added notion of compactness; shortened proof of adm_disj; reorganized and cleaned up
--- a/src/HOLCF/Adm.thy Mon Oct 10 04:03:09 2005 +0200
+++ b/src/HOLCF/Adm.thy Mon Oct 10 04:12:31 2005 +0200
@@ -3,7 +3,7 @@
Author: Franz Regensburger
*)
-header {* Admissibility *}
+header {* Admissibility and compactness *}
theory Adm
imports Cont
@@ -17,21 +17,24 @@
adm :: "('a::cpo \<Rightarrow> bool) \<Rightarrow> bool"
"adm P \<equiv> \<forall>Y. chain Y \<longrightarrow> (\<forall>i. P (Y i)) \<longrightarrow> P (\<Squnion>i. Y i)"
+ compact :: "'a::cpo \<Rightarrow> bool"
+ "compact k \<equiv> adm (\<lambda>x. \<not> k \<sqsubseteq> x)"
+
lemma admI:
"(\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)) \<Longrightarrow> adm P"
-apply (unfold adm_def)
-apply blast
-done
+by (unfold adm_def, fast)
lemma triv_admI: "\<forall>x. P x \<Longrightarrow> adm P"
-apply (rule admI)
-apply (erule spec)
-done
+by (rule admI, erule spec)
lemma admD: "\<lbrakk>adm P; chain Y; \<forall>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)"
-apply (unfold adm_def)
-apply blast
-done
+by (unfold adm_def, fast)
+
+lemma compactI: "adm (\<lambda>x. \<not> k \<sqsubseteq> x) \<Longrightarrow> compact k"
+by (unfold compact_def)
+
+lemma compactD: "compact k \<Longrightarrow> adm (\<lambda>x. \<not> k \<sqsubseteq> x)"
+by (unfold compact_def)
text {* improved admissibility introduction *}
@@ -50,149 +53,76 @@
lemma adm_max_in_chain:
"\<forall>Y. chain (Y::nat \<Rightarrow> 'a) \<longrightarrow> (\<exists>n. max_in_chain n Y)
\<Longrightarrow> adm (P::'a \<Rightarrow> bool)"
-apply (unfold adm_def)
-apply (intro strip)
-apply (drule spec)
-apply (drule mp)
-apply assumption
-apply (erule exE)
-apply (simp add: maxinch_is_thelub)
-done
+by (auto simp add: adm_def maxinch_is_thelub)
lemmas adm_chfin = chfin [THEN adm_max_in_chain, standard]
+lemma compact_chfin: "compact (x::'a::chfin)"
+by (rule compactI, rule adm_chfin)
+
subsection {* Admissibility of special formulae and propagation *}
-lemma adm_less: "\<lbrakk>cont u; cont v\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x \<sqsubseteq> v x)"
-apply (rule admI)
-apply (simp add: cont2contlubE)
-apply (rule lub_mono)
-apply (erule (1) ch2ch_cont)
-apply (erule (1) ch2ch_cont)
-apply assumption
-done
+lemma adm_not_free: "adm (\<lambda>x. t)"
+by (rule admI, simp)
lemma adm_conj: "\<lbrakk>adm P; adm Q\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<and> Q x)"
by (fast elim: admD intro: admI)
-lemma adm_not_free: "adm (\<lambda>x. t)"
-by (rule admI, simp)
-
-lemma adm_not_less: "cont t \<Longrightarrow> adm (\<lambda>x. \<not> t x \<sqsubseteq> u)"
-apply (rule admI)
-apply (drule_tac x=0 in spec)
-apply (erule contrapos_nn)
-apply (rule trans_less)
-prefer 2 apply (assumption)
-apply (erule cont2mono [THEN monofun_fun_arg])
-apply (erule is_ub_thelub)
-done
-
lemma adm_all: "\<forall>y. adm (P y) \<Longrightarrow> adm (\<lambda>x. \<forall>y. P y x)"
by (fast intro: admI elim: admD)
-lemmas adm_all2 = adm_all [rule_format]
-
lemma adm_ball: "\<forall>y\<in>A. adm (P y) \<Longrightarrow> adm (\<lambda>x. \<forall>y\<in>A. P y x)"
by (fast intro: admI elim: admD)
+lemmas adm_all2 = adm_all [rule_format]
lemmas adm_ball2 = adm_ball [rule_format]
-lemma adm_subst: "\<lbrakk>cont t; adm P\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P (t x))"
-apply (rule admI)
-apply (simp add: cont2contlubE)
-apply (erule admD)
-apply (erule (1) ch2ch_cont)
-apply assumption
-done
-
-lemma adm_UU_not_less: "adm (\<lambda>x. \<not> \<bottom> \<sqsubseteq> t x)"
-by (simp add: adm_not_free)
-
-lemma adm_not_UU: "cont t \<Longrightarrow> adm (\<lambda>x. \<not> t x = \<bottom>)"
-by (simp add: eq_UU_iff adm_not_less)
-
-lemma adm_eq: "\<lbrakk>cont u; cont v\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x = v x)"
-by (simp add: po_eq_conv adm_conj adm_less)
-
-text {* admissibility for disjunction is hard to prove. It takes 7 Lemmas *}
+text {* Admissibility for disjunction is hard to prove. It takes 5 Lemmas *}
-lemma adm_disj_lemma1:
- "\<forall>n::nat. P n \<or> Q n \<Longrightarrow> (\<forall>i. \<exists>j\<ge>i. P j) \<or> (\<forall>i. \<exists>j\<ge>i. Q j)"
-apply (erule contrapos_pp)
-apply clarsimp
-apply (rule exI)
-apply (rule conjI)
-apply (drule spec, erule mp)
-apply (rule le_maxI1)
-apply (drule spec, erule mp)
-apply (rule le_maxI2)
-done
-
-lemma adm_disj_lemma2:
- "\<lbrakk>adm P; \<exists>X. chain X \<and> (\<forall>n. P (X n)) \<and> (\<Squnion>i. Y i) = (\<Squnion>i. X i)\<rbrakk>
- \<Longrightarrow> P (\<Squnion>i. Y i)"
-by (force elim: admD)
-
-lemma adm_disj_lemma3:
+lemma adm_disj_lemma1:
"\<lbrakk>chain (Y::nat \<Rightarrow> 'a::cpo); \<forall>i. \<exists>j\<ge>i. P (Y j)\<rbrakk>
- \<Longrightarrow> chain (\<lambda>m. Y (LEAST j. m \<le> j \<and> P (Y j)))"
+ \<Longrightarrow> chain (\<lambda>i. Y (LEAST j. i \<le> j \<and> P (Y j)))"
apply (rule chainI)
apply (erule chain_mono3)
apply (rule Least_le)
-apply (drule_tac x="Suc i" in spec)
-apply (rule conjI)
-apply (rule Suc_leD)
-apply (erule LeastI_ex [THEN conjunct1])
-apply (erule LeastI_ex [THEN conjunct2])
-done
-
-lemma adm_disj_lemma4:
- "\<lbrakk>\<forall>i. \<exists>j\<ge>i. P (Y j)\<rbrakk> \<Longrightarrow> \<forall>m. P (Y (LEAST j::nat. m \<le> j \<and> P (Y j)))"
-apply (rule allI)
-apply (drule_tac x=m in spec)
-apply (erule LeastI_ex [THEN conjunct2])
+apply (rule LeastI2_ex)
+apply simp_all
done
-lemma adm_disj_lemma5:
+lemmas adm_disj_lemma2 = LeastI_ex [of "\<lambda>j. i \<le> j \<and> P (Y j)", standard]
+
+lemma adm_disj_lemma3:
"\<lbrakk>chain (Y::nat \<Rightarrow> 'a::cpo); \<forall>i. \<exists>j\<ge>i. P (Y j)\<rbrakk> \<Longrightarrow>
- (\<Squnion>m. Y m) = (\<Squnion>m. Y (LEAST j. m \<le> j \<and> P (Y j)))"
+ (\<Squnion>i. Y i) = (\<Squnion>i. Y (LEAST j. i \<le> j \<and> P (Y j)))"
+ apply (frule (1) adm_disj_lemma1)
apply (rule antisym_less)
- apply (rule lub_mono)
- apply assumption
- apply (erule (1) adm_disj_lemma3)
- apply (rule allI)
+ apply (rule lub_mono [rule_format], assumption+)
apply (erule chain_mono3)
- apply (drule_tac x=k in spec)
- apply (erule LeastI_ex [THEN conjunct1])
- apply (rule lub_mono3)
- apply (erule (1) adm_disj_lemma3)
- apply assumption
- apply (rule allI)
- apply (rule exI)
- apply (rule refl_less)
+ apply (simp add: adm_disj_lemma2)
+ apply (rule lub_range_mono, fast, assumption+)
done
-lemma adm_disj_lemma6:
- "\<lbrakk>chain (Y::nat \<Rightarrow> 'a::cpo); \<forall>i. \<exists>j\<ge>i. P(Y j)\<rbrakk> \<Longrightarrow>
- \<exists>X. chain X \<and> (\<forall>n. P (X n)) \<and> (\<Squnion>i. Y i) = (\<Squnion>i. X i)"
-apply (rule_tac x = "\<lambda>m. Y (LEAST j. m \<le> j \<and> P (Y j))" in exI)
-apply (fast intro!: adm_disj_lemma3 adm_disj_lemma4 adm_disj_lemma5)
+lemma adm_disj_lemma4:
+ "\<lbrakk>adm P; chain Y; \<forall>i. \<exists>j\<ge>i. P (Y j)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)"
+apply (subst adm_disj_lemma3, assumption+)
+apply (erule admD)
+apply (simp add: adm_disj_lemma1)
+apply (simp add: adm_disj_lemma2)
done
-lemma adm_disj_lemma7:
- "\<lbrakk>adm P; chain Y; \<forall>i. \<exists>j\<ge>i. P (Y j)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)"
-apply (erule adm_disj_lemma2)
-apply (erule (1) adm_disj_lemma6)
+lemma adm_disj_lemma5:
+ "\<forall>n::nat. P n \<or> Q n \<Longrightarrow> (\<forall>i. \<exists>j\<ge>i. P j) \<or> (\<forall>i. \<exists>j\<ge>i. Q j)"
+apply (erule contrapos_pp)
+apply (clarsimp, rename_tac a b)
+apply (rule_tac x="max a b" in exI)
+apply (simp add: le_maxI1 le_maxI2)
done
lemma adm_disj: "\<lbrakk>adm P; adm Q\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<or> Q x)"
apply (rule admI)
-apply (erule adm_disj_lemma1 [THEN disjE])
-apply (rule disjI1)
-apply (erule (2) adm_disj_lemma7)
-apply (rule disjI2)
-apply (erule (2) adm_disj_lemma7)
+apply (erule adm_disj_lemma5 [THEN disjE])
+apply (erule (2) adm_disj_lemma4 [THEN disjI1])
+apply (erule (2) adm_disj_lemma4 [THEN disjI2])
done
lemma adm_imp: "\<lbrakk>adm (\<lambda>x. \<not> P x); adm Q\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<longrightarrow> Q x)"
@@ -205,13 +135,60 @@
lemma adm_not_conj:
"\<lbrakk>adm (\<lambda>x. \<not> P x); adm (\<lambda>x. \<not> Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. \<not> (P x \<and> Q x))"
-by (subst de_Morgan_conj, rule adm_disj)
+by (simp add: adm_imp)
+
+text {* admissibility and continuity *}
+
+lemma adm_less: "\<lbrakk>cont u; cont v\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x \<sqsubseteq> v x)"
+apply (rule admI)
+apply (simp add: cont2contlubE)
+apply (rule lub_mono)
+apply (erule (1) ch2ch_cont)
+apply (erule (1) ch2ch_cont)
+apply assumption
+done
+
+lemma adm_eq: "\<lbrakk>cont u; cont v\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x = v x)"
+by (simp add: po_eq_conv adm_conj adm_less)
+
+lemma adm_subst: "\<lbrakk>cont t; adm P\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P (t x))"
+apply (rule admI)
+apply (simp add: cont2contlubE)
+apply (erule admD)
+apply (erule (1) ch2ch_cont)
+apply assumption
+done
-lemmas adm_lemmas =
- adm_less adm_conj adm_not_free adm_imp adm_disj adm_eq adm_not_UU
- adm_UU_not_less adm_all2 adm_not_less adm_not_conj adm_iff
+lemma adm_not_less: "cont t \<Longrightarrow> adm (\<lambda>x. \<not> t x \<sqsubseteq> u)"
+apply (rule admI)
+apply (drule_tac x=0 in spec)
+apply (erule contrapos_nn)
+apply (erule rev_trans_less)
+apply (erule cont2mono [THEN monofun_fun_arg])
+apply (erule is_ub_thelub)
+done
+
+text {* admissibility and compactness *}
+
+lemma adm_compact_not_less: "\<lbrakk>compact k; cont t\<rbrakk> \<Longrightarrow> adm (\<lambda>x. \<not> k \<sqsubseteq> t x)"
+by (unfold compact_def, erule adm_subst)
-declare adm_lemmas [simp]
+lemma adm_neq_compact: "\<lbrakk>compact k; cont t\<rbrakk> \<Longrightarrow> adm (\<lambda>x. t x \<noteq> k)"
+by (simp add: po_eq_conv adm_imp adm_not_less adm_compact_not_less)
+
+lemma adm_compact_neq: "\<lbrakk>compact k; cont t\<rbrakk> \<Longrightarrow> adm (\<lambda>x. k \<noteq> t x)"
+by (simp add: po_eq_conv adm_imp adm_not_less adm_compact_not_less)
+
+lemma compact_UU [simp, intro]: "compact \<bottom>"
+by (rule compactI, simp add: adm_not_free)
+
+lemma adm_not_UU: "cont t \<Longrightarrow> adm (\<lambda>x. \<not> t x = \<bottom>)"
+by (simp add: eq_UU_iff adm_not_less)
+
+lemmas adm_lemmas [simp] =
+ adm_not_free adm_conj adm_all2 adm_ball2 adm_disj adm_imp adm_iff
+ adm_less adm_eq adm_not_less
+ adm_compact_not_less adm_compact_neq adm_neq_compact adm_not_UU
(* legacy ML bindings *)
ML
@@ -232,7 +209,6 @@
val adm_ball = thm "adm_ball";
val adm_ball2 = thm "adm_ball2";
val adm_subst = thm "adm_subst";
-val adm_UU_not_less = thm "adm_UU_not_less";
val adm_not_UU = thm "adm_not_UU";
val adm_eq = thm "adm_eq";
val adm_disj_lemma1 = thm "adm_disj_lemma1";
@@ -240,8 +216,6 @@
val adm_disj_lemma3 = thm "adm_disj_lemma3";
val adm_disj_lemma4 = thm "adm_disj_lemma4";
val adm_disj_lemma5 = thm "adm_disj_lemma5";
-val adm_disj_lemma6 = thm "adm_disj_lemma6";
-val adm_disj_lemma7 = thm "adm_disj_lemma7";
val adm_disj = thm "adm_disj";
val adm_imp = thm "adm_imp";
val adm_iff = thm "adm_iff";