--- a/doc-src/IsarImplementation/Thy/document/logic.tex Tue Sep 12 17:45:58 2006 +0200
+++ b/doc-src/IsarImplementation/Thy/document/logic.tex Tue Sep 12 21:05:39 2006 +0200
@@ -389,13 +389,13 @@
\isamarkuptrue%
%
\begin{isamarkuptext}%
-\glossary{Proposition}{A \seeglossary{term} of \seeglossary{type}
- \isa{prop}. Internally, there is nothing special about
- propositions apart from their type, but the concrete syntax enforces
- a clear distinction. Propositions are structured via implication
- \isa{A\ {\isasymLongrightarrow}\ B} or universal quantification \isa{{\isasymAnd}x{\isachardot}\ B\ x} ---
- anything else is considered atomic. The canonical form for
- propositions is that of a \seeglossary{Hereditary Harrop Formula}. FIXME}
+\glossary{Proposition}{FIXME A \seeglossary{term} of
+ \seeglossary{type} \isa{prop}. Internally, there is nothing
+ special about propositions apart from their type, but the concrete
+ syntax enforces a clear distinction. Propositions are structured
+ via implication \isa{A\ {\isasymLongrightarrow}\ B} or universal quantification \isa{{\isasymAnd}x{\isachardot}\ B\ x} --- anything else is considered atomic. The canonical
+ form for propositions is that of a \seeglossary{Hereditary Harrop
+ Formula}. FIXME}
\glossary{Theorem}{A proven proposition within a certain theory and
proof context, formally \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}; both contexts are
@@ -424,22 +424,41 @@
\seeglossary{type variable}. The distinguishing feature of
different variables is their binding scope. FIXME}
- A \emph{proposition} is a well-formed term of type \isa{prop}.
- The connectives of minimal logic are declared as constants of the
- basic theory:
+ A \emph{proposition} is a well-formed term of type \isa{prop}, a
+ \emph{theorem} is a proven proposition (depending on a context of
+ hypotheses and the background theory). Primitive inferences include
+ plain natural deduction rules for the primary connectives \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} of the framework. There are separate (derived)
+ rules for equality/equivalence \isa{{\isasymequiv}} and internal conjunction
+ \isa{{\isacharampersand}}.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Standard connectives and rules%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The basic theory is called \isa{Pure}, it contains declarations
+ for the standard logical connectives \isa{{\isasymAnd}}, \isa{{\isasymLongrightarrow}}, and
+ \isa{{\isasymequiv}} of the framework, see \figref{fig:pure-connectives}.
+ The derivability judgment \isa{A\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ A\isactrlisub n\ {\isasymturnstile}\ B} is
+ defined inductively by the primitive inferences given in
+ \figref{fig:prim-rules}, with the global syntactic restriction that
+ hypotheses may never contain schematic variables. The builtin
+ equality is conceptually axiomatized shown in
+ \figref{fig:pure-equality}, although the implementation works
+ directly with (derived) inference rules.
- \smallskip
+ \begin{figure}[htb]
+ \begin{center}
\begin{tabular}{ll}
\isa{all\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}{\isasymalpha}\ {\isasymRightarrow}\ prop{\isacharparenright}\ {\isasymRightarrow}\ prop} & universal quantification (binder \isa{{\isasymAnd}}) \\
\isa{{\isasymLongrightarrow}\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & implication (right associative infix) \\
+ \isa{{\isasymequiv}\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & equality relation (infix) \\
\end{tabular}
-
- \medskip A \emph{theorem} is a proven proposition, depending on a
- collection of assumptions, and axioms from the theory context. The
- judgment \isa{A\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ A\isactrlisub n\ {\isasymturnstile}\ B} is defined
- inductively by the primitive inferences given in
- \figref{fig:prim-rules}; there is a global syntactic restriction
- that the hypotheses may not contain schematic variables.
+ \caption{Standard connectives of Pure}\label{fig:pure-connectives}
+ \end{center}
+ \end{figure}
\begin{figure}[htb]
\begin{center}
@@ -458,32 +477,51 @@
\qquad
\infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}elim{\isacharparenright}}]{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymunion}\ {\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ B}}{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B} & \isa{{\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ A}}
\]
- \caption{Primitive inferences of the Pure logic}\label{fig:prim-rules}
+ \caption{Primitive inferences of Pure}\label{fig:prim-rules}
+ \end{center}
+ \end{figure}
+
+ \begin{figure}[htb]
+ \begin{center}
+ \begin{tabular}{ll}
+ \isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ b\ x{\isacharparenright}\ a\ {\isasymequiv}\ b\ a} & \isa{{\isasymbeta}}-conversion \\
+ \isa{{\isasymturnstile}\ x\ {\isasymequiv}\ x} & reflexivity \\
+ \isa{{\isasymturnstile}\ x\ {\isasymequiv}\ y\ {\isasymLongrightarrow}\ P\ x\ {\isasymLongrightarrow}\ P\ y} & substitution \\
+ \isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ f\ x\ {\isasymequiv}\ g\ x{\isacharparenright}\ {\isasymLongrightarrow}\ f\ {\isasymequiv}\ g} & extensionality \\
+ \isa{{\isasymturnstile}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}B\ {\isasymLongrightarrow}\ A{\isacharparenright}\ {\isasymLongrightarrow}\ A\ {\isasymequiv}\ B} & coincidence with equivalence \\
+ \end{tabular}
+ \caption{Conceptual axiomatization of builtin equality}\label{fig:pure-equality}
\end{center}
\end{figure}
The introduction and elimination rules for \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} are analogous to formation of (dependently typed) \isa{{\isasymlambda}}-terms representing the underlying proof objects. Proof terms
are \emph{irrelevant} in the Pure logic, they may never occur within
- propositions, i.e.\ the \isa{{\isasymLongrightarrow}} arrow of the framework is a
- non-dependent one.
+ propositions, i.e.\ the \isa{{\isasymLongrightarrow}} arrow is non-dependent. The
+ system provides a runtime option to record explicit proof terms for
+ primitive inferences, cf.\ \cite{Berghofer-Nipkow:2000:TPHOL}. Thus
+ the three-fold \isa{{\isasymlambda}}-structure can be made explicit.
- Also note that fixed parameters as in \isa{{\isasymAnd}{\isacharunderscore}intro} need not be
- recorded in the context \isa{{\isasymGamma}}, since syntactic types are
- always inhabitable. An ``assumption'' \isa{x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} is logically
- vacuous, because \isa{{\isasymtau}} is always non-empty. This is the deeper
- reason why \isa{{\isasymGamma}} only consists of hypothetical proofs, but no
- hypothetical terms.
+ Observe that locally fixed parameters (as used in rule \isa{{\isasymAnd}{\isacharunderscore}intro}) need not be recorded in the hypotheses, because the
+ simple syntactic types of Pure are always inhabitable. The typing
+ ``assumption'' \isa{x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} is logically vacuous, it disappears
+ automatically whenever the statement body ceases to mention variable
+ \isa{x\isactrlisub {\isasymtau}}.\footnote{This greatly simplifies many basic
+ reasoning steps, and is the key difference to the formulation of
+ this logic as ``\isa{{\isasymlambda}HOL}'' in the PTS framework
+ \cite{Barendregt-Geuvers:2001}.}
- The corresponding proof terms are left implicit in the classic
- ``LCF-approach'', although they could be exploited separately
- \cite{Berghofer-Nipkow:2000}. The implementation provides a runtime
- option to control the generation of full proof terms.
+ \medskip FIXME \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-equivalence and primitive definitions
+
+ Since the basic representation of terms already accounts for \isa{{\isasymalpha}}-conversion, Pure equality essentially acts like \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-equivalence on terms, while coinciding with bi-implication.
\medskip The axiomatization of a theory is implicitly closed by
forming all instances of type and term variables: \isa{{\isasymturnstile}\ A{\isasymvartheta}} for
any substitution instance of axiom \isa{{\isasymturnstile}\ A}. By pushing
substitution through derivations inductively, we get admissible
substitution rules for theorems shown in \figref{fig:subst-rules}.
+ Alternatively, the term substitution rules could be derived from
+ \isa{{\isasymAnd}{\isacharunderscore}intro{\isacharslash}elim}. The versions for types are genuine
+ admissible rules, due to the lack of true polymorphism in the logic.
\begin{figure}[htb]
\begin{center}
@@ -501,56 +539,134 @@
\end{center}
\end{figure}
- Note that \isa{instantiate{\isacharunderscore}term} could be derived using \isa{{\isasymAnd}{\isacharunderscore}intro{\isacharslash}elim}, but this is not how it is implemented. The type
- instantiation rule is a genuine admissible one, due to the lack of
- true polymorphism in the logic.
-
Since \isa{{\isasymGamma}} may never contain any schematic variables, the
\isa{instantiate} do not require an explicit side-condition. In
principle, variables could be substituted in hypotheses as well, but
this could disrupt monotonicity of the basic calculus: derivations
- could leave the current proof context.
+ could leave the current proof context.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+ \indexmltype{ctyp}\verb|type ctyp| \\
+ \indexmltype{cterm}\verb|type cterm| \\
+ \indexmltype{thm}\verb|type thm| \\
+ \end{mldecls}
+
+ \begin{description}
+
+ \item \verb|ctyp| FIXME
- \medskip The framework also provides builtin equality \isa{{\isasymequiv}},
- which is conceptually axiomatized shown in \figref{fig:equality},
- although the implementation provides derived rules directly:
+ \item \verb|cterm| FIXME
+
+ \item \verb|thm| FIXME
+
+ \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsubsection{Auxiliary connectives%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Pure also provides various auxiliary connectives based on primitive
+ definitions, see \figref{fig:pure-aux}. These are normally not
+ exposed to the user, but appear in internal encodings only.
\begin{figure}[htb]
\begin{center}
\begin{tabular}{ll}
- \isa{{\isasymequiv}\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & equality relation (infix) \\
- \isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ b\ x{\isacharparenright}\ a\ {\isasymequiv}\ b\ a} & \isa{{\isasymbeta}}-conversion \\
- \isa{{\isasymturnstile}\ x\ {\isasymequiv}\ x} & reflexivity law \\
- \isa{{\isasymturnstile}\ x\ {\isasymequiv}\ y\ {\isasymLongrightarrow}\ P\ x\ {\isasymLongrightarrow}\ P\ y} & substitution law \\
- \isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ f\ x\ {\isasymequiv}\ g\ x{\isacharparenright}\ {\isasymLongrightarrow}\ f\ {\isasymequiv}\ g} & extensionality \\
- \isa{{\isasymturnstile}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}B\ {\isasymLongrightarrow}\ A{\isacharparenright}\ {\isasymLongrightarrow}\ A\ {\isasymequiv}\ B} & coincidence with equivalence \\
+ \isa{conjunction\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & (infix \isa{{\isacharampersand}}) \\
+ \isa{{\isasymturnstile}\ A\ {\isacharampersand}\ B\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}C{\isachardot}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ C{\isacharparenright}\ {\isasymLongrightarrow}\ C{\isacharparenright}} \\[1ex]
+ \isa{prop\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop} & (prefix \isa{{\isacharhash}}) \\
+ \isa{{\isacharhash}A\ {\isasymequiv}\ A} \\[1ex]
+ \isa{term\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & (prefix \isa{TERM}) \\
+ \isa{term\ x\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}A{\isachardot}\ A\ {\isasymLongrightarrow}\ A{\isacharparenright}} \\[1ex]
+ \isa{TYPE\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ itself} & (prefix \isa{TYPE}) \\
+ \isa{{\isacharparenleft}unspecified{\isacharparenright}} \\
\end{tabular}
- \caption{Conceptual axiomatization of equality.}\label{fig:equality}
+ \caption{Definitions of auxiliary connectives}\label{fig:pure-aux}
\end{center}
\end{figure}
- Since the basic representation of terms already accounts for \isa{{\isasymalpha}}-conversion, Pure equality essentially acts like \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-equivalence on terms, while coinciding with bi-implication.
-
+ Conjunction as an explicit connective allows to treat both
+ simultaneous assumptions and conclusions uniformly. The definition
+ allows to derive the usual introduction \isa{{\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ A\ {\isacharampersand}\ B},
+ and destructions \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ A} and \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ B}. For
+ example, several claims may be stated at the same time, which is
+ intermediately represented as an assumption, but the user only
+ encounters several sub-goals, and several resulting facts in the
+ very end (cf.\ \secref{sec:tactical-goals}).
- \medskip Conjunction is defined in Pure as a derived connective, see
- \figref{fig:conjunction}. This is occasionally useful to represent
- simultaneous statements behind the scenes --- framework conjunction
- is usually not exposed to the user.
+ The \isa{{\isacharhash}} marker allows complex propositions (nested \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}}) to appear formally as atomic, without changing
+ the meaning: \isa{{\isasymGamma}\ {\isasymturnstile}\ A} and \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isacharhash}A} are
+ interchangeable. See \secref{sec:tactical-goals} for specific
+ operations.
- \begin{figure}[htb]
- \begin{center}
- \begin{tabular}{ll}
- \isa{{\isacharampersand}\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & conjunction (hidden) \\
- \isa{{\isasymturnstile}\ A\ {\isacharampersand}\ B\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}C{\isachardot}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ C{\isacharparenright}\ {\isasymLongrightarrow}\ C{\isacharparenright}} \\
- \end{tabular}
- \caption{Definition of conjunction.}\label{fig:equality}
- \end{center}
- \end{figure}
+ The \isa{TERM} marker turns any well-formed term into a
+ derivable proposition: \isa{{\isasymturnstile}\ TERM\ t} holds
+ unconditionally. Despite its logically vacous meaning, this is
+ occasionally useful to treat syntactic terms and proven propositions
+ uniformly, as in a type-theoretic framework.
- The definition allows to derive the usual introduction \isa{{\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ A\ {\isacharampersand}\ B}, and destructions \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ A} and \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ B}.%
+ The \isa{TYPE} constructor (which is the canonical
+ representative of the unspecified type \isa{{\isasymalpha}\ itself}) injects
+ the language of types into that of terms. There is specific
+ notation \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} for \isa{TYPE\isactrlbsub {\isasymtau}\ itself\isactrlesub }.
+ Although being devoid of any particular meaning, the term \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} is able to carry the type \isa{{\isasymtau}} formally. \isa{TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}} may be used as an additional formal argument in primitive
+ definitions, in order to avoid hidden polymorphism (cf.\
+ \secref{sec:terms}). For example, \isa{c\ TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}\ {\isasymequiv}\ A{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} turns
+ out as a formally correct definition of some proposition \isa{A}
+ that depends on an additional type argument.%
\end{isamarkuptext}%
\isamarkuptrue%
%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+ \indexml{Conjunction.intr}\verb|Conjunction.intr: thm -> thm -> thm| \\
+ \indexml{Conjunction.elim}\verb|Conjunction.elim: thm -> thm * thm| \\
+ \indexml{Drule.mk-term}\verb|Drule.mk_term: cterm -> thm| \\
+ \indexml{Drule.dest-term}\verb|Drule.dest_term: thm -> cterm| \\
+ \indexml{Logic.mk-type}\verb|Logic.mk_type: typ -> term| \\
+ \indexml{Logic.dest-type}\verb|Logic.dest_type: term -> typ| \\
+ \end{mldecls}
+
+ \begin{description}
+
+ \item FIXME
+
+ \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
\isamarkupsection{Rules \label{sec:rules}%
}
\isamarkuptrue%
--- a/doc-src/IsarImplementation/Thy/logic.thy Tue Sep 12 17:45:58 2006 +0200
+++ b/doc-src/IsarImplementation/Thy/logic.thy Tue Sep 12 21:05:39 2006 +0200
@@ -384,13 +384,14 @@
section {* Theorems \label{sec:thms} *}
text {*
- \glossary{Proposition}{A \seeglossary{term} of \seeglossary{type}
- @{text "prop"}. Internally, there is nothing special about
- propositions apart from their type, but the concrete syntax enforces
- a clear distinction. Propositions are structured via implication
- @{text "A \<Longrightarrow> B"} or universal quantification @{text "\<And>x. B x"} ---
- anything else is considered atomic. The canonical form for
- propositions is that of a \seeglossary{Hereditary Harrop Formula}. FIXME}
+ \glossary{Proposition}{FIXME A \seeglossary{term} of
+ \seeglossary{type} @{text "prop"}. Internally, there is nothing
+ special about propositions apart from their type, but the concrete
+ syntax enforces a clear distinction. Propositions are structured
+ via implication @{text "A \<Longrightarrow> B"} or universal quantification @{text
+ "\<And>x. B x"} --- anything else is considered atomic. The canonical
+ form for propositions is that of a \seeglossary{Hereditary Harrop
+ Formula}. FIXME}
\glossary{Theorem}{A proven proposition within a certain theory and
proof context, formally @{text "\<Gamma> \<turnstile>\<^sub>\<Theta> \<phi>"}; both contexts are
@@ -419,22 +420,39 @@
\seeglossary{type variable}. The distinguishing feature of
different variables is their binding scope. FIXME}
- A \emph{proposition} is a well-formed term of type @{text "prop"}.
- The connectives of minimal logic are declared as constants of the
- basic theory:
+ A \emph{proposition} is a well-formed term of type @{text "prop"}, a
+ \emph{theorem} is a proven proposition (depending on a context of
+ hypotheses and the background theory). Primitive inferences include
+ plain natural deduction rules for the primary connectives @{text
+ "\<And>"} and @{text "\<Longrightarrow>"} of the framework. There are separate (derived)
+ rules for equality/equivalence @{text "\<equiv>"} and internal conjunction
+ @{text "&"}.
+*}
+
+subsection {* Standard connectives and rules *}
- \smallskip
+text {*
+ The basic theory is called @{text "Pure"}, it contains declarations
+ for the standard logical connectives @{text "\<And>"}, @{text "\<Longrightarrow>"}, and
+ @{text "\<equiv>"} of the framework, see \figref{fig:pure-connectives}.
+ The derivability judgment @{text "A\<^isub>1, \<dots>, A\<^isub>n \<turnstile> B"} is
+ defined inductively by the primitive inferences given in
+ \figref{fig:prim-rules}, with the global syntactic restriction that
+ hypotheses may never contain schematic variables. The builtin
+ equality is conceptually axiomatized shown in
+ \figref{fig:pure-equality}, although the implementation works
+ directly with (derived) inference rules.
+
+ \begin{figure}[htb]
+ \begin{center}
\begin{tabular}{ll}
@{text "all :: (\<alpha> \<Rightarrow> prop) \<Rightarrow> prop"} & universal quantification (binder @{text "\<And>"}) \\
@{text "\<Longrightarrow> :: prop \<Rightarrow> prop \<Rightarrow> prop"} & implication (right associative infix) \\
+ @{text "\<equiv> :: \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> prop"} & equality relation (infix) \\
\end{tabular}
-
- \medskip A \emph{theorem} is a proven proposition, depending on a
- collection of assumptions, and axioms from the theory context. The
- judgment @{text "A\<^isub>1, \<dots>, A\<^isub>n \<turnstile> B"} is defined
- inductively by the primitive inferences given in
- \figref{fig:prim-rules}; there is a global syntactic restriction
- that the hypotheses may not contain schematic variables.
+ \caption{Standard connectives of Pure}\label{fig:pure-connectives}
+ \end{center}
+ \end{figure}
\begin{figure}[htb]
\begin{center}
@@ -453,7 +471,20 @@
\qquad
\infer[@{text "(\<Longrightarrow>_elim)"}]{@{text "\<Gamma>\<^sub>1 \<union> \<Gamma>\<^sub>2 \<turnstile> B"}}{@{text "\<Gamma>\<^sub>1 \<turnstile> A \<Longrightarrow> B"} & @{text "\<Gamma>\<^sub>2 \<turnstile> A"}}
\]
- \caption{Primitive inferences of the Pure logic}\label{fig:prim-rules}
+ \caption{Primitive inferences of Pure}\label{fig:prim-rules}
+ \end{center}
+ \end{figure}
+
+ \begin{figure}[htb]
+ \begin{center}
+ \begin{tabular}{ll}
+ @{text "\<turnstile> (\<lambda>x. b x) a \<equiv> b a"} & @{text "\<beta>"}-conversion \\
+ @{text "\<turnstile> x \<equiv> x"} & reflexivity \\
+ @{text "\<turnstile> x \<equiv> y \<Longrightarrow> P x \<Longrightarrow> P y"} & substitution \\
+ @{text "\<turnstile> (\<And>x. f x \<equiv> g x) \<Longrightarrow> f \<equiv> g"} & extensionality \\
+ @{text "\<turnstile> (A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<equiv> B"} & coincidence with equivalence \\
+ \end{tabular}
+ \caption{Conceptual axiomatization of builtin equality}\label{fig:pure-equality}
\end{center}
\end{figure}
@@ -461,26 +492,35 @@
"\<Longrightarrow>"} are analogous to formation of (dependently typed) @{text
"\<lambda>"}-terms representing the underlying proof objects. Proof terms
are \emph{irrelevant} in the Pure logic, they may never occur within
- propositions, i.e.\ the @{text "\<Longrightarrow>"} arrow of the framework is a
- non-dependent one.
+ propositions, i.e.\ the @{text "\<Longrightarrow>"} arrow is non-dependent. The
+ system provides a runtime option to record explicit proof terms for
+ primitive inferences, cf.\ \cite{Berghofer-Nipkow:2000:TPHOL}. Thus
+ the three-fold @{text "\<lambda>"}-structure can be made explicit.
- Also note that fixed parameters as in @{text "\<And>_intro"} need not be
- recorded in the context @{text "\<Gamma>"}, since syntactic types are
- always inhabitable. An ``assumption'' @{text "x :: \<tau>"} is logically
- vacuous, because @{text "\<tau>"} is always non-empty. This is the deeper
- reason why @{text "\<Gamma>"} only consists of hypothetical proofs, but no
- hypothetical terms.
+ Observe that locally fixed parameters (as used in rule @{text
+ "\<And>_intro"}) need not be recorded in the hypotheses, because the
+ simple syntactic types of Pure are always inhabitable. The typing
+ ``assumption'' @{text "x :: \<tau>"} is logically vacuous, it disappears
+ automatically whenever the statement body ceases to mention variable
+ @{text "x\<^isub>\<tau>"}.\footnote{This greatly simplifies many basic
+ reasoning steps, and is the key difference to the formulation of
+ this logic as ``@{text "\<lambda>HOL"}'' in the PTS framework
+ \cite{Barendregt-Geuvers:2001}.}
- The corresponding proof terms are left implicit in the classic
- ``LCF-approach'', although they could be exploited separately
- \cite{Berghofer-Nipkow:2000}. The implementation provides a runtime
- option to control the generation of full proof terms.
+ \medskip FIXME @{text "\<alpha>\<beta>\<eta>"}-equivalence and primitive definitions
+
+ Since the basic representation of terms already accounts for @{text
+ "\<alpha>"}-conversion, Pure equality essentially acts like @{text
+ "\<alpha>\<beta>\<eta>"}-equivalence on terms, while coinciding with bi-implication.
\medskip The axiomatization of a theory is implicitly closed by
forming all instances of type and term variables: @{text "\<turnstile> A\<vartheta>"} for
any substitution instance of axiom @{text "\<turnstile> A"}. By pushing
substitution through derivations inductively, we get admissible
substitution rules for theorems shown in \figref{fig:subst-rules}.
+ Alternatively, the term substitution rules could be derived from
+ @{text "\<And>_intro/elim"}. The versions for types are genuine
+ admissible rules, due to the lack of true polymorphism in the logic.
\begin{figure}[htb]
\begin{center}
@@ -498,58 +538,105 @@
\end{center}
\end{figure}
- Note that @{text "instantiate_term"} could be derived using @{text
- "\<And>_intro/elim"}, but this is not how it is implemented. The type
- instantiation rule is a genuine admissible one, due to the lack of
- true polymorphism in the logic.
-
Since @{text "\<Gamma>"} may never contain any schematic variables, the
@{text "instantiate"} do not require an explicit side-condition. In
principle, variables could be substituted in hypotheses as well, but
this could disrupt monotonicity of the basic calculus: derivations
could leave the current proof context.
+*}
- \medskip The framework also provides builtin equality @{text "\<equiv>"},
- which is conceptually axiomatized shown in \figref{fig:equality},
- although the implementation provides derived rules directly:
+text %mlref {*
+ \begin{mldecls}
+ @{index_ML_type ctyp} \\
+ @{index_ML_type cterm} \\
+ @{index_ML_type thm} \\
+ \end{mldecls}
+
+ \begin{description}
+
+ \item @{ML_type ctyp} FIXME
+
+ \item @{ML_type cterm} FIXME
+
+ \item @{ML_type thm} FIXME
+
+ \end{description}
+*}
+
+
+subsection {* Auxiliary connectives *}
+
+text {*
+ Pure also provides various auxiliary connectives based on primitive
+ definitions, see \figref{fig:pure-aux}. These are normally not
+ exposed to the user, but appear in internal encodings only.
\begin{figure}[htb]
\begin{center}
\begin{tabular}{ll}
- @{text "\<equiv> :: \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> prop"} & equality relation (infix) \\
- @{text "\<turnstile> (\<lambda>x. b x) a \<equiv> b a"} & @{text "\<beta>"}-conversion \\
- @{text "\<turnstile> x \<equiv> x"} & reflexivity law \\
- @{text "\<turnstile> x \<equiv> y \<Longrightarrow> P x \<Longrightarrow> P y"} & substitution law \\
- @{text "\<turnstile> (\<And>x. f x \<equiv> g x) \<Longrightarrow> f \<equiv> g"} & extensionality \\
- @{text "\<turnstile> (A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<equiv> B"} & coincidence with equivalence \\
+ @{text "conjunction :: prop \<Rightarrow> prop \<Rightarrow> prop"} & (infix @{text "&"}) \\
+ @{text "\<turnstile> A & B \<equiv> (\<And>C. (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C)"} \\[1ex]
+ @{text "prop :: prop \<Rightarrow> prop"} & (prefix @{text "#"}) \\
+ @{text "#A \<equiv> A"} \\[1ex]
+ @{text "term :: \<alpha> \<Rightarrow> prop"} & (prefix @{text "TERM"}) \\
+ @{text "term x \<equiv> (\<And>A. A \<Longrightarrow> A)"} \\[1ex]
+ @{text "TYPE :: \<alpha> itself"} & (prefix @{text "TYPE"}) \\
+ @{text "(unspecified)"} \\
\end{tabular}
- \caption{Conceptual axiomatization of equality.}\label{fig:equality}
+ \caption{Definitions of auxiliary connectives}\label{fig:pure-aux}
\end{center}
\end{figure}
- Since the basic representation of terms already accounts for @{text
- "\<alpha>"}-conversion, Pure equality essentially acts like @{text
- "\<alpha>\<beta>\<eta>"}-equivalence on terms, while coinciding with bi-implication.
-
+ Conjunction as an explicit connective allows to treat both
+ simultaneous assumptions and conclusions uniformly. The definition
+ allows to derive the usual introduction @{text "\<turnstile> A \<Longrightarrow> B \<Longrightarrow> A & B"},
+ and destructions @{text "A & B \<Longrightarrow> A"} and @{text "A & B \<Longrightarrow> B"}. For
+ example, several claims may be stated at the same time, which is
+ intermediately represented as an assumption, but the user only
+ encounters several sub-goals, and several resulting facts in the
+ very end (cf.\ \secref{sec:tactical-goals}).
- \medskip Conjunction is defined in Pure as a derived connective, see
- \figref{fig:conjunction}. This is occasionally useful to represent
- simultaneous statements behind the scenes --- framework conjunction
- is usually not exposed to the user.
+ The @{text "#"} marker allows complex propositions (nested @{text
+ "\<And>"} and @{text "\<Longrightarrow>"}) to appear formally as atomic, without changing
+ the meaning: @{text "\<Gamma> \<turnstile> A"} and @{text "\<Gamma> \<turnstile> #A"} are
+ interchangeable. See \secref{sec:tactical-goals} for specific
+ operations.
+
+ The @{text "TERM"} marker turns any well-formed term into a
+ derivable proposition: @{text "\<turnstile> TERM t"} holds
+ unconditionally. Despite its logically vacous meaning, this is
+ occasionally useful to treat syntactic terms and proven propositions
+ uniformly, as in a type-theoretic framework.
- \begin{figure}[htb]
- \begin{center}
- \begin{tabular}{ll}
- @{text "& :: prop \<Rightarrow> prop \<Rightarrow> prop"} & conjunction (hidden) \\
- @{text "\<turnstile> A & B \<equiv> (\<And>C. (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C)"} \\
- \end{tabular}
- \caption{Definition of conjunction.}\label{fig:equality}
- \end{center}
- \end{figure}
+ The @{text "TYPE"} constructor (which is the canonical
+ representative of the unspecified type @{text "\<alpha> itself"}) injects
+ the language of types into that of terms. There is specific
+ notation @{text "TYPE(\<tau>)"} for @{text "TYPE\<^bsub>\<tau>
+ itself\<^esub>"}.
+ Although being devoid of any particular meaning, the term @{text
+ "TYPE(\<tau>)"} is able to carry the type @{text "\<tau>"} formally. @{text
+ "TYPE(\<alpha>)"} may be used as an additional formal argument in primitive
+ definitions, in order to avoid hidden polymorphism (cf.\
+ \secref{sec:terms}). For example, @{text "c TYPE(\<alpha>) \<equiv> A[\<alpha>]"} turns
+ out as a formally correct definition of some proposition @{text "A"}
+ that depends on an additional type argument.
+*}
- The definition allows to derive the usual introduction @{text "\<turnstile> A \<Longrightarrow>
- B \<Longrightarrow> A & B"}, and destructions @{text "A & B \<Longrightarrow> A"} and @{text "A & B
- \<Longrightarrow> B"}.
+text %mlref {*
+ \begin{mldecls}
+ @{index_ML Conjunction.intr: "thm -> thm -> thm"} \\
+ @{index_ML Conjunction.elim: "thm -> thm * thm"} \\
+ @{index_ML Drule.mk_term: "cterm -> thm"} \\
+ @{index_ML Drule.dest_term: "thm -> cterm"} \\
+ @{index_ML Logic.mk_type: "typ -> term"} \\
+ @{index_ML Logic.dest_type: "term -> typ"} \\
+ \end{mldecls}
+
+ \begin{description}
+
+ \item FIXME
+
+ \end{description}
*}