elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
authorhaftmann
Wed, 19 Mar 2014 18:47:22 +0100
changeset 56218 1c3f1f2431f9
parent 56217 dc429a5b13c4
child 56219 bf80d125406b
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
NEWS
src/HOL/Complete_Lattices.thy
src/HOL/Conditionally_Complete_Lattices.thy
src/HOL/Finite_Set.thy
src/HOL/GCD.thy
src/HOL/Library/Extended_Real.thy
src/HOL/Library/Kleene_Algebra.thy
src/HOL/Library/Liminf_Limsup.thy
src/HOL/Library/Product_Order.thy
src/HOL/Library/RBT_Set.thy
src/HOL/Lifting_Set.thy
src/HOL/List.thy
src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy
src/HOL/Multivariate_Analysis/Integration.thy
src/HOL/Predicate.thy
src/HOL/Probability/Lebesgue_Integration.thy
src/HOL/Probability/Lebesgue_Measure.thy
src/HOL/Product_Type.thy
src/HOL/Relation.thy
src/HOL/Tools/BNF/bnf_util.ML
src/HOL/Wellfounded.thy
--- a/NEWS	Wed Mar 19 17:06:02 2014 +0000
+++ b/NEWS	Wed Mar 19 18:47:22 2014 +0100
@@ -98,6 +98,9 @@
 
 *** HOL ***
 
+* Elongated constants INFI and SUPR to INFIMUM and SUPREMUM.
+INCOMPATIBILITY.
+
 * Consolidated theorem names containing INFI and SUPR: have INF
 and SUP instead uniformly.  INCOMPATIBILITY.
 
--- a/src/HOL/Complete_Lattices.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Complete_Lattices.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -17,27 +17,27 @@
   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 begin
 
-definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
-  INF_def: "INFI A f = \<Sqinter>(f ` A)"
+definition INFIMUM :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
+  INF_def: "INFIMUM A f = \<Sqinter>(f ` A)"
 
 lemma Inf_image_eq [simp]:
-  "\<Sqinter>(f ` A) = INFI A f"
+  "\<Sqinter>(f ` A) = INFIMUM A f"
   by (simp add: INF_def)
 
 lemma INF_image [simp]:
-  "INFI (f ` A) g = INFI A (g \<circ> f)"
+  "INFIMUM (f ` A) g = INFIMUM A (g \<circ> f)"
   by (simp only: INF_def image_comp)
 
 lemma INF_identity_eq [simp]:
-  "INFI A (\<lambda>x. x) = \<Sqinter>A"
+  "INFIMUM A (\<lambda>x. x) = \<Sqinter>A"
   by (simp add: INF_def)
 
 lemma INF_id_eq [simp]:
-  "INFI A id = \<Sqinter>A"
+  "INFIMUM A id = \<Sqinter>A"
   by (simp add: id_def)
 
 lemma INF_cong:
-  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> INFI A C = INFI B D"
+  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> INFIMUM A C = INFIMUM B D"
   by (simp add: INF_def image_def)
 
 end
@@ -46,33 +46,33 @@
   fixes Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 begin
 
-definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
-  SUP_def: "SUPR A f = \<Squnion>(f ` A)"
+definition SUPREMUM :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
+  SUP_def: "SUPREMUM A f = \<Squnion>(f ` A)"
 
 lemma Sup_image_eq [simp]:
-  "\<Squnion>(f ` A) = SUPR A f"
+  "\<Squnion>(f ` A) = SUPREMUM A f"
   by (simp add: SUP_def)
 
 lemma SUP_image [simp]:
-  "SUPR (f ` A) g = SUPR A (g \<circ> f)"
+  "SUPREMUM (f ` A) g = SUPREMUM A (g \<circ> f)"
   by (simp only: SUP_def image_comp)
 
 lemma SUP_identity_eq [simp]:
-  "SUPR A (\<lambda>x. x) = \<Squnion>A"
+  "SUPREMUM A (\<lambda>x. x) = \<Squnion>A"
   by (simp add: SUP_def)
 
 lemma SUP_id_eq [simp]:
-  "SUPR A id = \<Squnion>A"
+  "SUPREMUM A id = \<Squnion>A"
   by (simp add: id_def)
 
 lemma SUP_cong:
-  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> SUPR A C = SUPR B D"
+  "A = B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> C x = D x) \<Longrightarrow> SUPREMUM A C = SUPREMUM B D"
   by (simp add: SUP_def image_def)
 
 end
 
 text {*
-  Note: must use names @{const INFI} and @{const SUPR} here instead of
+  Note: must use names @{const INFIMUM} and @{const SUPREMUM} here instead of
   @{text INF} and @{text SUP} to allow the following syntax coexist
   with the plain constant names.
 *}
@@ -91,17 +91,17 @@
 
 translations
   "INF x y. B"   == "INF x. INF y. B"
-  "INF x. B"     == "CONST INFI CONST UNIV (%x. B)"
+  "INF x. B"     == "CONST INFIMUM CONST UNIV (%x. B)"
   "INF x. B"     == "INF x:CONST UNIV. B"
-  "INF x:A. B"   == "CONST INFI A (%x. B)"
+  "INF x:A. B"   == "CONST INFIMUM A (%x. B)"
   "SUP x y. B"   == "SUP x. SUP y. B"
-  "SUP x. B"     == "CONST SUPR CONST UNIV (%x. B)"
+  "SUP x. B"     == "CONST SUPREMUM CONST UNIV (%x. B)"
   "SUP x. B"     == "SUP x:CONST UNIV. B"
-  "SUP x:A. B"   == "CONST SUPR A (%x. B)"
+  "SUP x:A. B"   == "CONST SUPREMUM A (%x. B)"
 
 print_translation {*
-  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
-    Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
+  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFIMUM} @{syntax_const "_INF"},
+    Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPREMUM} @{syntax_const "_SUP"}]
 *} -- {* to avoid eta-contraction of body *}
 
 subsection {* Abstract complete lattices *}
@@ -139,11 +139,11 @@
 begin
 
 lemma INF_foundation_dual:
-  "Sup.SUPR Inf = INFI"
+  "Sup.SUPREMUM Inf = INFIMUM"
   by (simp add: fun_eq_iff Sup.SUP_def)
 
 lemma SUP_foundation_dual:
-  "Inf.INFI Sup = SUPR"
+  "Inf.INFIMUM Sup = SUPREMUM"
   by (simp add: fun_eq_iff Inf.INF_def)
 
 lemma Sup_eqI:
@@ -201,13 +201,13 @@
 lemma Inf_insert [simp]: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A"
   by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower)
 
-lemma INF_insert [simp]: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFI A f"
+lemma INF_insert [simp]: "(\<Sqinter>x\<in>insert a A. f x) = f a \<sqinter> INFIMUM A f"
   unfolding INF_def Inf_insert by simp
 
 lemma Sup_insert [simp]: "\<Squnion>insert a A = a \<squnion> \<Squnion>A"
   by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper)
 
-lemma SUP_insert [simp]: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPR A f"
+lemma SUP_insert [simp]: "(\<Squnion>x\<in>insert a A. f x) = f a \<squnion> SUPREMUM A f"
   unfolding SUP_def Sup_insert by simp
 
 lemma INF_empty [simp]: "(\<Sqinter>x\<in>{}. f x) = \<top>"
@@ -444,23 +444,23 @@
 lemma Inf_le_Sup: "A \<noteq> {} \<Longrightarrow> Inf A \<le> Sup A"
   by (blast intro: Sup_upper2 Inf_lower ex_in_conv)
 
-lemma INF_le_SUP: "A \<noteq> {} \<Longrightarrow> INFI A f \<le> SUPR A f"
+lemma INF_le_SUP: "A \<noteq> {} \<Longrightarrow> INFIMUM A f \<le> SUPREMUM A f"
   using Inf_le_Sup [of "f ` A"] by simp
 
 lemma SUP_eq_const:
-  "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> SUPR I f = x"
+  "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> SUPREMUM I f = x"
   by (auto intro: SUP_eqI)
 
 lemma INF_eq_const:
-  "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> INFI I f = x"
+  "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i = x) \<Longrightarrow> INFIMUM I f = x"
   by (auto intro: INF_eqI)
 
 lemma SUP_eq_iff:
-  "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> c \<le> f i) \<Longrightarrow> (SUPR I f = c) \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
+  "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> c \<le> f i) \<Longrightarrow> (SUPREMUM I f = c) \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
   using SUP_eq_const[of I f c] SUP_upper[of _ I f] by (auto intro: antisym)
 
 lemma INF_eq_iff:
-  "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<le> c) \<Longrightarrow> (INFI I f = c) \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
+  "I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<le> c) \<Longrightarrow> (INFIMUM I f = c) \<longleftrightarrow> (\<forall>i\<in>I. f i = c)"
   using INF_eq_const[of I f c] INF_lower[of _ I f] by (auto intro: antisym)
 
 end
@@ -645,7 +645,7 @@
 qed (auto elim!: allE[of _ "\<Sqinter>A"] simp add: not_le[symmetric] Inf_lower)
 
 lemma INF_le_iff:
-  "INFI A f \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>i\<in>A. y > f i)"
+  "INFIMUM A f \<le> x \<longleftrightarrow> (\<forall>y>x. \<exists>i\<in>A. y > f i)"
   using Inf_le_iff [of "f ` A"] by simp
 
 lemma le_Sup_iff: "x \<le> \<Squnion>A \<longleftrightarrow> (\<forall>y<x. \<exists>a\<in>A. y < a)"
@@ -656,7 +656,7 @@
     unfolding less_Sup_iff .
 qed (auto elim!: allE[of _ "\<Squnion>A"] simp add: not_le[symmetric] Sup_upper)
 
-lemma le_SUP_iff: "x \<le> SUPR A f \<longleftrightarrow> (\<forall>y<x. \<exists>i\<in>A. y < f i)"
+lemma le_SUP_iff: "x \<le> SUPREMUM A f \<longleftrightarrow> (\<forall>y<x. \<exists>i\<in>A. y < f i)"
   using le_Sup_iff [of _ "f ` A"] by simp
 
 subclass complete_distrib_lattice
@@ -696,11 +696,11 @@
   by auto
 
 lemma INF_bool_eq [simp]:
-  "INFI = Ball"
+  "INFIMUM = Ball"
   by (simp add: fun_eq_iff INF_def)
 
 lemma SUP_bool_eq [simp]:
-  "SUPR = Bex"
+  "SUPREMUM = Bex"
   by (simp add: fun_eq_iff SUP_def)
 
 instance bool :: complete_boolean_algebra proof
@@ -887,7 +887,7 @@
 subsubsection {* Intersections of families *}
 
 abbreviation INTER :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
-  "INTER \<equiv> INFI"
+  "INTER \<equiv> INFIMUM"
 
 text {*
   Note: must use name @{const INTER} here instead of @{text INT}
@@ -1067,7 +1067,7 @@
 subsubsection {* Unions of families *}
 
 abbreviation UNION :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
-  "UNION \<equiv> SUPR"
+  "UNION \<equiv> SUPREMUM"
 
 text {*
   Note: must use name @{const UNION} here instead of @{text UN}
--- a/src/HOL/Conditionally_Complete_Lattices.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Conditionally_Complete_Lattices.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -274,22 +274,22 @@
 lemma cInf_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Inf {y..x} = y"
   by (auto intro!: cInf_eq_minimum)
 
-lemma cINF_lower: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> INFI A f \<le> f x"
+lemma cINF_lower: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> INFIMUM A f \<le> f x"
   using cInf_lower [of _ "f ` A"] by simp
 
-lemma cINF_greatest: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> m \<le> f x) \<Longrightarrow> m \<le> INFI A f"
+lemma cINF_greatest: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> m \<le> f x) \<Longrightarrow> m \<le> INFIMUM A f"
   using cInf_greatest [of "f ` A"] by auto
 
-lemma cSUP_upper: "x \<in> A \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> f x \<le> SUPR A f"
+lemma cSUP_upper: "x \<in> A \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> f x \<le> SUPREMUM A f"
   using cSup_upper [of _ "f ` A"] by simp
 
-lemma cSUP_least: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<le> M) \<Longrightarrow> SUPR A f \<le> M"
+lemma cSUP_least: "A \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<le> M) \<Longrightarrow> SUPREMUM A f \<le> M"
   using cSup_least [of "f ` A"] by auto
 
-lemma cINF_lower2: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<le> u \<Longrightarrow> INFI A f \<le> u"
+lemma cINF_lower2: "bdd_below (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<le> u \<Longrightarrow> INFIMUM A f \<le> u"
   by (auto intro: cINF_lower assms order_trans)
 
-lemma cSUP_upper2: "bdd_above (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> u \<le> f x \<Longrightarrow> u \<le> SUPR A f"
+lemma cSUP_upper2: "bdd_above (f ` A) \<Longrightarrow> x \<in> A \<Longrightarrow> u \<le> f x \<Longrightarrow> u \<le> SUPREMUM A f"
   by (auto intro: cSUP_upper assms order_trans)
 
 lemma cSUP_const: "A \<noteq> {} \<Longrightarrow> (SUP x:A. c) = c"
@@ -298,10 +298,10 @@
 lemma cINF_const: "A \<noteq> {} \<Longrightarrow> (INF x:A. c) = c"
   by (intro antisym cINF_greatest) (auto intro: cINF_lower)
 
-lemma le_cINF_iff: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> u \<le> INFI A f \<longleftrightarrow> (\<forall>x\<in>A. u \<le> f x)"
+lemma le_cINF_iff: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> u \<le> INFIMUM A f \<longleftrightarrow> (\<forall>x\<in>A. u \<le> f x)"
   by (metis cINF_greatest cINF_lower assms order_trans)
 
-lemma cSUP_le_iff: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPR A f \<le> u \<longleftrightarrow> (\<forall>x\<in>A. f x \<le> u)"
+lemma cSUP_le_iff: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPREMUM A f \<le> u \<longleftrightarrow> (\<forall>x\<in>A. f x \<le> u)"
   by (metis cSUP_least cSUP_upper assms order_trans)
 
 lemma less_cINF_D: "bdd_below (f`A) \<Longrightarrow> y < (INF i:A. f i) \<Longrightarrow> i \<in> A \<Longrightarrow> y < f i"
@@ -310,22 +310,22 @@
 lemma cSUP_lessD: "bdd_above (f`A) \<Longrightarrow> (SUP i:A. f i) < y \<Longrightarrow> i \<in> A \<Longrightarrow> f i < y"
   by (metis cSUP_upper le_less_trans)
 
-lemma cINF_insert: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> INFI (insert a A) f = inf (f a) (INFI A f)"
+lemma cINF_insert: "A \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> INFIMUM (insert a A) f = inf (f a) (INFIMUM A f)"
   by (metis cInf_insert Inf_image_eq image_insert image_is_empty)
 
-lemma cSUP_insert: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPR (insert a A) f = sup (f a) (SUPR A f)"
+lemma cSUP_insert: "A \<noteq> {} \<Longrightarrow> bdd_above (f ` A) \<Longrightarrow> SUPREMUM (insert a A) f = sup (f a) (SUPREMUM A f)"
   by (metis cSup_insert Sup_image_eq image_insert image_is_empty)
 
-lemma cINF_mono: "B \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> (\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> INFI A f \<le> INFI B g"
+lemma cINF_mono: "B \<noteq> {} \<Longrightarrow> bdd_below (f ` A) \<Longrightarrow> (\<And>m. m \<in> B \<Longrightarrow> \<exists>n\<in>A. f n \<le> g m) \<Longrightarrow> INFIMUM A f \<le> INFIMUM B g"
   using cInf_mono [of "g ` B" "f ` A"] by auto
 
-lemma cSUP_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> (\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> SUPR A f \<le> SUPR B g"
+lemma cSUP_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> (\<And>n. n \<in> A \<Longrightarrow> \<exists>m\<in>B. f n \<le> g m) \<Longrightarrow> SUPREMUM A f \<le> SUPREMUM B g"
   using cSup_mono [of "f ` A" "g ` B"] by auto
 
-lemma cINF_superset_mono: "A \<noteq> {} \<Longrightarrow> bdd_below (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> g x \<le> f x) \<Longrightarrow> INFI B g \<le> INFI A f"
+lemma cINF_superset_mono: "A \<noteq> {} \<Longrightarrow> bdd_below (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> g x \<le> f x) \<Longrightarrow> INFIMUM B g \<le> INFIMUM A f"
   by (rule cINF_mono) auto
 
-lemma cSUP_subset_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<le> g x) \<Longrightarrow> SUPR A f \<le> SUPR B g"
+lemma cSUP_subset_mono: "A \<noteq> {} \<Longrightarrow> bdd_above (g ` B) \<Longrightarrow> A \<subseteq> B \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> f x \<le> g x) \<Longrightarrow> SUPREMUM A f \<le> SUPREMUM B g"
   by (rule cSUP_mono) auto
 
 lemma less_eq_cInf_inter: "bdd_below A \<Longrightarrow> bdd_below B \<Longrightarrow> A \<inter> B \<noteq> {} \<Longrightarrow> inf (Inf A) (Inf B) \<le> Inf (A \<inter> B)"
@@ -337,20 +337,20 @@
 lemma cInf_union_distrib: "A \<noteq> {} \<Longrightarrow> bdd_below A \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_below B \<Longrightarrow> Inf (A \<union> B) = inf (Inf A) (Inf B)"
   by (intro antisym le_infI cInf_greatest cInf_lower) (auto intro: le_infI1 le_infI2 cInf_lower)
 
-lemma cINF_union: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_below (f`B) \<Longrightarrow> INFI (A \<union> B) f = inf (INFI A f) (INFI B f)"
+lemma cINF_union: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_below (f`B) \<Longrightarrow> INFIMUM (A \<union> B) f = inf (INFIMUM A f) (INFIMUM B f)"
   using cInf_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un [symmetric])
 
 lemma cSup_union_distrib: "A \<noteq> {} \<Longrightarrow> bdd_above A \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_above B \<Longrightarrow> Sup (A \<union> B) = sup (Sup A) (Sup B)"
   by (intro antisym le_supI cSup_least cSup_upper) (auto intro: le_supI1 le_supI2 cSup_upper)
 
-lemma cSUP_union: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_above (f`B) \<Longrightarrow> SUPR (A \<union> B) f = sup (SUPR A f) (SUPR B f)"
+lemma cSUP_union: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> B \<noteq> {} \<Longrightarrow> bdd_above (f`B) \<Longrightarrow> SUPREMUM (A \<union> B) f = sup (SUPREMUM A f) (SUPREMUM B f)"
   using cSup_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un [symmetric])
 
-lemma cINF_inf_distrib: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> bdd_below (g`A) \<Longrightarrow> inf (INFI A f) (INFI A g) = (INF a:A. inf (f a) (g a))"
+lemma cINF_inf_distrib: "A \<noteq> {} \<Longrightarrow> bdd_below (f`A) \<Longrightarrow> bdd_below (g`A) \<Longrightarrow> inf (INFIMUM A f) (INFIMUM A g) = (INF a:A. inf (f a) (g a))"
   by (intro antisym le_infI cINF_greatest cINF_lower2)
      (auto intro: le_infI1 le_infI2 cINF_greatest cINF_lower le_infI)
 
-lemma SUP_sup_distrib: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> bdd_above (g`A) \<Longrightarrow> sup (SUPR A f) (SUPR A g) = (SUP a:A. sup (f a) (g a))"
+lemma SUP_sup_distrib: "A \<noteq> {} \<Longrightarrow> bdd_above (f`A) \<Longrightarrow> bdd_above (g`A) \<Longrightarrow> sup (SUPREMUM A f) (SUPREMUM A g) = (SUP a:A. sup (f a) (g a))"
   by (intro antisym le_supI cSUP_least cSUP_upper2)
      (auto intro: le_supI1 le_supI2 cSUP_least cSUP_upper le_supI)
 
--- a/src/HOL/Finite_Set.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Finite_Set.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -1035,7 +1035,7 @@
 
 lemma inf_INF_fold_inf:
   assumes "finite A"
-  shows "inf B (INFI A f) = fold (inf \<circ> f) B A" (is "?inf = ?fold") 
+  shows "inf B (INFIMUM A f) = fold (inf \<circ> f) B A" (is "?inf = ?fold") 
 proof (rule sym)
   interpret comp_fun_idem inf by (fact comp_fun_idem_inf)
   interpret comp_fun_idem "inf \<circ> f" by (fact comp_comp_fun_idem)
@@ -1046,7 +1046,7 @@
 
 lemma sup_SUP_fold_sup:
   assumes "finite A"
-  shows "sup B (SUPR A f) = fold (sup \<circ> f) B A" (is "?sup = ?fold") 
+  shows "sup B (SUPREMUM A f) = fold (sup \<circ> f) B A" (is "?sup = ?fold") 
 proof (rule sym)
   interpret comp_fun_idem sup by (fact comp_fun_idem_sup)
   interpret comp_fun_idem "sup \<circ> f" by (fact comp_comp_fun_idem)
@@ -1057,12 +1057,12 @@
 
 lemma INF_fold_inf:
   assumes "finite A"
-  shows "INFI A f = fold (inf \<circ> f) top A"
+  shows "INFIMUM A f = fold (inf \<circ> f) top A"
   using assms inf_INF_fold_inf [of A top] by simp
 
 lemma SUP_fold_sup:
   assumes "finite A"
-  shows "SUPR A f = fold (sup \<circ> f) bot A"
+  shows "SUPREMUM A f = fold (sup \<circ> f) bot A"
   using assms sup_SUP_fold_sup [of A bot] by simp
 
 end
--- a/src/HOL/GCD.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/GCD.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -1558,8 +1558,8 @@
 interpretation gcd_lcm_complete_lattice_nat:
   complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat"
 where
-  "Inf.INFI Gcd A f = Gcd (f ` A :: nat set)"
-  and "Sup.SUPR Lcm A f = Lcm (f ` A)"
+  "Inf.INFIMUM Gcd A f = Gcd (f ` A :: nat set)"
+  and "Sup.SUPREMUM Lcm A f = Lcm (f ` A)"
 proof -
   show "class.complete_lattice Gcd Lcm gcd Rings.dvd (\<lambda>m n. m dvd n \<and> \<not> n dvd m) lcm 1 (0::nat)"
   proof
@@ -1577,8 +1577,8 @@
   qed
   then interpret gcd_lcm_complete_lattice_nat:
     complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" .
-  from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFI Gcd A f = Gcd (f ` A)" .
-  from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPR Lcm A f = Lcm (f ` A)" .
+  from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFIMUM Gcd A f = Gcd (f ` A)" .
+  from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPREMUM Lcm A f = Lcm (f ` A)" .
 qed
 
 declare gcd_lcm_complete_lattice_nat.Inf_image_eq [simp del]
--- a/src/HOL/Library/Extended_Real.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Library/Extended_Real.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -1411,15 +1411,15 @@
 
 lemma ereal_SUP_not_infty:
   fixes f :: "_ \<Rightarrow> ereal"
-  shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>SUPR A f\<bar> \<noteq> \<infinity>"
+  shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>SUPREMUM A f\<bar> \<noteq> \<infinity>"
   using SUP_upper2[of _ A l f] SUP_least[of A f u]
-  by (cases "SUPR A f") auto
+  by (cases "SUPREMUM A f") auto
 
 lemma ereal_INF_not_infty:
   fixes f :: "_ \<Rightarrow> ereal"
-  shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>INFI A f\<bar> \<noteq> \<infinity>"
+  shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>INFIMUM A f\<bar> \<noteq> \<infinity>"
   using INF_lower2[of _ A f u] INF_greatest[of A l f]
-  by (cases "INFI A f") auto
+  by (cases "INFIMUM A f") auto
 
 lemma ereal_SUP_uminus:
   fixes f :: "'a \<Rightarrow> ereal"
@@ -1528,12 +1528,12 @@
   fixes f :: "'i \<Rightarrow> ereal"
   assumes "\<And>i. f i + y \<le> z"
     and "y \<noteq> -\<infinity>"
-  shows "SUPR UNIV f + y \<le> z"
+  shows "SUPREMUM UNIV f + y \<le> z"
 proof (cases y)
   case (real r)
   then have "\<And>i. f i \<le> z - y"
     using assms by (simp add: ereal_le_minus_iff)
-  then have "SUPR UNIV f \<le> z - y"
+  then have "SUPREMUM UNIV f \<le> z - y"
     by (rule SUP_least)
   then show ?thesis
     using real by (simp add: ereal_le_minus_iff)
@@ -1544,11 +1544,11 @@
   assumes "incseq f"
     and "incseq g"
     and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>"
-  shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"
+  shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g"
 proof (rule SUP_eqI)
   fix y
   assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y"
-  have f: "SUPR UNIV f \<noteq> -\<infinity>"
+  have f: "SUPREMUM UNIV f \<noteq> -\<infinity>"
     using pos
     unfolding SUP_def Sup_eq_MInfty
     by (auto dest: image_eqD)
@@ -1565,13 +1565,13 @@
       also have "\<dots> \<le> y" using * by auto
       finally have "f i + g j \<le> y" .
     }
-    then have "SUPR UNIV f + g j \<le> y"
+    then have "SUPREMUM UNIV f + g j \<le> y"
       using assms(4)[of j] by (intro SUP_ereal_le_addI) auto
-    then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps)
+    then have "g j + SUPREMUM UNIV f \<le> y" by (simp add: ac_simps)
   }
-  then have "SUPR UNIV g + SUPR UNIV f \<le> y"
+  then have "SUPREMUM UNIV g + SUPREMUM UNIV f \<le> y"
     using f by (rule SUP_ereal_le_addI)
-  then show "SUPR UNIV f + SUPR UNIV g \<le> y"
+  then show "SUPREMUM UNIV f + SUPREMUM UNIV g \<le> y"
     by (simp add: ac_simps)
 qed (auto intro!: add_mono SUP_upper)
 
@@ -1579,7 +1579,7 @@
   fixes f g :: "nat \<Rightarrow> ereal"
   assumes inc: "incseq f" "incseq g"
     and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i"
-  shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"
+  shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g"
 proof (intro SUP_ereal_add inc)
   fix i
   show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>"
@@ -1590,7 +1590,7 @@
   fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal"
   assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)"
     and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i"
-  shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPR UNIV (f n))"
+  shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPREMUM UNIV (f n))"
 proof (cases "finite A")
   case True
   then show ?thesis using assms
@@ -1604,20 +1604,20 @@
   fixes f :: "nat \<Rightarrow> ereal"
   assumes "\<And>i. 0 \<le> f i"
     and "0 \<le> c"
-  shows "(SUP i. c * f i) = c * SUPR UNIV f"
+  shows "(SUP i. c * f i) = c * SUPREMUM UNIV f"
 proof (rule SUP_eqI)
   fix i
-  have "f i \<le> SUPR UNIV f"
+  have "f i \<le> SUPREMUM UNIV f"
     by (rule SUP_upper) auto
-  then show "c * f i \<le> c * SUPR UNIV f"
+  then show "c * f i \<le> c * SUPREMUM UNIV f"
     using `0 \<le> c` by (rule ereal_mult_left_mono)
 next
   fix y
   assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y"
-  show "c * SUPR UNIV f \<le> y"
+  show "c * SUPREMUM UNIV f \<le> y"
   proof (cases "0 < c \<and> c \<noteq> \<infinity>")
     case True
-    with * have "SUPR UNIV f \<le> y / c"
+    with * have "SUPREMUM UNIV f \<le> y / c"
       by (intro SUP_least) (auto simp: ereal_le_divide_pos)
     with True show ?thesis
       by (auto simp: ereal_le_divide_pos)
@@ -1630,7 +1630,7 @@
         case True
         then have "range f = {0}"
           by auto
-        with True show "c * SUPR UNIV f \<le> y"
+        with True show "c * SUPREMUM UNIV f \<le> y"
           using * by (auto simp: SUP_def max.absorb1)
       next
         case False
@@ -1677,7 +1677,7 @@
 
 lemma Sup_countable_SUP:
   assumes "A \<noteq> {}"
-  shows "\<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> A \<and> Sup A = SUPR UNIV f"
+  shows "\<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> A \<and> Sup A = SUPREMUM UNIV f"
 proof (cases "Sup A")
   case (real r)
   have "\<forall>n::nat. \<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)"
@@ -1691,7 +1691,7 @@
   qed
   from choice[OF this] obtain f :: "nat \<Rightarrow> ereal"
     where f: "\<forall>x. f x \<in> A \<and> Sup A < f x + 1 / ereal (real x)" ..
-  have "SUPR UNIV f = Sup A"
+  have "SUPREMUM UNIV f = Sup A"
   proof (rule SUP_eqI)
     fix i
     show "f i \<le> Sup A"
@@ -1752,7 +1752,7 @@
     qed
     from choice[OF this] obtain f :: "nat \<Rightarrow> ereal"
       where f: "\<forall>z. f z \<in> A \<and> x + ereal (real z) \<le> f z" ..
-    have "SUPR UNIV f = \<infinity>"
+    have "SUPREMUM UNIV f = \<infinity>"
     proof (rule SUP_PInfty)
       fix n :: nat
       show "\<exists>i\<in>UNIV. ereal (real n) \<le> f i"
@@ -1771,7 +1771,7 @@
 qed
 
 lemma SUP_countable_SUP:
-  "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPR A g = SUPR UNIV f"
+  "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPREMUM A g = SUPREMUM UNIV f"
   using Sup_countable_SUP [of "g`A"]
   by auto
 
@@ -1852,7 +1852,7 @@
   fixes f :: "nat \<Rightarrow> ereal"
   assumes "decseq f" "decseq g"
     and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>"
-  shows "(INF i. f i + g i) = INFI UNIV f + INFI UNIV g"
+  shows "(INF i. f i + g i) = INFIMUM UNIV f + INFIMUM UNIV g"
 proof -
   have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>"
     using assms unfolding INF_less_iff by auto
@@ -1863,7 +1863,7 @@
   }
   then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))"
     by simp
-  also have "\<dots> = INFI UNIV f + INFI UNIV g"
+  also have "\<dots> = INFIMUM UNIV f + INFIMUM UNIV g"
     unfolding ereal_INF_uminus
     using assms INF_less
     by (subst SUP_ereal_add)
--- a/src/HOL/Library/Kleene_Algebra.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Library/Kleene_Algebra.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -367,7 +367,7 @@
 
 class kleene_by_complete_lattice = pre_kleene
   + complete_lattice + power + star +
-  assumes star_cont: "a * star b * c = SUPR UNIV (\<lambda>n. a * b ^ n * c)"
+  assumes star_cont: "a * star b * c = SUPREMUM UNIV (\<lambda>n. a * b ^ n * c)"
 begin
 
 subclass kleene
--- a/src/HOL/Library/Liminf_Limsup.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Library/Liminf_Limsup.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -43,13 +43,13 @@
 abbreviation "limsup \<equiv> Limsup sequentially"
 
 lemma Liminf_eqI:
-  "(\<And>P. eventually P F \<Longrightarrow> INFI (Collect P) f \<le> x) \<Longrightarrow>  
-    (\<And>y. (\<And>P. eventually P F \<Longrightarrow> INFI (Collect P) f \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> Liminf F f = x"
+  "(\<And>P. eventually P F \<Longrightarrow> INFIMUM (Collect P) f \<le> x) \<Longrightarrow>  
+    (\<And>y. (\<And>P. eventually P F \<Longrightarrow> INFIMUM (Collect P) f \<le> y) \<Longrightarrow> x \<le> y) \<Longrightarrow> Liminf F f = x"
   unfolding Liminf_def by (auto intro!: SUP_eqI)
 
 lemma Limsup_eqI:
-  "(\<And>P. eventually P F \<Longrightarrow> x \<le> SUPR (Collect P) f) \<Longrightarrow>  
-    (\<And>y. (\<And>P. eventually P F \<Longrightarrow> y \<le> SUPR (Collect P) f) \<Longrightarrow> y \<le> x) \<Longrightarrow> Limsup F f = x"
+  "(\<And>P. eventually P F \<Longrightarrow> x \<le> SUPREMUM (Collect P) f) \<Longrightarrow>  
+    (\<And>y. (\<And>P. eventually P F \<Longrightarrow> y \<le> SUPREMUM (Collect P) f) \<Longrightarrow> y \<le> x) \<Longrightarrow> Limsup F f = x"
   unfolding Limsup_def by (auto intro!: INF_eqI)
 
 lemma liminf_SUP_INF: "liminf f = (SUP n. INF m:{n..}. f m)"
@@ -93,7 +93,7 @@
 proof (safe intro!: SUP_mono)
   fix P assume "eventually P F"
   with ev have "eventually (\<lambda>x. f x \<le> g x \<and> P x) F" (is "eventually ?Q F") by (rule eventually_conj)
-  then show "\<exists>Q\<in>{P. eventually P F}. INFI (Collect P) f \<le> INFI (Collect Q) g"
+  then show "\<exists>Q\<in>{P. eventually P F}. INFIMUM (Collect P) f \<le> INFIMUM (Collect Q) g"
     by (intro bexI[of _ ?Q]) (auto intro!: INF_mono)
 qed
 
@@ -109,7 +109,7 @@
 proof (safe intro!: INF_mono)
   fix P assume "eventually P F"
   with ev have "eventually (\<lambda>x. f x \<le> g x \<and> P x) F" (is "eventually ?Q F") by (rule eventually_conj)
-  then show "\<exists>Q\<in>{P. eventually P F}. SUPR (Collect Q) f \<le> SUPR (Collect P) g"
+  then show "\<exists>Q\<in>{P. eventually P F}. SUPREMUM (Collect Q) f \<le> SUPREMUM (Collect P) g"
     by (intro bexI[of _ ?Q]) (auto intro!: SUP_mono)
 qed
 
@@ -129,13 +129,13 @@
   then have "eventually (\<lambda>x. P x \<and> Q x) F" (is "eventually ?C F") by (rule eventually_conj)
   then have not_False: "(\<lambda>x. P x \<and> Q x) \<noteq> (\<lambda>x. False)"
     using ntriv by (auto simp add: eventually_False)
-  have "INFI (Collect P) f \<le> INFI (Collect ?C) f"
+  have "INFIMUM (Collect P) f \<le> INFIMUM (Collect ?C) f"
     by (rule INF_mono) auto
-  also have "\<dots> \<le> SUPR (Collect ?C) f"
+  also have "\<dots> \<le> SUPREMUM (Collect ?C) f"
     using not_False by (intro INF_le_SUP) auto
-  also have "\<dots> \<le> SUPR (Collect Q) f"
+  also have "\<dots> \<le> SUPREMUM (Collect Q) f"
     by (rule SUP_mono) auto
-  finally show "INFI (Collect P) f \<le> SUPR (Collect Q) f" .
+  finally show "INFIMUM (Collect P) f \<le> SUPREMUM (Collect Q) f" .
 qed
 
 lemma Liminf_bounded:
@@ -154,22 +154,22 @@
   fixes X :: "_ \<Rightarrow> _ :: complete_linorder"
   shows "C \<le> Liminf F X \<longleftrightarrow> (\<forall>y<C. eventually (\<lambda>x. y < X x) F)"
 proof -
-  { fix y P assume "eventually P F" "y < INFI (Collect P) X"
+  { fix y P assume "eventually P F" "y < INFIMUM (Collect P) X"
     then have "eventually (\<lambda>x. y < X x) F"
       by (auto elim!: eventually_elim1 dest: less_INF_D) }
   moreover
   { fix y P assume "y < C" and y: "\<forall>y<C. eventually (\<lambda>x. y < X x) F"
-    have "\<exists>P. eventually P F \<and> y < INFI (Collect P) X"
+    have "\<exists>P. eventually P F \<and> y < INFIMUM (Collect P) X"
     proof (cases "\<exists>z. y < z \<and> z < C")
       case True
       then obtain z where z: "y < z \<and> z < C" ..
-      moreover from z have "z \<le> INFI {x. z < X x} X"
+      moreover from z have "z \<le> INFIMUM {x. z < X x} X"
         by (auto intro!: INF_greatest)
       ultimately show ?thesis
         using y by (intro exI[of _ "\<lambda>x. z < X x"]) auto
     next
       case False
-      then have "C \<le> INFI {x. y < X x} X"
+      then have "C \<le> INFIMUM {x. y < X x} X"
         by (intro INF_greatest) auto
       with `y < C` show ?thesis
         using y by (intro exI[of _ "\<lambda>x. y < X x"]) auto
@@ -185,17 +185,17 @@
   shows "Liminf F f = f0"
 proof (intro Liminf_eqI)
   fix P assume P: "eventually P F"
-  then have "eventually (\<lambda>x. INFI (Collect P) f \<le> f x) F"
+  then have "eventually (\<lambda>x. INFIMUM (Collect P) f \<le> f x) F"
     by eventually_elim (auto intro!: INF_lower)
-  then show "INFI (Collect P) f \<le> f0"
+  then show "INFIMUM (Collect P) f \<le> f0"
     by (rule tendsto_le[OF ntriv lim tendsto_const])
 next
-  fix y assume upper: "\<And>P. eventually P F \<Longrightarrow> INFI (Collect P) f \<le> y"
+  fix y assume upper: "\<And>P. eventually P F \<Longrightarrow> INFIMUM (Collect P) f \<le> y"
   show "f0 \<le> y"
   proof cases
     assume "\<exists>z. y < z \<and> z < f0"
     then obtain z where "y < z \<and> z < f0" ..
-    moreover have "z \<le> INFI {x. z < f x} f"
+    moreover have "z \<le> INFIMUM {x. z < f x} f"
       by (rule INF_greatest) simp
     ultimately show ?thesis
       using lim[THEN topological_tendstoD, THEN upper, of "{z <..}"] by auto
@@ -208,9 +208,9 @@
         using lim[THEN topological_tendstoD, of "{y <..}"] by auto
       then have "eventually (\<lambda>x. f0 \<le> f x) F"
         using discrete by (auto elim!: eventually_elim1)
-      then have "INFI {x. f0 \<le> f x} f \<le> y"
+      then have "INFIMUM {x. f0 \<le> f x} f \<le> y"
         by (rule upper)
-      moreover have "f0 \<le> INFI {x. f0 \<le> f x} f"
+      moreover have "f0 \<le> INFIMUM {x. f0 \<le> f x} f"
         by (intro INF_greatest) simp
       ultimately show "f0 \<le> y" by simp
     qed
@@ -224,17 +224,17 @@
   shows "Limsup F f = f0"
 proof (intro Limsup_eqI)
   fix P assume P: "eventually P F"
-  then have "eventually (\<lambda>x. f x \<le> SUPR (Collect P) f) F"
+  then have "eventually (\<lambda>x. f x \<le> SUPREMUM (Collect P) f) F"
     by eventually_elim (auto intro!: SUP_upper)
-  then show "f0 \<le> SUPR (Collect P) f"
+  then show "f0 \<le> SUPREMUM (Collect P) f"
     by (rule tendsto_le[OF ntriv tendsto_const lim])
 next
-  fix y assume lower: "\<And>P. eventually P F \<Longrightarrow> y \<le> SUPR (Collect P) f"
+  fix y assume lower: "\<And>P. eventually P F \<Longrightarrow> y \<le> SUPREMUM (Collect P) f"
   show "y \<le> f0"
   proof (cases "\<exists>z. f0 < z \<and> z < y")
     case True
     then obtain z where "f0 < z \<and> z < y" ..
-    moreover have "SUPR {x. f x < z} f \<le> z"
+    moreover have "SUPREMUM {x. f x < z} f \<le> z"
       by (rule SUP_least) simp
     ultimately show ?thesis
       using lim[THEN topological_tendstoD, THEN lower, of "{..< z}"] by auto
@@ -247,9 +247,9 @@
         using lim[THEN topological_tendstoD, of "{..< y}"] by auto
       then have "eventually (\<lambda>x. f x \<le> f0) F"
         using False by (auto elim!: eventually_elim1 simp: not_less)
-      then have "y \<le> SUPR {x. f x \<le> f0} f"
+      then have "y \<le> SUPREMUM {x. f x \<le> f0} f"
         by (rule lower)
-      moreover have "SUPR {x. f x \<le> f0} f \<le> f0"
+      moreover have "SUPREMUM {x. f x \<le> f0} f \<le> f0"
         by (intro SUP_least) simp
       ultimately show "y \<le> f0" by simp
     qed
@@ -264,14 +264,14 @@
 proof (rule order_tendstoI)
   fix a assume "f0 < a"
   with assms have "Limsup F f < a" by simp
-  then obtain P where "eventually P F" "SUPR (Collect P) f < a"
+  then obtain P where "eventually P F" "SUPREMUM (Collect P) f < a"
     unfolding Limsup_def INF_less_iff by auto
   then show "eventually (\<lambda>x. f x < a) F"
     by (auto elim!: eventually_elim1 dest: SUP_lessD)
 next
   fix a assume "a < f0"
   with assms have "a < Liminf F f" by simp
-  then obtain P where "eventually P F" "a < INFI (Collect P) f"
+  then obtain P where "eventually P F" "a < INFIMUM (Collect P) f"
     unfolding Liminf_def less_SUP_iff by auto
   then show "eventually (\<lambda>x. a < f x) F"
     by (auto elim!: eventually_elim1 dest: less_INF_D)
--- a/src/HOL/Library/Product_Order.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Library/Product_Order.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -219,11 +219,11 @@
 of two complete lattices: *}
 
 lemma INF_prod_alt_def:
-  "INFI A f = (INFI A (fst o f), INFI A (snd o f))"
+  "INFIMUM A f = (INFIMUM A (fst o f), INFIMUM A (snd o f))"
   unfolding INF_def Inf_prod_def by simp
 
 lemma SUP_prod_alt_def:
-  "SUPR A f = (SUPR A (fst o f), SUPR A (snd o f))"
+  "SUPREMUM A f = (SUPREMUM A (fst o f), SUPREMUM A (snd o f))"
   unfolding SUP_def Sup_prod_def by simp
 
 
--- a/src/HOL/Library/RBT_Set.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Library/RBT_Set.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -112,7 +112,7 @@
   "Inf_fin = Inf_fin" ..
 
 lemma [code, code del]:
-  "INFI = INFI" ..
+  "INFIMUM = INFIMUM" ..
 
 lemma [code, code del]:
   "Max = Max" ..
@@ -121,7 +121,7 @@
   "Sup_fin = Sup_fin" ..
 
 lemma [code, code del]:
-  "SUPR = SUPR" ..
+  "SUPREMUM = SUPREMUM" ..
 
 lemma [code, code del]:
   "(Inf :: 'a set set \<Rightarrow> 'a set) = Inf" ..
@@ -759,7 +759,7 @@
 
 lemma INF_Set_fold [code]:
   fixes f :: "_ \<Rightarrow> 'a::complete_lattice"
-  shows "INFI (Set t) f = fold_keys (inf \<circ> f) t top"
+  shows "INFIMUM (Set t) f = fold_keys (inf \<circ> f) t top"
 proof -
   have "comp_fun_commute ((inf :: 'a \<Rightarrow> 'a \<Rightarrow> 'a) \<circ> f)" 
     by default (auto simp add: fun_eq_iff ac_simps)
@@ -800,7 +800,7 @@
 
 lemma SUP_Set_fold [code]:
   fixes f :: "_ \<Rightarrow> 'a::complete_lattice"
-  shows "SUPR (Set t) f = fold_keys (sup \<circ> f) t bot"
+  shows "SUPREMUM (Set t) f = fold_keys (sup \<circ> f) t bot"
 proof -
   have "comp_fun_commute ((sup :: 'a \<Rightarrow> 'a \<Rightarrow> 'a) \<circ> f)" 
     by default (auto simp add: fun_eq_iff ac_simps)
--- a/src/HOL/Lifting_Set.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Lifting_Set.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -150,12 +150,12 @@
   unfolding rel_fun_def rel_set_def by fast
 
 lemma SUP_parametric [transfer_rule]:
-  "(rel_set R ===> (R ===> op =) ===> op =) SUPR (SUPR :: _ \<Rightarrow> _ \<Rightarrow> _::complete_lattice)"
+  "(rel_set R ===> (R ===> op =) ===> op =) SUPREMUM (SUPREMUM :: _ \<Rightarrow> _ \<Rightarrow> _::complete_lattice)"
 proof(rule rel_funI)+
   fix A B f and g :: "'b \<Rightarrow> 'c"
   assume AB: "rel_set R A B"
     and fg: "(R ===> op =) f g"
-  show "SUPR A f = SUPR B g"
+  show "SUPREMUM A f = SUPREMUM B g"
     by (rule SUP_eq) (auto 4 4 dest: rel_setD1 [OF AB] rel_setD2 [OF AB] rel_funD [OF fg] intro: rev_bexI)
 qed
 
--- a/src/HOL/List.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/List.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -2876,13 +2876,13 @@
 declare Sup_set_fold [where 'a = "'a set", code]
 
 lemma (in complete_lattice) INF_set_fold:
-  "INFI (set xs) f = fold (inf \<circ> f) xs top"
+  "INFIMUM (set xs) f = fold (inf \<circ> f) xs top"
   using Inf_set_fold [of "map f xs "] by (simp add: fold_map)
 
 declare INF_set_fold [code]
 
 lemma (in complete_lattice) SUP_set_fold:
-  "SUPR (set xs) f = fold (sup \<circ> f) xs bot"
+  "SUPREMUM (set xs) f = fold (sup \<circ> f) xs bot"
   using Sup_set_fold [of "map f xs "] by (simp add: fold_map)
 
 declare SUP_set_fold [code]
--- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -1166,13 +1166,13 @@
   assume "0 < d" and "\<forall>y. y \<in> S \<longrightarrow> y \<noteq> x \<and> dist y x < d \<longrightarrow> P y"
   then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
     by (auto simp: zero_less_dist_iff dist_commute)
-  then show "\<exists>r>0. INFI (Collect P) f \<le> INFI (S \<inter> ball x r - {x}) f"
+  then show "\<exists>r>0. INFIMUM (Collect P) f \<le> INFIMUM (S \<inter> ball x r - {x}) f"
     by (intro exI[of _ d] INF_mono conjI `0 < d`) auto
 next
   fix d :: real
   assume "0 < d"
   then show "\<exists>P. (\<exists>d>0. \<forall>xa. xa \<in> S \<longrightarrow> xa \<noteq> x \<and> dist xa x < d \<longrightarrow> P xa) \<and>
-    INFI (S \<inter> ball x d - {x}) f \<le> INFI (Collect P) f"
+    INFIMUM (S \<inter> ball x d - {x}) f \<le> INFIMUM (Collect P) f"
     by (intro exI[of _ "\<lambda>y. y \<in> S \<inter> ball x d - {x}"])
        (auto intro!: INF_mono exI[of _ d] simp: dist_commute)
 qed
@@ -1186,13 +1186,13 @@
   assume "0 < d" and "\<forall>y. y \<in> S \<longrightarrow> y \<noteq> x \<and> dist y x < d \<longrightarrow> P y"
   then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
     by (auto simp: zero_less_dist_iff dist_commute)
-  then show "\<exists>r>0. SUPR (S \<inter> ball x r - {x}) f \<le> SUPR (Collect P) f"
+  then show "\<exists>r>0. SUPREMUM (S \<inter> ball x r - {x}) f \<le> SUPREMUM (Collect P) f"
     by (intro exI[of _ d] SUP_mono conjI `0 < d`) auto
 next
   fix d :: real
   assume "0 < d"
   then show "\<exists>P. (\<exists>d>0. \<forall>xa. xa \<in> S \<longrightarrow> xa \<noteq> x \<and> dist xa x < d \<longrightarrow> P xa) \<and>
-    SUPR (Collect P) f \<le> SUPR (S \<inter> ball x d - {x}) f"
+    SUPREMUM (Collect P) f \<le> SUPREMUM (S \<inter> ball x d - {x}) f"
     by (intro exI[of _ "\<lambda>y. y \<in> S \<inter> ball x d - {x}"])
        (auto intro!: SUP_mono exI[of _ d] simp: dist_commute)
 qed
@@ -1285,11 +1285,11 @@
   fix P
   assume P: "eventually P net"
   fix S
-  assume S: "mono_set S" "INFI (Collect P) f \<in> S"
+  assume S: "mono_set S" "INFIMUM (Collect P) f \<in> S"
   {
     fix x
     assume "P x"
-    then have "INFI (Collect P) f \<le> f x"
+    then have "INFIMUM (Collect P) f \<le> f x"
       by (intro complete_lattice_class.INF_lower) simp
     with S have "f x \<in> S"
       by (simp add: mono_set)
@@ -1299,16 +1299,16 @@
 next
   fix y l
   assume S: "\<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> l \<in> S \<longrightarrow> eventually  (\<lambda>x. f x \<in> S) net"
-  assume P: "\<forall>P. eventually P net \<longrightarrow> INFI (Collect P) f \<le> y"
+  assume P: "\<forall>P. eventually P net \<longrightarrow> INFIMUM (Collect P) f \<le> y"
   show "l \<le> y"
   proof (rule dense_le)
     fix B
     assume "B < l"
     then have "eventually (\<lambda>x. f x \<in> {B <..}) net"
       by (intro S[rule_format]) auto
-    then have "INFI {x. B < f x} f \<le> y"
+    then have "INFIMUM {x. B < f x} f \<le> y"
       using P by auto
-    moreover have "B \<le> INFI {x. B < f x} f"
+    moreover have "B \<le> INFIMUM {x. B < f x} f"
       by (intro INF_greatest) auto
     ultimately show "B \<le> y"
       by simp
@@ -1324,13 +1324,13 @@
   fix P
   assume P: "eventually P net"
   fix S
-  assume S: "mono_set (uminus`S)" "SUPR (Collect P) f \<in> S"
+  assume S: "mono_set (uminus`S)" "SUPREMUM (Collect P) f \<in> S"
   {
     fix x
     assume "P x"
-    then have "f x \<le> SUPR (Collect P) f"
+    then have "f x \<le> SUPREMUM (Collect P) f"
       by (intro complete_lattice_class.SUP_upper) simp
-    with S(1)[unfolded mono_set, rule_format, of "- SUPR (Collect P) f" "- f x"] S(2)
+    with S(1)[unfolded mono_set, rule_format, of "- SUPREMUM (Collect P) f" "- f x"] S(2)
     have "f x \<in> S"
       by (simp add: inj_image_mem_iff) }
   with P show "eventually (\<lambda>x. f x \<in> S) net"
@@ -1338,16 +1338,16 @@
 next
   fix y l
   assume S: "\<forall>S. open S \<longrightarrow> mono_set (uminus ` S) \<longrightarrow> l \<in> S \<longrightarrow> eventually  (\<lambda>x. f x \<in> S) net"
-  assume P: "\<forall>P. eventually P net \<longrightarrow> y \<le> SUPR (Collect P) f"
+  assume P: "\<forall>P. eventually P net \<longrightarrow> y \<le> SUPREMUM (Collect P) f"
   show "y \<le> l"
   proof (rule dense_ge)
     fix B
     assume "l < B"
     then have "eventually (\<lambda>x. f x \<in> {..< B}) net"
       by (intro S[rule_format]) auto
-    then have "y \<le> SUPR {x. f x < B} f"
+    then have "y \<le> SUPREMUM {x. f x < B} f"
       using P by auto
-    moreover have "SUPR {x. f x < B} f \<le> B"
+    moreover have "SUPREMUM {x. f x < B} f \<le> B"
       by (intro SUP_least) auto
     ultimately show "y \<le> B"
       by simp
--- a/src/HOL/Multivariate_Analysis/Integration.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Multivariate_Analysis/Integration.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -11842,7 +11842,7 @@
         using goal2 by auto
     qed
     then obtain K where *: "\<exists>x\<in>{d. d division_of \<Union>d}. K = (\<Sum>k\<in>x. norm (integral k f))"
-      "SUPR {d. d division_of \<Union>d} (setsum (\<lambda>k. norm (integral k f))) - e < K"
+      "SUPREMUM {d. d division_of \<Union>d} (setsum (\<lambda>k. norm (integral k f))) - e < K"
       by (auto simp add: image_iff not_le)
     from this(1) obtain d where "d division_of \<Union>d"
       and "K = (\<Sum>k\<in>d. norm (integral k f))"
--- a/src/HOL/Predicate.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Predicate.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -65,17 +65,17 @@
   by (simp add: sup_pred_def)
 
 definition
-  "\<Sqinter>A = Pred (INFI A eval)"
+  "\<Sqinter>A = Pred (INFIMUM A eval)"
 
 lemma eval_Inf [simp]:
-  "eval (\<Sqinter>A) = INFI A eval"
+  "eval (\<Sqinter>A) = INFIMUM A eval"
   by (simp add: Inf_pred_def)
 
 definition
-  "\<Squnion>A = Pred (SUPR A eval)"
+  "\<Squnion>A = Pred (SUPREMUM A eval)"
 
 lemma eval_Sup [simp]:
-  "eval (\<Squnion>A) = SUPR A eval"
+  "eval (\<Squnion>A) = SUPREMUM A eval"
   by (simp add: Sup_pred_def)
 
 instance proof
@@ -84,11 +84,11 @@
 end
 
 lemma eval_INF [simp]:
-  "eval (INFI A f) = INFI A (eval \<circ> f)"
+  "eval (INFIMUM A f) = INFIMUM A (eval \<circ> f)"
   using eval_Inf [of "f ` A"] by simp
 
 lemma eval_SUP [simp]:
-  "eval (SUPR A f) = SUPR A (eval \<circ> f)"
+  "eval (SUPREMUM A f) = SUPREMUM A (eval \<circ> f)"
   using eval_Sup [of "f ` A"] by simp
 
 instantiation pred :: (type) complete_boolean_algebra
@@ -121,10 +121,10 @@
   by (simp add: single_def)
 
 definition bind :: "'a pred \<Rightarrow> ('a \<Rightarrow> 'b pred) \<Rightarrow> 'b pred" (infixl "\<guillemotright>=" 70) where
-  "P \<guillemotright>= f = (SUPR {x. eval P x} f)"
+  "P \<guillemotright>= f = (SUPREMUM {x. eval P x} f)"
 
 lemma eval_bind [simp]:
-  "eval (P \<guillemotright>= f) = eval (SUPR {x. eval P x} f)"
+  "eval (P \<guillemotright>= f) = eval (SUPREMUM {x. eval P x} f)"
   by (simp add: bind_def)
 
 lemma bind_bind:
--- a/src/HOL/Probability/Lebesgue_Integration.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Probability/Lebesgue_Integration.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -781,7 +781,7 @@
 
 lemma positive_integral_def_finite:
   "integral\<^sup>P M f = (SUP g : {g. simple_function M g \<and> g \<le> max 0 \<circ> f \<and> range g \<subseteq> {0 ..< \<infinity>}}. integral\<^sup>S M g)"
-    (is "_ = SUPR ?A ?f")
+    (is "_ = SUPREMUM ?A ?f")
   unfolding positive_integral_def
 proof (safe intro!: antisym SUP_least)
   fix g assume g: "simple_function M g" "g \<le> max 0 \<circ> f"
@@ -793,7 +793,7 @@
     apply (safe intro!: simple_function_max simple_function_If)
     apply (force simp: max_def le_fun_def split: split_if_asm)+
     done
-  show "integral\<^sup>S M g \<le> SUPR ?A ?f"
+  show "integral\<^sup>S M g \<le> SUPREMUM ?A ?f"
   proof cases
     have g0: "?g 0 \<in> ?A" by (intro g_in_A) auto
     assume "(emeasure M) ?G = 0"
@@ -804,7 +804,7 @@
          (auto simp: max_def intro!: simple_function_If)
   next
     assume \<mu>_G: "(emeasure M) ?G \<noteq> 0"
-    have "SUPR ?A (integral\<^sup>S M) = \<infinity>"
+    have "SUPREMUM ?A (integral\<^sup>S M) = \<infinity>"
     proof (intro SUP_PInfty)
       fix n :: nat
       let ?y = "ereal (real n) / (if (emeasure M) ?G = \<infinity> then 1 else (emeasure M) ?G)"
@@ -1029,7 +1029,7 @@
         using N(1) by auto }
   qed
   also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. f i x \<partial>M))"
-    using f_eq by (force intro!: arg_cong[where f="SUPR UNIV"] positive_integral_cong_AE ext)
+    using f_eq by (force intro!: arg_cong[where f="SUPREMUM UNIV"] positive_integral_cong_AE ext)
   finally show ?thesis .
 qed
 
@@ -1045,7 +1045,7 @@
   shows "(SUP i. integral\<^sup>S M (f i)) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)"
   using assms unfolding positive_integral_monotone_convergence_SUP[OF f(1)
     f(3)[THEN borel_measurable_simple_function] f(2)]
-  by (auto intro!: positive_integral_eq_simple_integral[symmetric] arg_cong[where f="SUPR UNIV"] ext)
+  by (auto intro!: positive_integral_eq_simple_integral[symmetric] arg_cong[where f="SUPREMUM UNIV"] ext)
 
 lemma positive_integral_max_0:
   "(\<integral>\<^sup>+x. max 0 (f x) \<partial>M) = integral\<^sup>P M f"
@@ -1069,7 +1069,7 @@
   and g: "incseq g" "\<And>i x. 0 \<le> g i x" "\<And>i. simple_function M (g i)"
   and eq: "AE x in M. (SUP i. f i x) = (SUP i. g i x)"
   shows "(SUP i. integral\<^sup>S M (f i)) = (SUP i. integral\<^sup>S M (g i))"
-    (is "SUPR _ ?F = SUPR _ ?G")
+    (is "SUPREMUM _ ?F = SUPREMUM _ ?G")
 proof -
   have "(SUP i. integral\<^sup>S M (f i)) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)"
     using f by (rule positive_integral_monotone_convergence_simple)
@@ -1128,7 +1128,7 @@
       by (intro AE_I2) (auto split: split_max simp add: ereal_add_nonneg_nonneg)
   qed
   also have "\<dots> = (SUP i. a * integral\<^sup>S M (u i) + integral\<^sup>S M (v i))"
-    using u(2, 6) v(2, 6) `0 \<le> a` by (auto intro!: arg_cong[where f="SUPR UNIV"] ext)
+    using u(2, 6) v(2, 6) `0 \<le> a` by (auto intro!: arg_cong[where f="SUPREMUM UNIV"] ext)
   finally have "(\<integral>\<^sup>+ x. max 0 (a * f x + g x) \<partial>M) = a * (\<integral>\<^sup>+x. max 0 (f x) \<partial>M) + (\<integral>\<^sup>+x. max 0 (g x) \<partial>M)"
     unfolding l(5)[symmetric] u(5)[symmetric] v(5)[symmetric]
     unfolding l(1)[symmetric] u(1)[symmetric] v(1)[symmetric]
--- a/src/HOL/Probability/Lebesgue_Measure.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Probability/Lebesgue_Measure.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -169,7 +169,7 @@
         by (auto intro!: SUP_upper2 integral_nonneg)
     next
       show "(SUP n. \<Sum>i. ereal (?m n i)) = (SUP n. ereal (?M n UNIV))"
-      proof (intro arg_cong[where f="SUPR UNIV"] ext sums_unique[symmetric] sums_ereal[THEN iffD2] sums_def[THEN iffD2])
+      proof (intro arg_cong[where f="SUPREMUM UNIV"] ext sums_unique[symmetric] sums_ereal[THEN iffD2] sums_def[THEN iffD2])
         fix n
         have "\<And>m. (UNION {..<m} A) \<in> sets lebesgue" using rA by auto
         from lebesgueD[OF this]
--- a/src/HOL/Product_Type.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Product_Type.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -342,8 +342,8 @@
   in
     [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
      Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"},
-     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
-     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
+     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFIMUM} @{syntax_const "_INF"},
+     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPREMUM} @{syntax_const "_SUP"}]
     |> map (fn (Q, tr) => (Q, contract Q tr))
   end
 *}
--- a/src/HOL/Relation.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Relation.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -281,7 +281,7 @@
   by (fast intro: symI elim: symE)
 
 lemma symp_INF:
-  "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (INFI S r)"
+  "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (INFIMUM S r)"
   by (fact sym_INTER [to_pred])
 
 lemma sym_UNION:
@@ -289,7 +289,7 @@
   by (fast intro: symI elim: symE)
 
 lemma symp_SUP:
-  "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (SUPR S r)"
+  "\<forall>x\<in>S. symp (r x) \<Longrightarrow> symp (SUPREMUM S r)"
   by (fact sym_UNION [to_pred])
 
 
--- a/src/HOL/Tools/BNF/bnf_util.ML	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Tools/BNF/bnf_util.ML	Wed Mar 19 18:47:22 2014 +0100
@@ -393,7 +393,7 @@
 
 fun mk_UNION X f =
   let val (T, U) = dest_funT (fastype_of f);
-  in Const (@{const_name SUPR}, fastype_of X --> (T --> U) --> U) $ X $ f end;
+  in Const (@{const_name SUPREMUM}, fastype_of X --> (T --> U) --> U) $ X $ f end;
 
 fun mk_Union T =
   Const (@{const_name Sup}, HOLogic.mk_setT (HOLogic.mk_setT T) --> HOLogic.mk_setT T);
--- a/src/HOL/Wellfounded.thy	Wed Mar 19 17:06:02 2014 +0000
+++ b/src/HOL/Wellfounded.thy	Wed Mar 19 18:47:22 2014 +0100
@@ -297,7 +297,7 @@
 done
 
 lemma wfP_SUP:
-  "\<forall>i. wfP (r i) \<Longrightarrow> \<forall>i j. r i \<noteq> r j \<longrightarrow> inf (DomainP (r i)) (RangeP (r j)) = bot \<Longrightarrow> wfP (SUPR UNIV r)"
+  "\<forall>i. wfP (r i) \<Longrightarrow> \<forall>i j. r i \<noteq> r j \<longrightarrow> inf (DomainP (r i)) (RangeP (r j)) = bot \<Longrightarrow> wfP (SUPREMUM UNIV r)"
   apply (rule wf_UN[to_pred])
   apply simp_all
   done