merged
authorwenzelm
Mon, 27 Sep 2010 14:54:10 +0200
changeset 39729 6a64f04cb648
parent 39728 832c42be723e (diff)
parent 39709 1fa4c5c7d534 (current diff)
child 39730 e4e1e3b69cba
child 39747 b4e131840b2a
merged
--- a/doc-src/Codegen/Thy/Adaptation.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/doc-src/Codegen/Thy/Adaptation.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -190,9 +190,9 @@
   "bool"}, we may use \qn{custom serialisations}:
 *}
 
-code_type %quotett bool
+code_type %quote %tt bool
   (SML "bool")
-code_const %quotett True and False and "op \<and>"
+code_const %quote %tt True and False and "op \<and>"
   (SML "true" and "false" and "_ andalso _")
 
 text {*
@@ -218,7 +218,7 @@
   precedences which may be used here:
 *}
 
-code_const %quotett "op \<and>"
+code_const %quote %tt "op \<and>"
   (SML infixl 1 "andalso")
 
 text %quote %typewriter {*
@@ -247,9 +247,9 @@
 code_const %invisible Pair
   (SML)
 (*>*)
-code_type %quotett prod
+code_type %quote %tt prod
   (SML infix 2 "*")
-code_const %quotett Pair
+code_const %quote %tt Pair
   (SML "!((_),/ (_))")
 
 text {*
@@ -283,10 +283,10 @@
   @{command_def code_class}) and its operation @{const [source] HOL.equal}
 *}
 
-code_class %quotett equal
+code_class %quote %tt equal
   (Haskell "Eq")
 
-code_const %quotett "HOL.equal"
+code_const %quote %tt "HOL.equal"
   (Haskell infixl 4 "==")
 
 text {*
@@ -307,7 +307,7 @@
 
 end %quote (*<*)
 
-(*>*) code_type %quotett bar
+(*>*) code_type %quote %tt bar
   (Haskell "Integer")
 
 text {*
@@ -316,7 +316,7 @@
   suppress this additional instance, use @{command_def "code_instance"}:
 *}
 
-code_instance %quotett bar :: equal
+code_instance %quote %tt bar :: equal
   (Haskell -)
 
 
@@ -328,10 +328,10 @@
   "code_include"} command:
 *}
 
-code_include %quotett Haskell "Errno"
+code_include %quote %tt Haskell "Errno"
 {*errno i = error ("Error number: " ++ show i)*}
 
-code_reserved %quotett Haskell Errno
+code_reserved %quote %tt Haskell Errno
 
 text {*
   \noindent Such named @{text include}s are then prepended to every
--- a/doc-src/Codegen/Thy/Evaluation.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/doc-src/Codegen/Thy/Evaluation.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -206,7 +206,7 @@
 
 datatype %quote form = T | F | And form form | Or form form (*<*)
 
-(*>*) ML %quotett {*
+(*>*) ML %tt %quote {*
   fun eval_form @{code T} = true
     | eval_form @{code F} = false
     | eval_form (@{code And} (p, q)) =
--- a/doc-src/Codegen/Thy/document/Adaptation.tex	Mon Sep 27 14:34:55 2010 +0200
+++ b/doc-src/Codegen/Thy/document/Adaptation.tex	Mon Sep 27 14:54:10 2010 +0200
@@ -281,23 +281,23 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
-\isatagquotett
+\isatagtt
 \isacommand{code{\isacharunderscore}type}\isamarkupfalse%
 \ bool\isanewline
 \ \ {\isacharparenleft}SML\ {\isachardoublequoteopen}bool{\isachardoublequoteclose}{\isacharparenright}\isanewline
 \isacommand{code{\isacharunderscore}const}\isamarkupfalse%
 \ True\ \isakeyword{and}\ False\ \isakeyword{and}\ {\isachardoublequoteopen}op\ {\isasymand}{\isachardoublequoteclose}\isanewline
 \ \ {\isacharparenleft}SML\ {\isachardoublequoteopen}true{\isachardoublequoteclose}\ \isakeyword{and}\ {\isachardoublequoteopen}false{\isachardoublequoteclose}\ \isakeyword{and}\ {\isachardoublequoteopen}{\isacharunderscore}\ andalso\ {\isacharunderscore}{\isachardoublequoteclose}{\isacharparenright}%
-\endisatagquotett
-{\isafoldquotett}%
+\endisatagtt
+{\isafoldtt}%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
 \begin{isamarkuptext}%
 \noindent The \indexdef{}{command}{code\_type}\hypertarget{command.code-type}{\hyperlink{command.code-type}{\mbox{\isa{\isacommand{code{\isacharunderscore}type}}}}} command takes a type constructor
@@ -354,20 +354,20 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
-\isatagquotett
+\isatagtt
 \isacommand{code{\isacharunderscore}const}\isamarkupfalse%
 \ {\isachardoublequoteopen}op\ {\isasymand}{\isachardoublequoteclose}\isanewline
 \ \ {\isacharparenleft}SML\ \isakeyword{infixl}\ {\isadigit{1}}\ {\isachardoublequoteopen}andalso{\isachardoublequoteclose}{\isacharparenright}%
-\endisatagquotett
-{\isafoldquotett}%
+\endisatagtt
+{\isafoldtt}%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
 \isadelimtypewriter
 %
@@ -447,23 +447,23 @@
 %
 \endisadeliminvisible
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
-\isatagquotett
+\isatagtt
 \isacommand{code{\isacharunderscore}type}\isamarkupfalse%
 \ prod\isanewline
 \ \ {\isacharparenleft}SML\ \isakeyword{infix}\ {\isadigit{2}}\ {\isachardoublequoteopen}{\isacharasterisk}{\isachardoublequoteclose}{\isacharparenright}\isanewline
 \isacommand{code{\isacharunderscore}const}\isamarkupfalse%
 \ Pair\isanewline
 \ \ {\isacharparenleft}SML\ {\isachardoublequoteopen}{\isacharbang}{\isacharparenleft}{\isacharparenleft}{\isacharunderscore}{\isacharparenright}{\isacharcomma}{\isacharslash}\ {\isacharparenleft}{\isacharunderscore}{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}{\isacharparenright}%
-\endisatagquotett
-{\isafoldquotett}%
+\endisatagtt
+{\isafoldtt}%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
 \begin{isamarkuptext}%
 \noindent The initial bang ``\verb|!|'' tells the serialiser
@@ -499,11 +499,11 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
-\isatagquotett
+\isatagtt
 \isacommand{code{\isacharunderscore}class}\isamarkupfalse%
 \ equal\isanewline
 \ \ {\isacharparenleft}Haskell\ {\isachardoublequoteopen}Eq{\isachardoublequoteclose}{\isacharparenright}\isanewline
@@ -511,12 +511,12 @@
 \isacommand{code{\isacharunderscore}const}\isamarkupfalse%
 \ {\isachardoublequoteopen}HOL{\isachardot}equal{\isachardoublequoteclose}\isanewline
 \ \ {\isacharparenleft}Haskell\ \isakeyword{infixl}\ {\isadigit{4}}\ {\isachardoublequoteopen}{\isacharequal}{\isacharequal}{\isachardoublequoteclose}{\isacharparenright}%
-\endisatagquotett
-{\isafoldquotett}%
+\endisatagtt
+{\isafoldtt}%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
 \begin{isamarkuptext}%
 \noindent A problem now occurs whenever a type which is an instance
@@ -553,20 +553,20 @@
 %
 \endisadelimquote
 %
-\isadelimquotett
+\isadelimtt
 \ %
-\endisadelimquotett
+\endisadelimtt
 %
-\isatagquotett
+\isatagtt
 \isacommand{code{\isacharunderscore}type}\isamarkupfalse%
 \ bar\isanewline
 \ \ {\isacharparenleft}Haskell\ {\isachardoublequoteopen}Integer{\isachardoublequoteclose}{\isacharparenright}%
-\endisatagquotett
-{\isafoldquotett}%
+\endisatagtt
+{\isafoldtt}%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
 \begin{isamarkuptext}%
 \noindent The code generator would produce an additional instance,
@@ -575,20 +575,20 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
-\isatagquotett
+\isatagtt
 \isacommand{code{\isacharunderscore}instance}\isamarkupfalse%
 \ bar\ {\isacharcolon}{\isacharcolon}\ equal\isanewline
 \ \ {\isacharparenleft}Haskell\ {\isacharminus}{\isacharparenright}%
-\endisatagquotett
-{\isafoldquotett}%
+\endisatagtt
+{\isafoldtt}%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
 \isamarkupsubsection{Enhancing the target language context \label{sec:include}%
 }
@@ -600,23 +600,23 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
-\isatagquotett
+\isatagtt
 \isacommand{code{\isacharunderscore}include}\isamarkupfalse%
 \ Haskell\ {\isachardoublequoteopen}Errno{\isachardoublequoteclose}\isanewline
 {\isacharverbatimopen}errno\ i\ {\isacharequal}\ error\ {\isacharparenleft}{\isachardoublequote}Error\ number{\isacharcolon}\ {\isachardoublequote}\ {\isacharplus}{\isacharplus}\ show\ i{\isacharparenright}{\isacharverbatimclose}\isanewline
 \isanewline
 \isacommand{code{\isacharunderscore}reserved}\isamarkupfalse%
 \ Haskell\ Errno%
-\endisatagquotett
-{\isafoldquotett}%
+\endisatagtt
+{\isafoldtt}%
 %
-\isadelimquotett
+\isadelimtt
 %
-\endisadelimquotett
+\endisadelimtt
 %
 \begin{isamarkuptext}%
 \noindent Such named \isa{include}s are then prepended to every
--- a/doc-src/Codegen/Thy/document/Evaluation.tex	Mon Sep 27 14:34:55 2010 +0200
+++ b/doc-src/Codegen/Thy/document/Evaluation.tex	Mon Sep 27 14:54:10 2010 +0200
@@ -269,20 +269,7 @@
 %
 \isatagquote
 \isacommand{datatype}\isamarkupfalse%
-\ form\ {\isacharequal}\ T\ {\isacharbar}\ F\ {\isacharbar}\ And\ form\ form\ {\isacharbar}\ Or\ form\ form\ %
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isadelimquotett
-\ %
-\endisadelimquotett
-%
-\isatagquotett
-\isacommand{ML}\isamarkupfalse%
+\ form\ {\isacharequal}\ T\ {\isacharbar}\ F\ {\isacharbar}\ And\ form\ form\ {\isacharbar}\ Or\ form\ form\ \ \isacommand{ML}\isamarkupfalse%
 \ {\isacharverbatimopen}\isanewline
 \ \ fun\ eval{\isacharunderscore}form\ %
 \isaantiq
@@ -307,12 +294,12 @@
 \ {\isacharparenleft}p{\isacharcomma}\ q{\isacharparenright}{\isacharparenright}\ {\isacharequal}\isanewline
 \ \ \ \ \ \ \ \ eval{\isacharunderscore}form\ p\ orelse\ eval{\isacharunderscore}form\ q{\isacharsemicolon}\isanewline
 {\isacharverbatimclose}%
-\endisatagquotett
-{\isafoldquotett}%
+\endisatagquote
+{\isafoldquote}%
 %
-\isadelimquotett
+\isadelimquote
 %
-\endisadelimquotett
+\endisadelimquote
 %
 \begin{isamarkuptext}%
 \noindent \isa{code} takes as argument the name of a constant;
--- a/doc-src/Codegen/style.sty	Mon Sep 27 14:34:55 2010 +0200
+++ b/doc-src/Codegen/style.sty	Mon Sep 27 14:54:10 2010 +0200
@@ -37,9 +37,8 @@
 \renewcommand{\isatagtypewriter}{\begin{typewriter}}
 \renewcommand{\endisatagtypewriter}{\end{typewriter}}
 
-\isakeeptag{quotett}
-\renewcommand{\isatagquotett}{\begin{quote}\isabellestyle{tt}\isastyle}
-\renewcommand{\endisatagquotett}{\end{quote}}
+\isakeeptag{tt}
+\renewcommand{\isatagtt}{\isabellestyle{tt}\isastyle}
 
 %% a trick
 \newcommand{\isasymSML}{SML}
--- a/src/HOL/HOL.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/HOL.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -1915,7 +1915,7 @@
     and infixl 1 "andalso" and infixl 0 "orelse"
     and "!(if (_)/ then (_)/ else (_))")
   (OCaml "true" and "false" and "not"
-    and infixl 4 "&&" and infixl 2 "||"
+    and infixl 3 "&&" and infixl 2 "||"
     and "!(if (_)/ then (_)/ else (_))")
   (Haskell "True" and "False" and "not"
     and infixl 3 "&&" and infixl 2 "||"
@@ -1980,9 +1980,11 @@
 *} "solve goal by normalization"
 
 
+(*
 subsection {* Try *}
 
 setup {* Try.setup *}
+*)
 
 subsection {* Counterexample Search Units *}
 
--- a/src/HOL/Imperative_HOL/Array.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Imperative_HOL/Array.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -449,6 +449,7 @@
 code_const Array.len' (SML "(fn/ ()/ =>/ Array.length/ _)")
 code_const Array.nth' (SML "(fn/ ()/ =>/ Array.sub/ ((_),/ (_)))")
 code_const Array.upd' (SML "(fn/ ()/ =>/ Array.update/ ((_),/ (_),/ (_)))")
+code_const "HOL.equal :: 'a array \<Rightarrow> 'a array \<Rightarrow> bool" (SML infixl 6 "=")
 
 code_reserved SML Array
 
@@ -464,6 +465,7 @@
 code_const Array.len' (OCaml "(fun/ ()/ ->/ Big'_int.big'_int'_of'_int/ (Array.length/ _))")
 code_const Array.nth' (OCaml "(fun/ ()/ ->/ Array.get/ _/ (Big'_int.int'_of'_big'_int/ _))")
 code_const Array.upd' (OCaml "(fun/ ()/ ->/ Array.set/ _/ (Big'_int.int'_of'_big'_int/ _)/ _)")
+code_const "HOL.equal :: 'a array \<Rightarrow> 'a array \<Rightarrow> bool" (OCaml infixl 4 "=")
 
 code_reserved OCaml Array
 
@@ -478,6 +480,8 @@
 code_const Array.len' (Haskell "Heap.lengthArray")
 code_const Array.nth' (Haskell "Heap.readArray")
 code_const Array.upd' (Haskell "Heap.writeArray")
+code_const "HOL.equal :: 'a array \<Rightarrow> 'a array \<Rightarrow> bool" (Haskell infix 4 "==")
+code_instance array :: HOL.equal (Haskell -)
 
 
 text {* Scala *}
@@ -490,5 +494,6 @@
 code_const Array.nth' (Scala "('_: Unit)/ =>/ Array.nth((_), (_))")
 code_const Array.upd' (Scala "('_: Unit)/ =>/ Array.upd((_), (_), (_))")
 code_const Array.freeze (Scala "('_: Unit)/ =>/ Array.freeze((_))")
+code_const "HOL.equal :: 'a array \<Rightarrow> 'a array \<Rightarrow> bool" (Scala infixl 5 "==")
 
 end
--- a/src/HOL/Imperative_HOL/Overview.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Imperative_HOL/Overview.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -138,6 +138,9 @@
 
   Provided proof rules are such that they reduce monad operations to
   operations on bare heaps.
+
+  Note that HOL equality coincides with reference equality and may be
+  used as primitive executable operation.
 *}
 
 subsection {* Arrays *}
--- a/src/HOL/Imperative_HOL/Ref.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Imperative_HOL/Ref.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -282,6 +282,7 @@
 code_const ref' (Eval "(fn/ ()/ =>/ Unsynchronized.ref/ _)")
 code_const Ref.lookup (SML "(fn/ ()/ =>/ !/ _)")
 code_const Ref.update (SML "(fn/ ()/ =>/ _/ :=/ _)")
+code_const "HOL.equal :: 'a ref \<Rightarrow> 'a ref \<Rightarrow> bool" (SML infixl 6 "=")
 
 code_reserved Eval Unsynchronized
 
@@ -293,6 +294,7 @@
 code_const ref' (OCaml "(fun/ ()/ ->/ ref/ _)")
 code_const Ref.lookup (OCaml "(fun/ ()/ ->/ !/ _)")
 code_const Ref.update (OCaml "(fun/ ()/ ->/ _/ :=/ _)")
+code_const "HOL.equal :: 'a ref \<Rightarrow> 'a ref \<Rightarrow> bool" (OCaml infixl 4 "=")
 
 code_reserved OCaml ref
 
@@ -304,6 +306,8 @@
 code_const ref' (Haskell "Heap.newSTRef")
 code_const Ref.lookup (Haskell "Heap.readSTRef")
 code_const Ref.update (Haskell "Heap.writeSTRef")
+code_const "HOL.equal :: 'a ref \<Rightarrow> 'a ref \<Rightarrow> bool" (Haskell infix 4 "==")
+code_instance ref :: HOL.equal (Haskell -)
 
 
 text {* Scala *}
@@ -313,5 +317,6 @@
 code_const ref' (Scala "('_: Unit)/ =>/ Ref((_))")
 code_const Ref.lookup (Scala "('_: Unit)/ =>/ Ref.lookup((_))")
 code_const Ref.update (Scala "('_: Unit)/ =>/ Ref.update((_), (_))")
+code_const "HOL.equal :: 'a ref \<Rightarrow> 'a ref \<Rightarrow> bool" (Scala infixl 5 "==")
 
 end
--- a/src/HOL/IsaMakefile	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/IsaMakefile	Mon Sep 27 14:54:10 2010 +0200
@@ -316,8 +316,7 @@
   Tools/recdef.ML \
   Tools/record.ML \
   Tools/semiring_normalizer.ML \
-  Tools/Sledgehammer/clausifier.ML \
-  Tools/Sledgehammer/meson_tactic.ML \
+  Tools/Sledgehammer/meson_clausifier.ML \
   Tools/Sledgehammer/metis_reconstruct.ML \
   Tools/Sledgehammer/metis_translate.ML \
   Tools/Sledgehammer/metis_tactics.ML \
--- a/src/HOL/Library/Dlist.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Library/Dlist.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -35,6 +35,10 @@
   "list_of_dlist (Dlist xs) = remdups xs"
   by (simp add: Dlist_def Abs_dlist_inverse)
 
+lemma remdups_list_of_dlist [simp]:
+  "remdups (list_of_dlist dxs) = list_of_dlist dxs"
+  by simp
+
 lemma Dlist_list_of_dlist [simp, code abstype]:
   "Dlist (list_of_dlist dxs) = dxs"
   by (simp add: Dlist_def list_of_dlist_inverse distinct_remdups_id)
--- a/src/HOL/List.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/List.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -2862,6 +2862,10 @@
   with `distinct xs` show ?thesis by simp
 qed
 
+lemma remdups_map_remdups:
+  "remdups (map f (remdups xs)) = remdups (map f xs)"
+  by (induct xs) simp_all
+
 
 subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
 
--- a/src/HOL/Predicate_Compile_Examples/Reg_Exp_Example.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Predicate_Compile_Examples/Reg_Exp_Example.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -102,7 +102,7 @@
   {ensure_groundness = true,
    limited_types = [(@{typ Sym}, 0), (@{typ "Sym list"}, 2), (@{typ RE}, 6)],
    limited_predicates = [(["repIntPa"], 2), (["repP"], 2), (["subP"], 0),
-    (["accepts", "acceptsaux", "acceptsauxauxa", "acceptsauxaux", "seqSplit", "seqSplita", "seqSplitaux", "seqSplitb"], 25)],
+    (["accepts", "acceptsaux", "seqSplit", "seqSplita", "seqSplitaux", "seqSplitb"], 25)],
    replacing =
      [(("repP", "limited_repP"), "lim_repIntPa"),
       (("subP", "limited_subP"), "repIntP"),
--- a/src/HOL/Sledgehammer.thy	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Sledgehammer.thy	Mon Sep 27 14:54:10 2010 +0200
@@ -14,8 +14,7 @@
   ("Tools/ATP/atp_proof.ML")
   ("Tools/ATP/atp_systems.ML")
   ("~~/src/Tools/Metis/metis.ML")
-  ("Tools/Sledgehammer/clausifier.ML")
-  ("Tools/Sledgehammer/meson_tactic.ML")
+  ("Tools/Sledgehammer/meson_clausifier.ML")
   ("Tools/Sledgehammer/metis_translate.ML")
   ("Tools/Sledgehammer/metis_reconstruct.ML")
   ("Tools/Sledgehammer/metis_tactics.ML")
@@ -99,9 +98,8 @@
 setup ATP_Systems.setup
 
 use "~~/src/Tools/Metis/metis.ML"
-use "Tools/Sledgehammer/clausifier.ML"
-use "Tools/Sledgehammer/meson_tactic.ML"
-setup Meson_Tactic.setup
+use "Tools/Sledgehammer/meson_clausifier.ML"
+setup Meson_Clausifier.setup
 
 use "Tools/Sledgehammer/metis_translate.ML"
 use "Tools/Sledgehammer/metis_reconstruct.ML"
--- a/src/HOL/Tools/Predicate_Compile/code_prolog.ML	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Tools/Predicate_Compile/code_prolog.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -315,8 +315,9 @@
         val prems' = Conj (map (translate_prem ensure_groundness ctxt' constant_table') prems)
         val clause = (dest_Rel (translate_literal ctxt' constant_table' head), prems')
       in clause end
-    val res = (map translate_intro intros', constant_table')
-  in res end
+  in
+    (map translate_intro intros', constant_table')
+  end
 
 fun depending_preds_of (key, intros) =
   fold Term.add_const_names (map Thm.prop_of intros) []
@@ -669,7 +670,9 @@
   |> (if #ensure_groundness options then
         add_ground_predicates ctxt (#limited_types options)
       else I)
+  |> tap (fn _ => tracing "Adding limited predicates...")
   |> add_limited_predicates (#limited_predicates options)
+  |> tap (fn _ => tracing "Replacing predicates...")
   |> apfst (fold replace (#replacing options))
   |> apfst (reorder_manually (#manual_reorder options))
   |> apfst rename_vars_program
--- a/src/HOL/Tools/Predicate_Compile/predicate_compile_pred.ML	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Tools/Predicate_Compile/predicate_compile_pred.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -94,6 +94,56 @@
     error "is_compound: Conjunction should not occur; preprocessing is defect"
   | is_compound _ = false
 
+fun try_destruct_case thy names atom =
+  case find_split_thm thy (fst (strip_comb atom)) of
+    NONE => NONE
+  | SOME raw_split_thm =>
+    let
+      val case_name = fst (dest_Const (fst (strip_comb atom)))
+      val split_thm = prepare_split_thm (ProofContext.init_global thy) raw_split_thm
+      (* TODO: contextify things - this line is to unvarify the split_thm *)
+      (*val ((_, [isplit_thm]), _) =
+        Variable.import true [split_thm] (ProofContext.init_global thy)*)
+      val (assms, concl) = Logic.strip_horn (prop_of split_thm)
+      val (P, [split_t]) = strip_comb (HOLogic.dest_Trueprop concl) 
+      val Tcons = datatype_names_of_case_name thy case_name
+      val ths = maps (instantiated_case_rewrites thy) Tcons
+      val atom' = MetaSimplifier.rewrite_term thy
+        (map (fn th => th RS @{thm eq_reflection}) ths) [] atom
+      val subst = Pattern.match thy (split_t, atom') (Vartab.empty, Vartab.empty)
+      val names' = Term.add_free_names atom' names
+      fun mk_subst_rhs assm =
+        let
+          val (vTs, assm') = strip_all (Envir.beta_norm (Envir.subst_term subst assm))
+          val var_names = Name.variant_list names' (map fst vTs)
+          val vars = map Free (var_names ~~ (map snd vTs))
+          val (prems', pre_res) = Logic.strip_horn (subst_bounds (rev vars, assm'))
+          fun partition_prem_subst prem =
+            case HOLogic.dest_eq (HOLogic.dest_Trueprop prem) of
+              (Free (x, T), r) => (NONE, SOME ((x, T), r))
+            | _ => (SOME prem, NONE)
+          fun partition f xs =
+            let
+              fun partition' acc1 acc2 [] = (rev acc1, rev acc2)
+                | partition' acc1 acc2 (x :: xs) =
+                  let
+                    val (y, z) = f x
+                    val acc1' = case y of NONE => acc1 | SOME y' => y' :: acc1
+                    val acc2' = case z of NONE => acc2 | SOME z' => z' :: acc2
+                  in partition' acc1' acc2' xs end
+            in partition' [] [] xs end
+          val (prems'', subst) = partition partition_prem_subst prems'
+          val (_, [inner_t]) = strip_comb (HOLogic.dest_Trueprop pre_res)
+          val pre_rhs =
+            fold (curry HOLogic.mk_conj) (map HOLogic.dest_Trueprop prems'') inner_t
+          val rhs = Envir.expand_term_frees subst pre_rhs
+        in
+          case try_destruct_case thy (var_names @ names') rhs of
+            NONE => [(subst, rhs)]
+          | SOME (_, srs) => map (fn (subst', rhs') => (subst @ subst', rhs')) srs
+        end
+     in SOME (atom', maps mk_subst_rhs assms) end
+     
 fun flatten constname atom (defs, thy) =
   if is_compound atom then
     let
@@ -124,62 +174,20 @@
           flatten constname atom' (defs, thy)
         end
     | _ =>
-      case find_split_thm thy (fst (strip_comb atom)) of
+      case try_destruct_case thy [] atom of
         NONE => (atom, (defs, thy))
-      | SOME raw_split_thm =>
-        let
-          val (f, args) = strip_comb atom
-          val split_thm = prepare_split_thm (ProofContext.init_global thy) raw_split_thm
-          (* TODO: contextify things - this line is to unvarify the split_thm *)
-          (*val ((_, [isplit_thm]), _) =
-            Variable.import true [split_thm] (ProofContext.init_global thy)*)
-          val (assms, concl) = Logic.strip_horn (prop_of split_thm)
-          val (P, [split_t]) = strip_comb (HOLogic.dest_Trueprop concl) 
-          val Tcons = datatype_names_of_case_name thy (fst (dest_Const f))
-          val ths = maps (instantiated_case_rewrites thy) Tcons
-          val atom = MetaSimplifier.rewrite_term thy
-            (map (fn th => th RS @{thm eq_reflection}) ths) [] atom
-          val (f, args) = strip_comb atom
-          val subst = Pattern.match thy (split_t, atom) (Vartab.empty, Vartab.empty)
-          val (_, split_args) = strip_comb split_t
-          val match = split_args ~~ args
-          val names = Term.add_free_names atom []
-          val frees = map Free (Term.add_frees atom [])
+      | SOME (atom', srs) =>
+        let      
+          val frees = map Free (Term.add_frees atom' [])
           val constname = Name.variant (map (Long_Name.base_name o fst) defs)
-            ((Long_Name.base_name constname) ^ "_aux")
+           ((Long_Name.base_name constname) ^ "_aux")
           val full_constname = Sign.full_bname thy constname
           val constT = map fastype_of frees ---> HOLogic.boolT
           val lhs = list_comb (Const (full_constname, constT), frees)
-          fun new_def assm =
-            let
-              val (vTs, assm') = strip_all (Envir.beta_norm (Envir.subst_term subst assm))
-              val var_names = Name.variant_list names (map fst vTs)
-              val vars = map Free (var_names ~~ (map snd vTs))
-              val (prems', pre_res) = Logic.strip_horn (subst_bounds (rev vars, assm'))
-              fun partition_prem_subst prem =
-                case HOLogic.dest_eq (HOLogic.dest_Trueprop prem) of
-                  (Free (x, T), r) => (NONE, SOME ((x, T), r))
-                | _ => (SOME prem, NONE)
-              fun partition f xs =
-                let
-                  fun partition' acc1 acc2 [] = (rev acc1, rev acc2)
-                    | partition' acc1 acc2 (x :: xs) =
-                      let
-                        val (y, z) = f x
-                        val acc1' = case y of NONE => acc1 | SOME y' => y' :: acc1
-                        val acc2' = case z of NONE => acc2 | SOME z' => z' :: acc2
-                      in partition' acc1' acc2' xs end
-                in partition' [] [] xs end
-              val (prems'', subst) = partition partition_prem_subst prems'
-              val (_, [inner_t]) = strip_comb (HOLogic.dest_Trueprop pre_res)
-              val pre_def = Logic.mk_equals (lhs,
-                fold (curry HOLogic.mk_conj) (map HOLogic.dest_Trueprop prems'') inner_t)
-              val def = Envir.expand_term_frees subst pre_def
-            in
-              def
-            end
-         val new_defs = map new_def assms
-         val (definition, thy') = thy
+          fun mk_def (subst, rhs) =
+            Logic.mk_equals (fold Envir.expand_term_frees (map single subst) lhs, rhs)
+          val new_defs = map mk_def srs
+          val (definition, thy') = thy
           |> Sign.add_consts_i [(Binding.name constname, constT, NoSyn)]
           |> fold_map Specification.axiom (map_index
               (fn (i, t) => ((Binding.name (constname ^ "_def" ^ string_of_int i), []), t)) new_defs)
--- a/src/HOL/Tools/Sledgehammer/clausifier.ML	Mon Sep 27 14:34:55 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,254 +0,0 @@
-(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
-    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
-    Author:     Jasmin Blanchette, TU Muenchen
-
-Transformation of axiom rules (elim/intro/etc) into CNF forms.
-*)
-
-signature CLAUSIFIER =
-sig
-  val extensionalize_theorem : thm -> thm
-  val introduce_combinators_in_cterm : cterm -> thm
-  val introduce_combinators_in_theorem : thm -> thm
-  val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
-  val cnf_axiom : theory -> thm -> thm list
-end;
-
-structure Clausifier : CLAUSIFIER =
-struct
-
-(**** Transformation of Elimination Rules into First-Order Formulas****)
-
-val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
-val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
-
-(* Converts an elim-rule into an equivalent theorem that does not have the
-   predicate variable. Leaves other theorems unchanged. We simply instantiate
-   the conclusion variable to False. (Cf. "transform_elim_term" in
-   "Sledgehammer_Util".) *)
-fun transform_elim_theorem th =
-  case concl_of th of    (*conclusion variable*)
-       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
-           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
-    | v as Var(_, @{typ prop}) =>
-           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
-    | _ => th
-
-
-(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
-
-fun mk_skolem t =
-  let val T = fastype_of t in
-    Const (@{const_name skolem}, T --> T) $ t
-  end
-
-fun beta_eta_under_lambdas (Abs (s, T, t')) =
-    Abs (s, T, beta_eta_under_lambdas t')
-  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
-
-(*Traverse a theorem, accumulating Skolem function definitions.*)
-fun assume_skolem_funs th =
-  let
-    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
-        (*Existential: declare a Skolem function, then insert into body and continue*)
-        let
-          val args = OldTerm.term_frees body
-          (* Forms a lambda-abstraction over the formal parameters *)
-          val rhs =
-            list_abs_free (map dest_Free args,
-                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
-            |> mk_skolem
-          val comb = list_comb (rhs, args)
-        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
-      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
-        (*Universal quant: insert a free variable into body and continue*)
-        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
-        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
-      | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
-      | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
-      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
-      | dec_sko _ rhss = rhss
-  in  dec_sko (prop_of th) []  end;
-
-
-(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
-
-val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
-
-(* Removes the lambdas from an equation of the form "t = (%x. u)".
-   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
-fun extensionalize_theorem th =
-  case prop_of th of
-    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
-         $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
-  | _ => th
-
-fun is_quasi_lambda_free (Const (@{const_name skolem}, _) $ _) = true
-  | is_quasi_lambda_free (t1 $ t2) =
-    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
-  | is_quasi_lambda_free (Abs _) = false
-  | is_quasi_lambda_free _ = true
-
-val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
-val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
-val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
-
-(* FIXME: Requires more use of cterm constructors. *)
-fun abstract ct =
-  let
-      val thy = theory_of_cterm ct
-      val Abs(x,_,body) = term_of ct
-      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
-      val cxT = ctyp_of thy xT
-      val cbodyT = ctyp_of thy bodyT
-      fun makeK () =
-        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
-                     @{thm abs_K}
-  in
-      case body of
-          Const _ => makeK()
-        | Free _ => makeK()
-        | Var _ => makeK()  (*though Var isn't expected*)
-        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
-        | rator$rand =>
-            if loose_bvar1 (rator,0) then (*C or S*)
-               if loose_bvar1 (rand,0) then (*S*)
-                 let val crator = cterm_of thy (Abs(x,xT,rator))
-                     val crand = cterm_of thy (Abs(x,xT,rand))
-                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
-                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
-                 in
-                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
-                 end
-               else (*C*)
-                 let val crator = cterm_of thy (Abs(x,xT,rator))
-                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
-                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
-                 in
-                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
-                 end
-            else if loose_bvar1 (rand,0) then (*B or eta*)
-               if rand = Bound 0 then Thm.eta_conversion ct
-               else (*B*)
-                 let val crand = cterm_of thy (Abs(x,xT,rand))
-                     val crator = cterm_of thy rator
-                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
-                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
-                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
-            else makeK()
-        | _ => raise Fail "abstract: Bad term"
-  end;
-
-(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
-fun introduce_combinators_in_cterm ct =
-  if is_quasi_lambda_free (term_of ct) then
-    Thm.reflexive ct
-  else case term_of ct of
-    Abs _ =>
-    let
-      val (cv, cta) = Thm.dest_abs NONE ct
-      val (v, _) = dest_Free (term_of cv)
-      val u_th = introduce_combinators_in_cterm cta
-      val cu = Thm.rhs_of u_th
-      val comb_eq = abstract (Thm.cabs cv cu)
-    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
-  | _ $ _ =>
-    let val (ct1, ct2) = Thm.dest_comb ct in
-        Thm.combination (introduce_combinators_in_cterm ct1)
-                        (introduce_combinators_in_cterm ct2)
-    end
-
-fun introduce_combinators_in_theorem th =
-  if is_quasi_lambda_free (prop_of th) then
-    th
-  else
-    let
-      val th = Drule.eta_contraction_rule th
-      val eqth = introduce_combinators_in_cterm (cprop_of th)
-    in Thm.equal_elim eqth th end
-    handle THM (msg, _, _) =>
-           (warning ("Error in the combinator translation of " ^
-                     Display.string_of_thm_without_context th ^
-                     "\nException message: " ^ msg ^ ".");
-            (* A type variable of sort "{}" will make abstraction fail. *)
-            TrueI)
-
-(*cterms are used throughout for efficiency*)
-val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
-
-(*Given an abstraction over n variables, replace the bound variables by free
-  ones. Return the body, along with the list of free variables.*)
-fun c_variant_abs_multi (ct0, vars) =
-      let val (cv,ct) = Thm.dest_abs NONE ct0
-      in  c_variant_abs_multi (ct, cv::vars)  end
-      handle CTERM _ => (ct0, rev vars);
-
-val skolem_def_raw = @{thms skolem_def_raw}
-
-(* Given the definition of a Skolem function, return a theorem to replace
-   an existential formula by a use of that function.
-   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
-fun skolem_theorem_of_def thy rhs0 =
-  let
-    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
-    val rhs' = rhs |> Thm.dest_comb |> snd
-    val (ch, frees) = c_variant_abs_multi (rhs', [])
-    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
-    val T =
-      case hilbert of
-        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
-      | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [hilbert])
-    val cex = cterm_of thy (HOLogic.exists_const T)
-    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
-    val conc =
-      Drule.list_comb (rhs, frees)
-      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
-    fun tacf [prem] =
-      rewrite_goals_tac skolem_def_raw
-      THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
-  in
-    Goal.prove_internal [ex_tm] conc tacf
-    |> forall_intr_list frees
-    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
-    |> Thm.varifyT_global
-  end
-
-(* Converts an Isabelle theorem (intro, elim or simp format, even higher-order)
-   into NNF. *)
-fun to_nnf th ctxt0 =
-  let
-    val th1 = th |> transform_elim_theorem |> zero_var_indexes
-    val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
-    val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
-                  |> extensionalize_theorem
-                  |> Meson.make_nnf ctxt
-  in (th3, ctxt) end
-
-fun to_definitional_cnf_with_quantifiers thy th =
-  let
-    val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
-    val eqth = eqth RS @{thm eq_reflection}
-    val eqth = eqth RS @{thm TruepropI}
-  in Thm.equal_elim eqth th end
-
-(* Convert a theorem to CNF, with Skolem functions as additional premises. *)
-fun cnf_axiom thy th =
-  let
-    val ctxt0 = Variable.global_thm_context th
-    val (nnf_th, ctxt) = to_nnf th ctxt0
-    fun aux th =
-      Meson.make_cnf (map (skolem_theorem_of_def thy) (assume_skolem_funs th))
-                     th ctxt
-    val (cnf_ths, ctxt) =
-      aux nnf_th
-      |> (fn ([], _) => aux (to_definitional_cnf_with_quantifiers thy nnf_th)
-           | p => p)
-  in
-    cnf_ths |> map introduce_combinators_in_theorem
-            |> Variable.export ctxt ctxt0
-            |> Meson.finish_cnf
-            |> map Thm.close_derivation
-  end
-  handle THM _ => []
-
-end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Sledgehammer/meson_clausifier.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -0,0 +1,267 @@
+(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
+    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
+    Author:     Jasmin Blanchette, TU Muenchen
+
+Transformation of axiom rules (elim/intro/etc) into CNF forms.
+*)
+
+signature MESON_CLAUSIFIER =
+sig
+  val extensionalize_theorem : thm -> thm
+  val introduce_combinators_in_cterm : cterm -> thm
+  val introduce_combinators_in_theorem : thm -> thm
+  val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
+  val meson_cnf_axiom : theory -> thm -> thm list
+  val meson_general_tac : Proof.context -> thm list -> int -> tactic
+  val setup: theory -> theory
+end;
+
+structure Meson_Clausifier : MESON_CLAUSIFIER =
+struct
+
+(**** Transformation of Elimination Rules into First-Order Formulas****)
+
+val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
+val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
+
+(* Converts an elim-rule into an equivalent theorem that does not have the
+   predicate variable. Leaves other theorems unchanged. We simply instantiate
+   the conclusion variable to False. (Cf. "transform_elim_term" in
+   "Sledgehammer_Util".) *)
+fun transform_elim_theorem th =
+  case concl_of th of    (*conclusion variable*)
+       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
+           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
+    | v as Var(_, @{typ prop}) =>
+           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
+    | _ => th
+
+
+(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
+
+fun mk_skolem t =
+  let val T = fastype_of t in
+    Const (@{const_name skolem}, T --> T) $ t
+  end
+
+fun beta_eta_under_lambdas (Abs (s, T, t')) =
+    Abs (s, T, beta_eta_under_lambdas t')
+  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
+
+(*Traverse a theorem, accumulating Skolem function definitions.*)
+fun assume_skolem_funs th =
+  let
+    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
+        (*Existential: declare a Skolem function, then insert into body and continue*)
+        let
+          val args = OldTerm.term_frees body
+          (* Forms a lambda-abstraction over the formal parameters *)
+          val rhs =
+            list_abs_free (map dest_Free args,
+                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
+            |> mk_skolem
+          val comb = list_comb (rhs, args)
+        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
+      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
+        (*Universal quant: insert a free variable into body and continue*)
+        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
+        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
+      | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
+      | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
+      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
+      | dec_sko _ rhss = rhss
+  in  dec_sko (prop_of th) []  end;
+
+
+(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
+
+val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
+
+(* Removes the lambdas from an equation of the form "t = (%x. u)".
+   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
+fun extensionalize_theorem th =
+  case prop_of th of
+    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
+         $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
+  | _ => th
+
+fun is_quasi_lambda_free (Const (@{const_name skolem}, _) $ _) = true
+  | is_quasi_lambda_free (t1 $ t2) =
+    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
+  | is_quasi_lambda_free (Abs _) = false
+  | is_quasi_lambda_free _ = true
+
+val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
+val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
+val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
+
+(* FIXME: Requires more use of cterm constructors. *)
+fun abstract ct =
+  let
+      val thy = theory_of_cterm ct
+      val Abs(x,_,body) = term_of ct
+      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
+      val cxT = ctyp_of thy xT
+      val cbodyT = ctyp_of thy bodyT
+      fun makeK () =
+        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
+                     @{thm abs_K}
+  in
+      case body of
+          Const _ => makeK()
+        | Free _ => makeK()
+        | Var _ => makeK()  (*though Var isn't expected*)
+        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
+        | rator$rand =>
+            if loose_bvar1 (rator,0) then (*C or S*)
+               if loose_bvar1 (rand,0) then (*S*)
+                 let val crator = cterm_of thy (Abs(x,xT,rator))
+                     val crand = cterm_of thy (Abs(x,xT,rand))
+                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
+                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
+                 in
+                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
+                 end
+               else (*C*)
+                 let val crator = cterm_of thy (Abs(x,xT,rator))
+                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
+                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
+                 in
+                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
+                 end
+            else if loose_bvar1 (rand,0) then (*B or eta*)
+               if rand = Bound 0 then Thm.eta_conversion ct
+               else (*B*)
+                 let val crand = cterm_of thy (Abs(x,xT,rand))
+                     val crator = cterm_of thy rator
+                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
+                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
+                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
+            else makeK()
+        | _ => raise Fail "abstract: Bad term"
+  end;
+
+(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
+fun introduce_combinators_in_cterm ct =
+  if is_quasi_lambda_free (term_of ct) then
+    Thm.reflexive ct
+  else case term_of ct of
+    Abs _ =>
+    let
+      val (cv, cta) = Thm.dest_abs NONE ct
+      val (v, _) = dest_Free (term_of cv)
+      val u_th = introduce_combinators_in_cterm cta
+      val cu = Thm.rhs_of u_th
+      val comb_eq = abstract (Thm.cabs cv cu)
+    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
+  | _ $ _ =>
+    let val (ct1, ct2) = Thm.dest_comb ct in
+        Thm.combination (introduce_combinators_in_cterm ct1)
+                        (introduce_combinators_in_cterm ct2)
+    end
+
+fun introduce_combinators_in_theorem th =
+  if is_quasi_lambda_free (prop_of th) then
+    th
+  else
+    let
+      val th = Drule.eta_contraction_rule th
+      val eqth = introduce_combinators_in_cterm (cprop_of th)
+    in Thm.equal_elim eqth th end
+    handle THM (msg, _, _) =>
+           (warning ("Error in the combinator translation of " ^
+                     Display.string_of_thm_without_context th ^
+                     "\nException message: " ^ msg ^ ".");
+            (* A type variable of sort "{}" will make abstraction fail. *)
+            TrueI)
+
+(*cterms are used throughout for efficiency*)
+val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
+
+(*Given an abstraction over n variables, replace the bound variables by free
+  ones. Return the body, along with the list of free variables.*)
+fun c_variant_abs_multi (ct0, vars) =
+      let val (cv,ct) = Thm.dest_abs NONE ct0
+      in  c_variant_abs_multi (ct, cv::vars)  end
+      handle CTERM _ => (ct0, rev vars);
+
+val skolem_def_raw = @{thms skolem_def_raw}
+
+(* Given the definition of a Skolem function, return a theorem to replace
+   an existential formula by a use of that function.
+   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
+fun skolem_theorem_of_def thy rhs0 =
+  let
+    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
+    val rhs' = rhs |> Thm.dest_comb |> snd
+    val (ch, frees) = c_variant_abs_multi (rhs', [])
+    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
+    val T =
+      case hilbert of
+        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
+      | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [hilbert])
+    val cex = cterm_of thy (HOLogic.exists_const T)
+    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
+    val conc =
+      Drule.list_comb (rhs, frees)
+      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
+    fun tacf [prem] =
+      rewrite_goals_tac skolem_def_raw
+      THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
+  in
+    Goal.prove_internal [ex_tm] conc tacf
+    |> forall_intr_list frees
+    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
+    |> Thm.varifyT_global
+  end
+
+(* Converts an Isabelle theorem (intro, elim or simp format, even higher-order)
+   into NNF. *)
+fun to_nnf th ctxt0 =
+  let
+    val th1 = th |> transform_elim_theorem |> zero_var_indexes
+    val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
+    val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
+                  |> extensionalize_theorem
+                  |> Meson.make_nnf ctxt
+  in (th3, ctxt) end
+
+fun to_definitional_cnf_with_quantifiers thy th =
+  let
+    val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
+    val eqth = eqth RS @{thm eq_reflection}
+    val eqth = eqth RS @{thm TruepropI}
+  in Thm.equal_elim eqth th end
+
+(* Convert a theorem to CNF, with Skolem functions as additional premises. *)
+fun meson_cnf_axiom thy th =
+  let
+    val ctxt0 = Variable.global_thm_context th
+    val (nnf_th, ctxt) = to_nnf th ctxt0
+    fun aux th =
+      Meson.make_cnf (map (skolem_theorem_of_def thy) (assume_skolem_funs th))
+                     th ctxt
+    val (cnf_ths, ctxt) =
+      aux nnf_th
+      |> (fn ([], _) => aux (to_definitional_cnf_with_quantifiers thy nnf_th)
+           | p => p)
+  in
+    cnf_ths |> map introduce_combinators_in_theorem
+            |> Variable.export ctxt ctxt0
+            |> Meson.finish_cnf
+            |> map Thm.close_derivation
+  end
+  handle THM _ => []
+
+fun meson_general_tac ctxt ths =
+  let
+    val thy = ProofContext.theory_of ctxt
+    val ctxt0 = Classical.put_claset HOL_cs ctxt
+  in Meson.meson_tac ctxt0 (maps (meson_cnf_axiom thy) ths) end
+
+val setup =
+  Method.setup @{binding meson} (Attrib.thms >> (fn ths => fn ctxt =>
+    SIMPLE_METHOD' (CHANGED_PROP o meson_general_tac ctxt ths)))
+    "MESON resolution proof procedure";
+
+end;
--- a/src/HOL/Tools/Sledgehammer/meson_tactic.ML	Mon Sep 27 14:34:55 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,28 +0,0 @@
-(*  Title:      HOL/Tools/Sledgehammer/meson_tactic.ML
-    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
-    Author:     Jasmin Blanchette, TU Muenchen
-
-MESON general tactic and proof method.
-*)
-
-signature MESON_TACTIC =
-sig
-  val meson_general_tac : Proof.context -> thm list -> int -> tactic
-  val setup: theory -> theory
-end;
-
-structure Meson_Tactic : MESON_TACTIC =
-struct
-
-fun meson_general_tac ctxt ths =
-  let
-    val thy = ProofContext.theory_of ctxt
-    val ctxt0 = Classical.put_claset HOL_cs ctxt
-  in Meson.meson_tac ctxt0 (maps (Clausifier.cnf_axiom thy) ths) end
-
-val setup =
-  Method.setup @{binding meson} (Attrib.thms >> (fn ths => fn ctxt =>
-    SIMPLE_METHOD' (CHANGED_PROP o meson_general_tac ctxt ths)))
-    "MESON resolution proof procedure";
-
-end;
--- a/src/HOL/Tools/Sledgehammer/metis_tactics.ML	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/metis_tactics.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -56,7 +56,8 @@
   let val thy = ProofContext.theory_of ctxt
       val type_lits = Config.get ctxt type_lits
       val th_cls_pairs =
-        map (fn th => (Thm.get_name_hint th, Clausifier.cnf_axiom thy th)) ths0
+        map (fn th => (Thm.get_name_hint th,
+                       Meson_Clausifier.meson_cnf_axiom thy th)) ths0
       val ths = maps #2 th_cls_pairs
       val _ = trace_msg (fn () => "FOL_SOLVE: CONJECTURE CLAUSES")
       val _ = app (fn th => trace_msg (fn () => Display.string_of_thm ctxt th)) cls
@@ -116,7 +117,7 @@
    does, but also keep an unextensionalized version of "th" for backward
    compatibility. *)
 fun also_extensionalize_theorem th =
-  let val th' = Clausifier.extensionalize_theorem th in
+  let val th' = Meson_Clausifier.extensionalize_theorem th in
     if Thm.eq_thm (th, th') then [th]
     else th :: Meson.make_clauses_unsorted [th']
   end
@@ -125,7 +126,7 @@
   single
   #> Meson.make_clauses_unsorted
   #> maps also_extensionalize_theorem
-  #> map Clausifier.introduce_combinators_in_theorem
+  #> map Meson_Clausifier.introduce_combinators_in_theorem
   #> Meson.finish_cnf
 
 fun preskolem_tac ctxt st0 =
--- a/src/HOL/Tools/Sledgehammer/metis_translate.ML	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/metis_translate.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -554,7 +554,8 @@
        Metis_Term.Fn (".", map hol_term_to_fol_HO [tm1, tm2]);
 
 (*The fully-typed translation, to avoid type errors*)
-fun wrap_type (tm, ty) = Metis_Term.Fn("ti", [tm, metis_term_from_combtyp ty]);
+fun wrap_type (tm, ty) =
+  Metis_Term.Fn (type_wrapper_name, [tm, metis_term_from_combtyp ty])
 
 fun hol_term_to_fol_FT (CombVar ((s, _), ty)) = wrap_type (Metis_Term.Var s, ty)
   | hol_term_to_fol_FT (CombConst((a, _), ty, _)) =
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_filter.ML	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_filter.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -740,8 +740,7 @@
           let
             val multi = length ths > 1
             fun backquotify th =
-              "`" ^ Print_Mode.setmp (Print_Mode.input ::
-                                      filter (curry (op =) Symbol.xsymbolsN)
+              "`" ^ Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
                                              (print_mode_value ()))
                    (Syntax.string_of_term ctxt) (close_form (prop_of th)) ^ "`"
               |> String.translate (fn c => if Char.isPrint c then str c else "")
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_reconstruct.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -228,8 +228,8 @@
                       | NONE => ~1
   in if k >= 0 then [k] else [] end
 
-val is_axiom = not o null oo resolve_axiom
-val is_conjecture = not o null oo resolve_conjecture
+fun is_axiom conjecture_shape = not o null o resolve_axiom conjecture_shape
+fun is_conjecture conjecture_shape = not o null o resolve_conjecture conjecture_shape
 
 fun raw_label_for_name conjecture_shape name =
   case resolve_conjecture conjecture_shape name of
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_translate.ML	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_translate.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -94,7 +94,7 @@
                     (0 upto length Ts - 1 ~~ Ts))
 
 (* Removes the lambdas from an equation of the form "t = (%x. u)".
-   (Cf. "extensionalize_theorem" in "Clausifier".) *)
+   (Cf. "extensionalize_theorem" in "Meson_Clausifier".) *)
 fun extensionalize_term t =
   let
     fun aux j (@{const Trueprop} $ t') = @{const Trueprop} $ aux j t'
@@ -141,7 +141,7 @@
                    t |> conceal_bounds Ts
                      |> Envir.eta_contract
                      |> cterm_of thy
-                     |> Clausifier.introduce_combinators_in_cterm
+                     |> Meson_Clausifier.introduce_combinators_in_cterm
                      |> prop_of |> Logic.dest_equals |> snd
                      |> reveal_bounds Ts
         val (t, ctxt') = Variable.import_terms true [t] ctxt |>> the_single
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_util.ML	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_util.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -98,7 +98,7 @@
 (* Converts an elim-rule into an equivalent theorem that does not have the
    predicate variable. Leaves other theorems unchanged. We simply instantiate
    the conclusion variable to False. (Cf. "transform_elim_theorem" in
-   "Clausifier".) *)
+   "Meson_Clausifier".) *)
 fun transform_elim_term t =
   case Logic.strip_imp_concl t of
     @{const Trueprop} $ Var (z, @{typ bool}) =>
--- a/src/HOL/Tools/try.ML	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/HOL/Tools/try.ML	Mon Sep 27 14:54:10 2010 +0200
@@ -2,18 +2,25 @@
     Author:     Jasmin Blanchette, TU Muenchen
 
 Try a combination of proof methods.
+
+FIXME: reintroduce or remove commented code (see also HOL.thy)
 *)
 
 signature TRY =
 sig
+(*
   val auto : bool Unsynchronized.ref
+*)
   val invoke_try : Time.time option -> Proof.state -> bool
+(*
   val setup : theory -> theory
+*)
 end;
 
 structure Try : TRY =
 struct
 
+(*
 val auto = Unsynchronized.ref false
 
 val _ =
@@ -21,6 +28,7 @@
   (Unsynchronized.setmp auto true (fn () =>
     Preferences.bool_pref auto
       "auto-try" "Try standard proof methods.") ());
+*)
 
 val default_timeout = Time.fromSeconds 5
 
@@ -108,8 +116,10 @@
       (Scan.succeed (Toplevel.keep (K () o do_try false (SOME default_timeout)
                                     o Toplevel.proof_of)))
 
+(*
 fun auto_try st = if not (!auto) then (false, st) else do_try true NONE st
 
 val setup = Auto_Tools.register_tool (tryN, auto_try)
+*)
 
 end;
--- a/src/Tools/Code/lib/Tools/codegen	Mon Sep 27 14:34:55 2010 +0200
+++ b/src/Tools/Code/lib/Tools/codegen	Mon Sep 27 14:54:10 2010 +0200
@@ -50,8 +50,8 @@
 
 ## invoke code generation
 
-FORMAL_CMD="Toplevel.program (fn () => use_thy thyname; ML_Context.eval_text_in \
-  (SOME (ProofContext.init_global (Thy_Info.get_theory thyname))) false Position.none ml_cmd) \
+FORMAL_CMD="Toplevel.program (fn () => (use_thy thyname; ML_Context.eval_text_in \
+  (SOME (ProofContext.init_global (Thy_Info.get_theory thyname))) false Position.none ml_cmd)) \
   handle _ => OS.Process.exit OS.Process.failure;"
 
 ACTUAL_CMD="val thyname = \"$THYNAME\"; \