Auto_tac: now uses enhanced version of asm_full_simp_tac,
Force_tac: replaced fast_tac by best_tac
--- a/src/HOL/ex/Primes.ML Fri May 01 22:28:25 1998 +0200
+++ b/src/HOL/ex/Primes.ML Fri May 01 22:30:42 1998 +0200
@@ -158,7 +158,7 @@
goalw thy [prime_def] "!!p. [| p: prime; ~ p dvd n |] ==> gcd (p, n) = 1";
by (cut_inst_tac [("m","p"),("n","n")] gcd_dvd_both 1);
-by (fast_tac (claset() addSss (simpset())) 1);
+by (fast_tac (claset() addss (simpset())) 1);
qed "prime_imp_relprime";
(*This theorem leads immediately to a proof of the uniqueness of factorization.
--- a/src/Provers/clasimp.ML Fri May 01 22:28:25 1998 +0200
+++ b/src/Provers/clasimp.ML Fri May 01 22:30:42 1998 +0200
@@ -55,17 +55,10 @@
fun op delcongs2 arg = pair_upd2 (op delcongs) arg;
end;
-(*an unsatisfactory fix for the incomplete safe_asm_full_simp_tac!
- better: asm_really_full_simp_tac, a yet to be implemented version of
- asm_full_simp_tac that applies all equalities in the
- premises to all the premises *)
-fun safe_asm_more_full_simp_tac ss = TRY o rot_eq_tac THEN'
- safe_asm_full_simp_tac ss;
-
(*Add a simpset to a classical set!*)
(*Caution: only one simpset added can be added by each of addSss and addss*)
-fun cs addSss ss = cs addSaltern ("safe_asm_more_full_simp_tac",
- CHANGED o (safe_asm_more_full_simp_tac ss));
+fun cs addSss ss = cs addSaltern ("safe_asm_full_simp_tac",
+ CHANGED o (safe_asm_full_simp_tac ss));
fun cs addss ss = cs addbefore ( "asm_full_simp_tac",
asm_full_simp_tac ss);
@@ -117,7 +110,7 @@
fun force_tac (cs,ss) = let val cs' = cs addss ss in SELECT_GOAL (EVERY [
clarify_tac cs' 1,
IF_UNSOLVED (asm_full_simp_tac ss 1),
- ALLGOALS (fast_tac cs')]) end;
+ ALLGOALS (best_tac cs')]) end;
fun Force_tac i = force_tac (claset(), simpset()) i;
fun force i = by (Force_tac i);