--- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Wed Aug 23 19:54:30 2017 +0100
+++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Wed Aug 23 23:46:35 2017 +0100
@@ -1643,7 +1643,7 @@
by metis
have "e/2 > 0"
using e by auto
- with henstock_lemma[OF f]
+ with Henstock_lemma[OF f]
obtain \<gamma> where g: "gauge \<gamma>"
"\<And>p. \<lbrakk>p tagged_partial_division_of cbox a b; \<gamma> fine p\<rbrakk>
\<Longrightarrow> (\<Sum>(x,k) \<in> p. norm (content k *\<^sub>R f x - integral k f)) < e/2"
@@ -2101,7 +2101,7 @@
obtain d2 where "gauge d2"
and d2: "\<And>p. \<lbrakk>p tagged_partial_division_of (cbox a b); d2 fine p\<rbrakk> \<Longrightarrow>
(\<Sum>(x,k) \<in> p. norm (content k *\<^sub>R f x - integral k f)) < e/2"
- by (blast intro: henstock_lemma [OF f(1) \<open>e/2>0\<close>])
+ by (blast intro: Henstock_lemma [OF f(1) \<open>e/2>0\<close>])
obtain p where
p: "p tagged_division_of (cbox a b)" "d1 fine p" "d2 fine p"
by (rule fine_division_exists [OF gauge_Int [OF \<open>gauge d1\<close> \<open>gauge d2\<close>], of a b])
--- a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Wed Aug 23 19:54:30 2017 +0100
+++ b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Wed Aug 23 23:46:35 2017 +0100
@@ -1276,7 +1276,7 @@
note p1=tagged_division_ofD[OF this(1)]
assume tdiv2: "p2 tagged_division_of (cbox a b) \<inter> {x. c \<le> x \<bullet> k}" and "\<gamma> fine p2"
note p2=tagged_division_ofD[OF this(1)]
- note tagged_division_union_interval[OF tdiv1 tdiv2]
+ note tagged_division_Un_interval[OF tdiv1 tdiv2]
note p12 = tagged_division_ofD[OF this] this
{ fix a b
assume ab: "(a, b) \<in> p1 \<inter> p2"
@@ -4116,7 +4116,7 @@
using as by (auto simp add: field_simps)
have "p \<union> {(c, {t..c})} tagged_division_of {a..c}"
- apply (rule tagged_division_union_interval_real[of _ _ _ 1 "t"])
+ apply (rule tagged_division_Un_interval_real[of _ _ _ 1 "t"])
using \<open>t \<le> c\<close> by (auto simp: * ptag tagged_division_of_self_real)
moreover
have "d1 fine p \<union> {(c, {t..c})}"
@@ -5664,9 +5664,9 @@
subsection \<open>Henstock's lemma\<close>
-lemma henstock_lemma_part1:
+lemma Henstock_lemma_part1:
fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach"
- assumes "f integrable_on cbox a b"
+ assumes intf: "f integrable_on cbox a b"
and "e > 0"
and "gauge d"
and less_e: "\<And>p. \<lbrakk>p tagged_division_of (cbox a b); d fine p\<rbrakk> \<Longrightarrow>
@@ -5689,59 +5689,52 @@
have r: "finite r"
using q' unfolding r_def by auto
- have "\<forall>i\<in>r. \<exists>p. p tagged_division_of i \<and> d fine p \<and>
- norm (sum (\<lambda>(x,j). content j *\<^sub>R f x) p - integral i f) < k / (real (card r) + 1)"
- apply safe
- proof goal_cases
- case (1 i)
- then have i: "i \<in> q"
- unfolding r_def by auto
- from q'(4)[OF this] guess u v by (elim exE) note uv=this
+ have "\<exists>p. p tagged_division_of i \<and> d fine p \<and>
+ norm (sum (\<lambda>(x,j). content j *\<^sub>R f x) p - integral i f) < k / (real (card r) + 1)"
+ if "i\<in>r" for i
+ proof -
have *: "k / (real (card r) + 1) > 0" using k by simp
- have "f integrable_on cbox u v"
- apply (rule integrable_subinterval[OF assms(1)])
- using q'(2)[OF i]
- unfolding uv
- apply auto
- done
+ have i: "i \<in> q"
+ using that unfolding r_def by auto
+ then obtain u v where uv: "i = cbox u v"
+ using q'(4) by blast
+ then have "cbox u v \<subseteq> cbox a b"
+ using i q'(2) by auto
+ then have "f integrable_on cbox u v"
+ by (rule integrable_subinterval[OF intf])
note integrable_integral[OF this, unfolded has_integral[of f]]
from this[rule_format,OF *] guess dd..note dd=conjunctD2[OF this,rule_format]
note gauge_Int[OF \<open>gauge d\<close> dd(1)]
from fine_division_exists[OF this,of u v] guess qq .
- then show ?case
+ then show ?thesis
apply (rule_tac x=qq in exI)
using dd(2)[of qq]
unfolding fine_Int uv
apply auto
done
qed
- from bchoice[OF this] guess qq..note qq=this[rule_format]
+ then obtain qq where qq: "\<And>i. i \<in> r \<Longrightarrow> qq i tagged_division_of i \<and>
+ d fine qq i \<and>
+ norm
+ ((\<Sum>(x, j) \<in> qq i. content j *\<^sub>R f x) -
+ integral i f)
+ < k / (real (card r) + 1)"
+ by metis
let ?p = "p \<union> \<Union>(qq ` r)"
have "norm ((\<Sum>(x, k)\<in>?p. content k *\<^sub>R f x) - integral (cbox a b) f) < e"
proof (rule less_e)
show "d fine ?p"
by (metis (mono_tags, hide_lams) qq fine_Un fine_Union imageE p(2))
- note * = tagged_partial_division_of_union_self[OF p(1)]
+ note * = tagged_partial_division_of_Union_self[OF p(1)]
have "p \<union> \<Union>(qq ` r) tagged_division_of \<Union>(snd ` p) \<union> \<Union>r"
using r
- proof (rule tagged_division_union[OF * tagged_division_unions], goal_cases)
- case 1
- then show ?case
+ proof (rule tagged_division_Un[OF * tagged_division_Union])
+ show "\<And>i. i \<in> r \<Longrightarrow> qq i tagged_division_of i"
using qq by auto
- next
- case 2
- then show ?case
- apply rule
- apply rule
- apply rule
- apply(rule q'(5))
- unfolding r_def
- apply auto
- done
- next
- case 3
- then show ?case
+ show "\<And>i1 i2. \<lbrakk>i1 \<in> r; i2 \<in> r; i1 \<noteq> i2\<rbrakk> \<Longrightarrow> interior i1 \<inter> interior i2 = {}"
+ by (simp add: q'(5) r_def)
+ show "interior (UNION p snd) \<inter> interior (\<Union>r) = {}"
proof (rule Int_interior_Union_intervals [OF \<open>finite r\<close>])
show "open (interior (UNION p snd))"
by blast
@@ -5758,9 +5751,7 @@
qed
qed
moreover have "\<Union>(snd ` p) \<union> \<Union>r = cbox a b" and "{qq i |i. i \<in> r} = qq ` r"
- unfolding Union_Un_distrib[symmetric] r_def
- using q
- by auto
+ using q unfolding Union_Un_distrib[symmetric] r_def by auto
ultimately show "?p tagged_division_of (cbox a b)"
by fastforce
qed
@@ -5893,7 +5884,7 @@
finally show "?x \<le> e + k" .
qed
-lemma henstock_lemma_part2:
+lemma Henstock_lemma_part2:
fixes f :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space"
assumes fed: "f integrable_on cbox a b" "e > 0" "gauge d"
and less_e: "\<And>\<D>. \<lbrakk>\<D> tagged_division_of (cbox a b); d fine \<D>\<rbrakk> \<Longrightarrow>
@@ -5912,13 +5903,13 @@
then have fine: "d fine Q"
by (simp add: \<open>d fine p\<close> fine_subset)
show "norm (\<Sum>x\<in>Q. content (snd x) *\<^sub>R f (fst x) - integral (snd x) f) \<le> e"
- apply (rule henstock_lemma_part1[OF fed less_e, unfolded split_def])
+ apply (rule Henstock_lemma_part1[OF fed less_e, unfolded split_def])
using Q tag tagged_partial_division_subset apply (force simp add: fine)+
done
qed
qed
-lemma henstock_lemma:
+lemma Henstock_lemma:
fixes f :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space"
assumes intf: "f integrable_on cbox a b"
and "e > 0"
@@ -5939,7 +5930,7 @@
assume p: "p tagged_partial_division_of cbox a b" "\<gamma> fine p"
have "(\<Sum>(x,K)\<in>p. norm (content K *\<^sub>R f x - integral K f))
\<le> 2 * real DIM('n) * (e/(2 * (real DIM('n) + 1)))"
- using henstock_lemma_part2[OF intf * \<open>gauge \<gamma>\<close> \<gamma> p] by metis
+ using Henstock_lemma_part2[OF intf * \<open>gauge \<gamma>\<close> \<gamma> p] by metis
also have "... < e"
using \<open>e > 0\<close> by (auto simp add: field_simps)
finally
@@ -6040,8 +6031,8 @@
using c(1) unfolding gauge_def d_def by auto
next
fix \<D>
- assume p: "\<D> tagged_division_of (cbox a b)" "d fine \<D>"
- note p'=tagged_division_ofD[OF p(1)]
+ assume ptag: "\<D> tagged_division_of (cbox a b)" and "d fine \<D>"
+ note p'=tagged_division_ofD[OF ptag]
obtain s where s: "\<And>x. x \<in> \<D> \<Longrightarrow> m (fst x) \<le> s"
by (metis finite_imageI finite_nat_set_iff_bounded_le p'(1) rev_image_eqI)
have *: "\<bar>a - d\<bar> < e" if "\<bar>a - b\<bar> \<le> e/4" "\<bar>b - c\<bar> < e/2" "\<bar>c - d\<bar> < e/4" for a b c d
@@ -6050,24 +6041,26 @@
by (auto simp add: algebra_simps)
show "\<bar>(\<Sum>(x, k)\<in>\<D>. content k *\<^sub>R g x) - i\<bar> < e"
proof (rule *)
- show "\<bar>(\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f (m x) x)\<bar> \<le> e/4"
- apply (rule order_trans[of _ "\<Sum>(x, k)\<in>\<D>. content k * (e/(4 * content (cbox a b)))"])
- unfolding sum_subtractf[symmetric]
- apply (rule order_trans)
- apply (rule sum_abs)
- apply (rule sum_mono)
- unfolding split_paired_all split_conv
- unfolding split_def sum_distrib_right[symmetric] scaleR_diff_right[symmetric]
- unfolding additive_content_tagged_division[OF p(1), unfolded split_def]
- proof -
+ have "\<bar>(\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f (m x) x)\<bar>
+ \<le> (\<Sum>i\<in>\<D>. \<bar>(case i of (x, K) \<Rightarrow> content K *\<^sub>R g x) - (case i of (x, K) \<Rightarrow> content K *\<^sub>R f (m x) x)\<bar>)"
+ by (metis (mono_tags) sum_subtractf sum_abs)
+ also have "... \<le> (\<Sum>(x, k)\<in>\<D>. content k * (e/(4 * content (cbox a b))))"
+ proof (rule sum_mono, simp add: split_paired_all)
fix x K
- assume xk: "(x, K) \<in> \<D>"
- with p(1) have x: "x \<in> cbox a b"
+ assume xk: "(x,K) \<in> \<D>"
+ with ptag have x: "x \<in> cbox a b"
by blast
- then show "abs (content K *\<^sub>R (g x - f (m x) x)) \<le> content K * (e/(4 * content (cbox a b)))"
- unfolding abs_scaleR using m[OF x] p'(4)[OF xk]
- by (metis real_scaleR_def abs_of_nonneg less_eq_real_def measure_nonneg mult_left_mono order_refl)
- qed (insert False, auto)
+ then have "abs (content K * (g x - f (m x) x)) \<le> content K * (e/(4 * content (cbox a b)))"
+ by (metis m[OF x] mult_nonneg_nonneg abs_of_nonneg less_eq_real_def measure_nonneg mult_left_mono order_refl)
+ then show "\<bar>content K * g x - content K * f (m x) x\<bar> \<le> content K * e / (4 * content (cbox a b))"
+ by (simp add: algebra_simps)
+ qed
+ also have "... = (e / (4 * content (cbox a b))) * (\<Sum>(x, k)\<in>\<D>. content k)"
+ by (simp add: sum_distrib_left sum_divide_distrib split_def mult.commute)
+ also have "... \<le> e/4"
+ by (metis False additive_content_tagged_division [OF ptag] nonzero_mult_divide_mult_cancel_right order_refl times_divide_eq_left)
+ finally show "\<bar>(\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f (m x) x)\<bar> \<le> e/4" .
+
next
have "norm ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f (m x) x) - (\<Sum>(x,K)\<in>\<D>. integral K (f (m x))))
\<le> norm (\<Sum>j = 0..s. \<Sum>(x,K)\<in>{xk \<in> \<D>. m (fst xk) = j}. content K *\<^sub>R f (m x) x - integral K (f (m x)))"
@@ -6084,12 +6077,12 @@
norm (\<Sum>(x,k)\<in>{xk \<in> \<D>. m (fst xk) = t}. content k *\<^sub>R f t x - integral k (f t))"
by (force intro!: sum.cong arg_cong[where f=norm])
also have "... \<le> e/2 ^ (t + 2)"
- proof (rule henstock_lemma_part1 [OF intf])
+ proof (rule Henstock_lemma_part1 [OF intf])
show "{xk \<in> \<D>. m (fst xk) = t} tagged_partial_division_of cbox a b"
apply (rule tagged_partial_division_subset[of \<D>])
- using p by (auto simp: tagged_division_of_def)
+ using ptag by (auto simp: tagged_division_of_def)
show "c t fine {xk \<in> \<D>. m (fst xk) = t}"
- using p(2) by (auto simp: fine_def d_def)
+ using \<open>d fine \<D>\<close> by (auto simp: fine_def d_def)
qed (use c e in auto)
finally show "norm (\<Sum>(x,K)\<in>{xk \<in> \<D>. m (fst xk) = t}. content K *\<^sub>R f (m x) x -
integral K (f (m x))) \<le> e/2 ^ (t + 2)" .
@@ -6105,7 +6098,7 @@
by simp
next
have comb: "integral (cbox a b) (f y) = (\<Sum>(x, k)\<in>\<D>. integral k (f y))" for y
- using integral_combine_tagged_division_topdown[OF intf p(1)] by metis
+ using integral_combine_tagged_division_topdown[OF intf ptag] by metis
have f_le: "\<And>y m n. \<lbrakk>y \<in> cbox a b; n\<ge>m\<rbrakk> \<Longrightarrow> f m y \<le> f n y"
using le by (auto intro: transitive_stepwise_le)
have "(\<Sum>(x, k)\<in>\<D>. integral k (f r)) \<le> (\<Sum>(x, K)\<in>\<D>. integral K (f (m x)))"
@@ -6171,11 +6164,11 @@
using bounded_increasing_convergent [OF bou] le int_f integral_le by blast
have i': "(integral S (f k)) \<le> i" for k
proof -
- have *: "\<And>k. \<forall>x\<in>S. \<forall>n\<ge>k. f k x \<le> f n x"
+ have "\<And>k. \<forall>x\<in>S. \<forall>n\<ge>k. f k x \<le> f n x"
using le by (force intro: transitive_stepwise_le)
- show ?thesis
+ then show ?thesis
using tendsto_lowerbound [OF i eventually_sequentiallyI trivial_limit_sequentially]
- by (meson "*" int_f integral_le)
+ by (meson int_f integral_le)
qed
let ?f = "(\<lambda>k x. if x \<in> S then f k x else 0)"
--- a/src/HOL/Analysis/Improper_Integral.thy Wed Aug 23 19:54:30 2017 +0100
+++ b/src/HOL/Analysis/Improper_Integral.thy Wed Aug 23 23:46:35 2017 +0100
@@ -658,7 +658,7 @@
if "S tagged_partial_division_of cbox a b" "\<gamma> fine S" "h \<in> F" for S h
proof -
have "(\<Sum>(x,K) \<in> S. norm (content K *\<^sub>R h x - integral K h)) \<le> 2 * real DIM('b) * (\<epsilon>/(5 * Suc DIM('b)))"
- proof (rule henstock_lemma_part2 [of h a b])
+ proof (rule Henstock_lemma_part2 [of h a b])
show "h integrable_on cbox a b"
using that F equiintegrable_on_def by metis
show "gauge \<gamma>"
@@ -778,7 +778,7 @@
qed
also have "... = (\<Sum>K\<in>snd ` S. \<epsilon>/4 * (b \<bullet> i - a \<bullet> i) / content (cbox a b) * content K
/ (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i))"
- apply (rule sum.over_tagged_division_lemma [OF tagged_partial_division_of_union_self [OF S]])
+ apply (rule sum.over_tagged_division_lemma [OF tagged_partial_division_of_Union_self [OF S]])
apply (simp add: box_eq_empty(1) content_eq_0)
done
also have "... = \<epsilon>/2 * ((b \<bullet> i - a \<bullet> i) / (2 * content (cbox a b)) * (\<Sum>K\<in>snd ` S. content K / (interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)))"
@@ -789,7 +789,7 @@
\<le> 2 * content (cbox a b)"
proof (rule sum_content_area_over_thin_division)
show "snd ` S division_of \<Union>(snd ` S)"
- by (auto intro: S tagged_partial_division_of_union_self division_of_tagged_division)
+ by (auto intro: S tagged_partial_division_of_Union_self division_of_tagged_division)
show "UNION S snd \<subseteq> cbox a b"
using S by force
show "a \<bullet> i \<le> c \<bullet> i" "c \<bullet> i \<le> b \<bullet> i"
@@ -861,7 +861,7 @@
if "T tagged_partial_division_of cbox a b" "\<gamma>1 fine T" "h \<in> F" for T h
proof -
have "(\<Sum>(x,K) \<in> T. norm (?CI K h x)) \<le> 2 * real DIM('b) * (\<epsilon>/(7 * Suc DIM('b)))"
- proof (rule henstock_lemma_part2 [of h a b])
+ proof (rule Henstock_lemma_part2 [of h a b])
show "h integrable_on cbox a b"
using that F equiintegrable_on_def by metis
show "gauge \<gamma>1"
@@ -985,7 +985,7 @@
obtain u v where uv: "L = cbox u v"
using T'_tagged \<open>(x, L) \<in> A\<close> \<open>A \<subseteq> T''\<close> \<open>T'' \<subseteq> T'\<close> by blast
have "A tagged_division_of UNION A snd"
- using A_tagged tagged_partial_division_of_union_self by auto
+ using A_tagged tagged_partial_division_of_Union_self by auto
then have "interior (K \<inter> {x. x \<bullet> i \<le> c}) = {}"
apply (rule tagged_division_split_left_inj [OF _ \<open>(x,K) \<in> A\<close> \<open>(x,L) \<in> A\<close>])
using that eq \<open>i \<in> Basis\<close> by auto
@@ -1014,7 +1014,7 @@
obtain u v where uv: "L = cbox u v"
using T'_tagged \<open>(x, L) \<in> B\<close> \<open>B \<subseteq> T''\<close> \<open>T'' \<subseteq> T'\<close> by blast
have "B tagged_division_of UNION B snd"
- using B_tagged tagged_partial_division_of_union_self by auto
+ using B_tagged tagged_partial_division_of_Union_self by auto
then have "interior (K \<inter> {x. c \<le> x \<bullet> i}) = {}"
apply (rule tagged_division_split_right_inj [OF _ \<open>(x,K) \<in> B\<close> \<open>(x,L) \<in> B\<close>])
using that eq \<open>i \<in> Basis\<close> by auto
--- a/src/HOL/Analysis/Tagged_Division.thy Wed Aug 23 19:54:30 2017 +0100
+++ b/src/HOL/Analysis/Tagged_Division.thy Wed Aug 23 23:46:35 2017 +0100
@@ -1120,7 +1120,7 @@
unfolding box_real[symmetric]
by (rule tagged_division_of_self)
-lemma tagged_division_union:
+lemma tagged_division_Un:
assumes "p1 tagged_division_of s1"
and "p2 tagged_division_of s2"
and "interior s1 \<inter> interior s2 = {}"
@@ -1148,13 +1148,13 @@
by (metis "*" UnE assms(1) assms(2) inf_sup_aci(1) p2(5) tagged_division_ofD(3) xk xk'(1) xk'(2))
qed
-lemma tagged_division_unions:
+lemma tagged_division_Union:
assumes "finite I"
- and "\<forall>i\<in>I. pfn i tagged_division_of i"
- and "\<forall>i1\<in>I. \<forall>i2\<in>I. i1 \<noteq> i2 \<longrightarrow> interior(i1) \<inter> interior(i2) = {}"
+ and tag: "\<And>i. i\<in>I \<Longrightarrow> pfn i tagged_division_of i"
+ and disj: "\<And>i1 i2. \<lbrakk>i1 \<in> I; i2 \<in> I; i1 \<noteq> i2\<rbrakk> \<Longrightarrow> interior(i1) \<inter> interior(i2) = {}"
shows "\<Union>(pfn ` I) tagged_division_of (\<Union>I)"
proof (rule tagged_division_ofI)
- note assm = tagged_division_ofD[OF assms(2)[rule_format]]
+ note assm = tagged_division_ofD[OF tag]
show "finite (\<Union>(pfn ` I))"
using assms by auto
have "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>(pfn ` I)} = \<Union>((\<lambda>i. \<Union>{k. \<exists>x. (x, k) \<in> pfn i}) ` I)"
@@ -1173,16 +1173,18 @@
then obtain i' where i': "i' \<in> I" "(x', k') \<in> pfn i'"
by auto
have *: "\<And>a b. i \<noteq> i' \<Longrightarrow> a \<subseteq> i \<Longrightarrow> b \<subseteq> i' \<Longrightarrow> interior a \<inter> interior b = {}"
- using i(1) i'(1)
- using assms(3)[rule_format] interior_mono
- by blast
+ using i(1) i'(1) disj interior_mono by blast
show "interior k \<inter> interior k' = {}"
- apply (cases "i = i'")
- using assm(5) i' i(2) xk'(2) apply blast
+ proof (cases "i = i'")
+ case True then show ?thesis
+ using assm(5) i' i xk'(2) by blast
+ next
+ case False then show ?thesis
using "*" assm(3) i' i by auto
+ qed
qed
-lemma tagged_partial_division_of_union_self:
+lemma tagged_partial_division_of_Union_self:
assumes "p tagged_partial_division_of s"
shows "p tagged_division_of (\<Union>(snd ` p))"
apply (rule tagged_division_ofI)
@@ -1753,7 +1755,7 @@
qed
qed
-lemma tagged_division_union_interval:
+lemma tagged_division_Un_interval:
fixes a :: "'a::euclidean_space"
assumes "p1 tagged_division_of (cbox a b \<inter> {x. x\<bullet>k \<le> (c::real)})"
and "p2 tagged_division_of (cbox a b \<inter> {x. x\<bullet>k \<ge> c})"
@@ -1764,14 +1766,14 @@
by auto
show ?thesis
apply (subst *)
- apply (rule tagged_division_union[OF assms(1-2)])
+ apply (rule tagged_division_Un[OF assms(1-2)])
unfolding interval_split[OF k] interior_cbox
using k
apply (auto simp add: box_def elim!: ballE[where x=k])
done
qed
-lemma tagged_division_union_interval_real:
+lemma tagged_division_Un_interval_real:
fixes a :: real
assumes "p1 tagged_division_of ({a .. b} \<inter> {x. x\<bullet>k \<le> (c::real)})"
and "p2 tagged_division_of ({a .. b} \<inter> {x. x\<bullet>k \<ge> c})"
@@ -1779,7 +1781,7 @@
shows "(p1 \<union> p2) tagged_division_of {a .. b}"
using assms
unfolding box_real[symmetric]
- by (rule tagged_division_union_interval)
+ by (rule tagged_division_Un_interval)
lemma tagged_division_split_left_inj:
assumes d: "d tagged_division_of i"
@@ -1882,7 +1884,7 @@
using bchoice[OF assms(2)] by auto
show thesis
apply (rule_tac p="\<Union>(pfn ` I)" in that)
- using assms(1) assms(3) assms(4) pfn(1) tagged_division_unions apply force
+ using assms(1) assms(3) assms(4) pfn(1) tagged_division_Union apply force
by (metis (mono_tags, lifting) fine_Union imageE pfn(2))
qed
@@ -2233,7 +2235,7 @@
\<not> (\<exists>p. p tagged_division_of cbox c d \<and> g fine p)"
apply (rule interval_bisection[of "\<lambda>s. \<exists>p. p tagged_division_of s \<and> g fine p", OF _ _ False])
apply (simp add: fine_def)
- apply (metis tagged_division_union fine_Un)
+ apply (metis tagged_division_Un fine_Un)
apply auto
done
obtain e where e: "e > 0" "ball x e \<subseteq> g x"
@@ -2324,7 +2326,7 @@
have "{(x, cbox u v)} tagged_division_of cbox u v"
by (simp add: p(2) uv xk tagged_division_of_self)
then have "{(x, cbox u v)} \<union> q1 tagged_division_of \<Union>{k. \<exists>x. (x, k) \<in> insert xk p}"
- unfolding * uv by (metis (no_types, lifting) int q1 tagged_division_union)
+ unfolding * uv by (metis (no_types, lifting) int q1 tagged_division_Un)
with True show ?thesis
apply (rule_tac x="{(x,cbox u v)} \<union> q1" in exI)
using \<open>d fine q1\<close> fine_def q1I uv xk apply fastforce
@@ -2337,7 +2339,7 @@
apply (rule_tac x="q2 \<union> q1" in exI)
apply (intro conjI)
unfolding * uv
- apply (rule tagged_division_union q2 q1 int fine_Un)+
+ apply (rule tagged_division_Un q2 q1 int fine_Un)+
apply (auto intro: q1 q2 fine_Un \<open>d fine q1\<close> simp add: False q1I uv xk)
done
qed