add lemma Quotient_abs_induct
authorhuffman
Wed, 18 Apr 2012 15:09:07 +0200
changeset 47538 1f0ec5b8135a
parent 47537 b06be48923a4
child 47539 436ae5ea4f80
child 47544 e455cdaac479
add lemma Quotient_abs_induct
src/HOL/Lifting.thy
--- a/src/HOL/Lifting.thy	Wed Apr 18 14:59:04 2012 +0200
+++ b/src/HOL/Lifting.thy	Wed Apr 18 15:09:07 2012 +0200
@@ -296,6 +296,10 @@
 lemma Quotient_rel_eq_transfer: "(T ===> T ===> op =) R (op =)"
   using 1 unfolding Quotient_alt_def fun_rel_def by simp
 
+lemma Quotient_abs_induct:
+  assumes "\<And>y. R y y \<Longrightarrow> P (Abs y)" shows "P x"
+  using 1 assms unfolding Quotient_def by metis
+
 end
 
 text {* Generating transfer rules for total quotients. *}