skip coinduction proofs for indirect-recursive domain definitions
authorhuffman
Fri, 05 Mar 2010 15:25:59 -0800
changeset 35599 20670f5564e9
parent 35597 e4331b99b03f
child 35600 94bd51880746
skip coinduction proofs for indirect-recursive domain definitions
src/HOLCF/Tools/Domain/domain_theorems.ML
--- a/src/HOLCF/Tools/Domain/domain_theorems.ML	Fri Mar 05 14:50:37 2010 -0800
+++ b/src/HOLCF/Tools/Domain/domain_theorems.ML	Fri Mar 05 15:25:59 2010 -0800
@@ -440,7 +440,7 @@
 fun prove_coinduction
     (comp_dnam, eqs : eq list)
     (take_lemmas : thm list)
-    (thy : theory) : thm * theory =
+    (thy : theory) : theory =
 let
 
 val dnames = map (fst o fst) eqs;
@@ -580,9 +580,10 @@
     in pg [] goal (K tacs) end;
 end; (* local *)
 
-in
-  (coind, thy)
-end;
+in thy |> Sign.add_path comp_dnam
+       |> snd o PureThy.add_thmss [((Binding.name "coind", [coind]), [])]
+       |> Sign.parent_path
+end; (* let *)
 
 fun comp_theorems (comp_dnam, eqs: eq list) thy =
 let
@@ -591,8 +592,6 @@
 val dnames = map (fst o fst) eqs;
 val comp_dname = Sign.full_bname thy comp_dnam;
 
-val _ = message ("Proving induction properties of domain "^comp_dname^" ...");
-
 (* ----- getting the composite axiom and definitions ------------------------ *)
 
 (* Test for indirect recursion *)
@@ -603,9 +602,10 @@
   fun indirect_eq (_, cons) = exists indirect_con cons;
 in
   val is_indirect = exists indirect_eq eqs;
-  val _ = if is_indirect
-          then message "Definition uses indirect recursion."
-          else ();
+  val _ =
+      if is_indirect
+      then message "Indirect recursion detected, skipping proofs of (co)induction rules"
+      else message ("Proving induction properties of domain "^comp_dname^" ...");
 end;
 
 (* theorems about take *)
@@ -638,13 +638,14 @@
     if is_indirect then thy else
     prove_induction (comp_dnam, eqs) take_lemmas axs_reach take_rews thy;
 
-val (coind, thy) = prove_coinduction (comp_dnam, eqs) take_lemmas thy;
+val thy =
+    if is_indirect then thy else
+    prove_coinduction (comp_dnam, eqs) take_lemmas thy;
 
 in thy |> Sign.add_path comp_dnam
        |> snd o PureThy.add_thmss [
            ((Binding.name "take_lemmas", take_lemmas ), []),
-           ((Binding.name "reach"      , axs_reach   ), []),
-           ((Binding.name "coind"      , [coind]     ), [])]
+           ((Binding.name "reach"      , axs_reach   ), [])]
        |> Sign.parent_path |> pair take_rews
 end; (* let *)
 end; (* struct *)