--- a/src/HOL/IsaMakefile Tue Aug 04 18:24:34 1998 +0200
+++ b/src/HOL/IsaMakefile Tue Aug 04 18:40:18 1998 +0200
@@ -289,7 +289,8 @@
ex/mesontest.ML ex/set.ML ex/Group.ML ex/Group.thy ex/IntRing.ML \
ex/IntRing.thy ex/IntRingDefs.ML ex/IntRingDefs.thy ex/Lagrange.ML \
ex/Lagrange.thy ex/Ring.ML ex/Ring.thy ex/StringEx.ML \
- ex/StringEx.thy ex/BinEx.ML ex/BinEx.thy ex/MonoidGroup.thy
+ ex/StringEx.thy ex/BinEx.ML ex/BinEx.thy ex/MonoidGroup.thy \
+ ex/PiSets.thy ex/PiSets.ML ex/LocaleGroup.thy ex/LocaleGroup.ML
@$(ISATOOL) usedir $(OUT)/HOL ex
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/LocaleGroup.ML Tue Aug 04 18:40:18 1998 +0200
@@ -0,0 +1,201 @@
+(* Title: HOL/ex/LocaleGroup.ML
+ ID: $Id$
+ Author: Florian Kammueller, University of Cambridge
+
+Group theory via records and locales.
+*)
+
+Open_locale "groups";
+print_locales LocaleGroup.thy;
+
+val simp_G = simplify (simpset() addsimps [Group_def]) (thm "Group_G");
+Addsimps [simp_G, thm "Group_G"];
+
+
+goal LocaleGroup.thy "e : carrier G";
+by (afs [thm "e_def"] 1);
+val e_closed = result();
+
+(* Mit dieser Def ist es halt schwierig *)
+goal LocaleGroup.thy "op # : carrier G -> carrier G -> carrier G";
+by (res_inst_tac [("t","op #")] ssubst 1);
+br ext 1;
+br ext 1;
+br meta_eq_to_obj_eq 1;
+br (thm "binop_def") 1;
+by (Asm_full_simp_tac 1);
+val binop_funcset = result();
+
+goal LocaleGroup.thy "!! x y. [| x: carrier G; y: carrier G |] ==> x # y : carrier G";
+by (afs [binop_funcset RS funcset2E1] 1);
+val binop_closed = result();
+
+goal LocaleGroup.thy "inv : carrier G -> carrier G";
+by (res_inst_tac [("t","inv")] ssubst 1);
+br ext 1;
+br meta_eq_to_obj_eq 1;
+br (thm "inv_def") 1;
+by (Asm_full_simp_tac 1);
+val inv_funcset = result();
+
+goal LocaleGroup.thy "!! x . x: carrier G ==> x -| : carrier G";
+by (afs [inv_funcset RS funcsetE1] 1);
+val inv_closed = result();
+
+
+goal LocaleGroup.thy "!! x . x: carrier G ==> e # x = x";
+by (afs [thm "e_def", thm "binop_def"] 1);
+val e_ax1 = result();
+
+goal LocaleGroup.thy "!! x. x: carrier G ==> (x -|) # x = e";
+by (afs [thm "binop_def", thm "inv_def", thm "e_def"] 1);
+val inv_ax2 = result();
+
+goal LocaleGroup.thy "!! x y z. [| x: carrier G; y: carrier G; z: carrier G |]\
+\ ==> (x # y) # z = x # (y # z)";
+by (afs [thm "binop_def"] 1);
+val binop_assoc = result();
+
+goal LocaleGroup.thy "!! G f i e1. [|f : G -> G -> G; i: G -> G; e1: G;\
+\ ! x: G. (f (i x) x = e1); ! x: G. (f e1 x = x);\
+\ ! x: G. ! y: G. ! z: G.(f (f x y) z = f (x) (f y z)) |] \
+\ ==> (| carrier = G, bin_op = f, inverse = i, unit = e1 |) : Group";
+by (afs [Group_def] 1);
+val GroupI = result();
+
+(*****)
+(* Now the real derivations *)
+
+goal LocaleGroup.thy "!! x y z. [| x : carrier G ; y : carrier G; z : carrier G;\
+\ x # y = x # z |] ==> y = z";
+(* remarkable: In the following step the use of e_ax1 instead of unit_ax1
+ is better! It doesn't produce G: Group as subgoal and the nice syntax stays *)
+by (res_inst_tac [("P","%r. r = z")] (e_ax1 RS subst) 1);
+ba 1;
+(* great: we can use the nice syntax even in res_inst_tac *)
+by (res_inst_tac [("P","%r. r # y = z")] subst 1);
+by (res_inst_tac [("x","x")] inv_ax2 1);
+ba 1;
+br (binop_assoc RS ssubst) 1;
+br inv_closed 1;
+ba 1;
+ba 1;
+ba 1;
+be ssubst 1;
+br (binop_assoc RS subst) 1;
+br inv_closed 1;
+ba 1;
+ba 1;
+ba 1;
+br (inv_ax2 RS ssubst) 1;
+ba 1;
+br (e_ax1 RS ssubst) 1;
+ba 1;
+br refl 1;
+val left_cancellation = result();
+
+
+(* here are the other directions of basic lemmas, they needed a cancellation (left) *)
+(* to be able to show the other directions of inverse and unity axiom we need:*)
+goal LocaleGroup.thy "!! x. x: carrier G ==> x # e = x";
+(* here is a problem with res_inst_tac: in Fun there is a
+ constant inv, and that gets addressed when we type in -|.
+ We have to use the defining term and then fold the def of inv *)
+by (res_inst_tac [("x","inverse G x")] left_cancellation 1);
+by (fold_goals_tac [thm "inv_def"]);
+by (fast_tac (claset() addSEs [inv_closed]) 1);
+by (afs [binop_closed, e_closed] 1);
+ba 1;
+br (binop_assoc RS subst) 1;
+by (fast_tac (claset() addSEs [inv_closed]) 1);
+ba 1;
+br (e_closed) 1;
+br (inv_ax2 RS ssubst) 1;
+ba 1;
+br (e_ax1 RS ssubst) 1;
+br e_closed 1;
+br refl 1;
+val e_ax2 = result();
+
+goal LocaleGroup.thy "!! x. [| x: carrier G; x # x = x |] ==> x = e";
+by (forw_inst_tac [("P","%y. x # x = y")] (e_ax2 RS forw_subst) 1);
+ba 1;
+by (res_inst_tac [("x","x")] left_cancellation 1);
+ba 1;
+ba 1;
+br e_closed 1;
+ba 1;
+val idempotent_e = result();
+
+goal LocaleGroup.thy "!! x. x: carrier G ==> x # (x -|) = e";
+br idempotent_e 1;
+by (afs [binop_closed,inv_closed] 1);
+br (binop_assoc RS ssubst) 1;
+ba 1;
+by (afs [inv_closed] 1);
+by (afs [binop_closed,inv_closed] 1);
+by (res_inst_tac [("t","x -| # x # x -|")] subst 1);
+br binop_assoc 1;
+by (afs [inv_closed] 1);
+ba 1;
+by (afs [inv_closed] 1);
+br (inv_ax2 RS ssubst) 1;
+ba 1;
+br (e_ax1 RS ssubst) 1;
+by (afs [inv_closed] 1);
+br refl 1;
+val inv_ax1 = result();
+
+
+goal LocaleGroup.thy "!! x y. [| x: carrier G; y: carrier G; \
+\ x # y = e |] ==> y = x -|";
+by (res_inst_tac [("x","x")] left_cancellation 1);
+ba 1;
+ba 1;
+by (afs [inv_closed] 1);
+br (inv_ax1 RS ssubst) 1;
+ba 1;
+ba 1;
+val inv_unique = result();
+
+goal LocaleGroup.thy "!! x. x : carrier G ==> x -| -| = x";
+by (res_inst_tac [("x","inverse G x")] left_cancellation 1);
+by (fold_goals_tac [thm "inv_def"]);
+by (afs [inv_closed] 1);
+by (afs [inv_closed] 1);
+ba 1;
+by (afs [inv_ax1,inv_ax2,e_ax1,e_ax2,e_closed,inv_closed,binop_closed] 1);
+val inv_inv = result();
+
+goal LocaleGroup.thy "!! x y. [| x : carrier G; y : carrier G |]\
+\ ==> (x # y) -| = y -| # x -|";
+br sym 1;
+br inv_unique 1;
+by (afs [binop_closed] 1);
+by (afs [inv_closed,binop_closed] 1);
+by (afs [binop_assoc,inv_closed,binop_closed] 1);
+by (res_inst_tac [("x1","y")] (binop_assoc RS subst) 1);
+ba 1;
+by (afs [inv_closed] 1);
+by (afs [inv_closed] 1);
+by (afs [inv_ax1,inv_ax2,e_ax1,e_ax2,e_closed,inv_closed,binop_closed] 1);
+val inv_prod = result();
+
+
+goal LocaleGroup.thy "!! x y z. [| x : carrier G; y : carrier G;\
+\ z : carrier G; y # x = z # x|] ==> y = z";
+by (res_inst_tac [("P","%r. r = z")] (e_ax2 RS subst) 1);
+ba 1;
+by (res_inst_tac [("P","%r. y # r = z")] subst 1);
+br inv_ax1 1;
+ba 1;
+br (binop_assoc RS subst) 1;
+ba 1;
+ba 1;
+by (afs [inv_closed] 1);
+be ssubst 1;
+by (afs [binop_assoc,inv_closed,inv_ax1,e_ax2] 1);
+val right_cancellation = result();
+
+(* example what happens if export *)
+val Left_cancellation = export left_cancellation;
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/LocaleGroup.thy Tue Aug 04 18:40:18 1998 +0200
@@ -0,0 +1,38 @@
+(* Title: HOL/ex/LocaleGroup.thy
+ ID: $Id$
+ Author: Florian Kammueller, University of Cambridge
+
+Group theory via records and locales.
+*)
+
+LocaleGroup = PiSets + Record +
+
+record 'a grouptype =
+ carrier :: "'a set"
+ bin_op :: "['a, 'a] => 'a"
+ inverse :: "'a => 'a"
+ unit :: "'a"
+
+constdefs
+ Group :: "('a, 'more) grouptype_scheme set"
+ "Group == {G. (bin_op G): carrier G -> carrier G -> carrier G & inverse G : carrier G -> carrier G
+ & unit G : carrier G &
+ (! x: carrier G. ! y: carrier G. !z: carrier G.
+ (bin_op G (inverse G x) x = unit G)
+ & (bin_op G (unit G) x = x)
+ & (bin_op G (bin_op G x y) z = bin_op G (x) (bin_op G y z)))}"
+
+locale groups =
+ fixes
+ G ::"('a, 'more :: more) grouptype_scheme"
+ e :: "'a"
+ binop :: "'a => 'a => 'a" (infixr "#" 80)
+ inv :: "'a => 'a" ("_ -|" [90]91)
+ assumes
+ Group_G "G: Group"
+ defines
+ e_def "e == unit G"
+ binop_def "x # y == bin_op G x y"
+ inv_def "x -| == inverse G x"
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/PiSets.ML Tue Aug 04 18:40:18 1998 +0200
@@ -0,0 +1,773 @@
+(* Title: HOL/ex/PiSets.thy
+ ID: $Id$
+ Author: Florian Kammueller, University of Cambridge
+
+Pi sets and their application.
+*)
+
+(* One abbreviation for my major simp application *)
+fun afs thms = (asm_full_simp_tac (simpset() addsimps thms));
+(* strip outer quantifiers and lift implication *)
+fun strip i = (REPEAT ((rtac ballI i)
+ ORELSE (rtac allI i)
+ ORELSE (rtac impI i)));
+(* eresolve but leave the eliminated assumptions (improves unification) *)
+goal HOL.thy "!! P. [| P |] ==> P & P";
+by (Fast_tac 1);
+val double = result();
+
+fun re_tac rule r i = ((rotate_tac (r - 1) i)
+ THEN (dtac double i)
+ THEN (rotate_tac ~1 i)
+ THEN (etac conjE i)
+ THEN (rotate_tac ~1 i)
+ THEN (etac rule i));
+
+(* individual theorems for convenient use *)
+val [p1,p2] = goal HOL.thy "[|P == Q; P|] ==> Q";
+by (fold_goals_tac [p1]);
+br p2 1;
+val apply_def = result();
+
+goal HOL.thy "!! P x y. x = y ==> P(x) = P(y)";
+be ssubst 1;
+br refl 1;
+val extend = result();
+
+val [p1] = goal HOL.thy "P ==> ~~P";
+br notI 1;
+br (p1 RSN(2, notE)) 1;
+ba 1;
+val notnotI = result();
+
+val [p1] = goal Set.thy "? x. x: S ==> S ~= {}";
+br contrapos 1;
+br (p1 RS notnotI) 1;
+be ssubst 1;
+br notI 1;
+be exE 1;
+be emptyE 1;
+val ExEl_NotEmpty = result();
+
+
+val [p1] = goal HOL.thy "~x ==> x = False";
+val l1 = (p1 RS (not_def RS apply_def)) RS mp;
+val l2 = read_instantiate [("P","x")] FalseE;
+br iffI 1;
+br l1 1;
+br l2 2;
+ba 1;
+ba 1;
+val NoteqFalseEq = result();
+
+val [p1] = goal HOL.thy "~ (! x. ~P(x)) ==> ? x. P(x)";
+br exCI 1;
+(* 1. ! x. ~ P x ==> P ?a *)
+val l1 = p1 RS NoteqFalseEq;
+(* l1 = (! x. ~ P x) = False *)
+val l2 = l1 RS iffD1;
+val l3 = l1 RS iffD2;
+val l4 = read_instantiate [("P", "P ?a")] FalseE;
+br (l2 RS l4) 1;
+ba 1;
+val NotAllNot_Ex = result();
+
+val [p1] = goal HOL.thy "~(? x. P(x)) ==> ! x. ~ P(x)";
+br notnotD 1;
+br (p1 RS contrapos) 1;
+br NotAllNot_Ex 1;
+ba 1;
+val NotEx_AllNot = result();
+
+goal Set.thy "!!S. ~ (? x. x : S) ==> S = {}";
+by (Fast_tac 1);
+val NoEl_Empty = result();
+
+goal Set.thy "!!S. S ~= {} ==> ? x. x : S";
+by (Fast_tac 1);
+val NotEmpty_ExEl = result();
+
+goal PiSets.thy "!!S. S = {} ==> ! x. x ~: S";
+by (Fast_tac 1);
+val Empty_NoElem = result();
+
+
+val [q1,q2] = goal HOL.thy "[| b = a ; (P a) |] ==> (P b)";
+br (q1 RS ssubst) 1;
+br q2 1;
+val forw_subst = result();
+
+val [q1,q2] = goal HOL.thy "[| a = b ; (P a) |] ==> (P b)";
+br (q1 RS subst) 1;
+br q2 1;
+val forw_ssubst = result();
+
+goal Prod.thy "((fst A),(fst(snd A)),(fst (snd (snd A))),(snd(snd(snd A)))) = A";
+br (surjective_pairing RS subst) 1;
+br (surjective_pairing RS subst) 1;
+br (surjective_pairing RS subst) 1;
+br refl 1;
+val blow4 = result();
+
+goal Prod.thy "!! P a b. (%(a,b). P a b) A ==> P (fst A)(snd A)";
+by (Step_tac 1);
+by (afs [fst_conv,snd_conv] 1);
+val apply_pair = result();
+
+goal Prod.thy "!! P a b c d. (%(a,b,c,d). P a b c d) A \
+\ ==> P (fst A)(fst(snd A))(fst (snd (snd A)))(snd(snd(snd A)))";
+bd (blow4 RS forw_subst) 1;
+by (afs [split_def] 1);
+val apply_quadr = result();
+
+goal Prod.thy "!! A B x. x: A Times B ==> x = (fst x, snd x)";
+br (surjective_pairing RS subst) 1;
+br refl 1;
+val surj_pair_forw = result();
+
+goal Prod.thy "!! A B x. x: A Times B ==> fst x: A";
+by (forward_tac [surj_pair_forw] 1);
+bd forw_ssubst 1;
+ba 1;
+be SigmaD1 1;
+val TimesE1 = result();
+
+goal Prod.thy "!! A B x. x: A Times B ==> snd x: B";
+by (forward_tac [surj_pair_forw] 1);
+bd forw_ssubst 1;
+ba 1;
+be SigmaD2 1;
+val TimesE2 = result();
+
+(* -> and Pi *)
+
+goal PiSets.thy "!! A B. A -> B == {f. ! x. if x: A then f(x) : B else f(x) = (@ y. True)}";
+by (simp_tac (simpset() addsimps [Pi_def]) 1);
+val funcset_def = result();
+
+
+val [q1,q2] = goal PiSets.thy
+"[| !!x. x: A ==> f x: B x; !!x. x ~: A ==> f(x) = (@ y. True)|] ==> f: Pi A B";
+by (rewrite_goals_tac [Pi_def]);
+br CollectI 1;
+br allI 1;
+by (case_tac "x : A" 1);
+br (if_P RS ssubst) 1;
+ba 1;
+be q1 1;
+br (if_not_P RS ssubst) 1;
+ba 1;
+be q2 1;
+val Pi_I = result();
+
+goal PiSets.thy
+"!! A f. [| !!x. x: A ==> f x: B; !!x. x ~: A ==> f(x) = (@ y. True)|] ==> f: A -> B";
+by (afs [Pi_I] 1);
+val funcsetI = result();
+
+val [q1,q2,q3] = goal PiSets.thy
+"[| !! x y. [| x: A; y: B |] ==> f x y: C; \
+\ !! x. [| x ~: A |] ==> f x = (@ y. True);\
+\ !! x y. [| x : A; y ~: B |] ==> f x y = (@ y. True) |] ==> f: A -> B -> C";
+by (simp_tac (simpset() addsimps [q1,q2,q3,funcsetI]) 1);
+val funcsetI2 = result();
+
+goal PiSets.thy "!! f A B. [|f: A -> B; x: A|] ==> f x: B";
+by (afs [funcset_def] 1);
+val funcsetE1 = result();
+
+goal PiSets.thy "!! f A B. [|f: Pi A B; x: A|] ==> f x: B x";
+by (afs [Pi_def] 1);
+val PiE1 = result();
+
+goal PiSets.thy "!! f A B. [|f: A -> B; x~: A|] ==> f x = (@ y. True)";
+by (afs [funcset_def] 1);
+val funcsetE2 = result();
+
+goal PiSets.thy "!! f A B. [|f: Pi A B; x~: A|] ==> f x = (@ y. True)";
+by (afs [Pi_def] 1);
+val PiE2 = result();
+
+goal PiSets.thy "!! f A B. [|f: A -> B -> C; x : A; y ~: B|] ==> f x y = (@ y. True)";
+by (afs [funcset_def] 1);
+val funcset2E2 = result();
+
+
+goal PiSets.thy "!! f A B C. [| f: A -> B -> C; x: A; y: B |] ==> f x y: C";
+by (afs [funcset_def] 1);
+val funcset2E1 = result();
+
+goal PiSets.thy "!! f g A B. [| f: A -> B; g: A -> B; ! x: A. f x = g x |]\
+\ ==> f = g";
+br ext 1;
+by (case_tac "x : A" 1);
+by (Fast_tac 1);
+by (fast_tac (claset() addSDs [funcsetE2] addEs [ssubst]) 1);
+val function_extensionality = result();
+
+goal PiSets.thy "!! f g A B. [| f: Pi A B; g: Pi A B; ! x: A. f x = g x |]\
+\ ==> f = g";
+br ext 1;
+by (case_tac "x : A" 1);
+by (Fast_tac 1);
+by (fast_tac (claset() addSDs [PiE2] addEs [ssubst]) 1);
+val Pi_extensionality = result();
+
+(* compose *)
+goal PiSets.thy "!! A B C f g. [| f: A -> B; g: B -> C |]==> compose A g f: A -> C";
+br funcsetI 1;
+by (rewrite_goals_tac [compose_def,restrict_def]);
+by (afs [funcsetE1] 1);
+br (if_not_P RS ssubst) 1;
+ba 1;
+br refl 1;
+val funcset_compose = result();
+
+goal PiSets.thy "!! A B C f g h. [| f: A -> B; g: B -> C; h: C -> D |]\
+\ ==> compose A h (compose A g f) = compose A (compose B h g) f";
+by (res_inst_tac [("A","A")] function_extensionality 1);
+br funcset_compose 1;
+br funcset_compose 1;
+ba 1;
+ba 1;
+ba 1;
+br funcset_compose 1;
+ba 1;
+br funcset_compose 1;
+ba 1;
+ba 1;
+br ballI 1;
+by (rewrite_goals_tac [compose_def,restrict_def]);
+by (afs [funcsetE1,if_P RS ssubst] 1);
+val compose_assoc = result();
+
+goal PiSets.thy "!! A B C f g x. [| f: A -> B; g: B -> C; x: A |]==> compose A g f x = g(f(x))";
+by (afs [compose_def, restrict_def, if_P RS ssubst] 1);
+val composeE1 = result();
+
+goal PiSets.thy "!! A B C g f.[| f : A -> B; f `` A = B; g: B -> C; g `` B = C |]\
+\ ==> compose A g f `` A = C";
+br equalityI 1;
+br subsetI 1;
+be imageE 1;
+by (rotate_tac 4 1);
+be ssubst 1;
+br (funcset_compose RS funcsetE1) 1;
+ba 1;
+ba 1;
+ba 1;
+br subsetI 1;
+by (hyp_subst_tac 1);
+be imageE 1;
+by (rotate_tac 3 1);
+be ssubst 1;
+be imageE 1;
+by (rotate_tac 3 1);
+be ssubst 1;
+be (composeE1 RS subst) 1;
+ba 1;
+ba 1;
+br imageI 1;
+ba 1;
+val surj_compose = result();
+
+
+goal PiSets.thy "!! A B C g f.[| f : A -> B; g: B -> C; f `` A = B; inj_on f A; inj_on g B |]\
+\ ==> inj_on (compose A g f) A";
+br inj_onI 1;
+by (forward_tac [composeE1] 1);
+ba 1;
+ba 1;
+by (forward_tac [composeE1] 1);
+ba 1;
+by (rotate_tac 7 1);
+ba 1;
+by (step_tac (claset() addSEs [inj_onD]) 1);
+by (rotate_tac 5 1);
+be subst 1;
+be subst 1;
+ba 1;
+be imageI 1;
+be imageI 1;
+val inj_on_compose = result();
+
+
+(* restrict / lam *)
+goal PiSets.thy "!! f A B. [| f `` A <= B |] ==> (lam x: A. f x) : A -> B";
+by (rewrite_goals_tac [restrict_def]);
+br funcsetI 1;
+by (afs [if_P RS ssubst] 1);
+be subsetD 1;
+be imageI 1;
+by (afs [if_not_P RS ssubst] 1);
+val restrict_in_funcset = result();
+
+goal PiSets.thy "!! f A B. [| ! x: A. f x: B |] ==> (lam x: A. f x) : A -> B";
+br restrict_in_funcset 1;
+by (afs [image_def] 1);
+by (Step_tac 1);
+by (Fast_tac 1);
+val restrictI = result();
+
+goal PiSets.thy "!! f A B. [| ! x: A. f x: B x |] ==> (lam x: A. f x) : Pi A B";
+by (rewrite_goals_tac [restrict_def]);
+br Pi_I 1;
+by (afs [if_P RS ssubst] 1);
+by (Asm_full_simp_tac 1);
+val restrictI_Pi = result();
+
+(* The following proof has to be redone *)
+goal PiSets.thy "!! f A B C.[| f `` A <= B -> C |] ==> (lam x: A. lam y: B. f x y) : A -> B -> C";
+br restrict_in_funcset 1;
+by (afs [image_def] 1);
+by (afs [Pi_def,subset_def] 1);
+by (afs [restrict_def] 1);
+by (Step_tac 1);
+by (Asm_full_simp_tac 1);
+by (dres_inst_tac [("x","f xa")] spec 1);
+bd mp 1;
+br bexI 1;
+br refl 1;
+ba 1;
+by (dres_inst_tac [("x","xb")] spec 1);
+by (Asm_full_simp_tac 1);
+(* fini 1 *)
+by (Asm_full_simp_tac 1);
+val restrict_in_funcset2 = result();
+
+goal PiSets.thy "!! f A B C.[| !x: A. ! y: B. f x y: C |] ==> (lam x: A. lam y: B. f x y) : A -> B -> C";
+br restrict_in_funcset 1;
+by (afs [image_def] 1);
+by (afs [Pi_def,subset_def] 1);
+by (afs [restrict_def] 1);
+by (Step_tac 1);
+by (Asm_full_simp_tac 1);
+by (Asm_full_simp_tac 1);
+val restrictI2 = result();
+
+
+(* goal PiSets.thy "!! f A B. [| f `` A <= UNION A B |] ==> (lam x: A. f x) : Pi A B"; *)
+
+goal PiSets.thy "!! f A B. [| x: A |] ==> (lam y: A. f y) x = f x";
+by (afs [restrict_def] 1);
+val restrictE1 = result();
+
+goal PiSets.thy "!! f A B. [| x: A; f : A -> B |] ==> (lam y: A. f y) x : B";
+by (afs [restrictE1,funcsetE1] 1);
+val restrictE1a = result();
+
+goal PiSets.thy "!! f A B. [| x ~: A |] ==> (lam y: A. f y) x = (@ y. True)";
+by (afs [restrict_def] 1);
+val restrictE2 = result();
+
+(* It would be nice to have this, but this doesn't work unfortunately
+ see PiSets.ML: Pi_subset1
+goal PiSets.thy "!! A B. [| A <= B ; ! x: A. f x : C|] ==> (lam x: B. f(x)): A -> C"; *)
+
+goal PiSets.thy "!! f A B x y. [| x: A; y: B |] ==> \
+\ (lam a: A. lam b: B. f a b) x y = f x y";
+by (afs [restrictE1] 1);
+val restrict2E1 = result();
+
+(* New restrict2E1: *)
+goal PiSets.thy "!! A B. [| x : A; y : B x|] ==> (lam a:A. lam b: (B a). f a b) x y = f x y" ;
+by (afs [restrictE1] 1);
+val restrict2E1a = result();
+
+goal PiSets.thy "!! f A B x y. [| x: A; y: B; z: C |] ==> \
+\ (lam a: A. lam b: B. lam c: C. f a b c) x y z = f x y z";
+by (afs [restrictE1] 1);
+val restrict3E1 = result();
+
+goal PiSets.thy "!! f A B x y. [| x: A; y ~: B |] ==> \
+\ (lam a: A. lam b: B. f a b) x y = (@ y. True)";
+by (afs [restrictE1,restrictE2] 1);
+val restrict2E2 = result();
+
+
+goal PiSets.thy "!! f g A B. [| ! x: A. f x = g x |]\
+\ ==> (lam x: A. f x) = (lam x: A. g x)";
+br ext 1;
+by (case_tac "x: A" 1);
+by (afs [restrictE1] 1);
+by (afs [restrictE2] 1);
+val restrict_ext = result();
+
+(* Invers *)
+
+goal PiSets.thy "!! f A B.[|f `` A = B; x: B |] ==> ? y: A. f y = x";
+by (rewrite_goals_tac [image_def]);
+bd equalityD2 1;
+bd subsetD 1;
+ba 1;
+bd CollectD 1;
+be bexE 1;
+bd sym 1;
+be bexI 1;
+ba 1;
+val surj_image = result();
+
+val [q1,q2] = goal PiSets.thy "[| f `` A = B; f : A -> B |] \
+\ ==> (lam x: B. (Inv A f) x) : B -> A";
+br restrict_in_funcset 1;
+by (rewrite_goals_tac [image_def]);
+br subsetI 1;
+bd CollectD 1;
+be bexE 1;
+be ssubst 1;
+bd (q1 RS surj_image) 1;
+be bexE 1;
+be subst 1;
+by (rewrite_goals_tac [Inv_def]);
+by (res_inst_tac [("Q","f(@ ya. ya : A & f ya = f y) = f y")] conjunct1 1);
+br (q1 RS surj_image RS (Bex_def RS apply_def) RS (Ex_def RS apply_def)) 1;
+be (q2 RS funcsetE1) 1;
+val Inv_funcset = result();
+
+
+val [q1,q2,q3] = goal PiSets.thy "[| f: A -> B; inj_on f A; f `` A = B |]\
+\ ==> ! x: A. (lam y: B. (Inv A f) y)(f x) = x";
+br ballI 1;
+br (restrictE1 RS ssubst) 1;
+be (q1 RS funcsetE1) 1;
+by (rewrite_goals_tac [Inv_def]);
+br (q2 RS inj_onD) 1;
+ba 3;
+by (res_inst_tac [("P","(@ y. y : A & f y = f x) : A")] conjunct2 1);
+br (q3 RS surj_image RS (Bex_def RS apply_def) RS (Ex_def RS apply_def)) 1;
+be (q1 RS funcsetE1) 1;
+by (res_inst_tac [("Q","f (@ y. y : A & f y = f x) = f x")] conjunct1 1);
+br (q3 RS surj_image RS (Bex_def RS apply_def) RS (Ex_def RS apply_def)) 1;
+be (q1 RS funcsetE1) 1;
+val Inv_f_f = result();
+
+val [q1,q2] = goal PiSets.thy "[| f: A -> B; f `` A = B |]\
+\ ==> ! x: B. f ((lam y: B. (Inv A f y)) x) = x";
+br ballI 1;
+br (restrictE1 RS ssubst) 1;
+ba 1;
+by (rewrite_goals_tac [Inv_def]);
+by (res_inst_tac [("P","(@ y. y : A & f y = x) : A")] conjunct2 1);
+br (q2 RS surj_image RS (Bex_def RS apply_def) RS (Ex_def RS apply_def)) 1;
+ba 1;
+val f_Inv_f = result();
+
+val [q1,q2,q3] = goal PiSets.thy "[| f: A -> B; inj_on f A; f `` A = B |]\
+\ ==> compose A (lam y:B. (Inv A f) y) f = (lam x: A. x)";
+br function_extensionality 1;
+br funcset_compose 1;
+br q1 1;
+br (q1 RS (q3 RS Inv_funcset)) 1;
+br restrict_in_funcset 1;
+by (Fast_tac 1);
+br ballI 1;
+by (afs [compose_def] 1);
+br (restrictE1 RS ssubst) 1;
+ba 1;
+br (restrictE1 RS ssubst) 1;
+ba 1;
+be (q3 RS (q2 RS (q1 RS Inv_f_f)) RS bspec) 1;
+val comp_Inv_id = result();
+
+
+(* Pi and its application @@ *)
+
+goal PiSets.thy "!! A B. (PI x: A. B x) ~= {} ==> ! x: A. B(x) ~= {}";
+bd NotEmpty_ExEl 1;
+be exE 1;
+by (rewrite_goals_tac [Pi_def]);
+bd CollectD 1;
+br ballI 1;
+br ExEl_NotEmpty 1;
+by (res_inst_tac [("x","x xa")] exI 1);
+by (afs [if_P RS subst] 1);
+val Pi_total1 = result();
+
+goal Set.thy "!! M P. ? x: M . P x ==> (~ (! x: M. ~ P x))";
+by (Fast_tac 1);
+val SetEx_NotNotAll = result();
+
+goal PiSets.thy "!! A B. ? x: A. B(x) = {} ==> (PI x: A. B x) = {}";
+br notnotD 1;
+br (Pi_total1 RSN(2,contrapos)) 1;
+ba 2;
+be SetEx_NotNotAll 1;
+val Pi_total2 = result();
+
+val [q1,q2] = goal PiSets.thy "[|a : A; Pi A B ~= {} |] ==> (Pi A B) @@ a = B(a)";
+by (rewrite_goals_tac [Fset_apply_def]);
+br equalityI 1;
+br subsetI 1;
+be imageE 1;
+be ssubst 1;
+by (rewrite_goals_tac [Pi_def]);
+bd CollectD 1;
+bd spec 1;
+br (q1 RS if_P RS subst) 1;
+ba 1;
+br subsetI 1;
+by (rewrite_goals_tac [image_def]);
+br CollectI 1;
+br exE 1;
+br (q2 RS NotEmpty_ExEl) 1;
+by (res_inst_tac [("x","%y. if (y = a) then x else xa y")] bexI 1);
+by (Simp_tac 1);
+by (Simp_tac 1);
+br allI 1;
+by (case_tac "xb: A" 1);
+by (afs [if_P RS ssubst] 1);
+by (case_tac "xb = a" 1);
+by (afs [if_P RS ssubst] 1);
+by (afs [if_not_P RS ssubst] 1);
+by (rewrite_goals_tac [Pi_def]);
+by (afs [if_P RS ssubst] 1);
+by (afs [if_not_P RS ssubst] 1);
+by (case_tac "xb = a" 1);
+by (afs [if_P RS ssubst] 1);
+by (hyp_subst_tac 1);
+by (afs [q1] 1);
+by (afs [if_not_P RS ssubst] 1);
+val Pi_app_def = result();
+
+goal PiSets.thy "!! a A B C. [| a: A; (PI x: A. PI y: B x. C x y) ~= {} |] ==> (PI y: B a. C a y) ~= {}";
+bd NotEmpty_ExEl 1;
+be exE 1;
+by (rewrite_goals_tac [Pi_def]);
+bd CollectD 1;
+bd spec 1;
+br ExEl_NotEmpty 1;
+br exI 1;
+be (if_P RS eq_reflection RS apply_def) 1;
+ba 1;
+val NotEmptyPiStep = result();
+
+val [q1,q2,q3] = goal PiSets.thy
+"[|a : A; b: B a; (PI x: A. PI y: B x. C x y) ~= {} |] ==> (PI x: A. PI y: B x. C x y) @@ a @@ b = C a b";
+by (fold_goals_tac [q3 RS (q1 RS NotEmptyPiStep) RS (q2 RS Pi_app_def) RS eq_reflection]);
+by (fold_goals_tac [q3 RS (q1 RS Pi_app_def) RS eq_reflection]);
+br refl 1;
+val Pi_app2_def = result();
+
+(* Sigma does a better job ( the following is from PiSig.ML) *)
+goal PiSets.thy "!! A b a. [| a: A; Pi A B ~= {} |]\
+\ ==> Sigma A B ^^ {a} = Pi A B @@ a";
+br (Pi_app_def RS ssubst) 1;
+ba 1;
+ba 1;
+by (afs [Sigma_def,Domain_def,converse_def,Range_def,Image_def] 1);
+by (rewrite_goals_tac [Bex_def]);
+by (Fast_tac 1);
+val PiSig_image_eq = result();
+
+goal PiSets.thy "!! A b a. [| a: A |]\
+\ ==> Sigma A B ^^ {a} = B a";
+by (Fast_tac 1);
+val Sigma_app_def = result();
+
+(* Bijection between Pi in terms of => and Pi in terms of Sigma *)
+goal PiSets.thy "!! f. f: Pi A B ==> PiBij A B f <= Sigma A B";
+by (afs [PiBij_def,Pi_def,restrictE1] 1);
+br subsetI 1;
+by (split_all_tac 1);
+bd CollectD 1;
+by (Asm_full_simp_tac 1);
+val PiBij_subset_Sigma = result();
+
+goal PiSets.thy "!! f. f: Pi A B ==> (! x: A. (?! y. (x, y): (PiBij A B f)))";
+by (afs [PiBij_def,restrictE1] 1);
+br ballI 1;
+br ex1I 1;
+ba 2;
+br refl 1;
+val PiBij_unique = result();
+
+goal PiSets.thy "!! f. f: Pi A B ==> (! x: A. (?! y. y: B x & (x, y): (PiBij A B f)))";
+by (afs [PiBij_def,restrictE1] 1);
+br ballI 1;
+br ex1I 1;
+be conjunct2 2;
+by (afs [PiE1] 1);
+val PiBij_unique2 = result();
+
+goal PiSets.thy "!! f. f: Pi A B ==> PiBij A B f : Graph A B";
+by (afs [Graph_def,PiBij_unique,PiBij_subset_Sigma] 1);
+val PiBij_in_Graph = result();
+
+goal PiSets.thy "!! A B. PiBij A B: Pi A B -> Graph A B";
+by (afs [PiBij_def] 1);
+br restrictI 1;
+by (strip 1);
+by (afs [Graph_def] 1);
+br conjI 1;
+br subsetI 1;
+by (strip 2);
+br ex1I 2;
+br refl 2;
+ba 2;
+by (split_all_tac 1);
+by (afs [Pi_def] 1);
+val PiBij_func = result();
+
+goal PiSets.thy "!! A f g x. [| f: Pi A B; g: Pi A B; \
+\ {(x, y). x: A & y = f x} = {(x, y). x: A & y = g x}; x: A |]\
+\ ==> f x = g x";
+be equalityE 1;
+by (rewrite_goals_tac [subset_def]);
+by (dres_inst_tac [("x","(x, f x)")] bspec 1);
+by (Fast_tac 1);
+by (Fast_tac 1);
+val set_eq_lemma = result();
+
+goal PiSets.thy "!! A B. inj_on (PiBij A B) (Pi A B)";
+br inj_onI 1;
+br Pi_extensionality 1;
+ba 1;
+ba 1;
+by (strip 1);
+by (afs [PiBij_def,restrictE1] 1);
+by (re_tac set_eq_lemma 2 1);
+ba 1;
+ba 2;
+by (afs [restrictE1] 1);
+be subst 1;
+by (afs [restrictE1] 1);
+val inj_PiBij = result();
+
+goal HOL.thy "!! P . ?! x. P x ==> ? x. P x";
+by (Blast_tac 1);
+val Ex1_Ex = result();
+
+goal PiSets.thy "!!A B. PiBij A B `` (Pi A B) = Graph A B";
+br equalityI 1;
+by (afs [image_def] 1);
+br subsetI 1;
+by (Asm_full_simp_tac 1);
+be bexE 1;
+be ssubst 1;
+by (afs [PiBij_in_Graph] 1);
+br subsetI 1;
+by (afs [image_def] 1);
+by (res_inst_tac [("x","lam a: A. @ y. (a, y): x")] bexI 1);
+br restrictI_Pi 2;
+by (strip 2);
+br ex1E 2;
+by (afs [Graph_def] 2);
+be conjE 2;
+bd bspec 2;
+ba 2;
+ba 2;
+br (select_equality RS ssubst) 2;
+ba 2;
+by (Blast_tac 2);
+(* gets hung up on by (afs [Graph_def] 2); *)
+by (SELECT_GOAL (rewrite_goals_tac [Graph_def]) 2);
+by (Blast_tac 2);
+(* x = PiBij A B (lam a:A. @ y. (a, y) : x) *)
+by (afs [PiBij_def,Graph_def] 1);
+br (restrictE1 RS ssubst) 1;
+br restrictI_Pi 1;
+(* again like the old 2. subgoal *)
+by (strip 1);
+br ex1E 1;
+be conjE 1;
+bd bspec 1;
+ba 1;
+ba 1;
+br (select_equality RS ssubst) 1;
+ba 1;
+by (Blast_tac 1);
+by (Blast_tac 1);
+(* *)
+br equalityI 1;
+br subsetI 1;
+br CollectI 1;
+by (split_all_tac 1);
+by (Simp_tac 1);
+br conjI 1;
+by (Blast_tac 1);
+be conjE 1;
+bd subsetD 1;
+ba 1;
+bd SigmaD1 1;
+bd bspec 1;
+ba 1;
+br (restrictE1 RS ssubst) 1;
+ba 1;
+br sym 1;
+br select_equality 1;
+ba 1;
+by (Blast_tac 1);
+(* {(xa,y). xa : A & y = (lam a:A. @ y. (a, y) : x) xa} <= x *)
+br subsetI 1;
+by (Asm_full_simp_tac 1);
+by (split_all_tac 1);
+by (Asm_full_simp_tac 1);
+be conjE 1;
+be conjE 1;
+by (afs [restrictE1] 1);
+bd bspec 1;
+ba 1;
+bd Ex1_Ex 1;
+by (rewrite_goals_tac [Ex_def]);
+ba 1;
+val surj_PiBij = result();
+
+
+goal PiSets.thy "!! A B. [| f: Pi A B |] ==> \
+\ (lam y: Graph A B. (Inv (Pi A B)(PiBij A B)) y)(PiBij A B f) = f";
+br (Inv_f_f RS bspec) 1;
+ba 4;
+by (afs [PiBij_func] 1);
+by (afs [inj_PiBij] 1);
+by (afs [surj_PiBij] 1);
+val PiBij_bij1 = result();
+
+goal PiSets.thy "!! A B. [| f: Graph A B |] ==> \
+\ (PiBij A B) ((lam y: (Graph A B). (Inv (Pi A B)(PiBij A B)) y) f) = f";
+br (PiBij_func RS (f_Inv_f RS bspec)) 1;
+by (afs [surj_PiBij] 1);
+ba 1;
+val PiBij_bij2 = result();
+
+goal PiSets.thy "!! g f. [| ! x. g( f x) = x |] ==> inj f";
+br injI 1;
+by (dres_inst_tac [("f","g")] arg_cong 1);
+by (forw_inst_tac [("x","x")] spec 1);
+by (rotate_tac 2 1);
+be subst 1;
+by (forw_inst_tac [("x","y")] spec 1);
+by (rotate_tac 2 1);
+be subst 1;
+ba 1;
+val inj_lemma = result();
+
+goal PiSets.thy "!! g f. [| ! x. g( f x) = x |] ==> surj g";
+by (afs [surj_def] 1);
+br allI 1;
+by (res_inst_tac [("x","f y")] exI 1);
+bd spec 1;
+be sym 1;
+val surj_lemma = result();
+
+goal PiSets.thy "Pi {} B == {f. !x. f x = (@ y. True)}";
+by (afs [Pi_def] 1);
+val empty_Pi = result();
+
+goal PiSets.thy "(% x. (@ y. True)) : Pi {} B";
+by (afs [empty_Pi] 1);
+val empty_Pi_func = result();
+
+goal Set.thy "!! A B. [| A <= B; x ~: B |] ==> x ~: A";
+by (Blast_tac 1);
+val subsetND = result();
+
+
+goal PiSets.thy "!! A B C . [| ! x: A. B x <= C x |] ==> Pi A B <= Pi A C";
+br subsetI 1;
+br Pi_I 1;
+by (afs [Pi_def] 2);
+bd bspec 1;
+ba 1;
+be subsetD 1;
+by (afs [PiE1] 1);
+val Pi_subset1 = result();
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/PiSets.thy Tue Aug 04 18:40:18 1998 +0200
@@ -0,0 +1,68 @@
+(* Title: HOL/ex/PiSets.thy
+ ID: $Id$
+ Author: Florian Kammueller, University of Cambridge
+
+Theory for Pi type in terms of sets.
+*)
+
+PiSets = Univ + Finite +
+
+consts
+ Pi :: "['a set, 'a => 'b set] => ('a => 'b) set"
+
+consts
+ restrict :: "['a => 'b, 'a set] => ('a => 'b)"
+
+defs
+ restrict_def "restrict f A == (%x. if x : A then f x else (@ y. True))"
+
+syntax
+ "@Pi" :: "[idt, 'a set, 'b set] => ('a => 'b) set" ("(3PI _:_./ _)" 10)
+ "@->" :: "['a set, 'b set] => ('a => 'b) set" ("_ -> _" [91,90]90)
+(* or "->" ... (infixr 60) and at the end print_translation (... op ->) *)
+ "@lam" :: "[idt, 'a set, 'a => 'b] => ('a => 'b)" ("(3lam _:_./ _)" 10)
+(* Could as well take pttrn *)
+
+translations
+ "PI x:A. B" => "Pi A (%x. B)"
+ "A -> B" => "Pi A (_K B)"
+ "lam x:A. f" == "restrict (%x. f) A"
+(* Larry fragen: "lam (x,y): A. f" == "restrict (%(x,y). f) A" *)
+defs
+ Pi_def "Pi A B == {f. ! x. if x:A then f(x) : B(x) else f(x) = (@ y. True)}"
+
+consts
+ Fset_apply :: "[('a => 'b) set, 'a]=> 'b set" ("_ @@ _" [90,91]90)
+
+defs
+ Fset_apply_def "F @@ a == (%f. f a) `` F"
+
+consts
+ compose :: "['a set, 'a => 'b, 'b => 'c] => ('a => 'c)"
+
+defs
+ compose_def "compose A g f == lam x : A. g(f x)"
+
+consts
+ Inv :: "['a set, 'a => 'b] => ('b => 'a)"
+
+defs
+ Inv_def "Inv A f == (% x. (@ y. y : A & f y = x))"
+
+(* new: bijection between Pi_sig and Pi_=> *)
+consts
+ PiBij :: "['a set, 'a => 'b set, 'a => 'b] => ('a * 'b) set"
+
+defs
+ PiBij_def "PiBij A B == lam f: Pi A B. {(x, y). x: A & y = f x}"
+
+consts
+ Graph :: "['a set, 'a => 'b set] => ('a * 'b) set set"
+
+defs
+ Graph_def "Graph A B == {f. f: Pow(Sigma A B) & (! x: A. (?! y. (x, y): f))}"
+
+end
+
+ML
+val print_translation = [("Pi", dependent_tr' ("@Pi", "@->"))];
--- a/src/HOL/ex/ROOT.ML Tue Aug 04 18:24:34 1998 +0200
+++ b/src/HOL/ex/ROOT.ML Tue Aug 04 18:40:18 1998 +0200
@@ -38,5 +38,9 @@
(*Monoids and Groups as predicates over record schemes*)
time_use_thy "MonoidGroup";
+(*Groups via locales*)
+time_use_thy "PiSets";
+time_use_thy "LocaleGroup";
+
writeln "END: Root file for HOL examples";