names of fold_set locales resemble name of characteristic property more closely
authorhaftmann
Fri, 20 May 2011 11:44:16 +0200
changeset 42871 1c0b99f950d9
parent 42869 43b0f61f56d0
child 42872 585c8333b0da
names of fold_set locales resemble name of characteristic property more closely
src/HOL/Big_Operators.thy
src/HOL/Finite_Set.thy
src/HOL/GCD.thy
src/HOL/Library/More_List.thy
src/HOL/Library/More_Set.thy
src/HOL/Library/Multiset.thy
src/HOL/List.thy
src/HOL/Multivariate_Analysis/Integration.thy
--- a/src/HOL/Big_Operators.thy	Fri May 20 08:16:56 2011 +0200
+++ b/src/HOL/Big_Operators.thy	Fri May 20 11:44:16 2011 +0200
@@ -1205,7 +1205,7 @@
 proof qed (rule inf_assoc inf_commute inf_idem)+
 
 lemma fold_inf_insert[simp]: "finite A \<Longrightarrow> fold inf b (insert a A) = inf a (fold inf b A)"
-by(rule fun_left_comm_idem.fold_insert_idem[OF ab_semigroup_idem_mult.fun_left_comm_idem[OF ab_semigroup_idem_mult_inf]])
+by(rule comp_fun_idem.fold_insert_idem[OF ab_semigroup_idem_mult.comp_fun_idem[OF ab_semigroup_idem_mult_inf]])
 
 lemma inf_le_fold_inf: "finite A \<Longrightarrow> ALL a:A. b \<le> a \<Longrightarrow> inf b c \<le> fold inf c A"
 by (induct pred: finite) (auto intro: le_infI1)
--- a/src/HOL/Finite_Set.thy	Fri May 20 08:16:56 2011 +0200
+++ b/src/HOL/Finite_Set.thy	Fri May 20 11:44:16 2011 +0200
@@ -532,13 +532,13 @@
 if @{text f} is ``left-commutative'':
 *}
 
-locale fun_left_comm =
+locale comp_fun_commute =
   fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
-  assumes commute_comp: "f y \<circ> f x = f x \<circ> f y"
+  assumes comp_fun_commute: "f y \<circ> f x = f x \<circ> f y"
 begin
 
 lemma fun_left_comm: "f x (f y z) = f y (f x z)"
-  using commute_comp by (simp add: fun_eq_iff)
+  using comp_fun_commute by (simp add: fun_eq_iff)
 
 end
 
@@ -565,7 +565,7 @@
 
 subsubsection{*From @{const fold_graph} to @{term fold}*}
 
-context fun_left_comm
+context comp_fun_commute
 begin
 
 lemma fold_graph_insertE_aux:
@@ -671,12 +671,12 @@
 
 text{* A simplified version for idempotent functions: *}
 
-locale fun_left_comm_idem = fun_left_comm +
-  assumes fun_comp_idem: "f x o f x = f x"
+locale comp_fun_idem = comp_fun_commute +
+  assumes comp_fun_idem: "f x o f x = f x"
 begin
 
 lemma fun_left_idem: "f x (f x z) = f x z"
-  using fun_comp_idem by (simp add: fun_eq_iff)
+  using comp_fun_idem by (simp add: fun_eq_iff)
 
 lemma fold_insert_idem:
   assumes fin: "finite A"
@@ -700,33 +700,33 @@
 
 subsubsection {* Expressing set operations via @{const fold} *}
 
-lemma (in fun_left_comm) comp_comp_fun_commute:
-  "fun_left_comm (f \<circ> g)"
+lemma (in comp_fun_commute) comp_comp_fun_commute:
+  "comp_fun_commute (f \<circ> g)"
 proof
-qed (simp_all add: commute_comp)
+qed (simp_all add: comp_fun_commute)
 
-lemma (in fun_left_comm_idem) comp_comp_fun_idem:
-  "fun_left_comm_idem (f \<circ> g)"
-  by (rule fun_left_comm_idem.intro, rule comp_comp_fun_commute, unfold_locales)
-    (simp_all add: fun_comp_idem)
+lemma (in comp_fun_idem) comp_comp_fun_idem:
+  "comp_fun_idem (f \<circ> g)"
+  by (rule comp_fun_idem.intro, rule comp_comp_fun_commute, unfold_locales)
+    (simp_all add: comp_fun_idem)
 
-lemma fun_left_comm_idem_insert:
-  "fun_left_comm_idem insert"
+lemma comp_fun_idem_insert:
+  "comp_fun_idem insert"
 proof
 qed auto
 
-lemma fun_left_comm_idem_remove:
-  "fun_left_comm_idem (\<lambda>x A. A - {x})"
+lemma comp_fun_idem_remove:
+  "comp_fun_idem (\<lambda>x A. A - {x})"
 proof
 qed auto
 
-lemma (in semilattice_inf) fun_left_comm_idem_inf:
-  "fun_left_comm_idem inf"
+lemma (in semilattice_inf) comp_fun_idem_inf:
+  "comp_fun_idem inf"
 proof
 qed (auto simp add: inf_left_commute)
 
-lemma (in semilattice_sup) fun_left_comm_idem_sup:
-  "fun_left_comm_idem sup"
+lemma (in semilattice_sup) comp_fun_idem_sup:
+  "comp_fun_idem sup"
 proof
 qed (auto simp add: sup_left_commute)
 
@@ -734,7 +734,7 @@
   assumes "finite A"
   shows "A \<union> B = fold insert B A"
 proof -
-  interpret fun_left_comm_idem insert by (fact fun_left_comm_idem_insert)
+  interpret comp_fun_idem insert by (fact comp_fun_idem_insert)
   from `finite A` show ?thesis by (induct A arbitrary: B) simp_all
 qed
 
@@ -742,7 +742,7 @@
   assumes "finite A"
   shows "B - A = fold (\<lambda>x A. A - {x}) B A"
 proof -
-  interpret fun_left_comm_idem "\<lambda>x A. A - {x}" by (fact fun_left_comm_idem_remove)
+  interpret comp_fun_idem "\<lambda>x A. A - {x}" by (fact comp_fun_idem_remove)
   from `finite A` show ?thesis by (induct A arbitrary: B) auto
 qed
 
@@ -753,7 +753,7 @@
   assumes "finite A"
   shows "inf B (Inf A) = fold inf B A"
 proof -
-  interpret fun_left_comm_idem inf by (fact fun_left_comm_idem_inf)
+  interpret comp_fun_idem inf by (fact comp_fun_idem_inf)
   from `finite A` show ?thesis by (induct A arbitrary: B)
     (simp_all add: Inf_insert inf_commute fold_fun_comm)
 qed
@@ -762,7 +762,7 @@
   assumes "finite A"
   shows "sup B (Sup A) = fold sup B A"
 proof -
-  interpret fun_left_comm_idem sup by (fact fun_left_comm_idem_sup)
+  interpret comp_fun_idem sup by (fact comp_fun_idem_sup)
   from `finite A` show ?thesis by (induct A arbitrary: B)
     (simp_all add: Sup_insert sup_commute fold_fun_comm)
 qed
@@ -781,8 +781,8 @@
   assumes "finite A"
   shows "inf B (INFI A f) = fold (\<lambda>A. inf (f A)) B A" (is "?inf = ?fold") 
 proof (rule sym)
-  interpret fun_left_comm_idem inf by (fact fun_left_comm_idem_inf)
-  interpret fun_left_comm_idem "inf \<circ> f" by (fact comp_comp_fun_idem)
+  interpret comp_fun_idem inf by (fact comp_fun_idem_inf)
+  interpret comp_fun_idem "inf \<circ> f" by (fact comp_comp_fun_idem)
   from `finite A` have "fold (inf \<circ> f) B A = ?inf"
     by (induct A arbitrary: B)
       (simp_all add: INFI_def Inf_insert inf_left_commute)
@@ -793,8 +793,8 @@
   assumes "finite A"
   shows "sup B (SUPR A f) = fold (\<lambda>A. sup (f A)) B A" (is "?sup = ?fold") 
 proof (rule sym)
-  interpret fun_left_comm_idem sup by (fact fun_left_comm_idem_sup)
-  interpret fun_left_comm_idem "sup \<circ> f" by (fact comp_comp_fun_idem)
+  interpret comp_fun_idem sup by (fact comp_fun_idem_sup)
+  interpret comp_fun_idem "sup \<circ> f" by (fact comp_comp_fun_idem)
   from `finite A` have "fold (sup \<circ> f) B A = ?sup"
     by (induct A arbitrary: B)
       (simp_all add: SUPR_def Sup_insert sup_left_commute)
@@ -829,7 +829,7 @@
 assumes "finite A" and "a \<notin> A"
 shows "fold_image times g z (insert a A) = g a * (fold_image times g z A)"
 proof -
-  interpret I: fun_left_comm "%x y. (g x) * y" proof
+  interpret I: comp_fun_commute "%x y. (g x) * y" proof
   qed (simp add: fun_eq_iff mult_ac)
   show ?thesis using assms by (simp add: fold_image_def)
 qed
@@ -1052,14 +1052,14 @@
 context ab_semigroup_mult
 begin
 
-lemma fun_left_comm: "fun_left_comm (op *)" proof
+lemma comp_fun_commute: "comp_fun_commute (op *)" proof
 qed (simp add: fun_eq_iff mult_ac)
 
 lemma fold_graph_insert_swap:
 assumes fold: "fold_graph times (b::'a) A y" and "b \<notin> A"
 shows "fold_graph times z (insert b A) (z * y)"
 proof -
-  interpret fun_left_comm "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule fun_left_comm)
+  interpret comp_fun_commute "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule comp_fun_commute)
 from assms show ?thesis
 proof (induct rule: fold_graph.induct)
   case emptyI show ?case by (subst mult_commute [of z b], fast)
@@ -1099,7 +1099,7 @@
 lemma fold1_eq_fold:
 assumes "finite A" "a \<notin> A" shows "fold1 times (insert a A) = fold times a A"
 proof -
-  interpret fun_left_comm "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule fun_left_comm)
+  interpret comp_fun_commute "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule comp_fun_commute)
   from assms show ?thesis
 apply (simp add: fold1_def fold_def)
 apply (rule the_equality)
@@ -1126,7 +1126,7 @@
   assumes nonempty: "A \<noteq> {}" and A: "finite A" "x \<notin> A"
   shows "fold1 times (insert x A) = x * fold1 times A"
 proof -
-  interpret fun_left_comm "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule fun_left_comm)
+  interpret comp_fun_commute "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule comp_fun_commute)
   from nonempty obtain a A' where "A = insert a A' & a ~: A'"
     by (auto simp add: nonempty_iff)
   with A show ?thesis
@@ -1138,15 +1138,15 @@
 context ab_semigroup_idem_mult
 begin
 
-lemma fun_left_comm_idem: "fun_left_comm_idem (op *)" proof
+lemma comp_fun_idem: "comp_fun_idem (op *)" proof
 qed (simp_all add: fun_eq_iff mult_left_commute)
 
 lemma fold1_insert_idem [simp]:
   assumes nonempty: "A \<noteq> {}" and A: "finite A" 
   shows "fold1 times (insert x A) = x * fold1 times A"
 proof -
-  interpret fun_left_comm_idem "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (rule fun_left_comm_idem)
+  interpret comp_fun_idem "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (rule comp_fun_idem)
   from nonempty obtain a A' where A': "A = insert a A' & a ~: A'"
     by (auto simp add: nonempty_iff)
   show ?thesis
@@ -1191,7 +1191,7 @@
   case False
   with assms show ?thesis by (simp add: fold1_eq_fold)
 next
-  interpret fun_left_comm_idem times by (fact fun_left_comm_idem)
+  interpret comp_fun_idem times by (fact comp_fun_idem)
   case True then obtain b B
     where A: "A = insert a B" and "a \<notin> B" by (rule set_insert)
   with assms have "finite B" by auto
@@ -1315,7 +1315,7 @@
 locale folding =
   fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
   fixes F :: "'a set \<Rightarrow> 'b \<Rightarrow> 'b"
-  assumes commute_comp: "f y \<circ> f x = f x \<circ> f y"
+  assumes comp_fun_commute: "f y \<circ> f x = f x \<circ> f y"
   assumes eq_fold: "finite A \<Longrightarrow> F A s = fold f s A"
 begin
 
@@ -1327,8 +1327,8 @@
   assumes "finite A" and "x \<notin> A"
   shows "F (insert x A) = F A \<circ> f x"
 proof -
-  interpret fun_left_comm f proof
-  qed (insert commute_comp, simp add: fun_eq_iff)
+  interpret comp_fun_commute f proof
+  qed (insert comp_fun_commute, simp add: fun_eq_iff)
   from fold_insert2 assms
   have "\<And>s. fold f s (insert x A) = fold f (f x s) A" .
   with `finite A` show ?thesis by (simp add: eq_fold fun_eq_iff)
@@ -1351,38 +1351,38 @@
 
 lemma commute_left_comp:
   "f y \<circ> (f x \<circ> g) = f x \<circ> (f y \<circ> g)"
-  by (simp add: o_assoc commute_comp)
+  by (simp add: o_assoc comp_fun_commute)
 
-lemma commute_comp':
+lemma comp_fun_commute':
   assumes "finite A"
   shows "f x \<circ> F A = F A \<circ> f x"
   using assms by (induct A)
-    (simp, simp del: o_apply add: o_assoc, simp del: o_apply add: o_assoc [symmetric] commute_comp)
+    (simp, simp del: o_apply add: o_assoc, simp del: o_apply add: o_assoc [symmetric] comp_fun_commute)
 
 lemma commute_left_comp':
   assumes "finite A"
   shows "f x \<circ> (F A \<circ> g) = F A \<circ> (f x \<circ> g)"
-  using assms by (simp add: o_assoc commute_comp')
+  using assms by (simp add: o_assoc comp_fun_commute')
 
-lemma commute_comp'':
+lemma comp_fun_commute'':
   assumes "finite A" and "finite B"
   shows "F B \<circ> F A = F A \<circ> F B"
   using assms by (induct A)
-    (simp_all add: o_assoc, simp add: o_assoc [symmetric] commute_comp')
+    (simp_all add: o_assoc, simp add: o_assoc [symmetric] comp_fun_commute')
 
 lemma commute_left_comp'':
   assumes "finite A" and "finite B"
   shows "F B \<circ> (F A \<circ> g) = F A \<circ> (F B \<circ> g)"
-  using assms by (simp add: o_assoc commute_comp'')
+  using assms by (simp add: o_assoc comp_fun_commute'')
 
-lemmas commute_comps = o_assoc [symmetric] commute_comp commute_left_comp
-  commute_comp' commute_left_comp' commute_comp'' commute_left_comp''
+lemmas comp_fun_commutes = o_assoc [symmetric] comp_fun_commute commute_left_comp
+  comp_fun_commute' commute_left_comp' comp_fun_commute'' commute_left_comp''
 
 lemma union_inter:
   assumes "finite A" and "finite B"
   shows "F (A \<union> B) \<circ> F (A \<inter> B) = F A \<circ> F B"
   using assms by (induct A)
-    (simp_all del: o_apply add: insert_absorb Int_insert_left commute_comps,
+    (simp_all del: o_apply add: insert_absorb Int_insert_left comp_fun_commutes,
       simp add: o_assoc)
 
 lemma union:
@@ -1411,7 +1411,7 @@
   assumes "finite A" and "x \<in> A"
   shows "F A \<circ> f x = F A"
 using assms by (induct A)
-  (auto simp add: commute_comps idem_comp, simp add: commute_left_comp' [symmetric] commute_comp')
+  (auto simp add: comp_fun_commutes idem_comp, simp add: commute_left_comp' [symmetric] comp_fun_commute')
 
 lemma subset_comp_idem:
   assumes "finite A" and "B \<subseteq> A"
@@ -1460,7 +1460,7 @@
   assumes "finite A" and "x \<notin> A"
   shows "F (insert x A) = g x * F A"
 proof -
-  interpret fun_left_comm "%x y. (g x) * y" proof
+  interpret comp_fun_commute "%x y. (g x) * y" proof
   qed (simp add: ac_simps fun_eq_iff)
   with assms have "fold_image (op *) g 1 (insert x A) = g x * fold_image (op *) g 1 A"
     by (simp add: fold_image_def)
@@ -1697,8 +1697,8 @@
   with `finite A` have "finite B" by simp
   interpret fold: folding "op *" "\<lambda>a b. fold (op *) b a" proof
   qed (simp_all add: fun_eq_iff ac_simps)
-  thm fold.commute_comp' [of B b, simplified fun_eq_iff, simplified]
-  from `finite B` fold.commute_comp' [of B x]
+  thm fold.comp_fun_commute' [of B b, simplified fun_eq_iff, simplified]
+  from `finite B` fold.comp_fun_commute' [of B x]
     have "op * x \<circ> (\<lambda>b. fold op * b B) = (\<lambda>b. fold op * b B) \<circ> op * x" by simp
   then have A: "x * fold op * b B = fold op * (b * x) B" by (simp add: fun_eq_iff commute)
   from `finite B` * fold.insert [of B b]
--- a/src/HOL/GCD.thy	Fri May 20 08:16:56 2011 +0200
+++ b/src/HOL/GCD.thy	Fri May 20 11:44:16 2011 +0200
@@ -1436,16 +1436,16 @@
 lemma lcm_proj2_iff_int[simp]: "lcm m n = abs(n::int) \<longleftrightarrow> m dvd n"
 by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int)
 
-lemma fun_left_comm_idem_gcd_nat: "fun_left_comm_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)"
+lemma comp_fun_idem_gcd_nat: "comp_fun_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)"
 proof qed (auto simp add: gcd_ac_nat)
 
-lemma fun_left_comm_idem_gcd_int: "fun_left_comm_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)"
+lemma comp_fun_idem_gcd_int: "comp_fun_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)"
 proof qed (auto simp add: gcd_ac_int)
 
-lemma fun_left_comm_idem_lcm_nat: "fun_left_comm_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)"
+lemma comp_fun_idem_lcm_nat: "comp_fun_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)"
 proof qed (auto simp add: lcm_ac_nat)
 
-lemma fun_left_comm_idem_lcm_int: "fun_left_comm_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)"
+lemma comp_fun_idem_lcm_int: "comp_fun_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)"
 proof qed (auto simp add: lcm_ac_int)
 
 
@@ -1516,8 +1516,8 @@
   assumes "finite N"
   shows "Lcm (insert (n::nat) N) = lcm n (Lcm N)"
 proof -
-  interpret fun_left_comm_idem "lcm::nat\<Rightarrow>nat\<Rightarrow>nat"
-    by (rule fun_left_comm_idem_lcm_nat)
+  interpret comp_fun_idem "lcm::nat\<Rightarrow>nat\<Rightarrow>nat"
+    by (rule comp_fun_idem_lcm_nat)
   from assms show ?thesis by(simp add: Lcm_def)
 qed
 
@@ -1525,8 +1525,8 @@
   assumes "finite N"
   shows "Lcm (insert (n::int) N) = lcm n (Lcm N)"
 proof -
-  interpret fun_left_comm_idem "lcm::int\<Rightarrow>int\<Rightarrow>int"
-    by (rule fun_left_comm_idem_lcm_int)
+  interpret comp_fun_idem "lcm::int\<Rightarrow>int\<Rightarrow>int"
+    by (rule comp_fun_idem_lcm_int)
   from assms show ?thesis by(simp add: Lcm_def)
 qed
 
@@ -1534,8 +1534,8 @@
   assumes "finite N"
   shows "Gcd (insert (n::nat) N) = gcd n (Gcd N)"
 proof -
-  interpret fun_left_comm_idem "gcd::nat\<Rightarrow>nat\<Rightarrow>nat"
-    by (rule fun_left_comm_idem_gcd_nat)
+  interpret comp_fun_idem "gcd::nat\<Rightarrow>nat\<Rightarrow>nat"
+    by (rule comp_fun_idem_gcd_nat)
   from assms show ?thesis by(simp add: Gcd_def)
 qed
 
@@ -1543,8 +1543,8 @@
   assumes "finite N"
   shows "Gcd (insert (n::int) N) = gcd n (Gcd N)"
 proof -
-  interpret fun_left_comm_idem "gcd::int\<Rightarrow>int\<Rightarrow>int"
-    by (rule fun_left_comm_idem_gcd_int)
+  interpret comp_fun_idem "gcd::int\<Rightarrow>int\<Rightarrow>int"
+    by (rule comp_fun_idem_gcd_int)
   from assms show ?thesis by(simp add: Gcd_def)
 qed
 
@@ -1685,28 +1685,28 @@
 lemma Lcm_set_nat [code_unfold]:
   "Lcm (set ns) = foldl lcm (1::nat) ns"
 proof -
-  interpret fun_left_comm_idem "lcm::nat\<Rightarrow>nat\<Rightarrow>nat" by (rule fun_left_comm_idem_lcm_nat)
+  interpret comp_fun_idem "lcm::nat\<Rightarrow>nat\<Rightarrow>nat" by (rule comp_fun_idem_lcm_nat)
   show ?thesis by(simp add: Lcm_def fold_set lcm_commute_nat)
 qed
 
 lemma Lcm_set_int [code_unfold]:
   "Lcm (set is) = foldl lcm (1::int) is"
 proof -
-  interpret fun_left_comm_idem "lcm::int\<Rightarrow>int\<Rightarrow>int" by (rule fun_left_comm_idem_lcm_int)
+  interpret comp_fun_idem "lcm::int\<Rightarrow>int\<Rightarrow>int" by (rule comp_fun_idem_lcm_int)
   show ?thesis by(simp add: Lcm_def fold_set lcm_commute_int)
 qed
 
 lemma Gcd_set_nat [code_unfold]:
   "Gcd (set ns) = foldl gcd (0::nat) ns"
 proof -
-  interpret fun_left_comm_idem "gcd::nat\<Rightarrow>nat\<Rightarrow>nat" by (rule fun_left_comm_idem_gcd_nat)
+  interpret comp_fun_idem "gcd::nat\<Rightarrow>nat\<Rightarrow>nat" by (rule comp_fun_idem_gcd_nat)
   show ?thesis by(simp add: Gcd_def fold_set gcd_commute_nat)
 qed
 
 lemma Gcd_set_int [code_unfold]:
   "Gcd (set ns) = foldl gcd (0::int) ns"
 proof -
-  interpret fun_left_comm_idem "gcd::int\<Rightarrow>int\<Rightarrow>int" by (rule fun_left_comm_idem_gcd_int)
+  interpret comp_fun_idem "gcd::int\<Rightarrow>int\<Rightarrow>int" by (rule comp_fun_idem_gcd_int)
   show ?thesis by(simp add: Gcd_def fold_set gcd_commute_int)
 qed
 
--- a/src/HOL/Library/More_List.thy	Fri May 20 08:16:56 2011 +0200
+++ b/src/HOL/Library/More_List.thy	Fri May 20 11:44:16 2011 +0200
@@ -158,11 +158,11 @@
 
 text {* @{const Finite_Set.fold} and @{const fold} *}
 
-lemma (in fun_left_comm) fold_set_remdups:
+lemma (in comp_fun_commute) fold_set_remdups:
   "Finite_Set.fold f y (set xs) = fold f (remdups xs) y"
   by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm insert_absorb)
 
-lemma (in fun_left_comm_idem) fold_set:
+lemma (in comp_fun_idem) fold_set:
   "Finite_Set.fold f y (set xs) = fold f xs y"
   by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm)
 
@@ -170,7 +170,7 @@
   assumes "xs \<noteq> []"
   shows "Finite_Set.fold1 times (set xs) = fold times (tl xs) (hd xs)"
 proof -
-  interpret fun_left_comm_idem times by (fact fun_left_comm_idem)
+  interpret comp_fun_idem times by (fact comp_fun_idem)
   from assms obtain y ys where xs: "xs = y # ys"
     by (cases xs) auto
   show ?thesis
@@ -239,8 +239,8 @@
 lemma (in complete_lattice) Inf_set_fold:
   "Inf (set xs) = fold inf xs top"
 proof -
-  interpret fun_left_comm_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact fun_left_comm_idem_inf)
+  interpret comp_fun_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact comp_fun_idem_inf)
   show ?thesis by (simp add: Inf_fold_inf fold_set inf_commute)
 qed
 
@@ -251,8 +251,8 @@
 lemma (in complete_lattice) Sup_set_fold:
   "Sup (set xs) = fold sup xs bot"
 proof -
-  interpret fun_left_comm_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact fun_left_comm_idem_sup)
+  interpret comp_fun_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact comp_fun_idem_sup)
   show ?thesis by (simp add: Sup_fold_sup fold_set sup_commute)
 qed
 
--- a/src/HOL/Library/More_Set.thy	Fri May 20 08:16:56 2011 +0200
+++ b/src/HOL/Library/More_Set.thy	Fri May 20 11:44:16 2011 +0200
@@ -15,11 +15,11 @@
 definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
   "remove x A = A - {x}"
 
-lemma fun_left_comm_idem_remove:
-  "fun_left_comm_idem remove"
+lemma comp_fun_idem_remove:
+  "comp_fun_idem remove"
 proof -
   have rem: "remove = (\<lambda>x A. A - {x})" by (simp add: fun_eq_iff remove_def)
-  show ?thesis by (simp only: fun_left_comm_idem_remove rem)
+  show ?thesis by (simp only: comp_fun_idem_remove rem)
 qed
 
 lemma minus_fold_remove:
@@ -66,8 +66,8 @@
 lemma union_set:
   "set xs \<union> A = fold Set.insert xs A"
 proof -
-  interpret fun_left_comm_idem Set.insert
-    by (fact fun_left_comm_idem_insert)
+  interpret comp_fun_idem Set.insert
+    by (fact comp_fun_idem_insert)
   show ?thesis by (simp add: union_fold_insert fold_set)
 qed
 
@@ -82,8 +82,8 @@
 lemma minus_set:
   "A - set xs = fold remove xs A"
 proof -
-  interpret fun_left_comm_idem remove
-    by (fact fun_left_comm_idem_remove)
+  interpret comp_fun_idem remove
+    by (fact comp_fun_idem_remove)
   show ?thesis
     by (simp add: minus_fold_remove [of _ A] fold_set)
 qed
--- a/src/HOL/Library/Multiset.thy	Fri May 20 08:16:56 2011 +0200
+++ b/src/HOL/Library/Multiset.thy	Fri May 20 11:44:16 2011 +0200
@@ -1457,7 +1457,7 @@
 lemma fold_mset_empty[simp]: "fold_mset f z {#} = z"
 unfolding fold_mset_def by blast
 
-context fun_left_comm
+context comp_fun_commute
 begin
 
 lemma fold_msetG_determ:
@@ -1563,10 +1563,10 @@
 qed
 
 lemma fold_mset_fusion:
-  assumes "fun_left_comm g"
+  assumes "comp_fun_commute g"
   shows "(\<And>x y. h (g x y) = f x (h y)) \<Longrightarrow> h (fold_mset g w A) = fold_mset f (h w) A" (is "PROP ?P")
 proof -
-  interpret fun_left_comm g by (fact assms)
+  interpret comp_fun_commute g by (fact assms)
   show "PROP ?P" by (induct A) auto
 qed
 
@@ -1598,7 +1598,7 @@
 definition image_mset :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a multiset \<Rightarrow> 'b multiset" where
   "image_mset f = fold_mset (op + o single o f) {#}"
 
-interpretation image_left_comm: fun_left_comm "op + o single o f"
+interpretation image_fun_commute: comp_fun_commute "op + o single o f"
 proof qed (simp add: add_ac fun_eq_iff)
 
 lemma image_mset_empty [simp]: "image_mset f {#} = {#}"
--- a/src/HOL/List.thy	Fri May 20 08:16:56 2011 +0200
+++ b/src/HOL/List.thy	Fri May 20 11:44:16 2011 +0200
@@ -2478,11 +2478,11 @@
 
 text {* @{const Finite_Set.fold} and @{const foldl} *}
 
-lemma (in fun_left_comm) fold_set_remdups:
+lemma (in comp_fun_commute) fold_set_remdups:
   "fold f y (set xs) = foldl (\<lambda>y x. f x y) y (remdups xs)"
   by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm insert_absorb)
 
-lemma (in fun_left_comm_idem) fold_set:
+lemma (in comp_fun_idem) fold_set:
   "fold f y (set xs) = foldl (\<lambda>y x. f x y) y xs"
   by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_comm)
 
@@ -2490,7 +2490,7 @@
   assumes "xs \<noteq> []"
   shows "fold1 times (set xs) = foldl times (hd xs) (tl xs)"
 proof -
-  interpret fun_left_comm_idem times by (fact fun_left_comm_idem)
+  interpret comp_fun_idem times by (fact comp_fun_idem)
   from assms obtain y ys where xs: "xs = y # ys"
     by (cases xs) auto
   show ?thesis
@@ -2543,16 +2543,16 @@
 lemma (in complete_lattice) Inf_set_fold [code_unfold]:
   "Inf (set xs) = foldl inf top xs"
 proof -
-  interpret fun_left_comm_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact fun_left_comm_idem_inf)
+  interpret comp_fun_idem "inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact comp_fun_idem_inf)
   show ?thesis by (simp add: Inf_fold_inf fold_set inf_commute)
 qed
 
 lemma (in complete_lattice) Sup_set_fold [code_unfold]:
   "Sup (set xs) = foldl sup bot xs"
 proof -
-  interpret fun_left_comm_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
-    by (fact fun_left_comm_idem_sup)
+  interpret comp_fun_idem "sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a"
+    by (fact comp_fun_idem_sup)
   show ?thesis by (simp add: Sup_fold_sup fold_set sup_commute)
 qed
 
@@ -3762,8 +3762,8 @@
   "insort x (insort y xs) = insort y (insort x xs)"
   by (cases "x = y") (auto intro: insort_key_left_comm)
 
-lemma fun_left_comm_insort:
-  "fun_left_comm insort"
+lemma comp_fun_commute_insort:
+  "comp_fun_commute insort"
 proof
 qed (simp add: insort_left_comm fun_eq_iff)
 
@@ -4249,7 +4249,7 @@
   assumes "finite A"
   shows "sorted_list_of_set (insert x A) = insort x (sorted_list_of_set (A - {x}))"
 proof -
-  interpret fun_left_comm insort by (fact fun_left_comm_insort)
+  interpret comp_fun_commute insort by (fact comp_fun_commute_insort)
   with assms show ?thesis by (simp add: sorted_list_of_set_def fold_insert_remove)
 qed
 
@@ -4261,7 +4261,7 @@
 lemma sorted_list_of_set_sort_remdups:
   "sorted_list_of_set (set xs) = sort (remdups xs)"
 proof -
-  interpret fun_left_comm insort by (fact fun_left_comm_insort)
+  interpret comp_fun_commute insort by (fact comp_fun_commute_insort)
   show ?thesis by (simp add: sort_foldl_insort sorted_list_of_set_def fold_set_remdups)
 qed
 
--- a/src/HOL/Multivariate_Analysis/Integration.thy	Fri May 20 08:16:56 2011 +0200
+++ b/src/HOL/Multivariate_Analysis/Integration.thy	Fri May 20 11:44:16 2011 +0200
@@ -1826,8 +1826,8 @@
 lemma support_subset[intro]:"support opp f s \<subseteq> s" unfolding support_def by auto
 lemma support_empty[simp]:"support opp f {} = {}" using support_subset[of opp f "{}"] by auto
 
-lemma fun_left_comm_monoidal[intro]: assumes "monoidal opp" shows "fun_left_comm opp"
-  unfolding fun_left_comm_def using monoidal_ac[OF assms] by auto
+lemma comp_fun_commute_monoidal[intro]: assumes "monoidal opp" shows "comp_fun_commute opp"
+  unfolding comp_fun_commute_def using monoidal_ac[OF assms] by auto
 
 lemma support_clauses:
   "\<And>f g s. support opp f {} = {}"
@@ -1850,12 +1850,12 @@
 proof(cases "x\<in>s") case True hence *:"insert x s = s" by auto
   show ?thesis unfolding iterate_def if_P[OF True] * by auto
 next case False note x=this
-  note * = fun_left_comm.comp_comp_fun_commute [OF fun_left_comm_monoidal[OF assms(1)]]
+  note * = comp_fun_commute.comp_comp_fun_commute [OF comp_fun_commute_monoidal[OF assms(1)]]
   show ?thesis proof(cases "f x = neutral opp")
     case True show ?thesis unfolding iterate_def if_not_P[OF x] support_clauses if_P[OF True]
       unfolding True monoidal_simps[OF assms(1)] by auto
   next case False show ?thesis unfolding iterate_def fold'_def  if_not_P[OF x] support_clauses if_not_P[OF False]
-      apply(subst fun_left_comm.fold_insert[OF * finite_support, simplified comp_def])
+      apply(subst comp_fun_commute.fold_insert[OF * finite_support, simplified comp_def])
       using `finite s` unfolding support_def using False x by auto qed qed 
 
 lemma iterate_some: