experimental implementation of a well-sorting algorithm
authorhaftmann
Mon, 01 Dec 2008 12:17:03 +0100
changeset 28925 1cb9596498c0
parent 28924 5c8781b7d6a4
child 28926 530b83967c82
experimental implementation of a well-sorting algorithm
src/Tools/code/code_funcgr_new.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Tools/code/code_funcgr_new.ML	Mon Dec 01 12:17:03 2008 +0100
@@ -0,0 +1,414 @@
+(*  Title:      Tools/code/code_funcgr.ML
+    ID:         $Id$
+    Author:     Florian Haftmann, TU Muenchen
+
+Retrieving, well-sorting and structuring defining equations in graph
+with explicit dependencies.
+*)
+
+signature CODE_FUNCGR =
+sig
+  type T
+  val eqns: T -> string -> (thm * bool) list
+  val typ: T -> string -> (string * sort) list * typ
+  val all: T -> string list
+  val pretty: theory -> T -> Pretty.T
+  val make: theory -> string list
+    -> ((sort -> sort) * Sorts.algebra) * T
+  val eval_conv: theory
+    -> (term -> term * (((sort -> sort) * Sorts.algebra) -> T -> thm)) -> cterm -> thm
+  val eval_term: theory
+    -> (term -> term * (((sort -> sort) * Sorts.algebra) -> T -> 'a)) -> term -> 'a
+end
+
+structure Code_Funcgr : CODE_FUNCGR =
+struct
+
+(** the graph type **)
+
+type T = (((string * sort) list * typ) * (thm * bool) list) Graph.T;
+
+fun eqns funcgr =
+  these o Option.map snd o try (Graph.get_node funcgr);
+
+fun typ funcgr =
+  fst o Graph.get_node funcgr;
+
+fun all funcgr = Graph.keys funcgr;
+
+fun pretty thy funcgr =
+  AList.make (snd o Graph.get_node funcgr) (Graph.keys funcgr)
+  |> (map o apfst) (Code_Unit.string_of_const thy)
+  |> sort (string_ord o pairself fst)
+  |> map (fn (s, thms) =>
+       (Pretty.block o Pretty.fbreaks) (
+         Pretty.str s
+         :: map (Display.pretty_thm o fst) thms
+       ))
+  |> Pretty.chunks;
+
+
+(** generic combinators **)
+
+fun fold_consts f thms =
+  thms
+  |> maps (op :: o swap o apfst (snd o strip_comb) o Logic.dest_equals o Thm.plain_prop_of)
+  |> (fold o fold_aterms) (fn Const c => f c | _ => I);
+
+fun consts_of (const, []) = []
+  | consts_of (const, thms as _ :: _) = 
+      let
+        fun the_const (c, _) = if c = const then I else insert (op =) c
+      in fold_consts the_const (map fst thms) [] end;
+
+
+(** graph algorithm **)
+
+(* some nonsense -- FIXME *)
+
+fun lhs_rhss_of thy c =
+  let
+    val eqns = Code.these_eqns thy c
+      |> burrow_fst (Code_Unit.norm_args thy)
+      |> burrow_fst (Code_Unit.norm_varnames thy Code_Name.purify_tvar Code_Name.purify_var);
+    val (lhs, _) = case eqns of [] => Code.default_typscheme thy c
+      | ((thm, _) :: _) => (snd o Code_Unit.head_eqn thy) thm;
+    val rhss = fold_consts (fn (c, ty) =>
+      insert (op =) (c, Sign.const_typargs thy (c, Logic.unvarifyT ty))) (map fst eqns) [];
+  in (lhs, rhss) end;
+
+fun inst_params thy tyco class =
+  map (fn (c, _) => AxClass.param_of_inst thy (c, tyco))
+    ((#params o AxClass.get_info thy) class);
+
+fun complete_proper_sort thy sort =
+  Sign.complete_sort thy sort |> filter (can (AxClass.get_info thy));
+
+fun minimal_proper_sort thy sort =
+  complete_proper_sort thy sort |> Sign.minimize_sort thy;
+
+fun dicts_of thy algebra (T, sort) =
+  let
+    fun class_relation (x, _) _ = x;
+    fun type_constructor tyco xs class =
+      inst_params thy tyco class @ (maps o maps) fst xs;
+    fun type_variable (TFree (_, sort)) = map (pair []) sort;
+  in
+    flat (Sorts.of_sort_derivation (Syntax.pp_global thy) algebra
+      { class_relation = class_relation, type_constructor = type_constructor,
+        type_variable = type_variable } (T, minimal_proper_sort thy sort)
+       handle Sorts.CLASS_ERROR _ => [] (*permissive!*))
+  end;
+
+
+(* data structures *)
+
+datatype const = Fun of string | Inst of class * string;
+
+fun const_ord (Fun c1, Fun c2) = fast_string_ord (c1, c2)
+  | const_ord (Inst class_tyco1, Inst class_tyco2) =
+      prod_ord fast_string_ord fast_string_ord (class_tyco1, class_tyco2)
+  | const_ord (Fun _, Inst _) = LESS
+  | const_ord (Inst _, Fun _) = GREATER;
+
+type var = const * int;
+
+structure Vargraph =
+  GraphFun(type key = var val ord = prod_ord const_ord int_ord);
+
+datatype styp = Tyco of string * styp list | Var of var;
+
+type vardeps = const list * ((string * styp list) list * class list) Vargraph.T;
+
+
+(* computing instantiations -- FIXME does not consider existing things *)
+
+fun add_classes thy c_k new_classes vardeps =
+  let
+    val _ = tracing "add_classes";
+    val (styps, old_classes) = Vargraph.get_node (snd vardeps) c_k;
+    val diff_classes = new_classes |> subtract (op =) old_classes;
+  in if null diff_classes then vardeps
+  else let
+    val c_ks = Vargraph.imm_succs (snd vardeps) c_k |> insert (op =) c_k;
+  in
+    vardeps
+    |> (apsnd o Vargraph.map_node c_k o apsnd) (append diff_classes)
+    |> fold (fn styp => fold (add_typmatch_inst thy styp) new_classes) styps
+    |> fold (fn c_k => add_classes thy c_k diff_classes) c_ks
+  end end
+and add_styp thy c_k tyco_styps vardeps =
+  let
+    val _ = tracing "add_styp";
+    val (old_styps, classes) = Vargraph.get_node (snd vardeps) c_k;
+  in if member (op =) old_styps tyco_styps then vardeps
+  else
+    vardeps
+    |> (apsnd o Vargraph.map_node c_k o apfst) (cons tyco_styps)
+    |> fold (add_typmatch_inst thy tyco_styps) classes
+  end
+and add_dep thy c_k c_k' vardeps =
+  let
+    val _ = tracing ("add_dep " ^ makestring c_k ^ " -> " ^ makestring c_k');
+    val (_, classes) = Vargraph.get_node (snd vardeps) c_k;
+  in
+    vardeps
+    |> add_classes thy c_k' classes
+    |> apsnd (Vargraph.add_edge (c_k, c_k'))
+  end
+and add_typmatch_inst thy (tyco, styps) class vardeps = if can (Sign.arity_sorts thy tyco) [class]
+  then vardeps
+    |> tap (fn _ => tracing "add_typmatch_inst")
+    |> assert thy (Inst (class, tyco))
+    |> fold_index (fn (k, styp) =>
+         add_typmatch thy styp (Inst (class, tyco), k)) styps
+  else vardeps (*permissive!*)
+and add_typmatch thy (Var c_k') c_k vardeps =
+      vardeps
+      |> tap (fn _ => tracing "add_typmatch (Inst)")
+      |> add_dep thy c_k c_k'
+  | add_typmatch thy (Tyco tyco_styps) c_k vardeps =
+      vardeps
+      |> tap (fn _ => tracing "add_typmatch (Tyco)")
+      |> add_styp thy c_k tyco_styps
+and add_inst thy (class, tyco) vardeps =
+  let
+    val _ = tracing ("add_inst " ^ tyco ^ "::" ^ class);
+    val superclasses = complete_proper_sort thy
+      (Sign.super_classes thy class);
+    val classess = map (complete_proper_sort thy)
+      (Sign.arity_sorts thy tyco [class]);
+    val inst_params = inst_params thy tyco class;
+  in
+    vardeps
+    |> fold (fn superclass => assert thy (Inst (superclass, tyco))) superclasses
+    |> fold (assert thy o Fun) inst_params
+    |> fold_index (fn (k, classes) =>
+         apsnd (Vargraph.default_node ((Inst (class, tyco), k), ([] ,[])))
+         #> add_classes thy (Inst (class, tyco), k) classes
+         #> fold (fn superclass =>
+             add_dep thy (Inst (superclass, tyco), k)
+             (Inst (class, tyco), k)) superclasses
+         #> fold (fn inst_param =>
+             add_dep thy (Fun inst_param, k)
+             (Inst (class, tyco), k)
+             ) inst_params
+         ) classess
+  end
+and add_const thy c vardeps =
+  let
+    val _ = tracing "add_const";
+    val (lhs, rhss) = lhs_rhss_of thy c;
+    fun styp_of (Type (tyco, tys)) = Tyco (tyco, map styp_of tys)
+      | styp_of (TFree (v, _)) = Var (Fun c, find_index (fn (v', _) => v = v') lhs);
+    val rhss' = (map o apsnd o map) styp_of rhss;
+  in
+    vardeps
+    |> fold_index (fn (k, (_, sort)) =>
+         apsnd (Vargraph.default_node ((Fun c, k), ([] ,[])))
+         #> add_classes thy (Fun c, k) (complete_proper_sort thy sort)) lhs
+    |> fold (assert thy o Fun o fst) rhss'
+    |> fold (fn (c', styps) => fold_index (fn (k', styp) =>
+         add_typmatch thy styp (Fun c', k')) styps) rhss'
+  end
+and assert thy c (vardeps as (asserted, _)) =
+  if member (op =) asserted c then vardeps
+  else case c
+   of Fun const => vardeps |> apfst (cons c) |> add_const thy const
+    | Inst inst => vardeps |> apfst (cons c) |> add_inst thy inst;
+
+
+(* applying instantiations *)
+
+fun algebra_of thy vardeps =
+  let
+    val pp = Syntax.pp_global thy;
+    val thy_algebra = Sign.classes_of thy;
+    val is_proper = can (AxClass.get_info thy);
+    val arities = Vargraph.fold (fn ((Fun _, _), _) => I
+      | ((Inst (class, tyco), k), ((_, classes), _)) =>
+          AList.map_default (op =)
+            ((tyco, class), replicate (Sign.arity_number thy tyco) [])
+              (nth_map k (K classes))) vardeps [];
+    val classrels = Sorts.classrels_of thy_algebra
+      |> filter (is_proper o fst)
+      |> (map o apsnd) (filter is_proper);
+    fun add_arity (tyco, class) = case AList.lookup (op =) arities (tyco, class)
+     of SOME sorts => Sorts.add_arities pp (tyco, [(class, sorts)])
+      | NONE => if Sign.arity_number thy tyco = 0
+          then (tracing (tyco ^ "::" ^ class); Sorts.add_arities pp (tyco, [(class, [])]))
+          else I;
+    val instances = Sorts.instances_of thy_algebra
+      |> filter (is_proper o snd)
+  in
+    Sorts.empty_algebra
+    |> fold (Sorts.add_class pp) classrels
+    |> fold add_arity instances
+  end;
+
+fun add_eqs thy algebra vardeps c gr =
+  let
+    val eqns = Code.these_eqns thy c
+      |> burrow_fst (Code_Unit.norm_args thy)
+      |> burrow_fst (Code_Unit.norm_varnames thy Code_Name.purify_tvar Code_Name.purify_var);
+    val (vs, _) = case eqns of [] => Code.default_typscheme thy c
+      | ((thm, _) :: _) => (snd o Code_Unit.head_eqn thy) thm;
+    val inst = Vartab.empty |> fold_index (fn (k, (v, _)) =>
+      Vartab.update ((v, 0), snd (Vargraph.get_node vardeps (Fun c, k)))) vs;
+    val eqns' = eqns
+      |> (map o apfst) (Code_Unit.inst_thm thy inst);
+    val tyscm = case eqns' of [] => Code.default_typscheme thy c
+      | ((thm, _) :: _) => (snd o Code_Unit.head_eqn thy) thm;
+    val _ = tracing ("tyscm " ^ makestring (map snd (fst tyscm)));
+    val rhss = fold_consts (fn (c, ty) =>
+      insert (op =) (c, Sign.const_typargs thy (c, Logic.unvarifyT ty))) (map fst eqns') [];
+  in
+    gr
+    |> Graph.new_node (c, (tyscm, eqns'))
+    |> fold (fn (c', Ts) => ensure_eqs_dep thy algebra vardeps c c'
+        #-> (fn (vs, _) =>
+          fold2 (ensure_match thy algebra vardeps c) Ts (map snd vs))) rhss
+    |> pair tyscm
+  end
+and ensure_match thy algebra vardeps c T sort gr =
+  gr
+  |> fold (fn c' => ensure_eqs_dep thy algebra vardeps c c' #> snd)
+       (dicts_of thy algebra (T, sort))
+and ensure_eqs_dep thy algebra vardeps c c' gr =
+  gr
+  |> ensure_eqs thy algebra vardeps c'
+  ||> Graph.add_edge (c, c')
+and ensure_eqs thy algebra vardeps c gr =
+  case try (Graph.get_node gr) c
+   of SOME (tyscm, _) => (tyscm, gr)
+    | NONE => add_eqs thy algebra vardeps c gr;
+
+fun extend_graph thy cs gr =
+  let
+    val _ = tracing ("extending with " ^ commas cs);
+    val _ = tracing "obtaining instantiations";
+    val (_, vardeps) = fold (assert thy o Fun) cs ([], Vargraph.empty)
+    val _ = tracing "obtaining algebra";
+    val algebra = algebra_of thy vardeps;
+    val _ = tracing "obtaining equations";
+    val (_, gr) = fold_map (ensure_eqs thy algebra vardeps) cs gr;
+    val _ = tracing "sort projection";
+    val minimal_proper_sort = fn sort => sort
+      |> Sorts.complete_sort (Sign.classes_of thy)
+      |> filter (can (AxClass.get_info thy))
+      |> Sorts.minimize_sort algebra;
+  in ((minimal_proper_sort, algebra), gr) end;
+
+
+(** retrieval interfaces **)
+
+fun proto_eval thy cterm_of evaluator_lift evaluator proto_ct funcgr =
+  let
+    val ct = cterm_of proto_ct;
+    val _ = Sign.no_vars (Syntax.pp_global thy) (Thm.term_of ct);
+    val _ = Term.fold_types (Type.no_tvars #> K I) (Thm.term_of ct) ();
+    fun consts_of t =
+      fold_aterms (fn Const c_ty => cons c_ty | _ => I) t [];
+    val thm = Code.preprocess_conv thy ct;
+    val ct' = Thm.rhs_of thm;
+    val t' = Thm.term_of ct';
+    val consts = map fst (consts_of t');
+    val (algebra', funcgr') = extend_graph thy consts funcgr;
+    val (t'', evaluator_funcgr) = evaluator t';
+    val consts' = consts_of t'';
+    val const_matches = fold (fn (c, ty) =>
+      insert (op =) (Sign.const_typargs thy (c, Logic.unvarifyT ty), c)) consts' [];
+    val typ_matches = maps (fn (tys, c) => tys ~~ map snd (fst (fst (Graph.get_node funcgr' c))))
+      const_matches;
+    val dicts = maps (dicts_of thy (snd algebra')) typ_matches;
+    val (algebra'', funcgr'') = extend_graph thy dicts funcgr';
+  in (evaluator_lift (evaluator_funcgr algebra'') thm funcgr'', funcgr'') end;
+
+fun proto_eval_conv thy =
+  let
+    fun evaluator_lift evaluator thm1 funcgr =
+      let
+        val thm2 = evaluator funcgr;
+        val thm3 = Code.postprocess_conv thy (Thm.rhs_of thm2);
+      in
+        Thm.transitive thm1 (Thm.transitive thm2 thm3) handle THM _ =>
+          error ("could not construct evaluation proof:\n"
+          ^ (cat_lines o map Display.string_of_thm) [thm1, thm2, thm3])
+      end;
+  in proto_eval thy I evaluator_lift end;
+
+fun proto_eval_term thy =
+  let
+    fun evaluator_lift evaluator _ funcgr = evaluator funcgr;
+  in proto_eval thy (Thm.cterm_of thy) evaluator_lift end;
+
+structure Funcgr = CodeDataFun
+(
+  type T = T;
+  val empty = Graph.empty;
+  fun purge _ cs funcgr =
+    Graph.del_nodes ((Graph.all_preds funcgr 
+      o filter (can (Graph.get_node funcgr))) cs) funcgr;
+);
+
+fun make thy = Funcgr.change_yield thy o extend_graph thy;
+
+fun eval_conv thy f =
+  fst o Funcgr.change_yield thy o proto_eval_conv thy f;
+
+fun eval_term thy f =
+  fst o Funcgr.change_yield thy o proto_eval_term thy f;
+
+
+(** diagnostic commands **)
+
+fun code_depgr thy consts =
+  let
+    val (_, gr) = make thy consts;
+    val select = Graph.all_succs gr consts;
+  in
+    gr
+    |> not (null consts) ? Graph.subgraph (member (op =) select) 
+    |> Graph.map_nodes ((apsnd o map o apfst) (AxClass.overload thy))
+  end;
+
+fun code_thms thy = Pretty.writeln o pretty thy o code_depgr thy;
+
+fun code_deps thy consts =
+  let
+    val gr = code_depgr thy consts;
+    fun mk_entry (const, (_, (_, parents))) =
+      let
+        val name = Code_Unit.string_of_const thy const;
+        val nameparents = map (Code_Unit.string_of_const thy) parents;
+      in { name = name, ID = name, dir = "", unfold = true,
+        path = "", parents = nameparents }
+      end;
+    val prgr = Graph.fold ((fn x => fn xs => xs @ [x]) o mk_entry) gr [];
+  in Present.display_graph prgr end;
+
+local
+
+structure P = OuterParse
+and K = OuterKeyword
+
+fun code_thms_cmd thy = code_thms thy o op @ o Code_Name.read_const_exprs thy;
+fun code_deps_cmd thy = code_deps thy o op @ o Code_Name.read_const_exprs thy;
+
+in
+
+val _ =
+  OuterSyntax.improper_command "code_thms" "print system of defining equations for code" OuterKeyword.diag
+    (Scan.repeat P.term_group
+      >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
+        o Toplevel.keep ((fn thy => code_thms_cmd thy cs) o Toplevel.theory_of)));
+
+val _ =
+  OuterSyntax.improper_command "code_deps" "visualize dependencies of defining equations for code" OuterKeyword.diag
+    (Scan.repeat P.term_group
+      >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
+        o Toplevel.keep ((fn thy => code_deps_cmd thy cs) o Toplevel.theory_of)));
+
+end;
+
+end; (*struct*)