renamed lemma compact_minimal to compact_bot_minimal;
renamed compacts to approximants
--- a/src/HOLCF/CompactBasis.thy Tue Nov 25 23:26:44 2008 +0100
+++ b/src/HOLCF/CompactBasis.thy Tue Nov 25 23:28:06 2008 +0100
@@ -90,25 +90,25 @@
text {* Ideal completion *}
definition
- compacts :: "'a \<Rightarrow> 'a compact_basis set" where
- "compacts = (\<lambda>x. {a. Rep_compact_basis a \<sqsubseteq> x})"
+ approximants :: "'a \<Rightarrow> 'a compact_basis set" where
+ "approximants = (\<lambda>x. {a. Rep_compact_basis a \<sqsubseteq> x})"
interpretation compact_basis:
- ideal_completion [sq_le compact_take Rep_compact_basis compacts]
+ ideal_completion [sq_le compact_take Rep_compact_basis approximants]
proof
fix w :: 'a
- show "preorder.ideal sq_le (compacts w)"
+ show "preorder.ideal sq_le (approximants w)"
proof (rule sq_le.idealI)
- show "\<exists>x. x \<in> compacts w"
- unfolding compacts_def
+ show "\<exists>x. x \<in> approximants w"
+ unfolding approximants_def
apply (rule_tac x="Abs_compact_basis (approx 0\<cdot>w)" in exI)
apply (simp add: Abs_compact_basis_inverse approx_less)
done
next
fix x y :: "'a compact_basis"
- assume "x \<in> compacts w" "y \<in> compacts w"
- thus "\<exists>z \<in> compacts w. x \<sqsubseteq> z \<and> y \<sqsubseteq> z"
- unfolding compacts_def
+ assume "x \<in> approximants w" "y \<in> approximants w"
+ thus "\<exists>z \<in> approximants w. x \<sqsubseteq> z \<and> y \<sqsubseteq> z"
+ unfolding approximants_def
apply simp
apply (cut_tac a=x in compact_Rep_compact_basis)
apply (cut_tac a=y in compact_Rep_compact_basis)
@@ -123,8 +123,8 @@
done
next
fix x y :: "'a compact_basis"
- assume "x \<sqsubseteq> y" "y \<in> compacts w" thus "x \<in> compacts w"
- unfolding compacts_def
+ assume "x \<sqsubseteq> y" "y \<in> approximants w" thus "x \<in> approximants w"
+ unfolding approximants_def
apply simp
apply (simp add: compact_le_def)
apply (erule (1) trans_less)
@@ -133,24 +133,24 @@
next
fix Y :: "nat \<Rightarrow> 'a"
assume Y: "chain Y"
- show "compacts (\<Squnion>i. Y i) = (\<Union>i. compacts (Y i))"
- unfolding compacts_def
+ show "approximants (\<Squnion>i. Y i) = (\<Union>i. approximants (Y i))"
+ unfolding approximants_def
apply safe
apply (simp add: compactD2 [OF compact_Rep_compact_basis Y])
apply (erule trans_less, rule is_ub_thelub [OF Y])
done
next
fix a :: "'a compact_basis"
- show "compacts (Rep_compact_basis a) = {b. b \<sqsubseteq> a}"
- unfolding compacts_def compact_le_def ..
+ show "approximants (Rep_compact_basis a) = {b. b \<sqsubseteq> a}"
+ unfolding approximants_def compact_le_def ..
next
fix x y :: "'a"
- assume "compacts x \<subseteq> compacts y" thus "x \<sqsubseteq> y"
+ assume "approximants x \<subseteq> approximants y" thus "x \<sqsubseteq> y"
apply (subgoal_tac "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> y", simp)
apply (rule admD, simp, simp)
apply (drule_tac c="Abs_compact_basis (approx i\<cdot>x)" in subsetD)
- apply (simp add: compacts_def Abs_compact_basis_inverse approx_less)
- apply (simp add: compacts_def Abs_compact_basis_inverse)
+ apply (simp add: approximants_def Abs_compact_basis_inverse approx_less)
+ apply (simp add: approximants_def Abs_compact_basis_inverse)
done
qed
@@ -163,7 +163,7 @@
lemma Rep_compact_bot: "Rep_compact_basis compact_bot = \<bottom>"
unfolding compact_bot_def by (simp add: Abs_compact_basis_inverse)
-lemma compact_minimal [simp]: "compact_bot \<sqsubseteq> a"
+lemma compact_bot_minimal [simp]: "compact_bot \<sqsubseteq> a"
unfolding compact_le_def Rep_compact_bot by simp