) (div 0 2))) 0) (= (+ ?x1017 (* (~ 1) (div (* (~ 1) 0) (* (~ 1) 2)))) 0))))
+(let (($x553 (= 2 0)))
+(let (($x968 (= 0 0)))
+(let (($x1016 (or $x968 $x553)))
+(let (($x1239 (ite $x1016 $x1018 $x1268)))
+(let (($x1708 (= (= (+ ?x1017 (* (~ 1) (div (* (~ 1) 0) (* (~ 1) 2)))) 0) $x1018)))
+(let ((?x994 (+ ?x1017 0)))
+(let ((?x882 (* (~ 1) 2)))
+(let ((?x1036 (* (~ 1) 0)))
+(let ((?x996 (div ?x1036 ?x882)))
+(let ((?x1645 (* (~ 1) ?x996)))
+(let ((?x1202 (+ ?x1017 ?x1645)))
+(let ((@x1884 (rewrite (= ?x1036 0))))
+(let ((@x700 (rewrite (= ?x882 (~ 2)))))
+(let ((@x1042 (trans (monotonicity @x1884 @x700 (= ?x996 (div 0 (~ 2)))) (rewrite (= (div 0 (~ 2)) 0)) (= ?x996 0))))
+(let ((@x1784 (monotonicity (trans (monotonicity @x1042 (= ?x1645 ?x1036)) @x1884 (= ?x1645 0)) (= ?x1202 ?x994))))
+(let ((@x1649 (monotonicity (trans @x1784 (rewrite (= ?x994 ?x1017)) (= ?x1202 ?x1017)) $x1708)))
+(let ((@x1717 (monotonicity (rewrite (= (div 0 2) 0)) (= (* (~ 1) (div 0 2)) ?x1036))))
+(let ((@x1361 (monotonicity (trans @x1717 @x1884 (= (* (~ 1) (div 0 2)) 0)) (= (+ ?x1017 (* (~ 1) (div 0 2))) ?x994))))
+(let ((@x951 (trans @x1361 (rewrite (= ?x994 ?x1017)) (= (+ ?x1017 (* (~ 1) (div 0 2))) ?x1017))))
+(let ((@x954 (monotonicity @x951 (= (= (+ ?x1017 (* (~ 1) (div 0 2))) 0) $x1018))))
+(let ((@x1737 (rewrite (= (or true false) true))))
+(let ((@x868 (rewrite (= $x892 false))))
+(let ((@x1742 (monotonicity (rewrite (= (>= 0 0) true)) @x868 (= $x1027 (or true false)))))
+(let ((@x1747 (monotonicity (trans @x1742 @x1737 (= $x1027 true)) (= $x1029 (not true)))))
+(let ((@x1872 (monotonicity (rewrite (= (<= 0 0) true)) @x868 (= $x1021 (or true false)))))
+(let ((@x1933 (monotonicity (trans @x1872 @x1737 (= $x1021 true)) (= $x990 (not true)))))
+(let ((@x1757 (monotonicity (trans @x1933 (rewrite (= (not true) false)) (= $x990 false)) (trans @x1747 (rewrite (= (not true) false)) (= $x1029 false)) (= $x1030 (or false false)))))
+(let ((@x1420 (trans @x1757 (rewrite (= (or false false) false)) (= $x1030 false))))
+(let ((@x1939 (trans (monotonicity @x1420 @x954 @x1649 (= $x1268 (ite false $x1018 $x1018))) (rewrite (= (ite false $x1018 $x1018) $x1018)) (= $x1268 $x1018))))
+(let ((@x887 (rewrite (= $x553 false))))
+(let ((@x1881 (monotonicity (rewrite (= $x968 true)) @x887 (= $x1016 (or true false)))))
+(let ((@x1916 (monotonicity (trans @x1881 @x1737 (= $x1016 true)) @x1939 (= $x1239 (ite true $x1018 $x1018)))))
+(let ((@x1846 (trans @x1916 (rewrite (= (ite true $x1018 $x1018) $x1018)) (= $x1239 $x1018))))
+(let ((@x2007 (trans (monotonicity @x1846 (= (or $x841 $x1239) $x1199)) (rewrite (= $x1199 $x1199)) (= (or $x841 $x1239) $x1199))))
+(let ((@x2018 (|unit-resolution| (mp ((_ |quant-inst| 0 2) (or $x841 $x1239)) @x2007 $x1199) (mp @x470 (|quant-intro| (refl (= $x464 $x464)) (= $x467 $x937)) $x937) $x1018)))
+(let (($x2019 (= ?x128 ?x1017)))
+(let (($x890 (= ?x125 0)))
+(let ((?x879 (+ ?x128 (* (~ 1) (div ?x125 2)))))
+(let (($x880 (= ?x879 0)))
+(let (($x815 (not $x880)))
+(let (($x739 (<= ?x879 0)))
+(let (($x1322 (not $x739)))
+(let ((?x1234 (* (~ 1) ?x1223)))
+(let ((?x1235 (+ |$l| ?x124 (* (~ 2) (div ?x125 2)) ?x1234)))
+(let (($x1232 (= ?x1235 0)))
+(let ((@x2333 (|unit-resolution| ((_ |th-lemma| arith) (or false $x1232)) @x272 (hypothesis (not $x1232)) false)))
+(let ((@x2334 (lemma @x2333 $x1232)))
+(let (($x1093 (not $x529)))
+(let ((@x1909 (hypothesis $x1093)))
+(let (($x1241 (>= ?x1235 0)))
+(let (($x1321 (not $x1241)))
+(let (($x518 (>= (+ ?x39 (* (~ 1) |$l|)) 0)))
+(let ((@x1861 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x402 $x529)) (hypothesis $x131) @x1909 false)))
+(let ((@x894 (|def-axiom| (or $x403 $x131))))
+(let ((@x2013 (|unit-resolution| @x894 (|unit-resolution| (lemma @x1861 (or $x402 $x529)) @x1909 $x402) $x403)))
+(let ((@x2016 ((_ |th-lemma| arith triangle-eq) (or $x143 $x518))))
+(let ((@x2017 (|unit-resolution| @x2016 (|unit-resolution| @x896 @x2013 $x41) $x518)))
+(let ((?x812 (+ ?x39 ?x124 (* (~ 2) ?x48))))
+(let (($x804 (<= ?x812 0)))
+(let (($x813 (= ?x812 0)))
+(let (($x909 (forall ((?v0 |$Int_list|) (?v1 |$Nat_list|) )(!(let ((?x24 (|$eval_dioph| ?v0 ?v1)))
+(let ((?x287 (+ ?x24 (* (~ 1) (|$eval_dioph| ?v0 (|$map| |$uu| ?v1))) (* (~ 2) (|$eval_dioph| ?v0 (|$map| |$uua| ?v1))))))
+(= ?x287 0))) :pattern ( (|$eval_dioph| ?v0 (|$map| |$uu| ?v1)) ) :pattern ( (|$eval_dioph| ?v0 (|$map| |$uua| ?v1)) )))
+))
+(let (($x289 (forall ((?v0 |$Int_list|) (?v1 |$Nat_list|) )(let ((?x24 (|$eval_dioph| ?v0 ?v1)))
+(let ((?x287 (+ ?x24 (* (~ 1) (|$eval_dioph| ?v0 (|$map| |$uu| ?v1))) (* (~ 2) (|$eval_dioph| ?v0 (|$map| |$uua| ?v1))))))
+(= ?x287 0))))
+))
+(let ((?x24 (|$eval_dioph| ?1 ?0)))
+(let ((?x287 (+ ?x24 (* (~ 1) (|$eval_dioph| ?1 (|$map| |$uu| ?0))) (* (~ 2) (|$eval_dioph| ?1 (|$map| |$uua| ?0))))))
+(let (($x283 (= ?x287 0)))
+(let (($x119 (forall ((?v0 |$Int_list|) (?v1 |$Nat_list|) )(let ((?x24 (|$eval_dioph| ?v0 ?v1)))
+(let ((?x27 (|$eval_dioph| ?v0 (|$map| |$uu| ?v1))))
+(let ((?x32 (|$eval_dioph| ?v0 (|$map| |$uua| ?v1))))
+(let ((?x110 (* 2 ?x32)))
+(let ((?x113 (+ ?x110 ?x27)))
+(= ?x113 ?x24)))))))
+))
+(let (($x279 (forall ((?v0 |$Int_list|) (?v1 |$Nat_list|) )(let ((?x24 (|$eval_dioph| ?v0 ?v1)))
+(let ((?x32 (|$eval_dioph| ?v0 (|$map| |$uua| ?v1))))
+(let ((?x110 (* 2 ?x32)))
+(let ((?x27 (|$eval_dioph| ?v0 (|$map| |$uu| ?v1))))
+(= (+ ?x27 ?x110) ?x24))))))
+))
+(let ((?x32 (|$eval_dioph| ?1 (|$map| |$uua| ?0))))
+(let ((?x110 (* 2 ?x32)))
+(let ((?x27 (|$eval_dioph| ?1 (|$map| |$uu| ?0))))
+(let (($x276 (= (+ ?x27 ?x110) ?x24)))
+(let ((@x278 (monotonicity (rewrite (= (+ ?x110 ?x27) (+ ?x27 ?x110))) (= (= (+ ?x110 ?x27) ?x24) $x276))))
+(let ((@x293 (trans (|quant-intro| @x278 (= $x119 $x279)) (|quant-intro| (rewrite (= $x276 $x283)) (= $x279 $x289)) (= $x119 $x289))))
+(let (($x36 (forall ((?v0 |$Int_list|) (?v1 |$Nat_list|) )(let ((?x24 (|$eval_dioph| ?v0 ?v1)))
+(let ((?x27 (|$eval_dioph| ?v0 (|$map| |$uu| ?v1))))
+(= (+ (* (|$eval_dioph| ?v0 (|$map| |$uua| ?v1)) 2) ?x27) ?x24))))
+))
+(let ((@x115 (monotonicity (rewrite (= (* ?x32 2) ?x110)) (= (+ (* ?x32 2) ?x27) (+ ?x110 ?x27)))))
+(let ((@x118 (monotonicity @x115 (= (= (+ (* ?x32 2) ?x27) ?x24) (= (+ ?x110 ?x27) ?x24)))))
+(let ((@x294 (mp (mp (asserted $x36) (|quant-intro| @x118 (= $x36 $x119)) $x119) @x293 $x289)))
+(let ((@x914 (mp (|mp~| @x294 (|nnf-pos| (refl (|~| $x283 $x283)) (|~| $x289 $x289)) $x289) (|quant-intro| (refl (= $x283 $x283)) (= $x289 $x909)) $x909)))
+(let ((@x2010 (|unit-resolution| ((_ |quant-inst| |$ks| |$xs|) (or (not $x909) $x813)) @x914 (hypothesis (not $x813)) false)))
+(let ((@x964 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x813) $x804)) (lemma @x2010 $x813) $x804)))
+(let (($x1263 (>= ?x1223 0)))
+(let ((@x1309 (|unit-resolution| ((_ |th-lemma| arith) (or false $x1263)) @x272 $x1263)))
+(let ((@x2355 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2 1 2 1) (or $x1321 (not $x1263) $x1322 (not $x518) $x529 (not $x804))) @x1309 (hypothesis $x739) @x1909 @x964 @x2017 $x1321)))
+(let ((@x1315 ((_ |th-lemma| arith triangle-eq) (or (not $x1232) $x1241))))
+(let ((@x2358 (lemma (|unit-resolution| @x1315 @x2355 (hypothesis $x1232) false) (or (not $x1232) $x1322 $x529))))
+(let ((@x1318 ((_ |th-lemma| arith triangle-eq) (or $x815 $x739))))
+(let (($x818 (not $x890)))
+(let ((@x1352 (hypothesis $x818)))
+(let (($x556 (<= ?x125 0)))
+(let (($x538 (>= ?x125 0)))
+(let (($x867 (not $x538)))
+(let (($x580 (not $x556)))
+(let (($x855 (or $x580 $x867)))
+(let (($x736 (not $x855)))
+(let (($x680 (ite $x855 $x880 (= (+ ?x128 (* (~ 1) (div (+ (* (~ 1) |$l|) ?x43) (~ 2)))) 0))))
+(let (($x838 (ite $x890 $x891 $x680)))
+(let (($x842 (or $x841 $x838)))
+(let (($x525 (ite (or (not (or $x556 $x892)) (not (or $x538 $x892))) $x880 (= (+ ?x128 (* (~ 1) (div (* (~ 1) ?x125) ?x882))) 0))))
+(let (($x554 (or $x890 $x553)))
+(let (($x852 (= (= (+ ?x128 (* (~ 1) (div (* (~ 1) ?x125) ?x882))) 0) (= (+ ?x128 (* (~ 1) (div (+ (* (~ 1) |$l|) ?x43) (~ 2)))) 0))))
+(let (($x849 (= (+ ?x128 (* (~ 1) (div (* (~ 1) ?x125) ?x882))) (+ ?x128 (* (~ 1) (div (+ (* (~ 1) |$l|) ?x43) (~ 2)))))))
+(let (($x846 (= (* (~ 1) (div (* (~ 1) ?x125) ?x882)) (* (~ 1) (div (+ (* (~ 1) |$l|) ?x43) (~ 2))))))
+(let ((@x844 (monotonicity (rewrite (= (* (~ 1) ?x125) (+ (* (~ 1) |$l|) ?x43))) @x700 (= (div (* (~ 1) ?x125) ?x882) (div (+ (* (~ 1) |$l|) ?x43) (~ 2))))))
+(let ((@x866 (trans (monotonicity @x868 (= (or $x538 $x892) (or $x538 false))) (rewrite (= (or $x538 false) $x538)) (= (or $x538 $x892) $x538))))
+(let ((@x873 (trans (monotonicity @x868 (= (or $x556 $x892) (or $x556 false))) (rewrite (= (or $x556 false) $x556)) (= (or $x556 $x892) $x556))))
+(let ((@x857 (monotonicity (monotonicity @x873 (= (not (or $x556 $x892)) $x580)) (monotonicity @x866 (= (not (or $x538 $x892)) $x867)) (= (or (not (or $x556 $x892)) (not (or $x538 $x892))) $x855))))
+(let ((@x837 (monotonicity @x857 (monotonicity (monotonicity (monotonicity @x844 $x846) $x849) $x852) (= $x525 $x680))))
+(let ((@x596 (trans (monotonicity @x887 (= $x554 (or $x890 false))) (rewrite (= (or $x890 false) $x890)) (= $x554 $x890))))
+(let ((@x684 (monotonicity (monotonicity @x596 @x837 (= (ite $x554 $x891 $x525) $x838)) (= (or $x841 (ite $x554 $x891 $x525)) $x842))))
+(let ((@x831 (trans @x684 (rewrite (= $x842 $x842)) (= (or $x841 (ite $x554 $x891 $x525)) $x842))))
+(let ((@x1080 (|unit-resolution| (mp ((_ |quant-inst| (+ |$l| ?x124) 2) (or $x841 (ite $x554 $x891 $x525))) @x831 $x842) (mp @x470 (|quant-intro| (refl (= $x464 $x464)) (= $x467 $x937)) $x937) $x838)))
+(let ((@x1355 (|unit-resolution| (|def-axiom| (or (not $x680) $x736 $x880)) (|unit-resolution| (|def-axiom| (or (not $x838) $x890 $x680)) @x1352 @x1080 $x680) (hypothesis $x815) $x736)))
+(let ((@x1195 ((_ |th-lemma| arith triangle-eq) (or $x890 $x580 $x867))))
+(let ((@x1358 (|unit-resolution| @x1195 (|unit-resolution| (|def-axiom| (or $x855 $x538)) @x1355 $x538) (|unit-resolution| (|def-axiom| (or $x855 $x556)) @x1355 $x556) @x1352 false)))
+(let ((@x1360 (lemma @x1358 (or $x890 $x880))))
+(let ((@x2309 (|unit-resolution| @x1360 (|unit-resolution| @x1318 (|unit-resolution| @x2358 @x1909 @x2334 $x1322) $x815) $x890)))
+(let (($x1126 (<= ?x128 0)))
+(let (($x1135 (not $x1126)))
+(let ((@x2310 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1/2 -1/2 1 1/2) (or $x1135 $x867 (not $x518) $x529 (not $x804))) @x2017 @x964 @x1909 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x818 $x538)) @x2309 $x538) $x1135)))
+(let ((@x1133 ((_ |th-lemma| arith triangle-eq) (or (not $x891) $x1126))))
+(let ((@x2311 (|unit-resolution| @x1133 @x2310 (trans (monotonicity @x2309 $x2019) @x2018 $x891) false)))
+(let ((@x2312 (lemma @x2311 $x529)))
+(let (($x740 (>= ?x879 0)))
+(let (($x693 (not $x778)))
+(let ((@x1425 (hypothesis $x693)))
+(let (($x667 (>= ?x43 0)))
+(let (($x794 (>= |$l| 0)))
+(let (($x786 (= |$l| 0)))
+(let (($x757 (not $x794)))
+(let (($x791 (<= |$l| 0)))
+(let (($x773 (not $x791)))
+(let (($x760 (or $x773 $x757)))
+(let (($x752 (ite $x760 $x778 (= (+ ?x45 (mod (* (~ 1) |$l|) (~ 2))) 0))))
+(let (($x790 (= ?x45 0)))
+(let (($x723 (ite $x786 $x790 $x752)))
+(let (($x944 (forall ((?v0 Int) (?v1 Int) )(!(let (($x424 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x478 (ite $x424 (= (+ (|$mod| ?v0 ?v1) (* (~ 1) (mod ?v0 ?v1))) 0) (= (+ (|$mod| ?v0 ?v1) (mod (* (~ 1) ?v0) (* (~ 1) ?v1))) 0))))
+(let (($x72 (= ?v0 0)))
+(let (($x73 (= ?v1 0)))
+(ite $x73 (= (|$mod| ?v0 ?v1) ?v0) (ite $x72 (= (|$mod| ?v0 ?v1) 0) $x478)))))) :pattern ( (|$mod| ?v0 ?v1) )))
+))
+(let (($x483 (forall ((?v0 Int) (?v1 Int) )(let (($x424 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x478 (ite $x424 (= (+ (|$mod| ?v0 ?v1) (* (~ 1) (mod ?v0 ?v1))) 0) (= (+ (|$mod| ?v0 ?v1) (mod (* (~ 1) ?v0) (* (~ 1) ?v1))) 0))))
+(let (($x72 (= ?v0 0)))
+(let (($x73 (= ?v1 0)))
+(ite $x73 (= (|$mod| ?v0 ?v1) ?v0) (ite $x72 (= (|$mod| ?v0 ?v1) 0) $x478)))))))
+))
+(let (($x478 (ite $x424 (= (+ (|$mod| ?1 ?0) (* (~ 1) (mod ?1 ?0))) 0) (= (+ (|$mod| ?1 ?0) (mod ?x206 ?x209)) 0))))
+(let (($x480 (ite $x73 (= (|$mod| ?1 ?0) ?1) (ite $x72 (= (|$mod| ?1 ?0) 0) $x478))))
+(let (($x452 (forall ((?v0 Int) (?v1 Int) )(let ((?x209 (* (~ 1) ?v1)))
+(let ((?x206 (* (~ 1) ?v0)))
+(let ((?x228 (mod ?x206 ?x209)))
+(let ((?x234 (* (~ 1) ?x228)))
+(let ((?x90 (mod ?v0 ?v1)))
+(let (($x424 (or (not (or (<= ?v0 0) (<= ?v1 0))) (not (or (>= ?v0 0) (<= ?v1 0))))))
+(let (($x72 (= ?v0 0)))
+(let (($x73 (= ?v1 0)))
+(let ((?x89 (|$mod| ?v0 ?v1)))
+(= ?x89 (ite $x73 ?v0 (ite $x72 0 (ite $x424 ?x90 ?x234))))))))))))))
+))
+(let ((?x446 (ite $x73 ?1 (ite $x72 0 (ite $x424 (mod ?1 ?0) (* (~ 1) (mod ?x206 ?x209)))))))
+(let ((?x89 (|$mod| ?1 ?0)))
+(let (($x449 (= ?x89 ?x446)))
+(let (($x354 (forall ((?v0 Int) (?v1 Int) )(let ((?x209 (* (~ 1) ?v1)))
+(let ((?x206 (* (~ 1) ?v0)))
+(let ((?x228 (mod ?x206 ?x209)))
+(let ((?x234 (* (~ 1) ?x228)))
+(let ((?x90 (mod ?v0 ?v1)))
+(let (($x184 (<= ?v1 0)))
+(let (($x185 (not $x184)))
+(let (($x323 (and (not (>= ?v0 0)) $x185)))
+(let (($x188 (and (not (<= ?v0 0)) $x185)))
+(let (($x326 (or $x188 $x323)))
+(let ((?x342 (ite $x326 ?x90 ?x234)))
+(let (($x72 (= ?v0 0)))
+(let ((?x345 (ite $x72 0 ?x342)))
+(let (($x73 (= ?v1 0)))
+(let ((?x348 (ite $x73 ?v0 ?x345)))
+(let ((?x89 (|$mod| ?v0 ?v1)))
+(= ?x89 ?x348))))))))))))))))))
+))
+(let ((?x228 (mod ?x206 ?x209)))
+(let ((?x234 (* (~ 1) ?x228)))
+(let ((?x90 (mod ?1 ?0)))
+(let ((?x342 (ite $x326 ?x90 ?x234)))
+(let ((?x345 (ite $x72 0 ?x342)))
+(let ((?x348 (ite $x73 ?1 ?x345)))
+(let (($x351 (= ?x89 ?x348)))
+(let ((@x445 (monotonicity (monotonicity @x426 (= ?x342 (ite $x424 ?x90 ?x234))) (= ?x345 (ite $x72 0 (ite $x424 ?x90 ?x234))))))
+(let ((@x454 (|quant-intro| (monotonicity (monotonicity @x445 (= ?x348 ?x446)) (= $x351 $x449)) (= $x354 $x452))))
+(let (($x251 (forall ((?v0 Int) (?v1 Int) )(let ((?x209 (* (~ 1) ?v1)))
+(let ((?x206 (* (~ 1) ?v0)))
+(let ((?x228 (mod ?x206 ?x209)))
+(let ((?x234 (* (~ 1) ?x228)))
+(let ((?x90 (mod ?v0 ?v1)))
+(let (($x184 (<= ?v1 0)))
+(let (($x185 (not $x184)))
+(let (($x191 (<= 0 ?v0)))
+(let (($x192 (not $x191)))
+(let (($x200 (and $x192 $x185)))
+(let (($x188 (and (not (<= ?v0 0)) $x185)))
+(let (($x203 (or $x188 $x200)))
+(let ((?x239 (ite $x203 ?x90 ?x234)))
+(let (($x72 (= ?v0 0)))
+(let ((?x242 (ite $x72 0 ?x239)))
+(let (($x73 (= ?v1 0)))
+(let ((?x245 (ite $x73 ?v0 ?x242)))
+(let ((?x89 (|$mod| ?v0 ?v1)))
+(= ?x89 ?x245))))))))))))))))))))
+))
+(let ((?x239 (ite $x203 ?x90 ?x234)))
+(let ((?x242 (ite $x72 0 ?x239)))
+(let ((?x245 (ite $x73 ?1 ?x242)))
+(let (($x248 (= ?x89 ?x245)))
+(let ((@x344 (monotonicity (monotonicity (monotonicity @x322 (= $x200 $x323)) (= $x203 $x326)) (= ?x239 ?x342))))
+(let ((@x353 (monotonicity (monotonicity (monotonicity @x344 (= ?x242 ?x345)) (= ?x245 ?x348)) (= $x248 $x351))))
+(let (($x97 (forall ((?v0 Int) (?v1 Int) )(let ((?x92 (- (mod (- ?v0) (- ?v1)))))
+(let ((?x90 (mod ?v0 ?v1)))
+(let (($x80 (or (and (< 0 ?v0) (< 0 ?v1)) (and (< ?v0 0) (< 0 ?v1)))))
+(let (($x72 (= ?v0 0)))
+(let (($x73 (= ?v1 0)))
+(let ((?x89 (|$mod| ?v0 ?v1)))
+(= ?x89 (ite $x73 ?v0 (ite $x72 0 (ite $x80 ?x90 ?x92)))))))))))
+))
+(let ((?x95 (ite $x73 ?1 (ite $x72 0 (ite $x80 ?x90 (- (mod (- ?1) (- ?0))))))))
+(let (($x243 (= (ite $x72 0 (ite $x80 ?x90 (- (mod (- ?1) (- ?0))))) ?x242)))
+(let ((@x230 (monotonicity (rewrite (= (- ?1) ?x206)) (rewrite (= (- ?0) ?x209)) (= (mod (- ?1) (- ?0)) ?x228))))
+(let ((@x238 (trans (monotonicity @x230 (= (- (mod (- ?1) (- ?0))) (- ?x228))) (rewrite (= (- ?x228) ?x234)) (= (- (mod (- ?1) (- ?0))) ?x234))))
+(let ((@x241 (monotonicity (monotonicity @x190 @x202 (= $x80 $x203)) @x238 (= (ite $x80 ?x90 (- (mod (- ?1) (- ?0)))) ?x239))))
+(let ((@x250 (monotonicity (monotonicity (monotonicity @x241 $x243) (= ?x95 ?x245)) (= (= ?x89 ?x95) $x248))))
+(let ((@x357 (mp (mp (asserted $x97) (|quant-intro| @x250 (= $x97 $x251)) $x251) (|quant-intro| @x353 (= $x251 $x354)) $x354)))
+(let ((@x455 (mp (|mp~| @x357 (|nnf-pos| (refl (|~| $x351 $x351)) (|~| $x354 $x354)) $x354) @x454 $x452)))
+(let ((@x486 (mp @x455 (|quant-intro| (rewrite (= $x449 $x480)) (= $x452 $x483)) $x483)))
+(let ((@x949 (mp @x486 (|quant-intro| (refl (= $x480 $x480)) (= $x483 $x944)) $x944)))
+(let (($x743 (not $x944)))
+(let (($x744 (or $x743 $x723)))
+(let (($x782 (ite (or (not (or $x791 $x892)) (not (or $x794 $x892))) $x778 (= (+ ?x45 (mod (* (~ 1) |$l|) ?x882)) 0))))
+(let (($x784 (ite $x553 (= ?x45 |$l|) (ite $x786 $x790 $x782))))
+(let (($x750 (= (= (+ ?x45 (mod (* (~ 1) |$l|) ?x882)) 0) (= (+ ?x45 (mod (* (~ 1) |$l|) (~ 2))) 0))))
+(let (($x690 (= (+ ?x45 (mod (* (~ 1) |$l|) ?x882)) (+ ?x45 (mod (* (~ 1) |$l|) (~ 2))))))
+(let ((@x765 (monotonicity @x700 (= (mod (* (~ 1) |$l|) ?x882) (mod (* (~ 1) |$l|) (~ 2))))))
+(let ((@x756 (trans (monotonicity @x868 (= (or $x794 $x892) (or $x794 false))) (rewrite (= (or $x794 false) $x794)) (= (or $x794 $x892) $x794))))
+(let ((@x772 (trans (monotonicity @x868 (= (or $x791 $x892) (or $x791 false))) (rewrite (= (or $x791 false) $x791)) (= (or $x791 $x892) $x791))))
+(let ((@x762 (monotonicity (monotonicity @x772 (= (not (or $x791 $x892)) $x773)) (monotonicity @x756 (= (not (or $x794 $x892)) $x757)) (= (or (not (or $x791 $x892)) (not (or $x794 $x892))) $x760))))
+(let ((@x721 (monotonicity @x762 (monotonicity (monotonicity @x765 $x690) $x750) (= $x782 $x752))))
+(let ((@x728 (monotonicity @x887 (monotonicity @x721 (= (ite $x786 $x790 $x782) $x723)) (= $x784 (ite false (= ?x45 |$l|) $x723)))))
+(let ((@x742 (trans @x728 (rewrite (= (ite false (= ?x45 |$l|) $x723) $x723)) (= $x784 $x723))))
+(let ((@x708 (trans (monotonicity @x742 (= (or $x743 $x784) $x744)) (rewrite (= $x744 $x744)) (= (or $x743 $x784) $x744))))
+(let ((@x1281 (|unit-resolution| (mp ((_ |quant-inst| |$l| 2) (or $x743 $x784)) @x708 $x744) @x949 $x723)))
+(let (($x669 (not $x786)))
+(let ((@x1056 (hypothesis $x669)))
+(let ((@x673 (|def-axiom| (or (not $x723) $x786 $x752))))
+(let ((@x1057 (|unit-resolution| (|def-axiom| (or $x760 $x791)) (hypothesis (not $x760)) $x791)))
+(let ((@x1059 (|unit-resolution| (|def-axiom| (or $x760 $x794)) (hypothesis (not $x760)) $x794)))
+(let ((@x1063 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x786 $x773 $x757)) @x1059 @x1057 @x1056 false)))
+(let ((@x689 (|def-axiom| (or (not $x752) (not $x760) $x778))))
+(let ((@x1492 (|unit-resolution| @x689 (|unit-resolution| (lemma @x1063 (or $x760 $x786)) @x1056 $x760) (|unit-resolution| @x673 @x1056 @x1281 $x752) @x1425 false)))
+(let ((@x2081 (|unit-resolution| (lemma @x1492 (or $x786 $x778)) @x1425 $x786)))
+(let ((@x2053 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x669 $x794)) @x2081 $x794)))
+(let ((@x2143 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x667 $x757 $x580)) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x818 $x556)) (hypothesis $x890) $x556) @x2053 $x667)))
+(let (($x664 (<= ?x43 0)))
+(let ((@x1404 (|unit-resolution| @x673 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x669 $x791)) (hypothesis $x773) $x669) @x1281 $x752)))
+(let ((@x1236 (|unit-resolution| @x689 @x1404 (|unit-resolution| (|def-axiom| (or $x760 $x791)) (hypothesis $x773) $x760) @x1425 false)))
+(let ((@x2091 (|unit-resolution| (lemma @x1236 (or $x791 $x778)) @x1425 $x791)))
+(let ((@x2164 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x773 $x664 $x867)) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x818 $x538)) (hypothesis $x890) $x538) @x2091 $x664)))
+(let (($x658 (= ?x43 0)))
+(let (($x547 (not $x658)))
+(let ((@x1919 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x547 $x667)) (hypothesis $x658) $x667)))
+(let ((@x1175 (hypothesis $x664)))
+(let ((@x2094 (|unit-resolution| @x1195 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or (not $x664) $x757 $x538)) @x2053 @x1175 $x538) (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1) (or $x556 $x773 (not $x667))) @x2091 @x1919 $x556) $x890)))
+(let ((@x2089 (trans (trans (monotonicity @x2094 $x2019) @x2018 $x891) (symm (hypothesis $x658) (= 0 ?x43)) (= ?x128 ?x43))))
+(let ((@x2059 (trans (monotonicity @x2089 (= $x131 (= ?x48 ?x43))) (commutativity (= (= ?x48 ?x43) (= ?x43 ?x48))) (= $x131 (= ?x43 ?x48)))))
+(let ((@x1183 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x813) $x804)) (|unit-resolution| ((_ |quant-inst| |$ks| |$xs|) (or (not $x909) $x813)) @x914 $x813) $x804)))
+(let ((@x2022 (|unit-resolution| @x1133 (trans (monotonicity (hypothesis $x890) $x2019) @x2018 $x891) $x1126)))
+(let ((@x2025 (lemma ((_ |th-lemma| arith farkas 1 2 2 1 1 1) (hypothesis $x794) @x2022 @x1909 @x1175 @x1183 @x2017 false) (or $x529 $x757 (not $x664) $x818))))
+(let (($x528 (<= (+ ?x48 (* (~ 1) ?x128)) 0)))
+(let (($x1191 (not $x528)))
+(let ((@x1155 (hypothesis $x529)))
+(let ((@x1188 (hypothesis $x786)))
+(let ((@x1081 (hypothesis $x667)))
+(let ((@x1205 (hypothesis $x143)))
+(let (($x520 (= ?x39 0)))
+(let (($x1038 (not $x520)))
+(let ((@x1174 (mp @x1205 (monotonicity (monotonicity @x1188 (= $x41 $x520)) (= $x143 $x1038)) $x1038)))
+(let (($x504 (<= ?x39 0)))
+(let ((@x1184 (hypothesis $x528)))
+(let ((@x1060 (monotonicity (symm ((_ |th-lemma| arith eq-propagate 1 1) @x1081 @x1175 (= |$l| ?x125)) (= ?x125 |$l|)) (= $x890 $x786))))
+(let ((@x820 (|def-axiom| (or (not $x838) $x818 $x891))))
+(let ((@x1129 (|unit-resolution| @x820 (mp @x1188 (symm @x1060 (= $x786 $x890)) $x890) @x1080 $x891)))
+(let ((@x1151 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1/2 1/2) (or $x504 $x1135 $x1191 (not $x804) (not $x664))) (|unit-resolution| @x1133 @x1129 $x1126) @x1184 @x1183 @x1175 $x504)))
+(let (($x510 (>= ?x39 0)))
+(let (($x805 (>= ?x812 0)))
+(let ((@x1154 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x813) $x805)) (|unit-resolution| ((_ |quant-inst| |$ks| |$xs|) (or (not $x909) $x813)) @x914 $x813) $x805)))
+(let (($x1145 (>= ?x128 0)))
+(let ((@x1161 ((_ |th-lemma| arith triangle-eq) (or (not $x891) $x1145))))
+(let ((@x1101 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1/2 1/2) (or $x510 (not $x1145) $x1093 (not $x805) (not $x667))) (|unit-resolution| @x1161 @x1129 $x1145) @x1155 @x1154 @x1081 $x510)))
+(let ((@x1136 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x520 (not $x504) (not $x510))) @x1101 @x1151 @x1174 false)))
+(let ((@x2077 (|unit-resolution| (lemma @x1136 (or $x669 $x1093 (not $x667) $x1191 (not $x664) $x41)) @x1205 @x1175 @x1081 @x1188 @x1155 $x1191)))
+(let ((@x2030 ((_ |th-lemma| arith triangle-eq) (or $x402 $x528))))
+(let ((@x2050 (|unit-resolution| @x2030 (|unit-resolution| @x894 (|unit-resolution| @x896 @x1205 (not $x403)) $x131) @x2077 false)))
+(let ((@x2096 (|unit-resolution| (lemma @x2050 (or $x41 (not $x664) (not $x667) $x669 $x1093)) @x2081 @x1919 @x1175 (|unit-resolution| @x2025 @x2094 @x1175 @x2053 $x529) $x41)))
+(let ((@x900 (|unit-resolution| (|def-axiom| (or $x143 $x403 (not $x410))) (mp (mp (asserted $x54) @x148 $x144) @x414 $x410) (or $x143 $x403))))
+(let ((@x679 (|def-axiom| (or (not $x403) $x401 $x402))))
+(let ((@x2040 (mp (|unit-resolution| @x679 (|unit-resolution| @x900 @x2096 $x403) @x2109 $x402) (monotonicity @x2059 (= $x402 (not (= ?x43 ?x48)))) (not (= ?x43 ?x48)))))
+(let (($x1405 (>= (+ ?x43 (* (~ 1) ?x48)) 0)))
+(let ((@x2041 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x813) $x805)) (lemma @x2010 $x813) $x805)))
+(let (($x516 (<= (+ ?x39 (* (~ 1) |$l|)) 0)))
+(let ((@x2043 ((_ |th-lemma| arith triangle-eq) (or $x143 $x516))))
+(let ((@x963 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -3/2 1/2 1/2 -1/2) (or $x1405 (not $x667) (not $x516) $x773 (not $x805))) (|unit-resolution| @x2043 @x2096 $x516) @x2041 @x1919 @x2091 $x1405)))
+(let (($x1375 (<= (+ ?x43 (* (~ 1) ?x48)) 0)))
+(let ((@x1767 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -3/2 1/2 1/2 -1/2) (or $x1375 (not $x664) (not $x518) $x757 (not $x804))) (|unit-resolution| @x2016 @x2096 $x518) @x964 @x1175 @x2053 $x1375)))
+(let ((@x1893 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (= ?x43 ?x48) (not $x1375) (not $x1405))) @x1767 @x963 @x2040 false)))
+(let ((@x2349 (|unit-resolution| (lemma @x1893 (or $x778 (not $x664) $x547)) @x2164 @x1425 $x547)))
+(let ((@x2210 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x658 (not $x664) (not $x667))) @x2349 @x2164 @x2143 false)))
+(let ((@x2533 (|unit-resolution| @x1360 (|unit-resolution| (lemma @x2210 (or $x818 $x778)) @x1425 $x818) $x880)))
+(let ((@x1305 ((_ |th-lemma| arith triangle-eq) (or $x815 $x740))))
+(let (($x965 (not $x510)))
+(let (($x1327 (not $x518)))
+(let ((@x2375 (|unit-resolution| ((_ |th-lemma| arith) (or false $x1263)) @x272 (hypothesis (not $x1263)) false)))
+(let ((@x2275 (hypothesis $x1191)))
+(let ((@x2269 (lemma (|unit-resolution| @x2030 (hypothesis $x131) @x2275 false) (or $x402 $x528))))
+(let ((@x2216 (|unit-resolution| @x896 (|unit-resolution| @x894 (|unit-resolution| @x2269 @x2275 $x402) $x403) $x41)))
+(let ((@x1576 (hypothesis $x740)))
+(let (($x1240 (<= ?x1235 0)))
+(let ((@x2406 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1232) $x1240)) @x2334 $x1240)))
+(let ((@x2125 ((_ |th-lemma| arith farkas 1 -2 -2 -1 1 1) @x2406 @x1576 @x2275 @x2041 (|unit-resolution| @x2043 @x2216 $x516) @x1481 false)))
+(let ((@x2290 (|unit-resolution| (lemma @x2125 (or (not $x740) $x528)) (|unit-resolution| @x1305 @x2533 $x740) $x528)))
+(let ((@x2031 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 -2 -2 -1) (or $x516 (not $x1263) $x1321 $x1322 $x1191 (not $x804))) @x964 (or $x516 (not $x1263) $x1321 $x1322 $x1191))))
+(let ((@x1824 (|unit-resolution| @x2031 @x2290 (lemma @x2375 $x1263) (|unit-resolution| @x1315 @x2334 $x1241) (|unit-resolution| @x1318 @x2533 $x739) $x516)))
+(let (($x404 (not $x403)))
+(let ((@x2248 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x131 $x1191 $x1093)) (hypothesis $x402) @x2312 @x1184 false)))
+(let ((@x2347 (|unit-resolution| (|unit-resolution| @x679 @x2109 (or $x404 $x402)) (|unit-resolution| (lemma @x2248 (or $x131 $x1191)) @x2290 $x131) $x404)))
+(let ((@x1329 ((_ |th-lemma| arith triangle-eq) (or $x41 (not $x516) $x1327))))
+(let ((@x2169 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1) (or $x965 $x773 $x518)) (|unit-resolution| @x1329 (|unit-resolution| @x900 @x2347 $x143) @x1824 $x1327) @x2091 $x965)))
+(let (($x1482 (<= ?x45 0)))
+(let ((?x1594 (|$mod| 0 2)))
+(let (($x1478 (= ?x1594 0)))
+(let (($x1979 (or $x743 $x1478)))
+(let (($x544 (ite $x1030 (= (+ ?x1594 (* (~ 1) (mod 0 2))) 0) (= (+ ?x1594 (mod ?x1036 ?x882)) 0))))
+(let (($x545 (ite $x968 $x1478 $x544)))
+(let (($x533 (ite $x553 $x1478 $x545)))
+(let ((@x1954 (trans (monotonicity @x1884 @x700 (= (mod ?x1036 ?x882) (mod 0 (~ 2)))) (rewrite (= (mod 0 (~ 2)) 0)) (= (mod ?x1036 ?x882) 0))))
+(let ((@x1958 (trans (monotonicity @x1954 (= (+ ?x1594 (mod ?x1036 ?x882)) (+ ?x1594 0))) (rewrite (= (+ ?x1594 0) ?x1594)) (= (+ ?x1594 (mod ?x1036 ?x882)) ?x1594))))
+(let ((@x555 (monotonicity (rewrite (= (mod 0 2) 0)) (= (* (~ 1) (mod 0 2)) ?x1036))))
+(let ((@x810 (monotonicity (trans @x555 @x1884 (= (* (~ 1) (mod 0 2)) 0)) (= (+ ?x1594 (* (~ 1) (mod 0 2))) (+ ?x1594 0)))))
+(let ((@x695 (trans @x810 (rewrite (= (+ ?x1594 0) ?x1594)) (= (+ ?x1594 (* (~ 1) (mod 0 2))) ?x1594))))
+(let ((@x1928 (monotonicity @x695 (= (= (+ ?x1594 (* (~ 1) (mod 0 2))) 0) $x1478))))
+(let ((@x1963 (monotonicity @x1420 @x1928 (monotonicity @x1958 (= (= (+ ?x1594 (mod ?x1036 ?x882)) 0) $x1478)) (= $x544 (ite false $x1478 $x1478)))))
+(let ((@x1967 (trans @x1963 (rewrite (= (ite false $x1478 $x1478) $x1478)) (= $x544 $x1478))))
+(let ((@x1970 (monotonicity (rewrite (= $x968 true)) @x1967 (= $x545 (ite true $x1478 $x1478)))))
+(let ((@x1974 (trans @x1970 (rewrite (= (ite true $x1478 $x1478) $x1478)) (= $x545 $x1478))))
+(let ((@x1978 (trans (monotonicity @x887 @x1974 (= $x533 (ite false $x1478 $x1478))) (rewrite (= (ite false $x1478 $x1478) $x1478)) (= $x533 $x1478))))
+(let ((@x1986 (trans (monotonicity @x1978 (= (or $x743 $x533) $x1979)) (rewrite (= $x1979 $x1979)) (= (or $x743 $x533) $x1979))))
+(let ((@x2589 (trans (monotonicity @x2081 (= ?x45 ?x1594)) (|unit-resolution| (mp ((_ |quant-inst| 0 2) (or $x743 $x533)) @x1986 $x1979) @x949 $x1478) $x790)))
+(let ((?x662 (+ ?x44 (* (~ 1) ?x660))))
+(let (($x567 (>= ?x662 0)))
+(let (($x652 (= ?x662 0)))
+(let (($x2035 (<= (+ ?x45 (* (~ 1) ?x799)) 0)))
+(let (($x536 (not $x652)))
+(let ((@x1212 (hypothesis $x536)))
+(let (($x630 (not $x667)))
+(let (($x639 (not $x664)))
+(let (($x633 (or $x639 $x630)))
+(let (($x621 (ite $x633 $x652 (= (+ ?x44 (mod ?x124 (~ 2))) 0))))
+(let (($x663 (= ?x44 0)))
+(let (($x608 (ite $x658 $x663 $x621)))
+(let (($x604 (or $x743 $x608)))
+(let (($x647 (ite (or (not (or $x664 $x892)) (not (or $x667 $x892))) $x652 (= (+ ?x44 (mod ?x124 ?x882)) 0))))
+(let (($x653 (ite $x553 (= ?x44 ?x43) (ite $x658 $x663 $x647))))
+(let (($x619 (= (= (+ ?x44 (mod ?x124 ?x882)) 0) (= (+ ?x44 (mod ?x124 (~ 2))) 0))))
+(let ((@x617 (monotonicity (monotonicity @x700 (= (mod ?x124 ?x882) (mod ?x124 (~ 2)))) (= (+ ?x44 (mod ?x124 ?x882)) (+ ?x44 (mod ?x124 (~ 2)))))))
+(let ((@x629 (trans (monotonicity @x868 (= (or $x667 $x892) (or $x667 false))) (rewrite (= (or $x667 false) $x667)) (= (or $x667 $x892) $x667))))
+(let ((@x638 (trans (monotonicity @x868 (= (or $x664 $x892) (or $x664 false))) (rewrite (= (or $x664 false) $x664)) (= (or $x664 $x892) $x664))))
+(let ((@x635 (monotonicity (monotonicity @x638 (= (not (or $x664 $x892)) $x639)) (monotonicity @x629 (= (not (or $x667 $x892)) $x630)) (= (or (not (or $x664 $x892)) (not (or $x667 $x892))) $x633))))
+(let ((@x610 (monotonicity (monotonicity @x635 (monotonicity @x617 $x619) (= $x647 $x621)) (= (ite $x658 $x663 $x647) $x608))))
+(let ((@x603 (trans (monotonicity @x887 @x610 (= $x653 (ite false (= ?x44 ?x43) $x608))) (rewrite (= (ite false (= ?x44 ?x43) $x608) $x608)) (= $x653 $x608))))
+(let ((@x589 (trans (monotonicity @x603 (= (or $x743 $x653) $x604)) (rewrite (= $x604 $x604)) (= (or $x743 $x653) $x604))))
+(let ((@x1215 (|unit-resolution| (mp ((_ |quant-inst| (|$eval_dioph| |$ks| (|$map| |$uu| |$xs|)) 2) (or $x743 $x653)) @x589 $x604) @x949 $x608)))
+(let ((@x1071 (|unit-resolution| (|def-axiom| (or (not $x608) $x658 $x621)) (hypothesis $x547) @x1215 $x621)))
+(let ((@x1219 (|unit-resolution| (|def-axiom| (or (not $x608) $x658 $x621)) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x547 $x664)) (hypothesis $x639) $x547) @x1215 $x621)))
+(let ((@x1220 (|unit-resolution| (|def-axiom| (or (not $x621) (not $x633) $x652)) @x1219 (|unit-resolution| (|def-axiom| (or $x633 $x664)) (hypothesis $x639) $x633) @x1212 false)))
+(let ((@x1064 (|unit-resolution| (lemma @x1220 (or $x664 $x652)) @x1212 $x664)))
+(let ((@x1190 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x658 $x639 $x630)) (hypothesis $x547) @x1064 $x630)))
+(let ((@x1147 (|unit-resolution| (|def-axiom| (or (not $x621) (not $x633) $x652)) (|unit-resolution| (|def-axiom| (or $x633 $x667)) @x1190 $x633) @x1071 @x1212 false)))
+(let ((@x1098 (|unit-resolution| (lemma @x1147 (or $x658 $x652)) @x1212 $x658)))
+(let ((@x1243 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x547 $x667)) @x1098 $x667)))
+(let ((@x1316 (|unit-resolution| @x1315 (|unit-resolution| ((_ |th-lemma| arith) (or false $x1232)) @x272 $x1232) $x1241)))
+(let ((@x2251 (mp @x1056 (monotonicity (symm @x1060 (= $x786 $x890)) (= $x669 $x818)) $x818)))
+(let ((@x2254 ((_ |th-lemma| arith farkas 1 2 1 2 1 1) @x1309 (|unit-resolution| @x1318 (|unit-resolution| @x1360 @x2251 $x880) $x739) @x2017 @x1909 @x964 @x1316 false)))
+(let ((@x2145 (|unit-resolution| (lemma @x2254 (or $x786 $x529 $x630 $x639)) @x1909 @x1081 @x1175 $x786)))
+(let ((@x2146 (|unit-resolution| @x2025 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x669 $x794)) @x2145 $x794) @x1175 @x1909 $x818)))
+(let ((@x2129 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1) (or $x556 $x773 $x630)) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x669 $x791)) @x2145 $x791) @x1081 $x556)))
+(let ((@x2160 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x639 $x757 $x538)) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x669 $x794)) @x2145 $x794) @x1175 $x538)))
+(let ((@x2172 (lemma (|unit-resolution| @x1195 @x2160 @x2129 @x2146 false) (or $x529 $x639 $x630))))
+(let ((@x1245 (monotonicity (symm ((_ |th-lemma| arith eq-propagate 1 1) @x1243 @x1064 (= |$l| ?x125)) (= ?x125 |$l|)) (= $x890 $x786))))
+(let ((@x1248 (|unit-resolution| (lemma @x1136 (or $x669 $x1093 $x630 $x1191 $x639 $x41)) @x1243 @x1155 @x1184 @x1064 @x1205 $x669)))
+(let ((@x1246 (mp @x1248 (monotonicity (symm @x1245 (= $x786 $x890)) (= $x669 $x818)) $x818)))
+(let ((@x1302 (hypothesis $x514)))
+(let (($x1292 (>= (+ (div ?x125 2) (* (~ 1) (div |$l| 2))) 0)))
+(let ((?x1119 (div |$l| 2)))
+(let ((?x877 (div ?x125 2)))
+(let (($x1288 (= ?x877 ?x1119)))
+(let ((@x1164 (symm (monotonicity ((_ |th-lemma| arith eq-propagate 1 1) @x1243 @x1064 (= |$l| ?x125)) (= ?x1119 ?x877)) $x1288)))
+(let (($x682 (>= ?x777 0)))
+(let ((@x1282 (|unit-resolution| @x689 (|unit-resolution| (lemma @x1063 (or $x760 $x786)) @x1248 $x760) (|unit-resolution| @x673 @x1248 @x1281 $x752) $x778)))
+(let ((@x1249 ((_ |th-lemma| arith triangle-eq) (or $x693 $x682))))
+(let (($x1086 (<= ?x44 0)))
+(let ((@x1253 ((_ |th-lemma| arith triangle-eq) (or (not $x663) $x1086))))
+(let ((@x1257 (|unit-resolution| @x1253 (|unit-resolution| (|def-axiom| (or (not $x608) $x547 $x663)) @x1098 @x1215 $x663) $x1086)))
+(let (($x1347 (not $x514)))
+(let (($x1346 (not $x1292)))
+(let (($x1345 (not $x682)))
+(let (($x1344 (not $x1086)))
+(let ((@x1325 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 -2 -2 -1) (or $x516 (not $x1263) $x1321 $x1322 $x1191 (not $x804))) (|unit-resolution| @x1318 (hypothesis $x880) $x739) @x1184 @x1183 @x1316 @x1309 $x516)))
+(let ((@x1332 (|unit-resolution| (|unit-resolution| @x1329 @x1205 (or (not $x516) $x1327)) @x1325 $x1327)))
+(let ((?x1167 (+ |$l| ?x776 (* (~ 2) ?x1119))))
+(let (($x1179 (<= ?x1167 0)))
+(let (($x1211 (= ?x1167 0)))
+(let ((@x1339 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1211) $x1179)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x1211)) @x272 $x1211) $x1179)))
+(let ((@x1341 (hypothesis $x682)))
+(let ((@x1343 ((_ |th-lemma| arith farkas -1 1 2 1 -1 -1 2 2 1 1) (hypothesis $x1086) @x1341 (hypothesis $x1292) @x1081 @x1339 @x1332 (|unit-resolution| @x1305 (hypothesis $x880) $x740) @x1155 @x1154 @x1302 false)))
+(let ((@x1258 (|unit-resolution| (lemma @x1343 (or $x815 $x1344 $x1345 $x1346 $x630 $x1093 $x1347 $x41 $x1191)) @x1257 (|unit-resolution| @x1249 @x1282 $x682) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1288) $x1292)) @x1164 $x1292) @x1243 @x1155 @x1302 @x1205 @x1184 $x815)))
+(let ((@x1259 (|unit-resolution| (|def-axiom| (or (not $x680) $x736 $x880)) @x1258 (|unit-resolution| (|def-axiom| (or (not $x838) $x890 $x680)) @x1246 @x1080 $x680) $x736)))
+(let ((@x1196 (|unit-resolution| @x1195 (|unit-resolution| (|def-axiom| (or $x855 $x538)) @x1259 $x538) (|unit-resolution| (|def-axiom| (or $x855 $x556)) @x1259 $x556) @x1246 false)))
+(let ((@x2066 (|unit-resolution| (lemma @x1196 (or $x652 $x1093 $x1347 $x41 $x1191)) @x1205 @x1212 @x2064 (|unit-resolution| @x2172 @x1064 @x1243 $x529) $x1191)))
+(let ((@x2067 (|unit-resolution| @x2030 (|unit-resolution| @x894 (|unit-resolution| @x896 @x1205 $x404) $x131) @x2066 false)))
+(let ((@x2231 (|unit-resolution| (lemma @x2067 (or $x41 $x652)) @x1212 $x41)))
+(let ((@x2176 (monotonicity (symm @x2231 (= |$l| ?x39)) (= ?x45 ?x799))))
+(let (($x970 (>= (+ ?x44 (* (~ 1) ?x799)) 0)))
+(let ((@x2079 (symm (monotonicity (symm @x2176 $x1108) (= $x966 $x46)) (= $x46 $x966))))
+(let ((@x2225 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x966) $x970)) (mp @x2109 @x2079 $x966) $x970)))
+(let ((@x2065 (monotonicity (symm ((_ |th-lemma| arith eq-propagate 1 1) @x1243 @x1064 (= |$l| ?x125)) (= ?x125 |$l|)) $x1288)))
+(let ((@x2114 (|unit-resolution| @x1249 (|unit-resolution| (lemma @x1893 (or $x778 $x639 $x547)) @x1064 @x1098 $x778) $x682)))
+(let ((@x2260 (monotonicity (trans (symm @x1107 $x966) (symm @x2176 $x1108) $x46) (= $x663 $x790))))
+(let ((@x2238 (trans (trans @x2176 @x1107 (= ?x45 ?x44)) (monotonicity @x1098 (= ?x44 ?x1594)) (= ?x45 ?x1594))))
+(let ((@x2119 (trans @x2238 (|unit-resolution| (mp ((_ |quant-inst| 0 2) (or $x743 $x533)) @x1986 $x1979) @x949 $x1478) $x790)))
+(let ((@x2261 (|unit-resolution| @x1253 (mp @x2119 (symm @x2260 (= $x790 $x663)) $x663) $x1086)))
+(let ((@x2230 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x131 $x1191 $x1093)) (|unit-resolution| @x679 (|unit-resolution| @x900 @x2231 $x403) @x2109 $x402) (|unit-resolution| @x2172 @x1064 @x1243 $x529) $x1191)))
+(let (($x1581 (not $x740)))
+(let ((@x1668 (|unit-resolution| ((_ |th-lemma| arith) (or false $x1211)) @x272 (hypothesis (not $x1211)) false)))
+(let ((@x1705 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1211) $x1179)) (lemma @x1668 $x1211) $x1179)))
+(let (($x1094 (not $x805)))
+(let (($x1326 (not $x516)))
+(let (($x2279 (or $x1581 (not $x970) (not $x2035) $x1344 $x1346 $x1345 (not $x1179) $x1326 $x528 $x630 $x1094)))
+(let ((@x2281 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1/2 -1/2 -1/2 1 1/2 -1/2 -1/2 1 1/2 1/2) $x2279) @x1081 @x2275 @x2041 (hypothesis $x516) (hypothesis $x1086) @x1341 (hypothesis $x1292) @x1705 (hypothesis $x970) (hypothesis $x2035) $x1581)))
+(let ((@x2285 (lemma (|unit-resolution| @x1305 (|unit-resolution| @x1360 @x1352 $x880) @x2281 false) (or $x890 $x630 $x528 $x1326 $x1344 $x1345 $x1346 (not $x970) (not $x2035)))))
+(let ((@x2206 (|unit-resolution| @x2285 @x1243 @x2230 (|unit-resolution| @x2043 @x2231 $x516) @x2261 @x2114 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1288) $x1292)) @x2065 $x1292) @x2225 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x45 ?x799)) $x2035)) @x2176 $x2035) $x890)))
+(let ((@x1225 ((_ |th-lemma| arith triangle-eq) (or $x818 $x556))))
+(let ((@x2234 ((_ |th-lemma| arith farkas 1 2 2 1 1) (|unit-resolution| @x2043 @x2231 $x516) (|unit-resolution| @x1161 (|unit-resolution| @x820 @x2206 @x1080 $x891) $x1145) @x2230 @x2041 (|unit-resolution| @x1225 @x2206 $x556) false)))
+(let ((@x1709 (hypothesis $x965)))
+(let ((@x1498 (hypothesis $x508)))
+(let ((@x1407 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1232) $x1240)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x1232)) @x272 $x1232) $x1240)))
+(let ((@x1712 ((_ |th-lemma| arith farkas 1 -2 -2 -1 -1 -1 1 -1 1 1) @x1407 @x1576 @x1155 (hypothesis $x794) @x1154 (hypothesis $x1699) @x1498 (hypothesis $x567) (hypothesis $x1482) @x1709 false)))
+(let ((@x1716 (lemma @x1712 (or $x1713 $x1581 $x1093 $x757 (not $x508) (not $x567) (not $x1482) $x510))))
+(let ((@x2204 (|unit-resolution| @x1716 @x2368 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x536 $x567)) (lemma @x2234 $x652) $x567) (or $x1713 $x1581 $x1093 $x757 (not $x1482) $x510))))
+(let ((@x1873 (|unit-resolution| @x2204 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x790) $x1482)) @x2589 $x1482) @x2053 @x2169 (|unit-resolution| @x1305 @x2533 $x740) @x2312 $x1713)))
+(let (($x1592 (= ?x43 ?x1186)))
+(let (($x1694 (<= (+ ?x43 (* (~ 1) ?x1186)) 0)))
+(let (($x1695 (>= (+ ?x43 (* (~ 1) ?x1186)) 0)))
+(let ((@x2587 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1592 (not $x1694) (not $x1695))) (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1) (or $x1695 $x773)) @x2091 $x1695) (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1) (or $x1694 $x757)) @x2053 $x1694) $x1592)))
+(let ((@x2580 (symm (monotonicity (symm (hypothesis $x1592) (= ?x1186 ?x43)) (= ?x1223 ?x660)) $x1724)))
+(let ((@x2584 (lemma (|unit-resolution| (hypothesis $x1728) @x2580 false) (or (not $x1592) $x1724))))
+(let ((@x2492 (|unit-resolution| @x2584 @x2587 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1728 $x1699)) @x1873 $x1728) false)))
+(let ((@x2651 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x693 $x717)) (lemma @x2492 $x778) $x717)))
+(let ((@x2519 (|unit-resolution| @x1249 (lemma @x2492 $x778) $x682)))
+(let ((@x986 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1211) (>= ?x1167 0))) (lemma @x1668 $x1211) (>= ?x1167 0))))
+(let ((@x2325 (|unit-resolution| @x1305 (|unit-resolution| (lemma @x2125 (or $x1581 $x528)) @x2275 $x1581) $x815)))
+(let ((@x2208 (|unit-resolution| @x1360 @x2325 $x890)))
+(let ((@x2395 ((_ |th-lemma| arith eq-propagate -1/2 -1/2 -1/2 -1/2 1/2 1/2) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x818 $x538)) @x2208 $x538) (|unit-resolution| @x1225 @x2208 $x556) (|unit-resolution| @x2016 @x2216 $x518) (|unit-resolution| @x2043 @x2216 $x516) @x2041 @x964 (= ?x48 0))))
+(let ((@x2193 (trans (trans @x2395 (symm @x2018 (= 0 ?x1017)) (= ?x48 ?x1017)) (symm (monotonicity @x2208 $x2019) (= ?x1017 ?x128)) $x131)))
+(let ((@x1856 (lemma (|unit-resolution| (|unit-resolution| @x2269 @x2275 $x402) @x2193 false) $x528)))
+(let ((@x2638 (|unit-resolution| (|unit-resolution| @x679 @x2109 (or $x404 $x402)) (|unit-resolution| (lemma @x2248 (or $x131 $x1191)) @x1856 $x131) $x404)))
+(let ((@x1096 (|unit-resolution| @x1133 (|unit-resolution| @x820 (hypothesis $x890) @x1080 $x891) $x1126)))
+(let ((@x1295 ((_ |th-lemma| arith farkas -2 1 -2 -1 1) (hypothesis $x1126) (hypothesis $x1326) @x1184 @x1183 (hypothesis $x538) false)))
+(let ((@x1097 (|unit-resolution| (lemma @x1295 (or $x516 $x1135 $x1191 $x867)) @x1096 @x1184 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x818 $x538)) (hypothesis $x890) $x538) $x516)))
+(let ((@x1085 (|unit-resolution| @x1161 (|unit-resolution| @x820 (hypothesis $x890) @x1080 $x891) $x1145)))
+(let ((@x1066 ((_ |th-lemma| arith farkas -2 1 -2 -1 1) @x1085 (|unit-resolution| (|unit-resolution| @x1329 @x1205 (or $x1326 $x1327)) @x1097 $x1327) @x1155 @x1154 (|unit-resolution| @x1225 (hypothesis $x890) $x556) false)))
+(let ((@x2641 (|unit-resolution| (lemma @x1066 (or $x818 $x1093 $x41 $x1191)) @x2312 (or $x818 $x41 $x1191))))
+(let ((@x2643 (|unit-resolution| @x1360 (|unit-resolution| @x2641 (|unit-resolution| @x900 @x2638 $x143) @x1856 $x818) $x880)))
+(let ((@x2646 (|unit-resolution| @x2031 (lemma @x2375 $x1263) (|unit-resolution| @x1315 @x2334 $x1241) (or $x516 $x1322 $x1191))))
+(let ((@x2648 (|unit-resolution| @x1329 (|unit-resolution| @x900 @x2638 $x143) (|unit-resolution| @x2646 (|unit-resolution| @x1318 @x2643 $x739) @x1856 $x516) $x1327)))
+(let ((?x977 (* (~ 1) ?x799)))
+(let ((?x978 (+ (mod ?x39 2) ?x977)))
+(let (($x1651 (= ?x978 0)))
+(let (($x1743 (not $x1651)))
+(let (($x2399 (>= (+ |$l| ?x44 ?x776 ?x977 (* (~ 1) ?x1119) (* (~ 1) (div ?x39 2))) 1)))
+(let ((@x716 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x966) $x970)) (mp @x1107 (symm (commutativity (= $x966 $x800)) (= $x800 $x966)) $x966) $x970)))
+(let (($x1735 (>= ?x978 0)))
+(let ((@x1863 ((_ |th-lemma| arith triangle-eq) (or $x1743 $x1735))))
+(let ((?x495 (* (~ 1) (mod ?x39 2))))
+(let ((?x1457 (+ ?x39 ?x495 (* (~ 2) (div ?x39 2)))))
+(let (($x1636 (>= ?x1457 0)))
+(let (($x1455 (= ?x1457 0)))
+(let ((@x1839 (|unit-resolution| ((_ |th-lemma| arith) (or false $x1455)) @x272 (hypothesis (not $x1455)) false)))
+(let ((@x2512 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1455) $x1636)) (lemma @x1839 $x1455) $x1636)))
+(let ((@x2520 ((_ |th-lemma| arith) @x2648 @x986 @x2519 @x2064 @x2512 (|unit-resolution| @x1863 (hypothesis $x1651) $x1735) @x716 $x2399)))
+(let (($x2408 (not $x2399)))
+(let ((@x2653 (|unit-resolution| @x1305 @x2643 $x740)))
+(let (($x1022 (<= ?x978 0)))
+(let ((@x1911 ((_ |th-lemma| arith triangle-eq) (or $x1743 $x1022))))
+(let ((@x1376 (hypothesis $x1022)))
+(let (($x1462 (<= ?x1457 0)))
+(let ((@x2404 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1455) $x1462)) (lemma @x1839 $x1455) $x1462)))
+(let ((@x1795 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x966) (<= (+ ?x44 ?x977) 0))) (mp @x1107 (symm (commutativity (= $x966 $x800)) (= $x800 $x966)) $x966) (<= (+ ?x44 ?x977) 0))))
+(let ((@x1285 (hypothesis $x717)))
+(let ((@x2407 ((_ |th-lemma| arith farkas 1 -2 -2 -1 -2 1 1 1 1 1 1 1) @x2406 @x1576 @x2312 @x2041 (hypothesis $x2399) @x1285 @x2368 @x1795 @x1705 @x2404 @x1376 @x1481 false)))
+(let ((@x2514 (|unit-resolution| (lemma @x2407 (or $x2408 $x1581 (not $x717) (not $x1022))) @x2651 (or $x2408 $x1581 (not $x1022)))))
+(let ((@x2517 (|unit-resolution| @x2514 (|unit-resolution| @x1911 (hypothesis $x1651) $x1022) @x2653 $x2408)))
+(let (($x955 (not $x504)))
+(let (($x1141 (or $x955 $x965)))
+(let (($x1009 (ite $x1141 $x1651 (= (+ ?x799 (mod (* (~ 1) ?x39) (~ 2))) 0))))
+(let (($x502 (= ?x799 0)))
+(let (($x1011 (ite $x520 $x502 $x1009)))
+(let (($x1300 (or $x743 $x1011)))
+(let (($x497 (= (+ ?x799 ?x495) 0)))
+(let (($x488 (ite (or (not (or $x504 $x892)) (not (or $x510 $x892))) $x497 (= (+ ?x799 (mod (* (~ 1) ?x39) ?x882)) 0))))
+(let (($x490 (ite $x553 (= ?x799 ?x39) (ite $x520 $x502 $x488))))
+(let (($x1005 (= (= (+ ?x799 (mod (* (~ 1) ?x39) ?x882)) 0) (= (+ ?x799 (mod (* (~ 1) ?x39) (~ 2))) 0))))
+(let (($x1664 (= (+ ?x799 (mod (* (~ 1) ?x39) ?x882)) (+ ?x799 (mod (* (~ 1) ?x39) (~ 2))))))
+(let ((@x1658 (monotonicity @x700 (= (mod (* (~ 1) ?x39) ?x882) (mod (* (~ 1) ?x39) (~ 2))))))
+(let ((@x992 (monotonicity (rewrite (= (+ ?x799 ?x495) (+ ?x495 ?x799))) (= $x497 (= (+ ?x495 ?x799) 0)))))
+(let ((@x1660 (trans @x992 (rewrite (= (= (+ ?x495 ?x799) 0) $x1651)) (= $x497 $x1651))))
+(let ((@x1363 (trans (monotonicity @x868 (= (or $x510 $x892) (or $x510 false))) (rewrite (= (or $x510 false) $x510)) (= (or $x510 $x892) $x510))))
+(let ((@x1270 (trans (monotonicity @x868 (= (or $x504 $x892) (or $x504 false))) (rewrite (= (or $x504 false) $x504)) (= (or $x504 $x892) $x504))))
+(let ((@x1595 (monotonicity (monotonicity @x1270 (= (not (or $x504 $x892)) $x955)) (monotonicity @x1363 (= (not (or $x510 $x892)) $x965)) (= (or (not (or $x504 $x892)) (not (or $x510 $x892))) $x1141))))
+(let ((@x1010 (monotonicity @x1595 @x1660 (monotonicity (monotonicity @x1658 $x1664) $x1005) (= $x488 $x1009))))
+(let ((@x1689 (monotonicity @x887 (monotonicity @x1010 (= (ite $x520 $x502 $x488) $x1011)) (= $x490 (ite false (= ?x799 ?x39) $x1011)))))
+(let ((@x1386 (trans @x1689 (rewrite (= (ite false (= ?x799 ?x39) $x1011) $x1011)) (= $x490 $x1011))))
+(let ((@x1512 (trans (monotonicity @x1386 (= (or $x743 $x490) $x1300)) (rewrite (= $x1300 $x1300)) (= (or $x743 $x490) $x1300))))
+(let ((@x1470 (|unit-resolution| (mp ((_ |quant-inst| (|$eval_dioph| |$ks| |$xs|) 2) (or $x743 $x490)) @x1512 $x1300) @x949 $x1011)))
+(let ((@x1753 (|def-axiom| (or (not $x1011) $x520 $x1009))))
+(let ((@x2633 (|unit-resolution| @x1753 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1038 $x510)) @x1709 $x1038) @x1470 $x1009)))
+(let ((@x1740 (|def-axiom| (or (not $x1009) (not $x1141) $x1651))))
+(let ((@x2421 (|unit-resolution| @x1740 @x2633 (|unit-resolution| (|def-axiom| (or $x1141 $x510)) @x1709 $x1141) (lemma (|unit-resolution| @x2517 @x2520 false) $x1743) false)))
+(let ((@x2562 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1) (or $x965 $x773 $x518)) (lemma @x2421 $x510) @x2648 $x773)))
+(let (($x834 (<= (+ ?x660 ?x1234) 0)))
+(let ((@x1007 (|unit-resolution| ((_ |th-lemma| arith) (or false (not (>= ?x660 2)))) @x272 (not (>= ?x660 2)))))
+(let ((@x1048 ((_ |th-lemma| arith farkas -1 1 -2 -2 1 -1 1) (hypothesis (not $x834)) @x1407 @x1576 @x1155 (hypothesis $x1327) @x1154 @x1007 false)))
+(let ((@x2636 (|unit-resolution| (lemma @x1048 (or $x834 $x1581 $x1093 $x518)) @x2312 (or $x834 $x1581 $x518))))
+(let ((@x1761 (hypothesis $x1344)))
+(let ((@x1799 (hypothesis $x834)))
+(let (($x566 (<= ?x662 0)))
+(let ((@x1606 (hypothesis $x566)))
+(let ((@x1113 (symm (monotonicity (trans @x1107 @x1106 $x1108) (= $x502 $x790)) (= $x790 $x502))))
+(let ((@x1875 (monotonicity (trans (monotonicity @x1106 (= $x663 $x790)) @x1113 (= $x663 $x502)) (= (not $x663) (not $x502)))))
+(let ((@x1811 (|unit-resolution| (|def-axiom| (or (not $x1011) $x1038 $x502)) (mp (|unit-resolution| @x1253 @x1761 (not $x663)) @x1875 (not $x502)) @x1470 $x1038)))
+(let ((@x1860 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x520 $x955 $x965)) (hypothesis $x510) (or $x520 $x955))))
+(let ((@x1813 (|unit-resolution| (|def-axiom| (or $x1141 $x504)) (|unit-resolution| @x1860 @x1811 $x955) $x1141)))
+(let ((@x1862 (|unit-resolution| @x1911 (|unit-resolution| @x1740 @x1813 (|unit-resolution| @x1753 @x1811 @x1470 $x1009) $x1651) $x1022)))
+(let ((@x1914 (|unit-resolution| @x1863 (|unit-resolution| @x1740 @x1813 (|unit-resolution| @x1753 @x1811 @x1470 $x1009) $x1651) $x1735)))
+(let (($x1616 (not $x566)))
+(let (($x1561 (not $x508)))
+(let (($x1469 (not $x717)))
+(let (($x1008 (not $x834)))
+(let (($x1472 (not $x1022)))
+(let ((?x1289 (* (~ 1) ?x1119)))
+(let ((?x1937 (+ ?x39 |$l| ?x124 ?x44 (* (~ 1) ?x48) ?x776 ?x977 (* (~ 1) ?x877) ?x1289 ?x1234 (* (~ 1) (div ?x39 2)))))
+(let (($x1938 (>= ?x1937 0)))
+(let ((@x1764 (lemma ((_ |th-lemma| arith farkas 1 -1 1 1) (hypothesis $x1713) @x1761 @x1606 @x1481 false) (or $x1086 $x1699 $x1616))))
+(let ((@x1920 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1455) $x1636)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x1455)) @x272 $x1455) $x1636)))
+(let ((@x1921 ((_ |th-lemma| arith) @x1920 (hypothesis $x1735) @x1007 @x1316 (|unit-resolution| @x1764 @x1761 @x1606 $x1699) @x1341 @x1302 @x1154 @x986 @x716 $x1938)))
+(let ((@x1201 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x1455) $x1462)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x1455)) @x272 $x1455) $x1462)))
+(let ((@x1944 ((_ |th-lemma| arith farkas -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 1) @x1606 (hypothesis $x1938) @x1407 @x1201 @x1376 @x1799 @x1285 @x1498 @x1183 @x1705 @x1795 @x1761 false)))
+(let ((@x1941 (|unit-resolution| (lemma @x1944 (or (not $x1938) $x1616 $x1472 $x1008 $x1469 $x1561 $x1086)) @x1761 @x1376 @x1799 @x1285 @x1498 @x1606 (not $x1938))))
+(let ((@x995 (lemma (|unit-resolution| @x1941 @x1921 false) (or $x1086 (not $x1735) $x1345 $x1347 $x1472 $x1008 $x1469 $x1561 $x1616))))
+(let ((@x1766 (|unit-resolution| @x995 @x1914 @x1862 @x1341 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x401 $x514)) @x1106 $x514) @x1761 @x1799 @x1285 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x401 $x508)) @x1106 $x508) @x1606 false)))
+(let ((@x2329 (|unit-resolution| (lemma @x1766 (or $x1086 $x1345 $x1008 $x1469 $x1616 $x965 $x401)) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x536 $x566)) (lemma @x2234 $x652) $x566) @x2109 (or $x1086 $x1345 $x1008 $x1469 $x965))))
+(let ((@x2362 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1038 $x510)) (|unit-resolution| @x2329 @x1761 @x1341 @x1285 @x1799 $x965) $x1038)))
+(let ((@x2364 (|unit-resolution| (|def-axiom| (or $x1141 $x510)) (|unit-resolution| @x2329 @x1761 @x1341 @x1285 @x1799 $x965) $x1141)))
+(let ((@x2366 (|unit-resolution| @x1911 (|unit-resolution| @x1740 @x2364 (|unit-resolution| @x1753 @x2362 @x1470 $x1009) $x1651) $x1022)))
+(let ((@x2367 (|unit-resolution| @x1863 (|unit-resolution| @x1740 @x2364 (|unit-resolution| @x1753 @x2362 @x1470 $x1009) $x1651) $x1735)))
+(let ((@x2370 (|unit-resolution| @x995 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x536 $x566)) (lemma @x2234 $x652) $x566) @x2064 @x2368 (or $x1086 (not $x1735) $x1345 $x1472 $x1008 $x1469))))
+(let ((@x2373 (lemma (|unit-resolution| @x2370 @x2367 @x2366 @x1799 @x1341 @x1285 @x1761 false) (or $x1086 $x1008 $x1345 $x1469))))
+(let ((@x2102 (|unit-resolution| (|unit-resolution| @x2373 @x2519 @x2651 (or $x1086 $x1008)) (|unit-resolution| @x2636 @x2648 @x2653 $x834) $x1086)))
+(let (($x2526 (>= (mod |$l| 2) 0)))
+(let ((@x2239 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1) (or (>= ?x44 0) (not $x2526) $x1345 $x1347)) @x2519 @x2064 (|unit-resolution| ((_ |th-lemma| arith) (or false $x2526)) @x272 $x2526) (>= ?x44 0))))
+(let ((@x2516 ((_ |th-lemma| arith gcd-test 1/2 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 -1/2) @x2239 @x2102 @x2562 (hypothesis (not (>= |$l| 2))) @x986 @x1705 @x2519 @x2651 @x2064 @x2368 false)))
+(let ((@x1771 (|unit-resolution| @x1753 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1038 $x504)) (hypothesis $x955) $x1038) @x1470 $x1009)))
+(let ((@x1897 (|unit-resolution| @x1740 @x1771 (|unit-resolution| (|def-axiom| (or $x1141 $x504)) (hypothesis $x955) $x1141) (hypothesis $x1743) false)))
+(let ((@x2454 (|unit-resolution| (lemma @x1897 (or $x504 $x1651)) (lemma (|unit-resolution| @x2517 @x2520 false) $x1743) $x504)))
+((_ |th-lemma| arith farkas 1 -2 -2 -1 1 -1 1) @x2406 @x2653 @x2312 @x2041 @x2454 (lemma @x2516 (>= |$l| 2)) @x1481 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+079c6ffd9b87bb8c11978fa4ff410c5f1bfa967a 46 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x33 (|$sup| (|$collect| |$uu|))))
+(let (($x38 (|$less_eq| ?x33 ?x33)))
+(let (($x39 (not $x38)))
+(let ((?x35 (|$sup| (|$collect| |$uua|))))
+(let (($x37 (|$less_eq| ?x35 ?x33)))
+(let (($x36 (|$less_eq| ?x33 ?x35)))
+(let (($x597 (forall ((?v0 |$A|) (?v1 |$A|) (?v2 |$A|) )(!(let (($x29 (|$less_eq| ?v0 ?v2)))
+(or (not (|$less_eq| ?v0 ?v1)) (not (|$less_eq| ?v1 ?v2)) $x29)) :pattern ( (|$less_eq| ?v0 ?v1) (|$less_eq| ?v1 ?v2) )))
+))
+(let (($x175 (forall ((?v0 |$A|) (?v1 |$A|) (?v2 |$A|) )(let (($x29 (|$less_eq| ?v0 ?v2)))
+(or (not (|$less_eq| ?v0 ?v1)) (not (|$less_eq| ?v1 ?v2)) $x29)))
+))
+(let ((@x602 (trans (rewrite (= $x175 $x597)) (rewrite (= $x597 $x597)) (= $x175 $x597))))
+(let (($x84 (forall ((?v0 |$A|) (?v1 |$A|) (?v2 |$A|) )(let (($x29 (|$less_eq| ?v0 ?v2)))
+(let (($x27 (|$less_eq| ?v1 ?v2)))
+(let (($x26 (|$less_eq| ?v0 ?v1)))
+(let (($x28 (and $x26 $x27)))
+(let (($x80 (not $x28)))
+(or $x80 $x29)))))))
+))
+(let (($x29 (|$less_eq| ?2 ?0)))
+(let (($x170 (or (not (|$less_eq| ?2 ?1)) (not (|$less_eq| ?1 ?0)) $x29)))
+(let (($x27 (|$less_eq| ?1 ?0)))
+(let (($x26 (|$less_eq| ?2 ?1)))
+(let (($x28 (and $x26 $x27)))
+(let (($x80 (not $x28)))
+(let (($x81 (or $x80 $x29)))
+(let (($x156 (or (not $x26) (not $x27))))
+(let ((@x162 (monotonicity (rewrite (= $x28 (not $x156))) (= $x80 (not (not $x156))))))
+(let ((@x169 (monotonicity (trans @x162 (rewrite (= (not (not $x156)) $x156)) (= $x80 $x156)) (= $x81 (or $x156 $x29)))))
+(let ((@x177 (|quant-intro| (trans @x169 (rewrite (= (or $x156 $x29) $x170)) (= $x81 $x170)) (= $x84 $x175))))
+(let (($x31 (forall ((?v0 |$A|) (?v1 |$A|) (?v2 |$A|) )(let (($x29 (|$less_eq| ?v0 ?v2)))
+(let (($x27 (|$less_eq| ?v1 ?v2)))
+(let (($x26 (|$less_eq| ?v0 ?v1)))
+(let (($x28 (and $x26 $x27)))
+(=> $x28 $x29))))))
+))
+(let ((@x87 (mp (asserted $x31) (|quant-intro| (rewrite (= (=> $x28 $x29) $x81)) (= $x31 $x84)) $x84)))
+(let ((@x153 (|mp~| (mp @x87 (|rewrite*| (= $x84 $x84)) $x84) (|nnf-pos| (refl (|~| $x81 $x81)) (|~| $x84 $x84)) $x84)))
+(let (($x252 (= (or (not $x597) (or (not $x36) (not $x37) $x38)) (or (not $x597) (not $x36) (not $x37) $x38))))
+(let ((@x589 (mp ((_ |quant-inst| (|$sup| (|$collect| |$uu|)) (|$sup| (|$collect| |$uua|)) (|$sup| (|$collect| |$uu|))) (or (not $x597) (or (not $x36) (not $x37) $x38))) (rewrite $x252) (or (not $x597) (not $x36) (not $x37) $x38))))
+(|unit-resolution| @x589 (mp (mp @x153 @x177 $x175) @x602 $x597) (mp (asserted $x36) (|rewrite*| (= $x36 $x36)) $x36) (mp (asserted $x37) (|rewrite*| (= $x37 $x37)) $x37) (mp (asserted $x39) (|rewrite*| (= $x39 $x39)) $x39) false)))))))))))))))))))))))))))))
+
+1ad194e301a321fa5f115d9423a68c7299b04b47 20 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x52 (not (|$prede| 1))))
+(let (($x630 (forall ((?v0 Int) )(!(|$prede| ?v0) :pattern ( (|$prede| ?v0) )))
+))
+(let (($x120 (forall ((?v0 Int) )(|$prede| ?v0))
+))
+(let (($x49 (forall ((?v0 Int) )(let (($x47 (or (|$predd| (|$consd| ?v0 |$nild|)) (not (|$predd| (|$consd| ?v0 |$nild|))))))
+(let (($x42 (|$prede| ?v0)))
+(and $x42 $x47))))
+))
+(let (($x42 (|$prede| ?0)))
+(let (($x47 (or (|$predd| (|$consd| ?0 |$nild|)) (not (|$predd| (|$consd| ?0 |$nild|))))))
+(let (($x48 (and $x42 $x47)))
+(let ((@x115 (monotonicity (rewrite (= $x47 true)) (= $x48 (and $x42 true)))))
+(let ((@x122 (|quant-intro| (trans @x115 (rewrite (= (and $x42 true) $x42)) (= $x48 $x42)) (= $x49 $x120))))
+(let ((@x185 (|mp~| (mp (mp (asserted $x49) @x122 $x120) (|rewrite*| (= $x120 $x120)) $x120) (|nnf-pos| (refl (|~| $x42 $x42)) (|~| $x120 $x120)) $x120)))
+(|unit-resolution| ((_ |quant-inst| 1) (or (not $x630) (|$prede| 1))) (mp @x185 (|quant-intro| (refl (= $x42 $x42)) (= $x120 $x630)) $x630) (mp (asserted $x52) (|rewrite*| (= $x52 $x52)) $x52) false)))))))))))))
+
+db925cac9eef895d8420ea226669aee491c91c47 25 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x38 (* |$x| |$y|)))
+(let ((?x39 (* 2.0 ?x38)))
+(let ((?x26 (* |$x| (+ 1.0 (* (~ 1.0) |$y|)))))
+(let ((?x32 (* (~ 1.0) ?x26)))
+(let ((?x9 (* |$x| (+ 1.0 |$y|))))
+(let ((?x33 (+ ?x9 ?x32)))
+(let (($x42 (= ?x33 ?x39)))
+(let (($x45 (not $x42)))
+(let ((@x81 (rewrite (= (* (~ 1.0) (+ |$x| (* (~ 1.0) ?x38))) (+ (* (~ 1.0) |$x|) ?x38)))))
+(let ((@x77 (monotonicity (rewrite (= ?x26 (+ |$x| (* (~ 1.0) ?x38)))) (= ?x32 (* (~ 1.0) (+ |$x| (* (~ 1.0) ?x38)))))))
+(let ((@x86 (monotonicity (rewrite (= ?x9 (+ |$x| ?x38))) (trans @x77 @x81 (= ?x32 (+ (* (~ 1.0) |$x|) ?x38))) (= ?x33 (+ (+ |$x| ?x38) (+ (* (~ 1.0) |$x|) ?x38))))))
+(let ((@x89 (trans @x86 (rewrite (= (+ (+ |$x| ?x38) (+ (* (~ 1.0) |$x|) ?x38)) ?x39)) $x42)))
+(let ((@x96 (trans (monotonicity @x89 (= $x42 (= ?x39 ?x39))) (rewrite (= (= ?x39 ?x39) true)) (= $x42 true))))
+(let ((@x103 (trans (monotonicity @x96 (= $x45 (not true))) (rewrite (= (not true) false)) (= $x45 false))))
+(let (($x17 (not (= (- ?x9 (* |$x| (- 1.0 |$y|))) (* (* 2.0 |$x|) |$y|)))))
+(let (($x43 (= (= (- ?x9 (* |$x| (- 1.0 |$y|))) (* (* 2.0 |$x|) |$y|)) $x42)))
+(let ((@x28 (monotonicity (rewrite (= (- 1.0 |$y|) (+ 1.0 (* (~ 1.0) |$y|)))) (= (* |$x| (- 1.0 |$y|)) ?x26))))
+(let ((@x31 (monotonicity @x28 (= (- ?x9 (* |$x| (- 1.0 |$y|))) (- ?x9 ?x26)))))
+(let ((@x37 (trans @x31 (rewrite (= (- ?x9 ?x26) ?x33)) (= (- ?x9 (* |$x| (- 1.0 |$y|))) ?x33))))
+(let ((@x47 (monotonicity (monotonicity @x37 (rewrite (= (* (* 2.0 |$x|) |$y|) ?x39)) $x43) (= $x17 $x45))))
+(mp (mp (asserted $x17) @x47 $x45) @x103 false)))))))))))))))))))))))
+
--- a/src/HOL/SMT_Examples/SMT_Examples.thy	Thu Mar 13 13:18:13 2014 +0100
+++ b/src/HOL/SMT_Examples/SMT_Examples.thy	Thu Mar 13 13:18:13 2014 +0100
@@ -11,38 +11,40 @@
 declare [[smt_certificates = "SMT_Examples.certs"]]
 declare [[smt_read_only_certificates = true]]
 
+declare [[smt2_certificates = "SMT_Examples.certs2"]]
+declare [[smt2_read_only_certificates = true]]
 
 
 section {* Propositional and first-order logic *}
 
-lemma "True" by smt
+lemma "True" by smt2
 
-lemma "p \<or> \<not>p" by smt
+lemma "p \<or> \<not>p" by smt2
 
-lemma "(p \<and> True) = p" by smt
+lemma "(p \<and> True) = p" by smt2
 
-lemma "(p \<or> q) \<and> \<not>p \<Longrightarrow> q" by smt
+lemma "(p \<or> q) \<and> \<not>p \<Longrightarrow> q" by smt2
 
 lemma "(a \<and> b) \<or> (c \<and> d) \<Longrightarrow> (a \<and> b) \<or> (c \<and> d)"
-  by smt
+  by smt2
 
-lemma "(p1 \<and> p2) \<or> p3 \<longrightarrow> (p1 \<longrightarrow> (p3 \<and> p2) \<or> (p1 \<and> p3)) \<or> p1" by smt
+lemma "(p1 \<and> p2) \<or> p3 \<longrightarrow> (p1 \<longrightarrow> (p3 \<and> p2) \<or> (p1 \<and> p3)) \<or> p1" by smt2
 
-lemma "P=P=P=P=P=P=P=P=P=P" by smt
+lemma "P = P = P = P = P = P = P = P = P = P" by smt2
 
 lemma
-  assumes "a | b | c | d"
-      and "e | f | (a & d)"
-      and "~(a | (c & ~c)) | b"
-      and "~(b & (x | ~x)) | c"
-      and "~(d | False) | c"
-      and "~(c | (~p & (p | (q & ~q))))"
+  assumes "a \<or> b \<or> c \<or> d"
+      and "e \<or> f \<or> (a \<and> d)"
+      and "\<not> (a \<or> (c \<and> ~c)) \<or> b"
+      and "\<not> (b \<and> (x \<or> \<not> x)) \<or> c"
+      and "\<not> (d \<or> False) \<or> c"
+      and "\<not> (c \<or> (\<not> p \<and> (p \<or> (q \<and> \<not> q))))"
   shows False
-  using assms by smt
+  using assms by smt2
 
 axiomatization symm_f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
   symm_f: "symm_f x y = symm_f y x"
-lemma "a = a \<and> symm_f a b = symm_f b a" by (smt symm_f)
+lemma "a = a \<and> symm_f a b = symm_f b a" by (smt2 symm_f)
 
 (*
 Taken from ~~/src/HOL/ex/SAT_Examples.thy.
@@ -53,253 +55,253 @@
   and "~x30"
   and "~x29"
   and "~x59"
-  and "x1 | x31 | x0"
-  and "x2 | x32 | x1"
-  and "x3 | x33 | x2"
-  and "x4 | x34 | x3"
-  and "x35 | x4"
-  and "x5 | x36 | x30"
-  and "x6 | x37 | x5 | x31"
-  and "x7 | x38 | x6 | x32"
-  and "x8 | x39 | x7 | x33"
-  and "x9 | x40 | x8 | x34"
-  and "x41 | x9 | x35"
-  and "x10 | x42 | x36"
-  and "x11 | x43 | x10 | x37"
-  and "x12 | x44 | x11 | x38"
-  and "x13 | x45 | x12 | x39"
-  and "x14 | x46 | x13 | x40"
-  and "x47 | x14 | x41"
-  and "x15 | x48 | x42"
-  and "x16 | x49 | x15 | x43"
-  and "x17 | x50 | x16 | x44"
-  and "x18 | x51 | x17 | x45"
-  and "x19 | x52 | x18 | x46"
-  and "x53 | x19 | x47"
-  and "x20 | x54 | x48"
-  and "x21 | x55 | x20 | x49"
-  and "x22 | x56 | x21 | x50"
-  and "x23 | x57 | x22 | x51"
-  and "x24 | x58 | x23 | x52"
-  and "x59 | x24 | x53"
-  and "x25 | x54"
-  and "x26 | x25 | x55"
-  and "x27 | x26 | x56"
-  and "x28 | x27 | x57"
-  and "x29 | x28 | x58"
-  and "~x1 | ~x31"
-  and "~x1 | ~x0"
-  and "~x31 | ~x0"
-  and "~x2 | ~x32"
-  and "~x2 | ~x1"
-  and "~x32 | ~x1"
-  and "~x3 | ~x33"
-  and "~x3 | ~x2"
-  and "~x33 | ~x2"
-  and "~x4 | ~x34"
-  and "~x4 | ~x3"
-  and "~x34 | ~x3"
-  and "~x35 | ~x4"
-  and "~x5 | ~x36"
-  and "~x5 | ~x30"
-  and "~x36 | ~x30"
-  and "~x6 | ~x37"
-  and "~x6 | ~x5"
-  and "~x6 | ~x31"
-  and "~x37 | ~x5"
-  and "~x37 | ~x31"
-  and "~x5 | ~x31"
-  and "~x7 | ~x38"
-  and "~x7 | ~x6"
-  and "~x7 | ~x32"
-  and "~x38 | ~x6"
-  and "~x38 | ~x32"
-  and "~x6 | ~x32"
-  and "~x8 | ~x39"
-  and "~x8 | ~x7"
-  and "~x8 | ~x33"
-  and "~x39 | ~x7"
-  and "~x39 | ~x33"
-  and "~x7 | ~x33"
-  and "~x9 | ~x40"
-  and "~x9 | ~x8"
-  and "~x9 | ~x34"
-  and "~x40 | ~x8"
-  and "~x40 | ~x34"
-  and "~x8 | ~x34"
-  and "~x41 | ~x9"
-  and "~x41 | ~x35"
-  and "~x9 | ~x35"
-  and "~x10 | ~x42"
-  and "~x10 | ~x36"
-  and "~x42 | ~x36"
-  and "~x11 | ~x43"
-  and "~x11 | ~x10"
-  and "~x11 | ~x37"
-  and "~x43 | ~x10"
-  and "~x43 | ~x37"
-  and "~x10 | ~x37"
-  and "~x12 | ~x44"
-  and "~x12 | ~x11"
-  and "~x12 | ~x38"
-  and "~x44 | ~x11"
-  and "~x44 | ~x38"
-  and "~x11 | ~x38"
-  and "~x13 | ~x45"
-  and "~x13 | ~x12"
-  and "~x13 | ~x39"
-  and "~x45 | ~x12"
-  and "~x45 | ~x39"
-  and "~x12 | ~x39"
-  and "~x14 | ~x46"
-  and "~x14 | ~x13"
-  and "~x14 | ~x40"
-  and "~x46 | ~x13"
-  and "~x46 | ~x40"
-  and "~x13 | ~x40"
-  and "~x47 | ~x14"
-  and "~x47 | ~x41"
-  and "~x14 | ~x41"
-  and "~x15 | ~x48"
-  and "~x15 | ~x42"
-  and "~x48 | ~x42"
-  and "~x16 | ~x49"
-  and "~x16 | ~x15"
-  and "~x16 | ~x43"
-  and "~x49 | ~x15"
-  and "~x49 | ~x43"
-  and "~x15 | ~x43"
-  and "~x17 | ~x50"
-  and "~x17 | ~x16"
-  and "~x17 | ~x44"
-  and "~x50 | ~x16"
-  and "~x50 | ~x44"
-  and "~x16 | ~x44"
-  and "~x18 | ~x51"
-  and "~x18 | ~x17"
-  and "~x18 | ~x45"
-  and "~x51 | ~x17"
-  and "~x51 | ~x45"
-  and "~x17 | ~x45"
-  and "~x19 | ~x52"
-  and "~x19 | ~x18"
-  and "~x19 | ~x46"
-  and "~x52 | ~x18"
-  and "~x52 | ~x46"
-  and "~x18 | ~x46"
-  and "~x53 | ~x19"
-  and "~x53 | ~x47"
-  and "~x19 | ~x47"
-  and "~x20 | ~x54"
-  and "~x20 | ~x48"
-  and "~x54 | ~x48"
-  and "~x21 | ~x55"
-  and "~x21 | ~x20"
-  and "~x21 | ~x49"
-  and "~x55 | ~x20"
-  and "~x55 | ~x49"
-  and "~x20 | ~x49"
-  and "~x22 | ~x56"
-  and "~x22 | ~x21"
-  and "~x22 | ~x50"
-  and "~x56 | ~x21"
-  and "~x56 | ~x50"
-  and "~x21 | ~x50"
-  and "~x23 | ~x57"
-  and "~x23 | ~x22"
-  and "~x23 | ~x51"
-  and "~x57 | ~x22"
-  and "~x57 | ~x51"
-  and "~x22 | ~x51"
-  and "~x24 | ~x58"
-  and "~x24 | ~x23"
-  and "~x24 | ~x52"
-  and "~x58 | ~x23"
-  and "~x58 | ~x52"
-  and "~x23 | ~x52"
-  and "~x59 | ~x24"
-  and "~x59 | ~x53"
-  and "~x24 | ~x53"
-  and "~x25 | ~x54"
-  and "~x26 | ~x25"
-  and "~x26 | ~x55"
-  and "~x25 | ~x55"
-  and "~x27 | ~x26"
-  and "~x27 | ~x56"
-  and "~x26 | ~x56"
-  and "~x28 | ~x27"
-  and "~x28 | ~x57"
-  and "~x27 | ~x57"
-  and "~x29 | ~x28"
-  and "~x29 | ~x58"
-  and "~x28 | ~x58"
+  and "x1 \<or> x31 \<or> x0"
+  and "x2 \<or> x32 \<or> x1"
+  and "x3 \<or> x33 \<or> x2"
+  and "x4 \<or> x34 \<or> x3"
+  and "x35 \<or> x4"
+  and "x5 \<or> x36 \<or> x30"
+  and "x6 \<or> x37 \<or> x5 \<or> x31"
+  and "x7 \<or> x38 \<or> x6 \<or> x32"
+  and "x8 \<or> x39 \<or> x7 \<or> x33"
+  and "x9 \<or> x40 \<or> x8 \<or> x34"
+  and "x41 \<or> x9 \<or> x35"
+  and "x10 \<or> x42 \<or> x36"
+  and "x11 \<or> x43 \<or> x10 \<or> x37"
+  and "x12 \<or> x44 \<or> x11 \<or> x38"
+  and "x13 \<or> x45 \<or> x12 \<or> x39"
+  and "x14 \<or> x46 \<or> x13 \<or> x40"
+  and "x47 \<or> x14 \<or> x41"
+  and "x15 \<or> x48 \<or> x42"
+  and "x16 \<or> x49 \<or> x15 \<or> x43"
+  and "x17 \<or> x50 \<or> x16 \<or> x44"
+  and "x18 \<or> x51 \<or> x17 \<or> x45"
+  and "x19 \<or> x52 \<or> x18 \<or> x46"
+  and "x53 \<or> x19 \<or> x47"
+  and "x20 \<or> x54 \<or> x48"
+  and "x21 \<or> x55 \<or> x20 \<or> x49"
+  and "x22 \<or> x56 \<or> x21 \<or> x50"
+  and "x23 \<or> x57 \<or> x22 \<or> x51"
+  and "x24 \<or> x58 \<or> x23 \<or> x52"
+  and "x59 \<or> x24 \<or> x53"
+  and "x25 \<or> x54"
+  and "x26 \<or> x25 \<or> x55"
+  and "x27 \<or> x26 \<or> x56"
+  and "x28 \<or> x27 \<or> x57"
+  and "x29 \<or> x28 \<or> x58"
+  and "~x1 \<or> ~x31"
+  and "~x1 \<or> ~x0"
+  and "~x31 \<or> ~x0"
+  and "~x2 \<or> ~x32"
+  and "~x2 \<or> ~x1"
+  and "~x32 \<or> ~x1"
+  and "~x3 \<or> ~x33"
+  and "~x3 \<or> ~x2"
+  and "~x33 \<or> ~x2"
+  and "~x4 \<or> ~x34"
+  and "~x4 \<or> ~x3"
+  and "~x34 \<or> ~x3"
+  and "~x35 \<or> ~x4"
+  and "~x5 \<or> ~x36"
+  and "~x5 \<or> ~x30"
+  and "~x36 \<or> ~x30"
+  and "~x6 \<or> ~x37"
+  and "~x6 \<or> ~x5"
+  and "~x6 \<or> ~x31"
+  and "~x37 \<or> ~x5"
+  and "~x37 \<or> ~x31"
+  and "~x5 \<or> ~x31"
+  and "~x7 \<or> ~x38"
+  and "~x7 \<or> ~x6"
+  and "~x7 \<or> ~x32"
+  and "~x38 \<or> ~x6"
+  and "~x38 \<or> ~x32"
+  and "~x6 \<or> ~x32"
+  and "~x8 \<or> ~x39"
+  and "~x8 \<or> ~x7"
+  and "~x8 \<or> ~x33"
+  and "~x39 \<or> ~x7"
+  and "~x39 \<or> ~x33"
+  and "~x7 \<or> ~x33"
+  and "~x9 \<or> ~x40"
+  and "~x9 \<or> ~x8"
+  and "~x9 \<or> ~x34"
+  and "~x40 \<or> ~x8"
+  and "~x40 \<or> ~x34"
+  and "~x8 \<or> ~x34"
+  and "~x41 \<or> ~x9"
+  and "~x41 \<or> ~x35"
+  and "~x9 \<or> ~x35"
+  and "~x10 \<or> ~x42"
+  and "~x10 \<or> ~x36"
+  and "~x42 \<or> ~x36"
+  and "~x11 \<or> ~x43"
+  and "~x11 \<or> ~x10"
+  and "~x11 \<or> ~x37"
+  and "~x43 \<or> ~x10"
+  and "~x43 \<or> ~x37"
+  and "~x10 \<or> ~x37"
+  and "~x12 \<or> ~x44"
+  and "~x12 \<or> ~x11"
+  and "~x12 \<or> ~x38"
+  and "~x44 \<or> ~x11"
+  and "~x44 \<or> ~x38"
+  and "~x11 \<or> ~x38"
+  and "~x13 \<or> ~x45"
+  and "~x13 \<or> ~x12"
+  and "~x13 \<or> ~x39"
+  and "~x45 \<or> ~x12"
+  and "~x45 \<or> ~x39"
+  and "~x12 \<or> ~x39"
+  and "~x14 \<or> ~x46"
+  and "~x14 \<or> ~x13"
+  and "~x14 \<or> ~x40"
+  and "~x46 \<or> ~x13"
+  and "~x46 \<or> ~x40"
+  and "~x13 \<or> ~x40"
+  and "~x47 \<or> ~x14"
+  and "~x47 \<or> ~x41"
+  and "~x14 \<or> ~x41"
+  and "~x15 \<or> ~x48"
+  and "~x15 \<or> ~x42"
+  and "~x48 \<or> ~x42"
+  and "~x16 \<or> ~x49"
+  and "~x16 \<or> ~x15"
+  and "~x16 \<or> ~x43"
+  and "~x49 \<or> ~x15"
+  and "~x49 \<or> ~x43"
+  and "~x15 \<or> ~x43"
+  and "~x17 \<or> ~x50"
+  and "~x17 \<or> ~x16"
+  and "~x17 \<or> ~x44"
+  and "~x50 \<or> ~x16"
+  and "~x50 \<or> ~x44"
+  and "~x16 \<or> ~x44"
+  and "~x18 \<or> ~x51"
+  and "~x18 \<or> ~x17"
+  and "~x18 \<or> ~x45"
+  and "~x51 \<or> ~x17"
+  and "~x51 \<or> ~x45"
+  and "~x17 \<or> ~x45"
+  and "~x19 \<or> ~x52"
+  and "~x19 \<or> ~x18"
+  and "~x19 \<or> ~x46"
+  and "~x52 \<or> ~x18"
+  and "~x52 \<or> ~x46"
+  and "~x18 \<or> ~x46"
+  and "~x53 \<or> ~x19"
+  and "~x53 \<or> ~x47"
+  and "~x19 \<or> ~x47"
+  and "~x20 \<or> ~x54"
+  and "~x20 \<or> ~x48"
+  and "~x54 \<or> ~x48"
+  and "~x21 \<or> ~x55"
+  and "~x21 \<or> ~x20"
+  and "~x21 \<or> ~x49"
+  and "~x55 \<or> ~x20"
+  and "~x55 \<or> ~x49"
+  and "~x20 \<or> ~x49"
+  and "~x22 \<or> ~x56"
+  and "~x22 \<or> ~x21"
+  and "~x22 \<or> ~x50"
+  and "~x56 \<or> ~x21"
+  and "~x56 \<or> ~x50"
+  and "~x21 \<or> ~x50"
+  and "~x23 \<or> ~x57"
+  and "~x23 \<or> ~x22"
+  and "~x23 \<or> ~x51"
+  and "~x57 \<or> ~x22"
+  and "~x57 \<or> ~x51"
+  and "~x22 \<or> ~x51"
+  and "~x24 \<or> ~x58"
+  and "~x24 \<or> ~x23"
+  and "~x24 \<or> ~x52"
+  and "~x58 \<or> ~x23"
+  and "~x58 \<or> ~x52"
+  and "~x23 \<or> ~x52"
+  and "~x59 \<or> ~x24"
+  and "~x59 \<or> ~x53"
+  and "~x24 \<or> ~x53"
+  and "~x25 \<or> ~x54"
+  and "~x26 \<or> ~x25"
+  and "~x26 \<or> ~x55"
+  and "~x25 \<or> ~x55"
+  and "~x27 \<or> ~x26"
+  and "~x27 \<or> ~x56"
+  and "~x26 \<or> ~x56"
+  and "~x28 \<or> ~x27"
+  and "~x28 \<or> ~x57"
+  and "~x27 \<or> ~x57"
+  and "~x29 \<or> ~x28"
+  and "~x29 \<or> ~x58"
+  and "~x28 \<or> ~x58"
   shows False
-  using assms by smt
+  using assms by smt (* smt2 FIXME: THM 0 *)
 
 lemma "\<forall>x::int. P x \<longrightarrow> (\<forall>y::int. P x \<or> P y)"
-  by smt
+  by smt2
 
 lemma
   assumes "(\<forall>x y. P x y = x)"
   shows "(\<exists>y. P x y) = P x c"
-  using assms by smt
+  using assms by smt (* smt2 FIXME: Option *)
 
 lemma
   assumes "(\<forall>x y. P x y = x)"
   and "(\<forall>x. \<exists>y. P x y) = (\<forall>x. P x c)"
   shows "(EX y. P x y) = P x c"
-  using assms by smt
+  using assms by smt (* smt2 FIXME: Option *)
 
 lemma
   assumes "if P x then \<not>(\<exists>y. P y) else (\<forall>y. \<not>P y)"
   shows "P x \<longrightarrow> P y"
-  using assms by smt
+  using assms by smt2
 
 
 section {* Arithmetic *}
 
 subsection {* Linear arithmetic over integers and reals *}
 
-lemma "(3::int) = 3" by smt
+lemma "(3::int) = 3" by smt2
 
-lemma "(3::real) = 3" by smt
+lemma "(3::real) = 3" by smt2
 
-lemma "(3 :: int) + 1 = 4" by smt
+lemma "(3 :: int) + 1 = 4" by smt2
 
-lemma "x + (y + z) = y + (z + (x::int))" by smt
+lemma "x + (y + z) = y + (z + (x::int))" by smt2
 
-lemma "max (3::int) 8 > 5" by smt
+lemma "max (3::int) 8 > 5" by smt2
 
-lemma "abs (x :: real) + abs y \<ge> abs (x + y)" by smt
+lemma "abs (x :: real) + abs y \<ge> abs (x + y)" by smt2
 
-lemma "P ((2::int) < 3) = P True" by smt
+lemma "P ((2::int) < 3) = P True" by smt2
 
-lemma "x + 3 \<ge> 4 \<or> x < (1::int)" by smt
+lemma "x + 3 \<ge> 4 \<or> x < (1::int)" by smt2
 
 lemma
   assumes "x \<ge> (3::int)" and "y = x + 4"
   shows "y - x > 0"
-  using assms by smt
+  using assms by smt2
 
-lemma "let x = (2 :: int) in x + x \<noteq> 5" by smt
+lemma "let x = (2 :: int) in x + x \<noteq> 5" by smt2
 
 lemma
   fixes x :: real
   assumes "3 * x + 7 * a < 4" and "3 < 2 * x"
   shows "a < 0"
-  using assms by smt
+  using assms by smt2
 
-lemma "(0 \<le> y + -1 * x \<or> \<not> 0 \<le> x \<or> 0 \<le> (x::int)) = (\<not> False)" by smt
+lemma "(0 \<le> y + -1 * x \<or> \<not> 0 \<le> x \<or> 0 \<le> (x::int)) = (\<not> False)" by smt2
 
 lemma "
-  (n < m & m < n') | (n < m & m = n') | (n < n' & n' < m) |
-  (n = n' & n' < m) | (n = m & m < n') |
-  (n' < m & m < n) | (n' < m & m = n) |
-  (n' < n & n < m) | (n' = n & n < m) | (n' = m & m < n) |
-  (m < n & n < n') | (m < n & n' = n) | (m < n' & n' < n) |
-  (m = n & n < n') | (m = n' & n' < n) |
-  (n' = m & m = (n::int))"
-  by smt
+  (n < m \<and> m < n') \<or> (n < m \<and> m = n') \<or> (n < n' \<and> n' < m) \<or>
+  (n = n' \<and> n' < m) \<or> (n = m \<and> m < n') \<or>
+  (n' < m \<and> m < n) \<or> (n' < m \<and> m = n) \<or>
+  (n' < n \<and> n < m) \<or> (n' = n \<and> n < m) \<or> (n' = m \<and> m < n) \<or>
+  (m < n \<and> n < n') \<or> (m < n \<and> n' = n) \<or> (m < n' \<and> n' < n) \<or>
+  (m = n \<and> n < n') \<or> (m = n' \<and> n' < n) \<or>
+  (n' = m \<and> m = (n::int))"
+  by smt2
 
 text{*
 The following example was taken from HOL/ex/PresburgerEx.thy, where it says:
@@ -320,175 +322,173 @@
 lemma "\<lbrakk> x3 = abs x2 - x1; x4 = abs x3 - x2; x5 = abs x4 - x3;
          x6 = abs x5 - x4; x7 = abs x6 - x5; x8 = abs x7 - x6;
          x9 = abs x8 - x7; x10 = abs x9 - x8; x11 = abs x10 - x9 \<rbrakk>
- \<Longrightarrow> x1 = x10 & x2 = (x11::int)"
-  by smt
+ \<Longrightarrow> x1 = x10 \<and> x2 = (x11::int)"
+  by smt2
 
 
-lemma "let P = 2 * x + 1 > x + (x::real) in P \<or> False \<or> P" by smt
+lemma "let P = 2 * x + 1 > x + (x::real) in P \<or> False \<or> P" by smt2
 
 lemma "x + (let y = x mod 2 in 2 * y + 1) \<ge> x + (1::int)"
-  using [[z3_with_extensions]]
-  by smt
+  using [[z3_new_extensions]]
+  by smt2
 
 lemma "x + (let y = x mod 2 in y + y) < x + (3::int)"
-  using [[z3_with_extensions]]
-  by smt
+  using [[z3_new_extensions]]
+  by smt2
 
 lemma
   assumes "x \<noteq> (0::real)"
-  shows "x + x \<noteq> (let P = (abs x > 1) in if P \<or> \<not>P then 4 else 2) * x"
-  using assms by smt
+  shows "x + x \<noteq> (let P = (abs x > 1) in if P \<or> \<not> P then 4 else 2) * x"
+  using assms [[z3_new_extensions]] by smt2
 
 lemma
   assumes "(n + m) mod 2 = 0" and "n mod 4 = 3"
-  shows "n mod 2 = 1 & m mod 2 = (1::int)"
-  using assms [[z3_with_extensions]] by smt
-
+  shows "n mod 2 = 1 \<and> m mod 2 = (1::int)"
+  using assms [[z3_new_extensions]] by smt2
 
 
 subsection {* Linear arithmetic with quantifiers *}
 
-lemma "~ (\<exists>x::int. False)" by smt
+lemma "~ (\<exists>x::int. False)" by smt2
 
-lemma "~ (\<exists>x::real. False)" by smt
+lemma "~ (\<exists>x::real. False)" by smt2
 
 lemma "\<exists>x::int. 0 < x"
-  using [[smt_oracle=true]] (* no Z3 proof *)
-  by smt
+  using [[smt2_oracle=true]] (* no Z3 proof *)
+  by smt2
 
 lemma "\<exists>x::real. 0 < x"
-  using [[smt_oracle=true]] (* no Z3 proof *)
-  by smt
+  using [[smt2_oracle=true]] (* no Z3 proof *)
+  by smt2
 
 lemma "\<forall>x::int. \<exists>y. y > x"
-  using [[smt_oracle=true]] (* no Z3 proof *)
-  by smt
+  using [[smt2_oracle=true]] (* no Z3 proof *)
+  by smt2
 
-lemma "\<forall>x y::int. (x = 0 \<and> y = 1) \<longrightarrow> x \<noteq> y" by smt
+lemma "\<forall>x y::int. (x = 0 \<and> y = 1) \<longrightarrow> x \<noteq> y" by smt2
 
-lemma "\<exists>x::int. \<forall>y. x < y \<longrightarrow> y < 0 \<or> y >= 0" by smt
+lemma "\<exists>x::int. \<forall>y. x < y \<longrightarrow> y < 0 \<or> y >= 0" by smt2
 
-lemma "\<forall>x y::int. x < y \<longrightarrow> (2 * x + 1) < (2 * y)" by smt
+lemma "\<forall>x y::int. x < y \<longrightarrow> (2 * x + 1) < (2 * y)" by smt2
 
-lemma "\<forall>x y::int. (2 * x + 1) \<noteq> (2 * y)" by smt
+lemma "\<forall>x y::int. (2 * x + 1) \<noteq> (2 * y)" by smt2
 
-lemma "\<forall>x y::int. x + y > 2 \<or> x + y = 2 \<or> x + y < 2" by smt
+lemma "\<forall>x y::int. x + y > 2 \<or> x + y = 2 \<or> x + y < 2" by smt2
 
-lemma "\<forall>x::int. if x > 0 then x + 1 > 0 else 1 > x" by smt
+lemma "\<forall>x::int. if x > 0 then x + 1 > 0 else 1 > x" by smt2
 
-lemma "if (ALL x::int. x < 0 \<or> x > 0) then False else True" by smt
+lemma "if (ALL x::int. x < 0 \<or> x > 0) then False else True" by smt2
 
-lemma "(if (ALL x::int. x < 0 \<or> x > 0) then -1 else 3) > (0::int)" by smt
+lemma "(if (ALL x::int. x < 0 \<or> x > 0) then -1 else 3) > (0::int)" by smt2
 
-lemma "~ (\<exists>x y z::int. 4 * x + -6 * y = (1::int))" by smt
+lemma "~ (\<exists>x y z::int. 4 * x + -6 * y = (1::int))" by smt2
 
-lemma "\<exists>x::int. \<forall>x y. 0 < x \<and> 0 < y \<longrightarrow> (0::int) < x + y" by smt
+lemma "\<exists>x::int. \<forall>x y. 0 < x \<and> 0 < y \<longrightarrow> (0::int) < x + y" by smt2
 
-lemma "\<exists>u::int. \<forall>(x::int) y::real. 0 < x \<and> 0 < y \<longrightarrow> -1 < x" by smt
+lemma "\<exists>u::int. \<forall>(x::int) y::real. 0 < x \<and> 0 < y \<longrightarrow> -1 < x" by smt2
 
-lemma "\<exists>x::int. (\<forall>y. y \<ge> x \<longrightarrow> y > 0) \<longrightarrow> x > 0" by smt
+lemma "\<exists>x::int. (\<forall>y. y \<ge> x \<longrightarrow> y > 0) \<longrightarrow> x > 0" by smt2
 
-lemma "\<forall>x::int. SMT.trigger [[SMT.pat x]] (x < a \<longrightarrow> 2 * x < 2 * a)" by smt
+lemma "\<forall>x::int. SMT2.trigger [[SMT2.pat x]] (x < a \<longrightarrow> 2 * x < 2 * a)" by smt2
 
-lemma "\<forall>(a::int) b::int. 0 < b \<or> b < 1" by smt
+lemma "\<forall>(a::int) b::int. 0 < b \<or> b < 1" by smt2
 
 
 subsection {* Non-linear arithmetic over integers and reals *}
 
 lemma "a > (0::int) \<Longrightarrow> a*b > 0 \<Longrightarrow> b > 0"
-  using [[smt_oracle, z3_with_extensions]]
-  by smt
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2
 
 lemma  "(a::int) * (x + 1 + y) = a * x + a * (y + 1)"
-  using [[z3_with_extensions]]
-  by smt
+  using [[z3_new_extensions]]
+  by smt2
 
 lemma "((x::real) * (1 + y) - x * (1 - y)) = (2 * x * y)"
-  using [[z3_with_extensions]]
-  by smt
+  using [[z3_new_extensions]]
+  by smt2
 
 lemma
   "(U::int) + (1 + p) * (b + e) + p * d =
    U + (2 * (1 + p) * (b + e) + (1 + p) * d + d * p) - (1 + p) * (b + d + e)"
-  using [[z3_with_extensions]]
-  by smt
+  using [[z3_new_extensions]]
+  by smt2
 
-lemma [z3_rule]:
+lemma [z3_rule, z3_new_rule]:
   fixes x :: "int"
   assumes "x * y \<le> 0" and "\<not> y \<le> 0" and "\<not> x \<le> 0"
   shows False
   using assms by (metis mult_le_0_iff)
 
 lemma "x * y \<le> (0 :: int) \<Longrightarrow> x \<le> 0 \<or> y \<le> 0"
-  using [[z3_with_extensions]]
-  by smt
-
+  using [[z3_with_extensions]] [[z3_new_extensions]]
+  by smt (* smt2 FIXME: "th-lemma" tactic fails *)
 
 
 subsection {* Linear arithmetic for natural numbers *}
 
-lemma "2 * (x::nat) ~= 1" by smt
+lemma "2 * (x::nat) ~= 1" by smt2
 
-lemma "a < 3 \<Longrightarrow> (7::nat) > 2 * a" by smt
+lemma "a < 3 \<Longrightarrow> (7::nat) > 2 * a" by smt2
 
-lemma "let x = (1::nat) + y in x - y > 0 * x" by smt
+lemma "let x = (1::nat) + y in x - y > 0 * x" by smt2
 
 lemma
   "let x = (1::nat) + y in
    let P = (if x > 0 then True else False) in
    False \<or> P = (x - 1 = y) \<or> (\<not>P \<longrightarrow> False)"
-  by smt
+  by smt2
 
-lemma "int (nat \<bar>x::int\<bar>) = \<bar>x\<bar>" by smt
+lemma "int (nat \<bar>x::int\<bar>) = \<bar>x\<bar>" by smt2
 
 definition prime_nat :: "nat \<Rightarrow> bool" where
   "prime_nat p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
-lemma "prime_nat (4*m + 1) \<Longrightarrow> m \<ge> (1::nat)" by (smt prime_nat_def)
+lemma "prime_nat (4*m + 1) \<Longrightarrow> m \<ge> (1::nat)" by (smt2 prime_nat_def)
 
 
 section {* Pairs *}
 
 lemma "fst (x, y) = a \<Longrightarrow> x = a"
   using fst_conv
-  by smt
+  by smt2
 
 lemma "p1 = (x, y) \<and> p2 = (y, x) \<Longrightarrow> fst p1 = snd p2"
   using fst_conv snd_conv
-  by smt
+  by smt2
 
 
 section {* Higher-order problems and recursion *}
 
 lemma "i \<noteq> i1 \<and> i \<noteq> i2 \<Longrightarrow> (f (i1 := v1, i2 := v2)) i = f i"
   using fun_upd_same fun_upd_apply
-  by smt
+  by smt2
 
 lemma "(f g (x::'a::type) = (g x \<and> True)) \<or> (f g x = True) \<or> (g x = True)"
-  by smt
+  by smt2
 
-lemma "id x = x \<and> id True = True" by (smt id_def)
+lemma "id x = x \<and> id True = True" by (smt id_def) (* smt2 FIXME: Option *)
 
 lemma "i \<noteq> i1 \<and> i \<noteq> i2 \<Longrightarrow> ((f (i1 := v1)) (i2 := v2)) i = f i"
   using fun_upd_same fun_upd_apply
-  by smt
+  by smt2
 
 lemma
   "f (\<exists>x. g x) \<Longrightarrow> True"
   "f (\<forall>x. g x) \<Longrightarrow> True"
-  by smt+
+  by smt2+
 
-lemma True using let_rsp by smt
+lemma True using let_rsp by smt2
 
-lemma "le = op \<le> \<Longrightarrow> le (3::int) 42" by smt
+lemma "le = op \<le> \<Longrightarrow> le (3::int) 42" by smt2
 
-lemma "map (\<lambda>i::nat. i + 1) [0, 1] = [1, 2]" by (smt list.map)
+lemma "map (\<lambda>i::nat. i + 1) [0, 1] = [1, 2]" by (smt2 list.map)
 
 
-lemma "(ALL x. P x) | ~ All P" by smt
+lemma "(ALL x. P x) \<or> ~ All P" by smt2
 
 fun dec_10 :: "nat \<Rightarrow> nat" where
   "dec_10 n = (if n < 10 then n else dec_10 (n - 10))"
-lemma "dec_10 (4 * dec_10 4) = 6" by (smt dec_10.simps)
+lemma "dec_10 (4 * dec_10 4) = 6" by (smt2 dec_10.simps)
 
 
 axiomatization
@@ -505,35 +505,36 @@
    (eval_dioph ks (map (\<lambda>x. x mod 2) xs) mod 2 = l mod 2 \<and>
     eval_dioph ks (map (\<lambda>x. x div 2) xs) =
       (l - eval_dioph ks (map (\<lambda>x. x mod 2) xs)) div 2)"
-  using [[smt_oracle=true]] (*FIXME*)
-  using [[z3_with_extensions]]
-  by (smt eval_dioph_mod[where n=2] eval_dioph_div_mult[where n=2])
+  using [[smt2_oracle=true]] (*FIXME*)
+  using [[z3_new_extensions]]
+  by (smt2 eval_dioph_mod[where n=2] eval_dioph_div_mult[where n=2])
 
 
 context complete_lattice
 begin
 
 lemma
-  assumes "Sup { a | i::bool . True } \<le> Sup { b | i::bool . True }"
-  and     "Sup { b | i::bool . True } \<le> Sup { a | i::bool . True }"
-  shows   "Sup { a | i::bool . True } \<le> Sup { a | i::bool . True }"
-  using assms by (smt order_trans)
+  assumes "Sup {a | i::bool. True} \<le> Sup {b | i::bool. True}"
+  and "Sup {b | i::bool. True} \<le> Sup {a | i::bool. True}"
+  shows "Sup {a | i::bool. True} \<le> Sup {a | i::bool. True}"
+  using assms by (smt2 order_trans)
 
 end
 
 
-
 section {* Monomorphization examples *}
 
 definition Pred :: "'a \<Rightarrow> bool" where "Pred x = True"
-lemma poly_Pred: "Pred x \<and> (Pred [x] \<or> \<not>Pred[x])" by (simp add: Pred_def)
-lemma "Pred (1::int)" by (smt poly_Pred)
+
+lemma poly_Pred: "Pred x \<and> (Pred [x] \<or> \<not> Pred [x])" by (simp add: Pred_def)
+lemma "Pred (1::int)" by (smt2 poly_Pred)
 
 axiomatization g :: "'a \<Rightarrow> nat"
 axiomatization where
   g1: "g (Some x) = g [x]" and
   g2: "g None = g []" and
   g3: "g xs = length xs"
-lemma "g (Some (3::int)) = g (Some True)" by (smt g1 g2 g3 list.size)
+
+lemma "g (Some (3::int)) = g (Some True)" by (smt g1 g2 g3 list.size) (* smt2 FIXME: Option *)
 
 end
--- a/src/HOL/SMT_Examples/SMT_Tests.thy	Thu Mar 13 13:18:13 2014 +0100
+++ b/src/HOL/SMT_Examples/SMT_Tests.thy	Thu Mar 13 13:18:13 2014 +0100
@@ -9,11 +9,11 @@
 begin
 
 smt_status
+smt2_status
 
 text {* Most examples are taken from various Isabelle theories and from HOL4. *}
 
 
-
 section {* Propositional logic *}
 
 lemma
@@ -24,7 +24,7 @@
   "True \<or> False"
   "False \<longrightarrow> True"
   "\<not>(False \<longleftrightarrow> True)"
-  by smt+
+  by smt2+
 
 lemma
   "P \<or> \<not>P"
@@ -63,7 +63,7 @@
   "\<not>(P \<longleftrightarrow> \<not>P)"
   "(P \<longrightarrow> Q) \<longleftrightarrow> (\<not>Q \<longrightarrow> \<not>P)"
   "P \<longleftrightarrow> P \<longleftrightarrow> P \<longleftrightarrow> P \<longleftrightarrow> P \<longleftrightarrow> P \<longleftrightarrow> P \<longleftrightarrow> P \<longleftrightarrow> P \<longleftrightarrow> P"
-  by smt+
+  by smt2+
 
 lemma
   "(if P then Q1 else Q2) \<longleftrightarrow> ((P \<longrightarrow> Q1) \<and> (\<not>P \<longrightarrow> Q2))"
@@ -72,15 +72,14 @@
   "(if P1 \<and> P2 then Q1 else Q2) \<longleftrightarrow> (if P1 then if P2 then Q1 else Q2 else Q2)"
   "(P1 \<longrightarrow> (if P2 then Q1 else Q2)) \<longleftrightarrow>
    (if P1 \<longrightarrow> P2 then P1 \<longrightarrow> Q1 else P1 \<longrightarrow> Q2)"
-  by smt+
+  by smt2+
 
 lemma
   "case P of True \<Rightarrow> P | False \<Rightarrow> \<not>P"
   "case P of False \<Rightarrow> \<not>P | True \<Rightarrow> P"
   "case \<not>P of True \<Rightarrow> \<not>P | False \<Rightarrow> P"
   "case P of True \<Rightarrow> (Q \<longrightarrow> P) | False \<Rightarrow> (P \<longrightarrow> Q)"
-  by smt+
-
+  by smt2+
 
 
 section {* First-order logic with equality *}
@@ -93,7 +92,7 @@
   "x = y \<longrightarrow> g x y = g y x"
   "f (f x) = x \<and> f (f (f (f (f x)))) = x \<longrightarrow> f x = x"
   "((if a then b else c) = d) = ((a \<longrightarrow> (b = d)) \<and> (\<not> a \<longrightarrow> (c = d)))"
-  by smt+
+  by smt2+
 
 lemma
   "\<forall>x. x = x"
@@ -106,12 +105,11 @@
   "(\<forall>x. P x \<longrightarrow> P (f x)) \<and> P d \<longrightarrow> P (f(f(f(d))))"
   "(\<forall>x y. s x y = s y x) \<longrightarrow> a = a \<and> s a b = s b a"
   "(\<forall>s. q s \<longrightarrow> r s) \<and> \<not>r s \<and> (\<forall>s. \<not>r s \<and> \<not>q s \<longrightarrow> p t \<or> q t) \<longrightarrow> p t \<or> r t"
-  by smt+
+  by smt2+
 
 lemma
   "(\<forall>x. P x) \<and> R \<longleftrightarrow> (\<forall>x. P x \<and> R)"
-  using [[smt_oracle]] by smt
-  (* BUG: Z3 proof parser (line 34): unknown function symbol: "S2!val!0" *)
+  by smt2
 
 lemma
   "\<exists>x. x = x"
@@ -120,7 +118,7 @@
   "(\<exists>x. P x) \<and> R \<longleftrightarrow> (\<exists>x. P x \<and> R)"
   "(\<exists>x y z. S x z) \<longleftrightarrow> (\<exists>x z. S x z)"
   "\<not>((\<exists>x. \<not>P x) \<and> ((\<exists>x. P x) \<or> (\<exists>x. P x \<and> Q x)) \<and> \<not>(\<exists>x. P x))"
-  by smt+
+  by smt2+
 
 lemma
   "\<exists>x y. x = y"
@@ -129,8 +127,7 @@
   "\<exists>x. P x \<longrightarrow> P a \<and> P b"
   "\<exists>x. (\<exists>y. P y) \<longrightarrow> P x"
   "(\<exists>x. Q \<longrightarrow> P x) \<longleftrightarrow> (Q \<longrightarrow> (\<exists>x. P x))"
-  using [[smt_oracle]] by smt+
-  (* BUG: Z3 proof parser (line 34): unknown function symbol: "S2!val!0" *)
+  by smt2+
 
 lemma
   "(\<not>(\<exists>x. P x)) \<longleftrightarrow> (\<forall>x. \<not> P x)"
@@ -138,7 +135,7 @@
   "(\<forall>x y. R x y = x) \<longrightarrow> (\<exists>y. R x y) = R x c"
   "(if P x then \<not>(\<exists>y. P y) else (\<forall>y. \<not>P y)) \<longrightarrow> P x \<longrightarrow> P y"
   "(\<forall>x y. R x y = x) \<and> (\<forall>x. \<exists>y. R x y) = (\<forall>x. R x c) \<longrightarrow> (\<exists>y. R x y) = R x c"
-  by smt+
+  by smt+ (* smt2 FIXME: Option *)
 
 lemma
   "\<forall>x. \<exists>y. f x y = f x (g x)"
@@ -149,20 +146,20 @@
   "(\<exists>x. \<forall>y. P x \<longleftrightarrow> P y) \<longrightarrow> ((\<exists>x. P x) \<longleftrightarrow> (\<forall>y. P y))"
   "\<exists>z. P z \<longrightarrow> (\<forall>x. P x)"
   "(\<exists>y. \<forall>x. R x y) \<longrightarrow> (\<forall>x. \<exists>y. R x y)"
-  by smt+
+  by smt2+
 
 lemma
-  "(\<exists>! x. P x) \<longrightarrow> (\<exists>x. P x)"
+  "(\<exists>!x. P x) \<longrightarrow> (\<exists>x. P x)"
   "(\<exists>!x. P x) \<longleftrightarrow> (\<exists>x. P x \<and> (\<forall>y. y \<noteq> x \<longrightarrow> \<not>P y))"
   "P a \<longrightarrow> (\<forall>x. P x \<longrightarrow> x = a) \<longrightarrow> (\<exists>!x. P x)"
   "(\<exists>x. P x) \<and> (\<forall>x y. P x \<and> P y \<longrightarrow> x = y) \<longrightarrow> (\<exists>!x. P x)"
   "(\<exists>!x. P x) \<and> (\<forall>x. P x \<and> (\<forall>y. P y \<longrightarrow> y = x) \<longrightarrow> R) \<longrightarrow> R"
-  by smt+
+  by smt2+
 
 lemma
   "(\<forall>x\<in>M. P x) \<and> c \<in> M \<longrightarrow> P c"
   "(\<exists>x\<in>M. P x) \<or> \<not>(P c \<and> c \<in> M)"
-  by smt+
+  by smt2+
 
 lemma
   "let P = True in P"
@@ -173,65 +170,64 @@
   "(let x = y1; z = y2 in R x z) \<longleftrightarrow> (let z = y2; x = y1 in R x z)"
   "(let x = y1; z = y2 in R x z) \<longleftrightarrow> (let z = y1; x = y2 in R z x)"
   "let P = (\<forall>x. Q x) in if P then P else \<not>P"
-  by smt+
+  by smt2+
 
 lemma
   "a \<noteq> b \<and> a \<noteq> c \<and> b \<noteq> c \<and> (\<forall>x y. f x = f y \<longrightarrow> y = x) \<longrightarrow> f a \<noteq> f b"
-  by smt
+  by smt2
 
 lemma
   "(\<forall>x y z. f x y = f x z \<longrightarrow> y = z) \<and> b \<noteq> c \<longrightarrow> f a b \<noteq> f a c"
   "(\<forall>x y z. f x y = f z y \<longrightarrow> x = z) \<and> a \<noteq> d \<longrightarrow> f a b \<noteq> f d b"
-  by smt+
+  by smt2+
 
 
 section {* Guidance for quantifier heuristics: patterns and weights *}
 
 lemma
-  assumes "\<forall>x. SMT.trigger [[SMT.pat (f x)]] (f x = x)"
+  assumes "\<forall>x. SMT2.trigger [[SMT2.pat (f x)]] (f x = x)"
   shows "f 1 = 1"
-  using assms by smt
+  using assms using [[smt2_trace]] by smt2
 
 lemma
-  assumes "\<forall>x y. SMT.trigger [[SMT.pat (f x), SMT.pat (g y)]] (f x = g y)"
+  assumes "\<forall>x y. SMT2.trigger [[SMT2.pat (f x), SMT2.pat (g y)]] (f x = g y)"
   shows "f a = g b"
-  using assms by smt
+  using assms by smt2
 
 lemma
-  assumes "ALL x. SMT.trigger [[SMT.pat (P x)]] (P x --> Q x)"
+  assumes "ALL x. SMT2.trigger [[SMT2.pat (P x)]] (P x --> Q x)"
   and "P t"
   shows "Q t"
-  using assms by smt
+  using assms by smt2
 
 lemma
-  assumes "ALL x. SMT.trigger [[SMT.pat (P x), SMT.pat (Q x)]]
+  assumes "ALL x. SMT2.trigger [[SMT2.pat (P x), SMT2.pat (Q x)]]
     (P x & Q x --> R x)"
   and "P t" and "Q t"
   shows "R t"
-  using assms by smt
+  using assms by smt2
 
 lemma
-  assumes "ALL x. SMT.trigger [[SMT.pat (P x)], [SMT.pat (Q x)]]
+  assumes "ALL x. SMT2.trigger [[SMT2.pat (P x)], [SMT2.pat (Q x)]]
     ((P x --> R x) & (Q x --> R x))"
   and "P t | Q t"
   shows "R t"
-  using assms by smt
-
-lemma
-  assumes "ALL x. SMT.trigger [[SMT.pat (P x)]] (SMT.weight 2 (P x --> Q x))"
-  and "P t"
-  shows "Q t"
-  using assms by smt
+  using assms by smt2
 
 lemma
-  assumes "ALL x. SMT.weight 1 (P x --> Q x)"
+  assumes "ALL x. SMT2.trigger [[SMT2.pat (P x)]] (SMT2.weight 2 (P x --> Q x))"
   and "P t"
   shows "Q t"
-  using assms by smt
+  using assms by smt2
+
+lemma
+  assumes "ALL x. SMT2.weight 1 (P x --> Q x)"
+  and "P t"
+  shows "Q t"
+  using assms by smt2
 
 
-
-section {* Meta logical connectives *}
+section {* Meta-logical connectives *}
 
 lemma
   "True \<Longrightarrow> True"
@@ -252,8 +248,7 @@
   "(\<And>x y. h x y \<and> h y x) \<Longrightarrow> \<forall>x. h x x"
   "(p \<or> q) \<and> \<not>p \<Longrightarrow> q"
   "(a \<and> b) \<or> (c \<and> d) \<Longrightarrow> (a \<and> b) \<or> (c \<and> d)"
-  by smt+
-
+  by smt+ (* smt2 FIXME: Option *)
 
 
 section {* Natural numbers *}
@@ -264,7 +259,7 @@
   "(0::nat) < 1"
   "(0::nat) \<le> 1"
   "(123456789::nat) < 2345678901"
-  by smt+
+  by smt2+
 
 lemma
   "Suc 0 = 1"
@@ -272,7 +267,7 @@
   "x < Suc x"
   "(Suc x = Suc y) = (x = y)"
   "Suc (x + y) < Suc x + Suc y"
-  by smt+
+  by smt2+
 
 lemma
   "(x::nat) + 0 = x"
@@ -280,15 +275,15 @@
   "x + y = y + x"
   "x + (y + z) = (x + y) + z"
   "(x + y = 0) = (x = 0 \<and> y = 0)"
-  by smt+
+  by smt2+
 
-lemma 
+lemma
   "(x::nat) - 0 = x"
   "x < y \<longrightarrow> x - y = 0"
   "x - y = 0 \<or> y - x = 0"
   "(x - y) + y = (if x < y then y else x)"
-  "x - y - z = x - (y + z)" 
-  by smt+
+  "x - y - z = x - (y + z)"
+  by smt2+
 
 lemma
   "(x::nat) * 0 = 0"
@@ -296,7 +291,7 @@
   "x * 1 = x"
   "1 * x = x"
   "3 * x = x * 3"
-  by smt+
+  by smt2+
 
 lemma
   "(0::nat) div 0 = 0"
@@ -310,8 +305,8 @@
   "(3::nat) div 3 = 1"
   "(x::nat) div 3 \<le> x"
   "(x div 3 = x) = (x = 0)"
-  using [[z3_with_extensions]]
-  by smt+
+  using [[z3_new_extensions]]
+  by smt2+
 
 lemma
   "(0::nat) mod 0 = 0"
@@ -325,14 +320,14 @@
   "(3::nat) mod 3 = 0"
   "x mod 3 < 3"
   "(x mod 3 = x) = (x < 3)"
-  using [[z3_with_extensions]]
-  by smt+
+  using [[z3_new_extensions]]
+  by smt2+
 
 lemma
   "(x::nat) = x div 1 * 1 + x mod 1"
   "x = x div 3 * 3 + x mod 3"
-  using [[z3_with_extensions]]
-  by smt+
+  using [[z3_new_extensions]]
+  by smt2+
 
 lemma
   "min (x::nat) y \<le> x"
@@ -341,7 +336,7 @@
   "z < x \<and> z < y \<longrightarrow> z < min x y"
   "min x y = min y x"
   "min x 0 = 0"
-  by smt+
+  by smt2+
 
 lemma
   "max (x::nat) y \<ge> x"
@@ -350,7 +345,7 @@
   "z > x \<and> z > y \<longrightarrow> z > max x y"
   "max x y = max y x"
   "max x 0 = x"
-  by smt+
+  by smt2+
 
 lemma
   "0 \<le> (x::nat)"
@@ -366,8 +361,7 @@
   "x \<le> y \<longrightarrow> y < z \<longrightarrow> x \<le> z"
   "x < y \<longrightarrow> y < z \<longrightarrow> x < z"
   "x < y \<and> y < z \<longrightarrow> \<not>(z < x)"
-  by smt+
-
+  by smt2+
 
 
 section {* Integers *}
@@ -382,7 +376,7 @@
   "-123 + 345 < (567::int)"
   "(123456789::int) < 2345678901"
   "(-123456789::int) < 2345678901"
-  by smt+
+  by smt2+
 
 lemma
   "(x::int) + 0 = x"
@@ -390,7 +384,7 @@
   "x + y = y + x"
   "x + (y + z) = (x + y) + z"
   "(x + y = 0) = (x = -y)"
-  by smt+
+  by smt2+
 
 lemma
   "(-1::int) = - 1"
@@ -398,16 +392,16 @@
   "-(x::int) < 0 \<longleftrightarrow> x > 0"
   "x > 0 \<longrightarrow> -x < 0"
   "x < 0 \<longrightarrow> -x > 0"
-  by smt+
+  by smt2+
 
-lemma 
+lemma
   "(x::int) - 0 = x"
   "0 - x = -x"
   "x < y \<longrightarrow> x - y < 0"
   "x - y = -(y - x)"
   "x - y = -y + x"
-  "x - y - z = x - (y + z)" 
-  by smt+
+  "x - y - z = x - (y + z)"
+  by smt2+
 
 lemma
   "(x::int) * 0 = 0"
@@ -417,7 +411,7 @@
   "x * -1 = -x"
   "-1 * x = -x"
   "3 * x = x * 3"
-  by smt+
+  by smt2+
 
 lemma
   "(0::int) div 0 = 0"
@@ -444,8 +438,8 @@
   "(-1::int) div -3 = 0"
   "(-3::int) div -3 = 1"
   "(-5::int) div -3 = 1"
-  using [[z3_with_extensions]]
-  by smt+
+  using [[z3_new_extensions]]
+  by smt2+
 
 lemma
   "(0::int) mod 0 = 0"
@@ -474,14 +468,14 @@
   "(-5::int) mod -3 = -2"
   "x mod 3 < 3"
   "(x mod 3 = x) \<longrightarrow> (x < 3)"
-  using [[z3_with_extensions]]
-  by smt+
+  using [[z3_new_extensions]]
+  by smt2+
 
 lemma
   "(x::int) = x div 1 * 1 + x mod 1"
   "x = x div 3 * 3 + x mod 3"
-  using [[z3_with_extensions]]
-  by smt+
+  using [[z3_new_extensions]]
+  by smt2+
 
 lemma
   "abs (x::int) \<ge> 0"
@@ -489,7 +483,7 @@
   "(x \<ge> 0) = (abs x = x)"
   "(x \<le> 0) = (abs x = -x)"
   "abs (abs x) = abs x"
-  by smt+
+  by smt2+
 
 lemma
   "min (x::int) y \<le> x"
@@ -498,7 +492,7 @@
   "min x y = min y x"
   "x \<ge> 0 \<longrightarrow> min x 0 = 0"
   "min x y \<le> abs (x + y)"
-  by smt+
+  by smt2+
 
 lemma
   "max (x::int) y \<ge> x"
@@ -507,7 +501,7 @@
   "max x y = max y x"
   "x \<ge> 0 \<longrightarrow> max x 0 = x"
   "max x y \<ge> - abs x - abs y"
-  by smt+
+  by smt2+
 
 lemma
   "0 < (x::int) \<and> x \<le> 1 \<longrightarrow> x = 1"
@@ -522,8 +516,7 @@
   "x \<le> y \<longrightarrow> y < z \<longrightarrow> x \<le> z"
   "x < y \<longrightarrow> y < z \<longrightarrow> x < z"
   "x < y \<and> y < z \<longrightarrow> \<not>(z < x)"
-  by smt+
-
+  by smt2+
 
 
 section {* Reals *}
@@ -539,7 +532,7 @@
   "-123 + 345 < (567::real)"
   "(123456789::real) < 2345678901"
   "(-123456789::real) < 2345678901"
-  by smt+
+  by smt2+
 
 lemma
   "(x::real) + 0 = x"
@@ -547,7 +540,7 @@
   "x + y = y + x"
   "x + (y + z) = (x + y) + z"
   "(x + y = 0) = (x = -y)"
-  by smt+
+  by smt2+
 
 lemma
   "(-1::real) = - 1"
@@ -555,7 +548,7 @@
   "-(x::real) < 0 \<longleftrightarrow> x > 0"
   "x > 0 \<longrightarrow> -x < 0"
   "x < 0 \<longrightarrow> -x > 0"
-  by smt+
+  by smt2+
 
 lemma
   "(x::real) - 0 = x"
@@ -563,8 +556,8 @@
   "x < y \<longrightarrow> x - y < 0"
   "x - y = -(y - x)"
   "x - y = -y + x"
-  "x - y - z = x - (y + z)" 
-  by smt+
+  "x - y - z = x - (y + z)"
+  by smt2+
 
 lemma
   "(x::real) * 0 = 0"
@@ -574,7 +567,7 @@
   "x * -1 = -x"
   "-1 * x = -x"
   "3 * x = x * 3"
-  by smt+
+  by smt2+
 
 lemma
   "(1/2 :: real) < 1"
@@ -585,16 +578,16 @@
   "(x::real) / 1 = x"
   "x > 0 \<longrightarrow> x / 3 < x"
   "x < 0 \<longrightarrow> x / 3 > x"
-  using [[z3_with_extensions]]
-  by smt+
+  using [[z3_new_extensions]]
+  by smt2+
 
 lemma
   "(3::real) * (x / 3) = x"
   "(x * 3) / 3 = x"
   "x > 0 \<longrightarrow> 2 * x / 3 < x"
   "x < 0 \<longrightarrow> 2 * x / 3 > x"
-  using [[z3_with_extensions]]
-  by smt+
+  using [[z3_new_extensions]]
+  by smt2+
 
 lemma
   "abs (x::real) \<ge> 0"
@@ -602,7 +595,7 @@
   "(x \<ge> 0) = (abs x = x)"
   "(x \<le> 0) = (abs x = -x)"
   "abs (abs x) = abs x"
-  by smt+
+  by smt2+
 
 lemma
   "min (x::real) y \<le> x"
@@ -611,7 +604,7 @@
   "min x y = min y x"
   "x \<ge> 0 \<longrightarrow> min x 0 = 0"
   "min x y \<le> abs (x + y)"
-  by smt+
+  by smt2+
 
 lemma
   "max (x::real) y \<ge> x"
@@ -620,7 +613,7 @@
   "max x y = max y x"
   "x \<ge> 0 \<longrightarrow> max x 0 = x"
   "max x y \<ge> - abs x - abs y"
-  by smt+
+  by smt2+
 
 lemma
   "x \<le> (x::real)"
@@ -633,8 +626,7 @@
   "x \<le> y \<longrightarrow> y < z \<longrightarrow> x \<le> z"
   "x < y \<longrightarrow> y < z \<longrightarrow> x < z"
   "x < y \<and> y < z \<longrightarrow> \<not>(z < x)"
-  by smt+
-
+  by smt2+
 
 
 section {* Datatypes, Records, and Typedefs *}
@@ -657,7 +649,7 @@
   "(fst (x, y) = snd (x, y)) = (x = y)"
   "(fst p = snd p) = (p = (snd p, fst p))"
   using fst_conv snd_conv pair_collapse
-  by smt+
+  by smt2+
 
 lemma
   "[x] \<noteq> Nil"
@@ -670,13 +662,13 @@
   "hd (tl [x, y, z]) = y"
   "tl (tl [x, y, z]) = [z]"
   using list.sel(1,3) list.simps
-  by smt+
+  by smt2+
 
 lemma
   "fst (hd [(a, b)]) = a"
   "snd (hd [(a, b)]) = b"
   using fst_conv snd_conv pair_collapse list.sel(1,3) list.simps
-  by smt+
+  by smt2+
 
 
 subsubsection {* Records *}
@@ -694,7 +686,7 @@
   "cx p1 \<noteq> cx p2 \<longrightarrow> p1 \<noteq> p2"
   "cy p1 \<noteq> cy p2 \<longrightarrow> p1 \<noteq> p2"
   using point.simps
-  by smt+
+  by smt2+
 
 lemma
   "cx \<lparr> cx = 3, cy = 4 \<rparr> = 3"
@@ -705,8 +697,7 @@
   "p = \<lparr> cx = 3, cy = 4 \<rparr> \<longrightarrow> p \<lparr> cx := 3 \<rparr> \<lparr> cy := 4 \<rparr> = p"
   "p = \<lparr> cx = 3, cy = 4 \<rparr> \<longrightarrow> p \<lparr> cy := 4 \<rparr> \<lparr> cx := 3 \<rparr> = p"
   using point.simps
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt+
+  by smt2+
 
 lemma
   "cy (p \<lparr> cx := a \<rparr>) = cy p"
@@ -722,7 +713,7 @@
   "cy p1 \<noteq> cy p2 \<longrightarrow> p1 \<noteq> p2"
   "black p1 \<noteq> black p2 \<longrightarrow> p1 \<noteq> p2"
   using point.simps bw_point.simps
-  by smt+
+  by smt2+
 
 lemma
   "cx \<lparr> cx = 3, cy = 4, black = b \<rparr> = 3"
@@ -738,8 +729,7 @@
   "p = \<lparr> cx = 3, cy = 4, black = True \<rparr> \<longrightarrow>
      p \<lparr> black := True \<rparr> \<lparr> cx := 3 \<rparr> \<lparr> cy := 4 \<rparr> = p"
   using point.simps bw_point.simps
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt+
+  by smt+ (* smt2 FIXME: Option *)
 
 lemma
   "\<lparr> cx = 3, cy = 4, black = b \<rparr> \<lparr> black := w \<rparr> = \<lparr> cx = 3, cy = 4, black = w \<rparr>"
@@ -773,8 +763,7 @@
   "nplus n1 n2 = n3"
   using n1_def n2_def n3_def nplus_def
   using three_def' Rep_three Abs_three_inverse
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt+
+  by smt2+
 
 
 subsection {* With support by the SMT solver (but without proofs) *}
@@ -795,8 +784,8 @@
   "(fst (x, y) = snd (x, y)) = (x = y)"
   "(fst p = snd p) = (p = (snd p, fst p))"
   using fst_conv snd_conv pair_collapse
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  by smt+
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2+
 
 lemma
   "[x] \<noteq> Nil"
@@ -809,15 +798,15 @@
   "hd (tl [x, y, z]) = y"
   "tl (tl [x, y, z]) = [z]"
   using list.sel(1,3)
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  by smt+
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2+
 
 lemma
   "fst (hd [(a, b)]) = a"
   "snd (hd [(a, b)]) = b"
   using fst_conv snd_conv pair_collapse list.sel(1,3)
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  by smt+
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2+
 
 
 subsubsection {* Records *}
@@ -828,9 +817,8 @@
   "cx p1 \<noteq> cx p2 \<longrightarrow> p1 \<noteq> p2"
   "cy p1 \<noteq> cy p2 \<longrightarrow> p1 \<noteq> p2"
   using point.simps
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt+
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2+
 
 lemma
   "cx \<lparr> cx = 3, cy = 4 \<rparr> = 3"
@@ -841,18 +829,16 @@
   "p = \<lparr> cx = 3, cy = 4 \<rparr> \<longrightarrow> p \<lparr> cx := 3 \<rparr> \<lparr> cy := 4 \<rparr> = p"
   "p = \<lparr> cx = 3, cy = 4 \<rparr> \<longrightarrow> p \<lparr> cy := 4 \<rparr> \<lparr> cx := 3 \<rparr> = p"
   using point.simps
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt+
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2+
 
 lemma
   "cy (p \<lparr> cx := a \<rparr>) = cy p"
   "cx (p \<lparr> cy := a \<rparr>) = cx p"
   "p \<lparr> cx := 3 \<rparr> \<lparr> cy := 4 \<rparr> = p \<lparr> cy := 4 \<rparr> \<lparr> cx := 3 \<rparr>"
   using point.simps
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt+
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2+
 
 lemma
   "p1 = p2 \<longrightarrow> cx p1 = cx p2"
@@ -862,8 +848,8 @@
   "cy p1 \<noteq> cy p2 \<longrightarrow> p1 \<noteq> p2"
   "black p1 \<noteq> black p2 \<longrightarrow> p1 \<noteq> p2"
   using point.simps bw_point.simps
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  by smt+
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2+
 
 lemma
   "cx \<lparr> cx = 3, cy = 4, black = b \<rparr> = 3"
@@ -879,9 +865,8 @@
   "p = \<lparr> cx = 3, cy = 4, black = True \<rparr> \<longrightarrow>
      p \<lparr> black := True \<rparr> \<lparr> cx := 3 \<rparr> \<lparr> cy := 4 \<rparr> = p"
   using point.simps bw_point.simps
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt+
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2+
 
 lemma
   "\<lparr> cx = 3, cy = 4, black = b \<rparr> \<lparr> black := w \<rparr> = \<lparr> cx = 3, cy = 4, black = w \<rparr>"
@@ -893,9 +878,8 @@
   "p \<lparr> cx := 3 \<rparr> \<lparr> cy := 4 \<rparr> \<lparr> black := True \<rparr> =
      p \<lparr> black := True \<rparr> \<lparr> cy := 4 \<rparr> \<lparr> cx := 3 \<rparr>"
   using point.simps bw_point.simps
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2
 
 
 subsubsection {* Type definitions *}
@@ -907,10 +891,8 @@
   "nplus n1 n1 = n2"
   "nplus n1 n2 = n3"
   using n1_def n2_def n3_def nplus_def
-  using [[smt_datatypes, smt_oracle, z3_with_extensions]]
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt+
-
+  using [[smt2_oracle, z3_new_extensions]]
+  by smt2+
 
 
 section {* Function updates *}
@@ -924,7 +906,7 @@
   "i1 = i2 \<longrightarrow> (f (i1 := v1, i2 := v2)) i1 = v2"
   "i1 \<noteq> i2 \<and>i1 \<noteq> i3 \<and>  i2 \<noteq> i3 \<longrightarrow> (f (i1 := v1, i2 := v2)) i3 = f i3"
   using fun_upd_same fun_upd_apply
-  by smt+
+  by smt2+
 
 
 
@@ -932,7 +914,7 @@
 
 lemma Empty: "x \<notin> {}" by simp
 
-lemmas smt_sets = Empty UNIV_I Un_iff Int_iff
+lemmas smt2_sets = Empty UNIV_I Un_iff Int_iff
 
 lemma
   "x \<notin> {}"
@@ -950,6 +932,6 @@
   "x \<in> P \<inter> P \<longleftrightarrow> x \<in> P"
   "x \<in> P \<inter> (Q \<inter> R) \<longleftrightarrow> x \<in> (P \<inter> Q) \<inter> R"
   "{x. x \<in> P} = {y. y \<in> P}"
-  by (smt smt_sets)+
+  by (smt2 smt2_sets)+
 
 end
--- a/src/HOL/SMT_Examples/SMT_Word_Examples.certs	Thu Mar 13 13:18:13 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,58 +0,0 @@
-ef8166854c461e296fe9c596b7a3fe12065b0c65 1 0
-unsat
-d1ec4aa8c4a5f474e8dbb8a8acbdd12fc33b0cda 1 0
-unsat
-03dee604b20d98218bc88a69efcbf0f1c6dc057a 1 0
-unsat
-6a68bdb5b2a92a239021f6188a807622fe7b8213 1 0
-unsat
-9be3195f24c1786963c05e51e63a24efa7c83141 1 0
-unsat
-608ed753221bdf2f1769ea3686a0f970108a7087 1 0
-unsat
-610484e81fc38952a9a2cb0bfc83d424f7f96ca8 1 0
-unsat
-0a06a4c179bec3512f3dc01e338f246fca223ddb 1 0
-unsat
-dd232118189a55ac7fc80599d2738be8bbaa9333 1 0
-unsat
-8426f9081bd693e21cd8b2e13d07cea1e69e8abd 1 0
-unsat
-8d83ab1c5a55640d0165bbd736d2cc217bcc2efd 1 0
-unsat
-542ef8141028455b42a51f60e3981a74373a60b3 1 0
-unsat
-564709a03da50b938c3b1ab2a8a2f0dc8d8a4749 1 0
-unsat
-c4acaeb4324634878481e3faae3beae53a641067 1 0
-unsat
-873ce0289bcfaf43a446c6ed55bec4289eea0ffd 1 0
-unsat
-8383b80b5e8011f2b51c01ea89c14ce766f5a82b 1 0
-unsat
-6694dc1c5420588e5e48281a8835ac019bfb1aa7 1 0
-unsat
-4094196f5d25f48682e6634b4326469abc38d250 1 0
-unsat
-0597f614ff89c7376d01987b4737ab991b5a321c 1 0
-unsat
-44f955a3f3fab3f5203ec29edc7e00e7cb81bedc 1 0
-unsat
-927e5f0e88fadf6d2f604b1d863a37fc682f942b 1 0
-unsat
-818922160b53f843888d258a1ef7e5d5ddf5129f 1 0
-unsat
-afc6dff121c48475665b0ef064826ffa2cad0e85 1 0
-unsat
-b9ab61d9521faeaa45ec63bff4581742c3e6c550 1 0
-unsat
-8e60769fce6622cdca312aa54d4a77329a99dac2 1 0
-unsat
-bd55726cefc783f8e9ef4ad38596e1f24cca3663 1 0
-unsat
-4e48efd5c9874aedf200e06875d5597b31d98075 1 0
-unsat
-e5c27ae0a583eeafeaa4ef3c59b1b4ec53e06b0f 1 0
-unsat
-7d3ef49480d3ed3a7e5f2d7a12e7108cf7fc7819 1 0
-unsat
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/SMT_Examples/SMT_Word_Examples.certs2	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,434 @@
+a438ed86857e9b990f36b8fba1876d2ee3208e44 8 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x17 (monotonicity (rewrite (= (bvneg (_ bv5 4)) (_ bv11 4))) (= (= (_ bv11 4) (bvneg (_ bv5 4))) (= (_ bv11 4) (_ bv11 4))))))
+(let ((@x21 (trans @x17 (rewrite (= (= (_ bv11 4) (_ bv11 4)) true)) (= (= (_ bv11 4) (bvneg (_ bv5 4))) true))))
+(let ((@x28 (trans (monotonicity @x21 (= (not (= (_ bv11 4) (bvneg (_ bv5 4)))) (not true))) (rewrite (= (not true) false)) (= (not (= (_ bv11 4) (bvneg (_ bv5 4)))) false))))
+(mp (asserted (not (= (_ bv11 4) (bvneg (_ bv5 4))))) @x28 false))))))
+
+9b71beed4cadbb1c6e2962eb013e86c8f71abf17 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x20 (monotonicity (rewrite (= (bvule (_ bv27 8) (_ bv23 8)) false)) (= (not (bvule (_ bv27 8) (_ bv23 8))) (not false)))))
+(let ((@x24 (trans @x20 (rewrite (= (not false) true)) (= (not (bvule (_ bv27 8) (_ bv23 8))) true))))
+(let ((@x26 (trans (rewrite (= (bvult (_ bv23 8) (_ bv27 8)) (not (bvule (_ bv27 8) (_ bv23 8))))) @x24 (= (bvult (_ bv23 8) (_ bv27 8)) true))))
+(let ((@x33 (trans (monotonicity @x26 (= (not (bvult (_ bv23 8) (_ bv27 8))) (not true))) (rewrite (= (not true) false)) (= (not (bvult (_ bv23 8) (_ bv27 8))) false))))
+(mp (asserted (not (bvult (_ bv23 8) (_ bv27 8)))) @x33 false)))))))
+
+83e5e97d82127f63e5519904051508641143369d 7 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x15 (monotonicity (rewrite (= (= (_ bv11 4) (_ bv11 4)) true)) (= (not (= (_ bv11 4) (_ bv11 4))) (not true)))))
+(let ((@x19 (trans @x15 (rewrite (= (not true) false)) (= (not (= (_ bv11 4) (_ bv11 4))) false))))
+(mp (asserted (not (= (_ bv11 4) (_ bv11 4)))) @x19 false)))))
+
+1e5c1dd05129223256f56ebbd2d47effcee4561c 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x17 (monotonicity (rewrite (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5))) (= (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5)) (= (_ bv6 5) (_ bv6 5))))))
+(let ((@x21 (trans @x17 (rewrite (= (= (_ bv6 5) (_ bv6 5)) true)) (= (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5)) true))))
+(let ((@x24 (monotonicity @x21 (= (not (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5))) (not true)))))
+(let ((@x28 (trans @x24 (rewrite (= (not true) false)) (= (not (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5))) false))))
+(mp (asserted (not (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5)))) @x28 false)))))))
+
+2999cde57fdda8b4770e92440b939692e4a6aa5f 12 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x25 (monotonicity (rewrite (= (bvmul (_ bv255 8) (_ bv27 8)) (_ bv229 8))) (= (bvadd (_ bv11 8) (bvmul (_ bv255 8) (_ bv27 8))) (bvadd (_ bv11 8) (_ bv229 8))))))
+(let ((@x30 (trans @x25 (rewrite (= (bvadd (_ bv11 8) (_ bv229 8)) (_ bv240 8))) (= (bvadd (_ bv11 8) (bvmul (_ bv255 8) (_ bv27 8))) (_ bv240 8)))))
+(let ((@x32 (trans (rewrite (= (bvsub (_ bv11 8) (_ bv27 8)) (bvadd (_ bv11 8) (bvmul (_ bv255 8) (_ bv27 8))))) @x30 (= (bvsub (_ bv11 8) (_ bv27 8)) (_ bv240 8)))))
+(let ((@x37 (monotonicity @x32 (rewrite (= (bvneg (_ bv16 8)) (_ bv240 8))) (= (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8))) (= (_ bv240 8) (_ bv240 8))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv240 8) (_ bv240 8)) true)) (= (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8))) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8)))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8)))) false))))
+(mp (asserted (not (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8))))) @x48 false))))))))))
+
+5276e53d12319b7263028b7b35a0e825901a044d 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x17 (monotonicity (rewrite (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8))) (= (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8)) (= (_ bv21 8) (_ bv21 8))))))
+(let ((@x21 (trans @x17 (rewrite (= (= (_ bv21 8) (_ bv21 8)) true)) (= (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8)) true))))
+(let ((@x24 (monotonicity @x21 (= (not (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8))) (not true)))))
+(let ((@x28 (trans @x24 (rewrite (= (not true) false)) (= (not (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8))) false))))
+(mp (asserted (not (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8)))) @x28 false)))))))
+
+234b2b4e895fc2df774f19f02134d0ca4a5a16a1 7 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x15 (monotonicity (rewrite (= (= (_ bv11 5) (_ bv11 5)) true)) (= (not (= (_ bv11 5) (_ bv11 5))) (not true)))))
+(let ((@x19 (trans @x15 (rewrite (= (not true) false)) (= (not (= (_ bv11 5) (_ bv11 5))) false))))
+(mp (asserted (not (= (_ bv11 5) (_ bv11 5)))) @x19 false)))))
+
+dc503704730fb3b59f839ff9f108d372052a8660 11 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x21 (monotonicity (rewrite (= (bvneg (_ bv40 7)) (_ bv88 7))) (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvadd (_ bv88 7) (_ bv1 7))))))
+(let ((@x26 (trans @x21 (rewrite (= (bvadd (_ bv88 7) (_ bv1 7)) (_ bv89 7))) (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (_ bv89 7)))))
+(let ((@x31 (monotonicity @x26 (rewrite (= (bvneg (_ bv39 7)) (_ bv89 7))) (= (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))) (= (_ bv89 7) (_ bv89 7))))))
+(let ((@x35 (trans @x31 (rewrite (= (= (_ bv89 7) (_ bv89 7)) true)) (= (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))) true))))
+(let ((@x38 (monotonicity @x35 (= (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7)))) (not true)))))
+(let ((@x42 (trans @x38 (rewrite (= (not true) false)) (= (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7)))) false))))
+(mp (asserted (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))))) @x42 false)))))))))
+
+a1e71f94523b4cd464028b84ee475aaff660cb0f 16 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x12 (bvsub (bvadd (bvadd |$a| (bvmul (_ bv2 32) |$b|)) |$c|) |$b|)))
+(let (($x15 (= ?x12 (bvadd (bvadd |$b| |$c|) |$a|))))
+(let (($x16 (not $x15)))
+(let ((@x45 (rewrite (= (= (bvadd |$a| |$b| |$c|) (bvadd |$b| |$c| |$a|)) true))))
+(let ((?x33 (bvadd |$a| |$b| |$c|)))
+(let ((?x20 (bvadd |$a| (bvmul (_ bv2 32) |$b|) |$c|)))
+(let ((?x28 (bvadd ?x20 (bvmul (_ bv4294967295 32) |$b|))))
+(let ((@x25 (monotonicity (rewrite (= (bvadd (bvadd |$a| (bvmul (_ bv2 32) |$b|)) |$c|) ?x20)) (= ?x12 (bvsub ?x20 |$b|)))))
+(let ((@x37 (trans (trans @x25 (rewrite (= (bvsub ?x20 |$b|) ?x28)) (= ?x12 ?x28)) (rewrite (= ?x28 ?x33)) (= ?x12 ?x33))))
+(let ((@x43 (monotonicity @x37 (rewrite (= (bvadd (bvadd |$b| |$c|) |$a|) (bvadd |$b| |$c| |$a|))) (= $x15 (= ?x33 (bvadd |$b| |$c| |$a|))))))
+(let ((@x50 (monotonicity (trans @x43 @x45 (= $x15 true)) (= $x16 (not true)))))
+(mp (asserted $x16) (trans @x50 (rewrite (= (not true) false)) (= $x16 false)) false))))))))))))))
+
+07ce4ddeaf1a897fd86c82ea0be2917368402c4b 14 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x10 (= (bvmul (_ bv4 4) |$x|) (_ bv4 4))))
+(let (($x7 (= |$x| (_ bv5 4))))
+(let ((@x22 (monotonicity (rewrite (= (=> $x7 $x10) (or (not $x7) $x10))) (= (not (=> $x7 $x10)) (not (or (not $x7) $x10))))))
+(let ((@x24 (|not-or-elim| (mp (asserted (not (=> $x7 $x10))) @x22 (not (or (not $x7) $x10))) $x7)))
+(let ((@x32 (trans (monotonicity @x24 (= (bvmul (_ bv4 4) |$x|) (bvmul (_ bv4 4) (_ bv5 4)))) (rewrite (= (bvmul (_ bv4 4) (_ bv5 4)) (_ bv4 4))) $x10)))
+(let ((@x39 (trans (monotonicity @x32 (= $x10 (= (_ bv4 4) (_ bv4 4)))) (rewrite (= (= (_ bv4 4) (_ bv4 4)) true)) (= $x10 true))))
+(let ((@x46 (trans (monotonicity @x39 (= (not $x10) (not true))) (rewrite (= (not true) false)) (= (not $x10) false))))
+(let (($x25 (not $x10)))
+(let ((@x26 (|not-or-elim| (mp (asserted (not (=> $x7 $x10))) @x22 (not (or (not $x7) $x10))) $x25)))
+(mp @x26 @x46 false))))))))))))
+
+bf082d012c77348e9e5c8d77f54b71808a9a2b45 13 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x9 (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32))))
+(let ((@x28 (monotonicity (rewrite (= (bvnot (_ bv6 32)) (_ bv4294967289 32))) (rewrite (= (bvnot (_ bv5 32)) (_ bv4294967290 32))) (= (bvor (bvnot (_ bv6 32)) (bvnot (_ bv5 32))) (bvor (_ bv4294967289 32) (_ bv4294967290 32))))))
+(let ((@x33 (trans @x28 (rewrite (= (bvor (_ bv4294967289 32) (_ bv4294967290 32)) (_ bv4294967291 32))) (= (bvor (bvnot (_ bv6 32)) (bvnot (_ bv5 32))) (_ bv4294967291 32)))))
+(let ((@x36 (monotonicity @x33 (= (bvnot (bvor (bvnot (_ bv6 32)) (bvnot (_ bv5 32)))) (bvnot (_ bv4294967291 32))))))
+(let ((@x40 (trans @x36 (rewrite (= (bvnot (_ bv4294967291 32)) (_ bv4 32))) (= (bvnot (bvor (bvnot (_ bv6 32)) (bvnot (_ bv5 32)))) (_ bv4 32)))))
+(let ((@x19 (rewrite (= (bvand (_ bv6 32) (_ bv5 32)) (bvnot (bvor (bvnot (_ bv6 32)) (bvnot (_ bv5 32))))))))
+(let ((@x48 (trans (monotonicity (trans @x19 @x40 $x9) (= $x9 (= (_ bv4 32) (_ bv4 32)))) (rewrite (= (= (_ bv4 32) (_ bv4 32)) true)) (= $x9 true))))
+(let ((@x55 (trans (monotonicity @x48 (= (not $x9) (not true))) (rewrite (= (not true) false)) (= (not $x9) false))))
+(mp (asserted (not $x9)) @x55 false)))))))))))
+
+224e3adf486b015b2b86fd13b422d3432d5dd2ea 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x17 (monotonicity (rewrite (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8))) (= (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8)) (= (_ bv7 8) (_ bv7 8))))))
+(let ((@x21 (trans @x17 (rewrite (= (= (_ bv7 8) (_ bv7 8)) true)) (= (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8)) true))))
+(let ((@x24 (monotonicity @x21 (= (not (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8))) (not true)))))
+(let ((@x28 (trans @x24 (rewrite (= (not true) false)) (= (not (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8))) false))))
+(mp (asserted (not (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8)))) @x28 false)))))))
+
+6f410cdf4d96b9ee8b7b886db44e51fe495aad40 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x17 (monotonicity (rewrite (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8))) (= (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8)) (= (_ bv15 8) (_ bv15 8))))))
+(let ((@x21 (trans @x17 (rewrite (= (= (_ bv15 8) (_ bv15 8)) true)) (= (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8)) true))))
+(let ((@x24 (monotonicity @x21 (= (not (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8))) (not true)))))
+(let ((@x28 (trans @x24 (rewrite (= (not true) false)) (= (not (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8))) false))))
+(mp (asserted (not (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8)))) @x28 false)))))))
+
+75e911429d9da77b77c961a3f11bf4fae39c1289 8 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x16 (monotonicity (rewrite (= (bvnot (_ bv240 16)) (_ bv65295 16))) (= (= (bvnot (_ bv240 16)) (_ bv65295 16)) (= (_ bv65295 16) (_ bv65295 16))))))
+(let ((@x20 (trans @x16 (rewrite (= (= (_ bv65295 16) (_ bv65295 16)) true)) (= (= (bvnot (_ bv240 16)) (_ bv65295 16)) true))))
+(let ((@x27 (trans (monotonicity @x20 (= (not (= (bvnot (_ bv240 16)) (_ bv65295 16))) (not true))) (rewrite (= (not true) false)) (= (not (= (bvnot (_ bv240 16)) (_ bv65295 16))) false))))
+(mp (asserted (not (= (bvnot (_ bv240 16)) (_ bv65295 16)))) @x27 false))))))
+
+144996e0132e6e5e8657189d4b8fc16447f15f7f 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x17 (monotonicity (rewrite (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12))) (= (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12)) (= (_ bv2843 12) (_ bv2843 12))))))
+(let ((@x21 (trans @x17 (rewrite (= (= (_ bv2843 12) (_ bv2843 12)) true)) (= (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12)) true))))
+(let ((@x24 (monotonicity @x21 (= (not (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12))) (not true)))))
+(let ((@x28 (trans @x24 (rewrite (= (not true) false)) (= (not (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12))) false))))
+(mp (asserted (not (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12)))) @x28 false)))))))
+
+dedf960210e12ce3dfe685dabb09a7ae103a6b34 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x17 (monotonicity (rewrite (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10))) (= (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10)) (= (_ bv207 10) (_ bv207 10))))))
+(let ((@x21 (trans @x17 (rewrite (= (= (_ bv207 10) (_ bv207 10)) true)) (= (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10)) true))))
+(let ((@x24 (monotonicity @x21 (= (not (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10))) (not true)))))
+(let ((@x28 (trans @x24 (rewrite (= (not true) false)) (= (not (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10))) false))))
+(mp (asserted (not (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10)))) @x28 false)))))))
+
+efa324caae835caf47cbb2d21e18358840d28baa 8 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x36 (monotonicity (rewrite (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2))) (= (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2)) (= (_ bv3 2) (_ bv3 2))))))
+(let ((@x40 (trans @x36 (rewrite (= (= (_ bv3 2) (_ bv3 2)) true)) (= (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2)) true))))
+(let ((@x47 (trans (monotonicity @x40 (= (not (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2))) (not true))) (rewrite (= (not true) false)) (= (not (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2))) false))))
+(mp (asserted (not (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2)))) @x47 false))))))
+
+21eb47482df6fb5cf3198774bf96beedaec719a7 9 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x8 (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10))))
+(let ((@x19 (trans (rewrite (= ((_ zero_extend 6) (_ bv10 4)) (concat (_ bv0 6) (_ bv10 4)))) (rewrite (= (concat (_ bv0 6) (_ bv10 4)) (_ bv10 10))) $x8)))
+(let ((@x26 (trans (monotonicity @x19 (= $x8 (= (_ bv10 10) (_ bv10 10)))) (rewrite (= (= (_ bv10 10) (_ bv10 10)) true)) (= $x8 true))))
+(let ((@x33 (trans (monotonicity @x26 (= (not $x8) (not true))) (rewrite (= (not true) false)) (= (not $x8) false))))
+(mp (asserted (not $x8)) @x33 false)))))))
+
+4b811cc374f3df84ff1252430c602976203f62f2 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x16 (monotonicity (rewrite (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6))) (= (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6)) (= (_ bv58 6) (_ bv58 6))))))
+(let ((@x20 (trans @x16 (rewrite (= (= (_ bv58 6) (_ bv58 6)) true)) (= (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6)) true))))
+(let ((@x23 (monotonicity @x20 (= (not (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6))) (not true)))))
+(let ((@x27 (trans @x23 (rewrite (= (not true) false)) (= (not (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6))) false))))
+(mp (asserted (not (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6)))) @x27 false)))))))
+
+80eccdbf8bbcc6ea1d4f3857bd01f3a1ad159ef2 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x37 (monotonicity (rewrite (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8))) (= (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8)) (= (_ bv76 8) (_ bv76 8))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv76 8) (_ bv76 8)) true)) (= (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8))) false))))
+(mp (asserted (not (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8)))) @x48 false)))))))
+
+97eb054e915337f30396aae674e0c82d561ec48b 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x37 (monotonicity (rewrite (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8))) (= (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8)) (= (_ bv4 8) (_ bv4 8))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv4 8) (_ bv4 8)) true)) (= (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8))) false))))
+(mp (asserted (not (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8)))) @x48 false)))))))
+
+a91b3649f65952bf743777b618e6da6b37fcc95f 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x37 (monotonicity (rewrite (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8))) (= (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8)) (= (_ bv6 8) (_ bv6 8))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv6 8) (_ bv6 8)) true)) (= (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8))) false))))
+(mp (asserted (not (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8)))) @x48 false)))))))
+
+329e4f3ee0408af9d367ae6246fb53276a50a32f 11 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x8 (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4))))
+(let ((@x45 (monotonicity (rewrite (= ((_ extract 2 0) (_ bv14 4)) (_ bv6 3))) (rewrite (= ((_ extract 3 3) (_ bv14 4)) (_ bv1 1))) (= (concat ((_ extract 2 0) (_ bv14 4)) ((_ extract 3 3) (_ bv14 4))) (concat (_ bv6 3) (_ bv1 1))))))
+(let ((@x49 (trans @x45 (rewrite (= (concat (_ bv6 3) (_ bv1 1)) (_ bv13 4))) (= (concat ((_ extract 2 0) (_ bv14 4)) ((_ extract 3 3) (_ bv14 4))) (_ bv13 4)))))
+(let ((@x50 (trans (rewrite (= ((_ rotate_left 1) (_ bv14 4)) (concat ((_ extract 2 0) (_ bv14 4)) ((_ extract 3 3) (_ bv14 4))))) @x49 $x8)))
+(let ((@x57 (trans (monotonicity @x50 (= $x8 (= (_ bv13 4) (_ bv13 4)))) (rewrite (= (= (_ bv13 4) (_ bv13 4)) true)) (= $x8 true))))
+(let ((@x64 (trans (monotonicity @x57 (= (not $x8) (not true))) (rewrite (= (not true) false)) (= (not $x8) false))))
+(mp (asserted (not $x8)) @x64 false)))))))))
+
+591572ec6e8cad807a5a51108eafba79636afecf 11 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x8 (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4))))
+(let ((@x46 (monotonicity (rewrite (= ((_ extract 1 0) (_ bv6 4)) (_ bv2 2))) (rewrite (= ((_ extract 3 2) (_ bv6 4)) (_ bv1 2))) (= (concat ((_ extract 1 0) (_ bv6 4)) ((_ extract 3 2) (_ bv6 4))) (concat (_ bv2 2) (_ bv1 2))))))
+(let ((@x50 (trans @x46 (rewrite (= (concat (_ bv2 2) (_ bv1 2)) (_ bv9 4))) (= (concat ((_ extract 1 0) (_ bv6 4)) ((_ extract 3 2) (_ bv6 4))) (_ bv9 4)))))
+(let ((@x37 (rewrite (= ((_ rotate_right 2) (_ bv6 4)) (concat ((_ extract 1 0) (_ bv6 4)) ((_ extract 3 2) (_ bv6 4)))))))
+(let ((@x58 (trans (monotonicity (trans @x37 @x50 $x8) (= $x8 (= (_ bv9 4) (_ bv9 4)))) (rewrite (= (= (_ bv9 4) (_ bv9 4)) true)) (= $x8 true))))
+(let ((@x65 (trans (monotonicity @x58 (= (not $x8) (not true))) (rewrite (= (not true) false)) (= (not $x8) false))))
+(mp (asserted (not $x8)) @x65 false)))))))))
+
+06e703e92f9238355e516e861c984a3eb7d984a8 44 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x9 (bvand |$x| (_ bv255 16))))
+(let ((?x7 (bvand |$x| (_ bv65280 16))))
+(let ((?x10 (bvor ?x7 ?x9)))
+(let (($x11 (= ?x10 |$x|)))
+(let (($x12 (not $x11)))
+(let ((?x113 (concat ((_ extract 15 8) (concat ((_ extract 15 8) |$x|) (_ bv0 8))) ((_ extract 7 0) (concat (_ bv0 8) ((_ extract 7 0) |$x|))))))
+(let ((@x124 (monotonicity (rewrite (= ((_ extract 15 8) (concat ((_ extract 15 8) |$x|) (_ bv0 8))) ((_ extract 15 8) |$x|))) (rewrite (= ((_ extract 7 0) (concat (_ bv0 8) ((_ extract 7 0) |$x|))) ((_ extract 7 0) |$x|))) (= ?x113 (concat ((_ extract 15 8) |$x|) ((_ extract 7 0) |$x|))))))
+(let ((@x129 (trans @x124 (rewrite (= (concat ((_ extract 15 8) |$x|) ((_ extract 7 0) |$x|)) ((_ extract 15 0) |$x|))) (= ?x113 ((_ extract 15 0) |$x|)))))
+(let (($x114 (= (bvor (concat ((_ extract 15 8) |$x|) (_ bv0 8)) (concat (_ bv0 8) ((_ extract 7 0) |$x|))) ?x113)))
+(let (($x109 (= ?x10 (bvor (concat ((_ extract 15 8) |$x|) (_ bv0 8)) (concat (_ bv0 8) ((_ extract 7 0) |$x|))))))
+(let ((?x81 ((_ extract 7 0) |$x|)))
+(let ((?x101 (concat (_ bv0 8) ?x81)))
+(let ((?x16 (bvnot |$x|)))
+(let ((?x66 (bvor ?x16 (bvnot (_ bv255 16)))))
+(let ((?x67 (bvnot ?x66)))
+(let ((@x103 (monotonicity (rewrite (= (bvnot (_ bv255 8)) (_ bv0 8))) (rewrite (= (bvnot (bvnot ?x81)) ?x81)) (= (concat (bvnot (_ bv255 8)) (bvnot (bvnot ?x81))) ?x101))))
+(let ((?x47 (bvnot (_ bv255 8))))
+(let ((?x94 (concat ?x47 (bvnot (bvnot ?x81)))))
+(let ((@x87 (monotonicity (rewrite (= ((_ extract 7 0) ?x16) (bvnot ?x81))) (= (concat (_ bv255 8) ((_ extract 7 0) ?x16)) (concat (_ bv255 8) (bvnot ?x81))))))
+(let ((@x74 (monotonicity (rewrite (= (bvnot (_ bv255 16)) (_ bv65280 16))) (= ?x66 (bvor ?x16 (_ bv65280 16))))))
+(let ((@x80 (trans @x74 (rewrite (= (bvor ?x16 (_ bv65280 16)) (concat (_ bv255 8) ((_ extract 7 0) ?x16)))) (= ?x66 (concat (_ bv255 8) ((_ extract 7 0) ?x16))))))
+(let ((@x92 (monotonicity (trans @x80 @x87 (= ?x66 (concat (_ bv255 8) (bvnot ?x81)))) (= ?x67 (bvnot (concat (_ bv255 8) (bvnot ?x81)))))))
+(let ((@x98 (trans @x92 (rewrite (= (bvnot (concat (_ bv255 8) (bvnot ?x81))) ?x94)) (= ?x67 ?x94))))
+(let ((@x107 (trans (rewrite (= ?x9 ?x67)) (trans @x98 @x103 (= ?x67 ?x101)) (= ?x9 ?x101))))
+(let ((?x34 ((_ extract 15 8) |$x|)))
+(let ((?x58 (concat ?x34 (_ bv0 8))))
+(let ((?x48 (concat (bvnot (bvnot ?x34)) ?x47)))
+(let ((@x60 (monotonicity (rewrite (= (bvnot (bvnot ?x34)) ?x34)) (rewrite (= ?x47 (_ bv0 8))) (= ?x48 ?x58))))
+(let ((?x18 (bvor ?x16 (bvnot (_ bv65280 16)))))
+(let ((?x19 (bvnot ?x18)))
+(let ((@x40 (monotonicity (rewrite (= ((_ extract 15 8) ?x16) (bvnot ?x34))) (= (concat ((_ extract 15 8) ?x16) (_ bv255 8)) (concat (bvnot ?x34) (_ bv255 8))))))
+(let ((@x26 (monotonicity (rewrite (= (bvnot (_ bv65280 16)) (_ bv255 16))) (= ?x18 (bvor ?x16 (_ bv255 16))))))
+(let ((@x33 (trans @x26 (rewrite (= (bvor ?x16 (_ bv255 16)) (concat ((_ extract 15 8) ?x16) (_ bv255 8)))) (= ?x18 (concat ((_ extract 15 8) ?x16) (_ bv255 8))))))
+(let ((@x45 (monotonicity (trans @x33 @x40 (= ?x18 (concat (bvnot ?x34) (_ bv255 8)))) (= ?x19 (bvnot (concat (bvnot ?x34) (_ bv255 8)))))))
+(let ((@x52 (trans @x45 (rewrite (= (bvnot (concat (bvnot ?x34) (_ bv255 8))) ?x48)) (= ?x19 ?x48))))
+(let ((@x64 (trans (rewrite (= ?x7 ?x19)) (trans @x52 @x60 (= ?x19 ?x58)) (= ?x7 ?x58))))
+(let ((@x134 (trans (trans (monotonicity @x64 @x107 $x109) (rewrite $x114) (= ?x10 ?x113)) (trans @x129 (rewrite (= ((_ extract 15 0) |$x|) |$x|)) (= ?x113 |$x|)) $x11)))
+(let ((@x141 (trans (monotonicity @x134 (= $x11 (= |$x| |$x|))) (rewrite (= (= |$x| |$x|) true)) (= $x11 true))))
+(let ((@x148 (trans (monotonicity @x141 (= $x12 (not true))) (rewrite (= (not true) false)) (= $x12 false))))
+(mp (asserted $x12) @x148 false))))))))))))))))))))))))))))))))))))))))))
+
+9e9d8bb4c49a1669973a1c2e9f8c033d853f6801 97 0
+unsat
+((set-logic <null>)
+(declare-fun k!150 () Bool)
+(declare-fun k!140 () Bool)
+(declare-fun k!130 () Bool)
+(declare-fun k!120 () Bool)
+(declare-fun k!110 () Bool)
+(declare-fun k!100 () Bool)
+(declare-fun k!90 () Bool)
+(declare-fun k!80 () Bool)
+(declare-fun k!70 () Bool)
+(declare-fun k!60 () Bool)
+(declare-fun k!50 () Bool)
+(declare-fun k!40 () Bool)
+(declare-fun k!30 () Bool)
+(declare-fun k!20 () Bool)
+(declare-fun k!10 () Bool)
+(declare-fun k!00 () Bool)
+(proof
+(let (($x199 (or k!80 k!90 k!100 k!110 k!120 k!130 k!140 k!150)))
+(let (($x364 (= (or false false false false false false false false) false)))
+(let (($x362 (= $x199 (or false false false false false false false false))))
+(let (($x312 (= k!150 false)))
+(let ((@x316 (symm (rewrite (= $x312 (not k!150))) (= (not k!150) $x312))))
+(let (($x143 (not k!150)))
+(let (($x119 (not (or k!90 k!80 (not (or (not k!90) (not k!80)))))))
+(let (($x118 (not k!100)))
+(let (($x122 (or k!100 (or k!90 k!80 (not (or (not k!90) (not k!80)))) (not (or $x118 $x119)))))
+(let (($x123 (not k!110)))
+(let (($x128 (not k!120)))
+(let (($x131 (not (or $x128 (not (or k!110 $x122 (not (or $x123 (not $x122)))))))))
+(let (($x134 (not (or k!120 (or k!110 $x122 (not (or $x123 (not $x122)))) $x131))))
+(let (($x133 (not k!130)))
+(let (($x137 (or k!130 (or k!120 (or k!110 $x122 (not (or $x123 (not $x122)))) $x131) (not (or $x133 $x134)))))
+(let (($x138 (not k!140)))
+(let (($x146 (not (or $x143 (not (or k!140 $x137 (not (or $x138 (not $x137)))))))))
+(let (($x147 (or k!150 (or k!140 $x137 (not (or $x138 (not $x137)))) $x146)))
+(let ((?x107 (mkbv k!00 k!10 k!20 k!30 k!40 k!50 k!60 k!70 k!80 k!90 k!100 k!110 k!120 k!130 k!140 k!150)))
+(let ((?x88 (mkbv false false false false false false false false true false false false false false false false)))
+(let ((@x109 (rewrite (= |$w| ?x107))))
+(let ((@x112 (monotonicity (rewrite (= (_ bv256 16) ?x88)) @x109 (= (bvule (_ bv256 16) |$w|) (bvule ?x88 ?x107)))))
+(let ((@x151 (trans @x112 (rewrite (= (bvule ?x88 ?x107) $x147)) (= (bvule (_ bv256 16) |$w|) $x147))))
+(let (($x16 (bvule (_ bv256 16) |$w|)))
+(let (($x17 (not $x16)))
+(let (($x11 (=> (bvult |$w| (_ bv256 16)) (= (bvand |$w| (_ bv255 16)) |$w|))))
+(let (($x12 (not $x11)))
+(let ((?x39 ((_ extract 7 0) |$w|)))
+(let ((?x63 (concat (_ bv0 8) ?x39)))
+(let (($x70 (= ?x63 |$w|)))
+(let (($x76 (or $x16 $x70)))
+(let ((@x65 (monotonicity (rewrite (= (bvnot (_ bv255 8)) (_ bv0 8))) (rewrite (= (bvnot (bvnot ?x39)) ?x39)) (= (concat (bvnot (_ bv255 8)) (bvnot (bvnot ?x39))) ?x63))))
+(let ((?x53 (concat (bvnot (_ bv255 8)) (bvnot (bvnot ?x39)))))
+(let ((?x20 (bvnot |$w|)))
+(let ((?x22 (bvor ?x20 (bvnot (_ bv255 16)))))
+(let ((?x23 (bvnot ?x22)))
+(let ((@x45 (monotonicity (rewrite (= ((_ extract 7 0) ?x20) (bvnot ?x39))) (= (concat (_ bv255 8) ((_ extract 7 0) ?x20)) (concat (_ bv255 8) (bvnot ?x39))))))
+(let ((@x31 (monotonicity (rewrite (= (bvnot (_ bv255 16)) (_ bv65280 16))) (= ?x22 (bvor ?x20 (_ bv65280 16))))))
+(let ((@x38 (trans @x31 (rewrite (= (bvor ?x20 (_ bv65280 16)) (concat (_ bv255 8) ((_ extract 7 0) ?x20)))) (= ?x22 (concat (_ bv255 8) ((_ extract 7 0) ?x20))))))
+(let ((@x50 (monotonicity (trans @x38 @x45 (= ?x22 (concat (_ bv255 8) (bvnot ?x39)))) (= ?x23 (bvnot (concat (_ bv255 8) (bvnot ?x39)))))))
+(let ((@x57 (trans @x50 (rewrite (= (bvnot (concat (_ bv255 8) (bvnot ?x39))) ?x53)) (= ?x23 ?x53))))
+(let ((@x69 (trans (rewrite (= (bvand |$w| (_ bv255 16)) ?x23)) (trans @x57 @x65 (= ?x23 ?x63)) (= (bvand |$w| (_ bv255 16)) ?x63))))
+(let ((@x75 (monotonicity (rewrite (= (bvult |$w| (_ bv256 16)) $x17)) (monotonicity @x69 (= (= (bvand |$w| (_ bv255 16)) |$w|) $x70)) (= $x11 (=> $x17 $x70)))))
+(let ((@x83 (monotonicity (trans @x75 (rewrite (= (=> $x17 $x70) $x76)) (= $x11 $x76)) (= $x12 (not $x76)))))
+(let ((@x155 (mp (|not-or-elim| (mp (asserted $x12) @x83 (not $x76)) $x17) (monotonicity @x151 (= $x17 (not $x147))) (not $x147))))
+(let (($x318 (= k!140 false)))
+(let ((@x157 (|not-or-elim| @x155 (not (or k!140 $x137 (not (or $x138 (not $x137))))))))
+(let ((@x323 (mp (|not-or-elim| @x157 $x138) (symm (rewrite (= $x318 $x138)) (= $x138 $x318)) $x318)))
+(let (($x324 (= k!130 false)))
+(let ((@x329 (mp (|not-or-elim| (|not-or-elim| @x157 (not $x137)) $x133) (symm (rewrite (= $x324 $x133)) (= $x133 $x324)) $x324)))
+(let (($x330 (= k!120 false)))
+(let ((@x335 (mp (|not-or-elim| (|not-or-elim| (|not-or-elim| @x157 (not $x137)) $x134) $x128) (symm (rewrite (= $x330 $x128)) (= $x128 $x330)) $x330)))
+(let (($x336 (= k!110 false)))
+(let ((@x163 (|not-or-elim| (|not-or-elim| (|not-or-elim| @x157 (not $x137)) $x134) (not (or k!110 $x122 (not (or $x123 (not $x122))))))))
+(let ((@x341 (mp (|not-or-elim| @x163 $x123) (symm (rewrite (= $x336 $x123)) (= $x123 $x336)) $x336)))
+(let (($x342 (= k!100 false)))
+(let ((@x347 (mp (|not-or-elim| (|not-or-elim| @x163 (not $x122)) $x118) (symm (rewrite (= $x342 $x118)) (= $x118 $x342)) $x342)))
+(let (($x348 (= k!90 false)))
+(let ((@x352 (symm (rewrite (= $x348 (not k!90))) (= (not k!90) $x348))))
+(let (($x113 (not k!90)))
+(let ((@x353 (mp (|not-or-elim| (|not-or-elim| (|not-or-elim| @x163 (not $x122)) $x119) $x113) @x352 $x348)))
+(let (($x354 (= k!80 false)))
+(let ((@x358 (symm (rewrite (= $x354 (not k!80))) (= (not k!80) $x354))))
+(let (($x114 (not k!80)))
+(let ((@x359 (mp (|not-or-elim| (|not-or-elim| (|not-or-elim| @x163 (not $x122)) $x119) $x114) @x358 $x354)))
+(let ((@x363 (monotonicity @x359 @x353 @x347 @x341 @x335 @x329 @x323 (mp (|not-or-elim| @x155 $x143) @x316 $x312) $x362)))
+(let (($x200 (not $x199)))
+(let (($x205 (not $x200)))
+(let ((?x191 (mkbv k!00 k!10 k!20 k!30 k!40 k!50 k!60 k!70 false false false false false false false false)))
+(let ((?x183 (mkbv k!00 k!10 k!20 k!30 k!40 k!50 k!60 k!70)))
+(let ((?x188 (concat (mkbv false false false false false false false false) ?x183)))
+(let ((@x187 (trans (monotonicity @x109 (= ?x39 ((_ extract 7 0) ?x107))) (rewrite (= ((_ extract 7 0) ?x107) ?x183)) (= ?x39 ?x183))))
+(let (($x178 (= (_ bv0 8) (mkbv false false false false false false false false))))
+(let ((@x195 (trans (monotonicity (rewrite $x178) @x187 (= ?x63 ?x188)) (rewrite (= ?x188 ?x191)) (= ?x63 ?x191))))
+(let ((@x204 (trans (monotonicity @x195 @x109 (= $x70 (= ?x191 ?x107))) (rewrite (= (= ?x191 ?x107) $x200)) (= $x70 $x200))))
+(let ((@x208 (mp (|not-or-elim| (mp (asserted $x12) @x83 (not $x76)) (not $x70)) (monotonicity @x204 (= (not $x70) $x205)) $x205)))
+(mp (mp @x208 (rewrite (= $x205 $x199)) $x199) (trans @x363 (rewrite $x364) (= $x199 false)) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+f611d24907b7d60f35d0adf911b0c146313d6c07 13 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x10 (|$p| true)))
+(let (($x11 (= (|$p| (ite (bvule (_ bv0 4) |$a|) true false)) ?x10)))
+(let (($x12 (not $x11)))
+(let (($x8 (ite (bvule (_ bv0 4) |$a|) true false)))
+(let ((@x20 (monotonicity (rewrite (= (bvule (_ bv0 4) |$a|) true)) (= $x8 (ite true true false)))))
+(let ((@x24 (trans @x20 (rewrite (= (ite true true false) true)) (= $x8 true))))
+(let ((@x32 (trans (monotonicity (monotonicity @x24 $x11) (= $x11 (= ?x10 ?x10))) (rewrite (= (= ?x10 ?x10) true)) (= $x11 true))))
+(let ((@x39 (trans (monotonicity @x32 (= $x12 (not true))) (rewrite (= (not true) false)) (= $x12 false))))
+(mp (asserted $x12) @x39 false)))))))))))
+
+eb851e3355032ef6b75793abd314b6b2bc9c3459 18 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x600 (forall ((?v0 (_ BitVec 2)) )(!(not (<= (|$bv2int| ?v0) 0)) :pattern ( (|$bv2int| ?v0) )))
+))
+(let (($x45 (forall ((?v0 (_ BitVec 2)) )(not (<= (|$bv2int| ?v0) 0)))
+))
+(let ((@x602 (refl (= (not (<= (|$bv2int| ?0) 0)) (not (<= (|$bv2int| ?0) 0))))))
+(let ((@x132 (refl (|~| (not (<= (|$bv2int| ?0) 0)) (not (<= (|$bv2int| ?0) 0))))))
+(let (($x24 (forall ((?v0 (_ BitVec 2)) )(let ((?x22 (|$bv2int| ?v0)))
+(< 0 ?x22)))
+))
+(let ((@x44 (rewrite (= (< 0 (|$bv2int| ?0)) (not (<= (|$bv2int| ?0) 0))))))
+(let ((@x133 (|mp~| (mp (asserted $x24) (|quant-intro| @x44 (= $x24 $x45)) $x45) (|nnf-pos| @x132 (|~| $x45 $x45)) $x45)))
+(let ((@x597 (|unit-resolution| ((_ |quant-inst| (_ bv0 2)) (or (not $x600) (not (<= (|$bv2int| (_ bv0 2)) 0)))) (mp @x133 (|quant-intro| @x602 (= $x45 $x600)) $x600) (not (<= (|$bv2int| (_ bv0 2)) 0)))))
+(let ((@x589 ((_ |th-lemma| arith triangle-eq) (or (not (= (|$bv2int| (_ bv0 2)) 0)) (<= (|$bv2int| (_ bv0 2)) 0)))))
+(|unit-resolution| @x589 (asserted (= (|$bv2int| (_ bv0 2)) 0)) @x597 false))))))))))))
+
--- a/src/HOL/SMT_Examples/SMT_Word_Examples.thy	Thu Mar 13 13:18:13 2014 +0100
+++ b/src/HOL/SMT_Examples/SMT_Word_Examples.thy	Thu Mar 13 13:18:13 2014 +0100
@@ -8,11 +8,10 @@
 imports "~~/src/HOL/Word/Word"
 begin
 
-declare [[smt_oracle = true]]
-declare [[smt_certificates = "SMT_Word_Examples.certs"]]
-declare [[smt_read_only_certificates = true]]
-
-
+declare [[smt2_oracle = true]]
+declare [[z3_new_extensions = true]]
+declare [[smt2_certificates = "SMT_Word_Examples.certs2"]]
+declare [[smt2_read_only_certificates = false]] (* FIXME *)
 
 text {*
 Currently, there is no proof reconstruction for words.
@@ -20,66 +19,62 @@
 *}
 
 
-
 section {* Bitvector numbers *}
 
-lemma "(27 :: 4 word) = -5" by smt
+lemma "(27 :: 4 word) = -5" by smt2
 
-lemma "(27 :: 4 word) = 11" by smt
+lemma "(27 :: 4 word) = 11" by smt2
 
-lemma "23 < (27::8 word)" by smt
+lemma "23 < (27::8 word)" by smt2
 
-lemma "27 + 11 = (6::5 word)" by smt
+lemma "27 + 11 = (6::5 word)" by smt2
 
-lemma "7 * 3 = (21::8 word)" by smt
+lemma "7 * 3 = (21::8 word)" by smt2
 
-lemma "11 - 27 = (-16::8 word)" by smt
+lemma "11 - 27 = (-16::8 word)" by smt2
 
-lemma "- -11 = (11::5 word)" by smt
+lemma "- -11 = (11::5 word)" by smt2
 
-lemma "-40 + 1 = (-39::7 word)" by smt
+lemma "-40 + 1 = (-39::7 word)" by smt2
 
-lemma "a + 2 * b + c - b = (b + c) + (a :: 32 word)" by smt
+lemma "a + 2 * b + c - b = (b + c) + (a :: 32 word)" by smt2
 
-lemma "x = (5 :: 4 word) \<Longrightarrow> 4 * x = 4" by smt
-
+lemma "x = (5 :: 4 word) \<Longrightarrow> 4 * x = 4" by smt2
 
 
 section {* Bit-level logic *}
 
-lemma "0b110 AND 0b101 = (0b100 :: 32 word)" by smt
+lemma "0b110 AND 0b101 = (0b100 :: 32 word)" by smt2
 
-lemma "0b110 OR 0b011 = (0b111 :: 8 word)" by smt
+lemma "0b110 OR 0b011 = (0b111 :: 8 word)" by smt2
 
-lemma "0xF0 XOR 0xFF = (0x0F :: 8 word)" by smt
+lemma "0xF0 XOR 0xFF = (0x0F :: 8 word)" by smt2
 
-lemma "NOT (0xF0 :: 16 word) = 0xFF0F" by smt
+lemma "NOT (0xF0 :: 16 word) = 0xFF0F" by smt2
 
-lemma "word_cat (27::4 word) (27::8 word) = (2843::12 word)" by smt
+lemma "word_cat (27::4 word) (27::8 word) = (2843::12 word)" by smt2
+
+lemma "word_cat (0b0011::4 word) (0b1111::6word) = (0b0011001111 :: 10 word)" by smt2
 
-lemma "word_cat (0b0011::4 word) (0b1111::6word) = (0b0011001111 :: 10 word)"
-  by smt
+lemma "slice 1 (0b10110 :: 4 word) = (0b11 :: 2 word)" by smt2
 
-lemma "slice 1 (0b10110 :: 4 word) = (0b11 :: 2 word)" by smt
-
-lemma "ucast (0b1010 :: 4 word) = (0b1010 :: 10 word)" by smt
+lemma "ucast (0b1010 :: 4 word) = (0b1010 :: 10 word)" by smt2
 
-lemma "scast (0b1010 :: 4 word) = (0b111010 :: 6 word)" by smt
+lemma "scast (0b1010 :: 4 word) = (0b111010 :: 6 word)" by smt2
 
-lemma "0b10011 << 2 = (0b1001100::8 word)" by smt
+lemma "0b10011 << 2 = (0b1001100::8 word)" by smt2
 
-lemma "0b11001 >> 2 = (0b110::8 word)" by smt
+lemma "0b11001 >> 2 = (0b110::8 word)" by smt2
 
-lemma "0b10011 >>> 2 = (0b100::8 word)" by smt
+lemma "0b10011 >>> 2 = (0b100::8 word)" by smt2
 
-lemma "word_rotr 2 0b0110 = (0b1001::4 word)" by smt
+lemma "word_rotr 2 0b0110 = (0b1001::4 word)" by smt2
 
-lemma "word_rotl 1 0b1110 = (0b1101::4 word)" by smt
+lemma "word_rotl 1 0b1110 = (0b1101::4 word)" by smt2
 
-lemma "(x AND 0xff00) OR (x AND 0x00ff) = (x::16 word)" by smt
+lemma "(x AND 0xff00) OR (x AND 0x00ff) = (x::16 word)" by smt2
 
-lemma "w < 256 \<Longrightarrow> (w :: 16 word) AND 0x00FF = w" by smt
-
+lemma "w < 256 \<Longrightarrow> (w :: 16 word) AND 0x00FF = w" by smt2
 
 
 section {* Combined integer-bitvector properties *}
@@ -91,10 +86,8 @@
       and "bv2int 3 = 3"
       and "\<forall>x::2 word. bv2int x > 0"
   shows "\<forall>i::int. i < 0 \<longrightarrow> (\<forall>x::2 word. bv2int x > i)"
-  using assms
-  using [[z3_options="AUTO_CONFIG=false"]]
-  by smt
+  using assms by smt2
 
-lemma "P (0 \<le> (a :: 4 word)) = P True" by smt
+lemma "P (0 \<le> (a :: 4 word)) = P True" by smt2
 
 end