move filters to their own theory
authorhoelzl
Sun, 12 Apr 2015 11:33:19 +0200
changeset 60036 218fcc645d22
parent 60035 4b77fc0b3514
child 60037 071a99649dde
move filters to their own theory
src/HOL/Filter.thy
src/HOL/Main.thy
src/HOL/NSA/Filter.thy
src/HOL/NSA/Free_Ultrafilter.thy
src/HOL/NSA/StarDef.thy
src/HOL/Topological_Spaces.thy
src/HOL/Transcendental.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Filter.thy	Sun Apr 12 11:33:19 2015 +0200
@@ -0,0 +1,966 @@
+(*  Title:      HOL/Filter.thy
+    Author:     Brian Huffman
+    Author:     Johannes Hölzl
+*)
+
+section {* Filters on predicates *}
+
+theory Filter
+imports Set_Interval Lifting_Set
+begin
+
+subsection {* Filters *}
+
+text {*
+  This definition also allows non-proper filters.
+*}
+
+locale is_filter =
+  fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
+  assumes True: "F (\<lambda>x. True)"
+  assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)"
+  assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)"
+
+typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
+proof
+  show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro)
+qed
+
+lemma is_filter_Rep_filter: "is_filter (Rep_filter F)"
+  using Rep_filter [of F] by simp
+
+lemma Abs_filter_inverse':
+  assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F"
+  using assms by (simp add: Abs_filter_inverse)
+
+
+subsubsection {* Eventually *}
+
+definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
+  where "eventually P F \<longleftrightarrow> Rep_filter F P"
+
+lemma eventually_Abs_filter:
+  assumes "is_filter F" shows "eventually P (Abs_filter F) = F P"
+  unfolding eventually_def using assms by (simp add: Abs_filter_inverse)
+
+lemma filter_eq_iff:
+  shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')"
+  unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def ..
+
+lemma eventually_True [simp]: "eventually (\<lambda>x. True) F"
+  unfolding eventually_def
+  by (rule is_filter.True [OF is_filter_Rep_filter])
+
+lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F"
+proof -
+  assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext)
+  thus "eventually P F" by simp
+qed
+
+lemma eventually_mono:
+  "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually P F \<Longrightarrow> eventually Q F"
+  unfolding eventually_def
+  by (rule is_filter.mono [OF is_filter_Rep_filter])
+
+lemma eventually_conj:
+  assumes P: "eventually (\<lambda>x. P x) F"
+  assumes Q: "eventually (\<lambda>x. Q x) F"
+  shows "eventually (\<lambda>x. P x \<and> Q x) F"
+  using assms unfolding eventually_def
+  by (rule is_filter.conj [OF is_filter_Rep_filter])
+
+lemma eventually_Ball_finite:
+  assumes "finite A" and "\<forall>y\<in>A. eventually (\<lambda>x. P x y) net"
+  shows "eventually (\<lambda>x. \<forall>y\<in>A. P x y) net"
+using assms by (induct set: finite, simp, simp add: eventually_conj)
+
+lemma eventually_all_finite:
+  fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool"
+  assumes "\<And>y. eventually (\<lambda>x. P x y) net"
+  shows "eventually (\<lambda>x. \<forall>y. P x y) net"
+using eventually_Ball_finite [of UNIV P] assms by simp
+
+lemma eventually_mp:
+  assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
+  assumes "eventually (\<lambda>x. P x) F"
+  shows "eventually (\<lambda>x. Q x) F"
+proof (rule eventually_mono)
+  show "\<forall>x. (P x \<longrightarrow> Q x) \<and> P x \<longrightarrow> Q x" by simp
+  show "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F"
+    using assms by (rule eventually_conj)
+qed
+
+lemma eventually_rev_mp:
+  assumes "eventually (\<lambda>x. P x) F"
+  assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
+  shows "eventually (\<lambda>x. Q x) F"
+using assms(2) assms(1) by (rule eventually_mp)
+
+lemma eventually_conj_iff:
+  "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F"
+  by (auto intro: eventually_conj elim: eventually_rev_mp)
+
+lemma eventually_elim1:
+  assumes "eventually (\<lambda>i. P i) F"
+  assumes "\<And>i. P i \<Longrightarrow> Q i"
+  shows "eventually (\<lambda>i. Q i) F"
+  using assms by (auto elim!: eventually_rev_mp)
+
+lemma eventually_elim2:
+  assumes "eventually (\<lambda>i. P i) F"
+  assumes "eventually (\<lambda>i. Q i) F"
+  assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i"
+  shows "eventually (\<lambda>i. R i) F"
+  using assms by (auto elim!: eventually_rev_mp)
+
+lemma not_eventually_impI: "eventually P F \<Longrightarrow> \<not> eventually Q F \<Longrightarrow> \<not> eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
+  by (auto intro: eventually_mp)
+
+lemma not_eventuallyD: "\<not> eventually P F \<Longrightarrow> \<exists>x. \<not> P x"
+  by (metis always_eventually)
+
+lemma eventually_subst:
+  assumes "eventually (\<lambda>n. P n = Q n) F"
+  shows "eventually P F = eventually Q F" (is "?L = ?R")
+proof -
+  from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
+      and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F"
+    by (auto elim: eventually_elim1)
+  then show ?thesis by (auto elim: eventually_elim2)
+qed
+
+ML {*
+  fun eventually_elim_tac ctxt facts = SUBGOAL_CASES (fn (goal, i) =>
+    let
+      val mp_thms = facts RL @{thms eventually_rev_mp}
+      val raw_elim_thm =
+        (@{thm allI} RS @{thm always_eventually})
+        |> fold (fn thm1 => fn thm2 => thm2 RS thm1) mp_thms
+        |> fold (fn _ => fn thm => @{thm impI} RS thm) facts
+      val cases_prop = Thm.prop_of (raw_elim_thm RS Goal.init (Thm.cterm_of ctxt goal))
+      val cases = Rule_Cases.make_common ctxt cases_prop [(("elim", []), [])]
+    in
+      CASES cases (rtac raw_elim_thm i)
+    end)
+*}
+
+method_setup eventually_elim = {*
+  Scan.succeed (fn ctxt => METHOD_CASES (HEADGOAL o eventually_elim_tac ctxt))
+*} "elimination of eventually quantifiers"
+
+
+subsubsection {* Finer-than relation *}
+
+text {* @{term "F \<le> F'"} means that filter @{term F} is finer than
+filter @{term F'}. *}
+
+instantiation filter :: (type) complete_lattice
+begin
+
+definition le_filter_def:
+  "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)"
+
+definition
+  "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
+
+definition
+  "top = Abs_filter (\<lambda>P. \<forall>x. P x)"
+
+definition
+  "bot = Abs_filter (\<lambda>P. True)"
+
+definition
+  "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')"
+
+definition
+  "inf F F' = Abs_filter
+      (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
+
+definition
+  "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)"
+
+definition
+  "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
+
+lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)"
+  unfolding top_filter_def
+  by (rule eventually_Abs_filter, rule is_filter.intro, auto)
+
+lemma eventually_bot [simp]: "eventually P bot"
+  unfolding bot_filter_def
+  by (subst eventually_Abs_filter, rule is_filter.intro, auto)
+
+lemma eventually_sup:
+  "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'"
+  unfolding sup_filter_def
+  by (rule eventually_Abs_filter, rule is_filter.intro)
+     (auto elim!: eventually_rev_mp)
+
+lemma eventually_inf:
+  "eventually P (inf F F') \<longleftrightarrow>
+   (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
+  unfolding inf_filter_def
+  apply (rule eventually_Abs_filter, rule is_filter.intro)
+  apply (fast intro: eventually_True)
+  apply clarify
+  apply (intro exI conjI)
+  apply (erule (1) eventually_conj)
+  apply (erule (1) eventually_conj)
+  apply simp
+  apply auto
+  done
+
+lemma eventually_Sup:
+  "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)"
+  unfolding Sup_filter_def
+  apply (rule eventually_Abs_filter, rule is_filter.intro)
+  apply (auto intro: eventually_conj elim!: eventually_rev_mp)
+  done
+
+instance proof
+  fix F F' F'' :: "'a filter" and S :: "'a filter set"
+  { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
+    by (rule less_filter_def) }
+  { show "F \<le> F"
+    unfolding le_filter_def by simp }
+  { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
+    unfolding le_filter_def by simp }
+  { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
+    unfolding le_filter_def filter_eq_iff by fast }
+  { show "inf F F' \<le> F" and "inf F F' \<le> F'"
+    unfolding le_filter_def eventually_inf by (auto intro: eventually_True) }
+  { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
+    unfolding le_filter_def eventually_inf
+    by (auto elim!: eventually_mono intro: eventually_conj) }
+  { show "F \<le> sup F F'" and "F' \<le> sup F F'"
+    unfolding le_filter_def eventually_sup by simp_all }
+  { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
+    unfolding le_filter_def eventually_sup by simp }
+  { assume "F'' \<in> S" thus "Inf S \<le> F''"
+    unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
+  { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
+    unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
+  { assume "F \<in> S" thus "F \<le> Sup S"
+    unfolding le_filter_def eventually_Sup by simp }
+  { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
+    unfolding le_filter_def eventually_Sup by simp }
+  { show "Inf {} = (top::'a filter)"
+    by (auto simp: top_filter_def Inf_filter_def Sup_filter_def)
+      (metis (full_types) top_filter_def always_eventually eventually_top) }
+  { show "Sup {} = (bot::'a filter)"
+    by (auto simp: bot_filter_def Sup_filter_def) }
+qed
+
+end
+
+lemma filter_leD:
+  "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F"
+  unfolding le_filter_def by simp
+
+lemma filter_leI:
+  "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'"
+  unfolding le_filter_def by simp
+
+lemma eventually_False:
+  "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot"
+  unfolding filter_eq_iff by (auto elim: eventually_rev_mp)
+
+abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool"
+  where "trivial_limit F \<equiv> F = bot"
+
+lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F"
+  by (rule eventually_False [symmetric])
+
+lemma eventually_const: "\<not> trivial_limit net \<Longrightarrow> eventually (\<lambda>x. P) net \<longleftrightarrow> P"
+  by (cases P) (simp_all add: eventually_False)
+
+lemma eventually_Inf: "eventually P (Inf B) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X))"
+proof -
+  let ?F = "\<lambda>P. \<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X)"
+  
+  { fix P have "eventually P (Abs_filter ?F) \<longleftrightarrow> ?F P"
+    proof (rule eventually_Abs_filter is_filter.intro)+
+      show "?F (\<lambda>x. True)"
+        by (rule exI[of _ "{}"]) (simp add: le_fun_def)
+    next
+      fix P Q
+      assume "?F P" then guess X ..
+      moreover
+      assume "?F Q" then guess Y ..
+      ultimately show "?F (\<lambda>x. P x \<and> Q x)"
+        by (intro exI[of _ "X \<union> Y"])
+           (auto simp: Inf_union_distrib eventually_inf)
+    next
+      fix P Q
+      assume "?F P" then guess X ..
+      moreover assume "\<forall>x. P x \<longrightarrow> Q x"
+      ultimately show "?F Q"
+        by (intro exI[of _ X]) (auto elim: eventually_elim1)
+    qed }
+  note eventually_F = this
+
+  have "Inf B = Abs_filter ?F"
+  proof (intro antisym Inf_greatest)
+    show "Inf B \<le> Abs_filter ?F"
+      by (auto simp: le_filter_def eventually_F dest: Inf_superset_mono)
+  next
+    fix F assume "F \<in> B" then show "Abs_filter ?F \<le> F"
+      by (auto simp add: le_filter_def eventually_F intro!: exI[of _ "{F}"])
+  qed
+  then show ?thesis
+    by (simp add: eventually_F)
+qed
+
+lemma eventually_INF: "eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (INF b:X. F b))"
+  unfolding INF_def[of B] eventually_Inf[of P "F`B"]
+  by (metis Inf_image_eq finite_imageI image_mono finite_subset_image)
+
+lemma Inf_filter_not_bot:
+  fixes B :: "'a filter set"
+  shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> Inf X \<noteq> bot) \<Longrightarrow> Inf B \<noteq> bot"
+  unfolding trivial_limit_def eventually_Inf[of _ B]
+    bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
+
+lemma INF_filter_not_bot:
+  fixes F :: "'i \<Rightarrow> 'a filter"
+  shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> (INF b:X. F b) \<noteq> bot) \<Longrightarrow> (INF b:B. F b) \<noteq> bot"
+  unfolding trivial_limit_def eventually_INF[of _ B]
+    bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
+
+lemma eventually_Inf_base:
+  assumes "B \<noteq> {}" and base: "\<And>F G. F \<in> B \<Longrightarrow> G \<in> B \<Longrightarrow> \<exists>x\<in>B. x \<le> inf F G"
+  shows "eventually P (Inf B) \<longleftrightarrow> (\<exists>b\<in>B. eventually P b)"
+proof (subst eventually_Inf, safe)
+  fix X assume "finite X" "X \<subseteq> B"
+  then have "\<exists>b\<in>B. \<forall>x\<in>X. b \<le> x"
+  proof induct
+    case empty then show ?case
+      using `B \<noteq> {}` by auto
+  next
+    case (insert x X)
+    then obtain b where "b \<in> B" "\<And>x. x \<in> X \<Longrightarrow> b \<le> x"
+      by auto
+    with `insert x X \<subseteq> B` base[of b x] show ?case
+      by (auto intro: order_trans)
+  qed
+  then obtain b where "b \<in> B" "b \<le> Inf X"
+    by (auto simp: le_Inf_iff)
+  then show "eventually P (Inf X) \<Longrightarrow> Bex B (eventually P)"
+    by (intro bexI[of _ b]) (auto simp: le_filter_def)
+qed (auto intro!: exI[of _ "{x}" for x])
+
+lemma eventually_INF_base:
+  "B \<noteq> {} \<Longrightarrow> (\<And>a b. a \<in> B \<Longrightarrow> b \<in> B \<Longrightarrow> \<exists>x\<in>B. F x \<le> inf (F a) (F b)) \<Longrightarrow>
+    eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>b\<in>B. eventually P (F b))"
+  unfolding INF_def by (subst eventually_Inf_base) auto
+
+
+subsubsection {* Map function for filters *}
+
+definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
+  where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)"
+
+lemma eventually_filtermap:
+  "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F"
+  unfolding filtermap_def
+  apply (rule eventually_Abs_filter)
+  apply (rule is_filter.intro)
+  apply (auto elim!: eventually_rev_mp)
+  done
+
+lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F"
+  by (simp add: filter_eq_iff eventually_filtermap)
+
+lemma filtermap_filtermap:
+  "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F"
+  by (simp add: filter_eq_iff eventually_filtermap)
+
+lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'"
+  unfolding le_filter_def eventually_filtermap by simp
+
+lemma filtermap_bot [simp]: "filtermap f bot = bot"
+  by (simp add: filter_eq_iff eventually_filtermap)
+
+lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)"
+  by (auto simp: filter_eq_iff eventually_filtermap eventually_sup)
+
+lemma filtermap_inf: "filtermap f (inf F1 F2) \<le> inf (filtermap f F1) (filtermap f F2)"
+  by (auto simp: le_filter_def eventually_filtermap eventually_inf)
+
+lemma filtermap_INF: "filtermap f (INF b:B. F b) \<le> (INF b:B. filtermap f (F b))"
+proof -
+  { fix X :: "'c set" assume "finite X"
+    then have "filtermap f (INFIMUM X F) \<le> (INF b:X. filtermap f (F b))"
+    proof induct
+      case (insert x X)
+      have "filtermap f (INF a:insert x X. F a) \<le> inf (filtermap f (F x)) (filtermap f (INF a:X. F a))"
+        by (rule order_trans[OF _ filtermap_inf]) simp
+      also have "\<dots> \<le> inf (filtermap f (F x)) (INF a:X. filtermap f (F a))"
+        by (intro inf_mono insert order_refl)
+      finally show ?case
+        by simp
+    qed simp }
+  then show ?thesis
+    unfolding le_filter_def eventually_filtermap
+    by (subst (1 2) eventually_INF) auto
+qed
+subsubsection {* Standard filters *}
+
+definition principal :: "'a set \<Rightarrow> 'a filter" where
+  "principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)"
+
+lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)"
+  unfolding principal_def
+  by (rule eventually_Abs_filter, rule is_filter.intro) auto
+
+lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F"
+  unfolding eventually_inf eventually_principal by (auto elim: eventually_elim1)
+
+lemma principal_UNIV[simp]: "principal UNIV = top"
+  by (auto simp: filter_eq_iff eventually_principal)
+
+lemma principal_empty[simp]: "principal {} = bot"
+  by (auto simp: filter_eq_iff eventually_principal)
+
+lemma principal_eq_bot_iff: "principal X = bot \<longleftrightarrow> X = {}"
+  by (auto simp add: filter_eq_iff eventually_principal)
+
+lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B"
+  by (auto simp: le_filter_def eventually_principal)
+
+lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F"
+  unfolding le_filter_def eventually_principal
+  apply safe
+  apply (erule_tac x="\<lambda>x. x \<in> A" in allE)
+  apply (auto elim: eventually_elim1)
+  done
+
+lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B"
+  unfolding eq_iff by simp
+
+lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)"
+  unfolding filter_eq_iff eventually_sup eventually_principal by auto
+
+lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)"
+  unfolding filter_eq_iff eventually_inf eventually_principal
+  by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"])
+
+lemma SUP_principal[simp]: "(SUP i : I. principal (A i)) = principal (\<Union>i\<in>I. A i)"
+  unfolding filter_eq_iff eventually_Sup SUP_def by (auto simp: eventually_principal)
+
+lemma INF_principal_finite: "finite X \<Longrightarrow> (INF x:X. principal (f x)) = principal (\<Inter>x\<in>X. f x)"
+  by (induct X rule: finite_induct) auto
+
+lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)"
+  unfolding filter_eq_iff eventually_filtermap eventually_principal by simp
+
+subsubsection {* Order filters *}
+
+definition at_top :: "('a::order) filter"
+  where "at_top = (INF k. principal {k ..})"
+
+lemma at_top_sub: "at_top = (INF k:{c::'a::linorder..}. principal {k ..})"
+  by (auto intro!: INF_eq max.cobounded1 max.cobounded2 simp: at_top_def)
+
+lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)"
+  unfolding at_top_def
+  by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
+
+lemma eventually_ge_at_top:
+  "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top"
+  unfolding eventually_at_top_linorder by auto
+
+lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>n>N. P n)"
+proof -
+  have "eventually P (INF k. principal {k <..}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n>N. P n)"
+    by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
+  also have "(INF k. principal {k::'a <..}) = at_top"
+    unfolding at_top_def 
+    by (intro INF_eq) (auto intro: less_imp_le simp: Ici_subset_Ioi_iff gt_ex)
+  finally show ?thesis .
+qed
+
+lemma eventually_gt_at_top:
+  "eventually (\<lambda>x. (c::_::unbounded_dense_linorder) < x) at_top"
+  unfolding eventually_at_top_dense by auto
+
+definition at_bot :: "('a::order) filter"
+  where "at_bot = (INF k. principal {.. k})"
+
+lemma at_bot_sub: "at_bot = (INF k:{.. c::'a::linorder}. principal {.. k})"
+  by (auto intro!: INF_eq min.cobounded1 min.cobounded2 simp: at_bot_def)
+
+lemma eventually_at_bot_linorder:
+  fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)"
+  unfolding at_bot_def
+  by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
+
+lemma eventually_le_at_bot:
+  "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot"
+  unfolding eventually_at_bot_linorder by auto
+
+lemma eventually_at_bot_dense: "eventually P at_bot \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>n<N. P n)"
+proof -
+  have "eventually P (INF k. principal {..< k}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n<N. P n)"
+    by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
+  also have "(INF k. principal {..< k::'a}) = at_bot"
+    unfolding at_bot_def 
+    by (intro INF_eq) (auto intro: less_imp_le simp: Iic_subset_Iio_iff lt_ex)
+  finally show ?thesis .
+qed
+
+lemma eventually_gt_at_bot:
+  "eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot"
+  unfolding eventually_at_bot_dense by auto
+
+lemma trivial_limit_at_bot_linorder: "\<not> trivial_limit (at_bot ::('a::linorder) filter)"
+  unfolding trivial_limit_def
+  by (metis eventually_at_bot_linorder order_refl)
+
+lemma trivial_limit_at_top_linorder: "\<not> trivial_limit (at_top ::('a::linorder) filter)"
+  unfolding trivial_limit_def
+  by (metis eventually_at_top_linorder order_refl)
+
+subsection {* Sequentially *}
+
+abbreviation sequentially :: "nat filter"
+  where "sequentially \<equiv> at_top"
+
+lemma eventually_sequentially:
+  "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)"
+  by (rule eventually_at_top_linorder)
+
+lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot"
+  unfolding filter_eq_iff eventually_sequentially by auto
+
+lemmas trivial_limit_sequentially = sequentially_bot
+
+lemma eventually_False_sequentially [simp]:
+  "\<not> eventually (\<lambda>n. False) sequentially"
+  by (simp add: eventually_False)
+
+lemma le_sequentially:
+  "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)"
+  by (simp add: at_top_def le_INF_iff le_principal)
+
+lemma eventually_sequentiallyI:
+  assumes "\<And>x. c \<le> x \<Longrightarrow> P x"
+  shows "eventually P sequentially"
+using assms by (auto simp: eventually_sequentially)
+
+lemma eventually_sequentially_seg:
+  "eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially"
+  unfolding eventually_sequentially
+  apply safe
+   apply (rule_tac x="N + k" in exI)
+   apply rule
+   apply (erule_tac x="n - k" in allE)
+   apply auto []
+  apply (rule_tac x=N in exI)
+  apply auto []
+  done
+
+
+subsection {* Limits *}
+
+definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
+  "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2"
+
+syntax
+  "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
+
+translations
+  "LIM x F1. f :> F2"   == "CONST filterlim (%x. f) F2 F1"
+
+lemma filterlim_iff:
+  "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)"
+  unfolding filterlim_def le_filter_def eventually_filtermap ..
+
+lemma filterlim_compose:
+  "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1"
+  unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans)
+
+lemma filterlim_mono:
+  "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'"
+  unfolding filterlim_def by (metis filtermap_mono order_trans)
+
+lemma filterlim_ident: "LIM x F. x :> F"
+  by (simp add: filterlim_def filtermap_ident)
+
+lemma filterlim_cong:
+  "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'"
+  by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2)
+
+lemma filterlim_mono_eventually:
+  assumes "filterlim f F G" and ord: "F \<le> F'" "G' \<le> G"
+  assumes eq: "eventually (\<lambda>x. f x = f' x) G'"
+  shows "filterlim f' F' G'"
+  apply (rule filterlim_cong[OF refl refl eq, THEN iffD1])
+  apply (rule filterlim_mono[OF _ ord])
+  apply fact
+  done
+
+lemma filtermap_mono_strong: "inj f \<Longrightarrow> filtermap f F \<le> filtermap f G \<longleftrightarrow> F \<le> G"
+  apply (auto intro!: filtermap_mono) []
+  apply (auto simp: le_filter_def eventually_filtermap)
+  apply (erule_tac x="\<lambda>x. P (inv f x)" in allE)
+  apply auto
+  done
+
+lemma filtermap_eq_strong: "inj f \<Longrightarrow> filtermap f F = filtermap f G \<longleftrightarrow> F = G"
+  by (simp add: filtermap_mono_strong eq_iff)
+
+lemma filterlim_principal:
+  "(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)"
+  unfolding filterlim_def eventually_filtermap le_principal ..
+
+lemma filterlim_inf:
+  "(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))"
+  unfolding filterlim_def by simp
+
+lemma filterlim_INF:
+  "(LIM x F. f x :> (INF b:B. G b)) \<longleftrightarrow> (\<forall>b\<in>B. LIM x F. f x :> G b)"
+  unfolding filterlim_def le_INF_iff ..
+
+lemma filterlim_INF_INF:
+  "(\<And>m. m \<in> J \<Longrightarrow> \<exists>i\<in>I. filtermap f (F i) \<le> G m) \<Longrightarrow> LIM x (INF i:I. F i). f x :> (INF j:J. G j)"
+  unfolding filterlim_def by (rule order_trans[OF filtermap_INF INF_mono])
+
+lemma filterlim_base:
+  "(\<And>m x. m \<in> J \<Longrightarrow> i m \<in> I) \<Longrightarrow> (\<And>m x. m \<in> J \<Longrightarrow> x \<in> F (i m) \<Longrightarrow> f x \<in> G m) \<Longrightarrow> 
+    LIM x (INF i:I. principal (F i)). f x :> (INF j:J. principal (G j))"
+  by (force intro!: filterlim_INF_INF simp: image_subset_iff)
+
+lemma filterlim_base_iff: 
+  assumes "I \<noteq> {}" and chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> F i \<subseteq> F j \<or> F j \<subseteq> F i"
+  shows "(LIM x (INF i:I. principal (F i)). f x :> INF j:J. principal (G j)) \<longleftrightarrow>
+    (\<forall>j\<in>J. \<exists>i\<in>I. \<forall>x\<in>F i. f x \<in> G j)"
+  unfolding filterlim_INF filterlim_principal
+proof (subst eventually_INF_base)
+  fix i j assume "i \<in> I" "j \<in> I"
+  with chain[OF this] show "\<exists>x\<in>I. principal (F x) \<le> inf (principal (F i)) (principal (F j))"
+    by auto
+qed (auto simp: eventually_principal `I \<noteq> {}`)
+
+lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2"
+  unfolding filterlim_def filtermap_filtermap ..
+
+lemma filterlim_sup:
+  "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)"
+  unfolding filterlim_def filtermap_sup by auto
+
+lemma eventually_sequentially_Suc: "eventually (\<lambda>i. P (Suc i)) sequentially \<longleftrightarrow> eventually P sequentially"
+  unfolding eventually_sequentially by (metis Suc_le_D Suc_le_mono le_Suc_eq)
+
+lemma filterlim_sequentially_Suc:
+  "(LIM x sequentially. f (Suc x) :> F) \<longleftrightarrow> (LIM x sequentially. f x :> F)"
+  unfolding filterlim_iff by (subst eventually_sequentially_Suc) simp
+
+lemma filterlim_Suc: "filterlim Suc sequentially sequentially"
+  by (simp add: filterlim_iff eventually_sequentially) (metis le_Suc_eq)
+
+
+subsection {* Limits to @{const at_top} and @{const at_bot} *}
+
+lemma filterlim_at_top:
+  fixes f :: "'a \<Rightarrow> ('b::linorder)"
+  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)"
+  by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1)
+
+lemma filterlim_at_top_mono:
+  "LIM x F. f x :> at_top \<Longrightarrow> eventually (\<lambda>x. f x \<le> (g x::'a::linorder)) F \<Longrightarrow>
+    LIM x F. g x :> at_top"
+  by (auto simp: filterlim_at_top elim: eventually_elim2 intro: order_trans)
+
+lemma filterlim_at_top_dense:
+  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
+  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)"
+  by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le
+            filterlim_at_top[of f F] filterlim_iff[of f at_top F])
+
+lemma filterlim_at_top_ge:
+  fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
+  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)"
+  unfolding at_top_sub[of c] filterlim_INF by (auto simp add: filterlim_principal)
+
+lemma filterlim_at_top_at_top:
+  fixes f :: "'a::linorder \<Rightarrow> 'b::linorder"
+  assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
+  assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
+  assumes Q: "eventually Q at_top"
+  assumes P: "eventually P at_top"
+  shows "filterlim f at_top at_top"
+proof -
+  from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
+    unfolding eventually_at_top_linorder by auto
+  show ?thesis
+  proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
+    fix z assume "x \<le> z"
+    with x have "P z" by auto
+    have "eventually (\<lambda>x. g z \<le> x) at_top"
+      by (rule eventually_ge_at_top)
+    with Q show "eventually (\<lambda>x. z \<le> f x) at_top"
+      by eventually_elim (metis mono bij `P z`)
+  qed
+qed
+
+lemma filterlim_at_top_gt:
+  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
+  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)"
+  by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge)
+
+lemma filterlim_at_bot: 
+  fixes f :: "'a \<Rightarrow> ('b::linorder)"
+  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)"
+  by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_elim1)
+
+lemma filterlim_at_bot_dense:
+  fixes f :: "'a \<Rightarrow> ('b::{dense_linorder, no_bot})"
+  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x < Z) F)"
+proof (auto simp add: filterlim_at_bot[of f F])
+  fix Z :: 'b
+  from lt_ex [of Z] obtain Z' where 1: "Z' < Z" ..
+  assume "\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F"
+  hence "eventually (\<lambda>x. f x \<le> Z') F" by auto
+  thus "eventually (\<lambda>x. f x < Z) F"
+    apply (rule eventually_mono[rotated])
+    using 1 by auto
+  next 
+    fix Z :: 'b 
+    show "\<forall>Z. eventually (\<lambda>x. f x < Z) F \<Longrightarrow> eventually (\<lambda>x. f x \<le> Z) F"
+      by (drule spec [of _ Z], erule eventually_mono[rotated], auto simp add: less_imp_le)
+qed
+
+lemma filterlim_at_bot_le:
+  fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
+  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)"
+  unfolding filterlim_at_bot
+proof safe
+  fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F"
+  with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F"
+    by (auto elim!: eventually_elim1)
+qed simp
+
+lemma filterlim_at_bot_lt:
+  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
+  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
+  by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
+
+
+subsection {* Setup @{typ "'a filter"} for lifting and transfer *}
+
+context begin interpretation lifting_syntax .
+
+definition rel_filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> 'b filter \<Rightarrow> bool"
+where "rel_filter R F G = ((R ===> op =) ===> op =) (Rep_filter F) (Rep_filter G)"
+
+lemma rel_filter_eventually:
+  "rel_filter R F G \<longleftrightarrow> 
+  ((R ===> op =) ===> op =) (\<lambda>P. eventually P F) (\<lambda>P. eventually P G)"
+by(simp add: rel_filter_def eventually_def)
+
+lemma filtermap_id [simp, id_simps]: "filtermap id = id"
+by(simp add: fun_eq_iff id_def filtermap_ident)
+
+lemma filtermap_id' [simp]: "filtermap (\<lambda>x. x) = (\<lambda>F. F)"
+using filtermap_id unfolding id_def .
+
+lemma Quotient_filter [quot_map]:
+  assumes Q: "Quotient R Abs Rep T"
+  shows "Quotient (rel_filter R) (filtermap Abs) (filtermap Rep) (rel_filter T)"
+unfolding Quotient_alt_def
+proof(intro conjI strip)
+  from Q have *: "\<And>x y. T x y \<Longrightarrow> Abs x = y"
+    unfolding Quotient_alt_def by blast
+
+  fix F G
+  assume "rel_filter T F G"
+  thus "filtermap Abs F = G" unfolding filter_eq_iff
+    by(auto simp add: eventually_filtermap rel_filter_eventually * rel_funI del: iffI elim!: rel_funD)
+next
+  from Q have *: "\<And>x. T (Rep x) x" unfolding Quotient_alt_def by blast
+
+  fix F
+  show "rel_filter T (filtermap Rep F) F" 
+    by(auto elim: rel_funD intro: * intro!: ext arg_cong[where f="\<lambda>P. eventually P F"] rel_funI
+            del: iffI simp add: eventually_filtermap rel_filter_eventually)
+qed(auto simp add: map_fun_def o_def eventually_filtermap filter_eq_iff fun_eq_iff rel_filter_eventually
+         fun_quotient[OF fun_quotient[OF Q identity_quotient] identity_quotient, unfolded Quotient_alt_def])
+
+lemma eventually_parametric [transfer_rule]:
+  "((A ===> op =) ===> rel_filter A ===> op =) eventually eventually"
+by(simp add: rel_fun_def rel_filter_eventually)
+
+lemma rel_filter_eq [relator_eq]: "rel_filter op = = op ="
+by(auto simp add: rel_filter_eventually rel_fun_eq fun_eq_iff filter_eq_iff)
+
+lemma rel_filter_mono [relator_mono]:
+  "A \<le> B \<Longrightarrow> rel_filter A \<le> rel_filter B"
+unfolding rel_filter_eventually[abs_def]
+by(rule le_funI)+(intro fun_mono fun_mono[THEN le_funD, THEN le_funD] order.refl)
+
+lemma rel_filter_conversep [simp]: "rel_filter A\<inverse>\<inverse> = (rel_filter A)\<inverse>\<inverse>"
+by(auto simp add: rel_filter_eventually fun_eq_iff rel_fun_def)
+
+lemma is_filter_parametric_aux:
+  assumes "is_filter F"
+  assumes [transfer_rule]: "bi_total A" "bi_unique A"
+  and [transfer_rule]: "((A ===> op =) ===> op =) F G"
+  shows "is_filter G"
+proof -
+  interpret is_filter F by fact
+  show ?thesis
+  proof
+    have "F (\<lambda>_. True) = G (\<lambda>x. True)" by transfer_prover
+    thus "G (\<lambda>x. True)" by(simp add: True)
+  next
+    fix P' Q'
+    assume "G P'" "G Q'"
+    moreover
+    from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def]
+    obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast
+    have "F P = G P'" "F Q = G Q'" by transfer_prover+
+    ultimately have "F (\<lambda>x. P x \<and> Q x)" by(simp add: conj)
+    moreover have "F (\<lambda>x. P x \<and> Q x) = G (\<lambda>x. P' x \<and> Q' x)" by transfer_prover
+    ultimately show "G (\<lambda>x. P' x \<and> Q' x)" by simp
+  next
+    fix P' Q'
+    assume "\<forall>x. P' x \<longrightarrow> Q' x" "G P'"
+    moreover
+    from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def]
+    obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast
+    have "F P = G P'" by transfer_prover
+    moreover have "(\<forall>x. P x \<longrightarrow> Q x) \<longleftrightarrow> (\<forall>x. P' x \<longrightarrow> Q' x)" by transfer_prover
+    ultimately have "F Q" by(simp add: mono)
+    moreover have "F Q = G Q'" by transfer_prover
+    ultimately show "G Q'" by simp
+  qed
+qed
+
+lemma is_filter_parametric [transfer_rule]:
+  "\<lbrakk> bi_total A; bi_unique A \<rbrakk>
+  \<Longrightarrow> (((A ===> op =) ===> op =) ===> op =) is_filter is_filter"
+apply(rule rel_funI)
+apply(rule iffI)
+ apply(erule (3) is_filter_parametric_aux)
+apply(erule is_filter_parametric_aux[where A="conversep A"])
+apply(auto simp add: rel_fun_def)
+done
+
+lemma left_total_rel_filter [transfer_rule]:
+  assumes [transfer_rule]: "bi_total A" "bi_unique A"
+  shows "left_total (rel_filter A)"
+proof(rule left_totalI)
+  fix F :: "'a filter"
+  from bi_total_fun[OF bi_unique_fun[OF `bi_total A` bi_unique_eq] bi_total_eq]
+  obtain G where [transfer_rule]: "((A ===> op =) ===> op =) (\<lambda>P. eventually P F) G" 
+    unfolding  bi_total_def by blast
+  moreover have "is_filter (\<lambda>P. eventually P F) \<longleftrightarrow> is_filter G" by transfer_prover
+  hence "is_filter G" by(simp add: eventually_def is_filter_Rep_filter)
+  ultimately have "rel_filter A F (Abs_filter G)"
+    by(simp add: rel_filter_eventually eventually_Abs_filter)
+  thus "\<exists>G. rel_filter A F G" ..
+qed
+
+lemma right_total_rel_filter [transfer_rule]:
+  "\<lbrakk> bi_total A; bi_unique A \<rbrakk> \<Longrightarrow> right_total (rel_filter A)"
+using left_total_rel_filter[of "A\<inverse>\<inverse>"] by simp
+
+lemma bi_total_rel_filter [transfer_rule]:
+  assumes "bi_total A" "bi_unique A"
+  shows "bi_total (rel_filter A)"
+unfolding bi_total_alt_def using assms
+by(simp add: left_total_rel_filter right_total_rel_filter)
+
+lemma left_unique_rel_filter [transfer_rule]:
+  assumes "left_unique A"
+  shows "left_unique (rel_filter A)"
+proof(rule left_uniqueI)
+  fix F F' G
+  assume [transfer_rule]: "rel_filter A F G" "rel_filter A F' G"
+  show "F = F'"
+    unfolding filter_eq_iff
+  proof
+    fix P :: "'a \<Rightarrow> bool"
+    obtain P' where [transfer_rule]: "(A ===> op =) P P'"
+      using left_total_fun[OF assms left_total_eq] unfolding left_total_def by blast
+    have "eventually P F = eventually P' G" 
+      and "eventually P F' = eventually P' G" by transfer_prover+
+    thus "eventually P F = eventually P F'" by simp
+  qed
+qed
+
+lemma right_unique_rel_filter [transfer_rule]:
+  "right_unique A \<Longrightarrow> right_unique (rel_filter A)"
+using left_unique_rel_filter[of "A\<inverse>\<inverse>"] by simp
+
+lemma bi_unique_rel_filter [transfer_rule]:
+  "bi_unique A \<Longrightarrow> bi_unique (rel_filter A)"
+by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter)
+
+lemma top_filter_parametric [transfer_rule]:
+  "bi_total A \<Longrightarrow> (rel_filter A) top top"
+by(simp add: rel_filter_eventually All_transfer)
+
+lemma bot_filter_parametric [transfer_rule]: "(rel_filter A) bot bot"
+by(simp add: rel_filter_eventually rel_fun_def)
+
+lemma sup_filter_parametric [transfer_rule]:
+  "(rel_filter A ===> rel_filter A ===> rel_filter A) sup sup"
+by(fastforce simp add: rel_filter_eventually[abs_def] eventually_sup dest: rel_funD)
+
+lemma Sup_filter_parametric [transfer_rule]:
+  "(rel_set (rel_filter A) ===> rel_filter A) Sup Sup"
+proof(rule rel_funI)
+  fix S T
+  assume [transfer_rule]: "rel_set (rel_filter A) S T"
+  show "rel_filter A (Sup S) (Sup T)"
+    by(simp add: rel_filter_eventually eventually_Sup) transfer_prover
+qed
+
+lemma principal_parametric [transfer_rule]:
+  "(rel_set A ===> rel_filter A) principal principal"
+proof(rule rel_funI)
+  fix S S'
+  assume [transfer_rule]: "rel_set A S S'"
+  show "rel_filter A (principal S) (principal S')"
+    by(simp add: rel_filter_eventually eventually_principal) transfer_prover
+qed
+
+context
+  fixes A :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
+  assumes [transfer_rule]: "bi_unique A" 
+begin
+
+lemma le_filter_parametric [transfer_rule]:
+  "(rel_filter A ===> rel_filter A ===> op =) op \<le> op \<le>"
+unfolding le_filter_def[abs_def] by transfer_prover
+
+lemma less_filter_parametric [transfer_rule]:
+  "(rel_filter A ===> rel_filter A ===> op =) op < op <"
+unfolding less_filter_def[abs_def] by transfer_prover
+
+context
+  assumes [transfer_rule]: "bi_total A"
+begin
+
+lemma Inf_filter_parametric [transfer_rule]:
+  "(rel_set (rel_filter A) ===> rel_filter A) Inf Inf"
+unfolding Inf_filter_def[abs_def] by transfer_prover
+
+lemma inf_filter_parametric [transfer_rule]:
+  "(rel_filter A ===> rel_filter A ===> rel_filter A) inf inf"
+proof(intro rel_funI)+
+  fix F F' G G'
+  assume [transfer_rule]: "rel_filter A F F'" "rel_filter A G G'"
+  have "rel_filter A (Inf {F, G}) (Inf {F', G'})" by transfer_prover
+  thus "rel_filter A (inf F G) (inf F' G')" by simp
+qed
+
+end
+
+end
+
+end
+
+end
\ No newline at end of file
--- a/src/HOL/Main.thy	Sun Apr 12 16:04:53 2015 +0200
+++ b/src/HOL/Main.thy	Sun Apr 12 11:33:19 2015 +0200
@@ -1,7 +1,7 @@
 section {* Main HOL *}
 
 theory Main
-imports Predicate_Compile Quickcheck_Narrowing Extraction Coinduction Nitpick BNF_Greatest_Fixpoint
+imports Predicate_Compile Quickcheck_Narrowing Extraction Coinduction Nitpick BNF_Greatest_Fixpoint Filter
 begin
 
 text {*
--- a/src/HOL/NSA/Filter.thy	Sun Apr 12 16:04:53 2015 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,413 +0,0 @@
-(*  Title:      HOL/NSA/Filter.thy
-    Author:     Jacques D. Fleuriot, University of Cambridge
-    Author:     Lawrence C Paulson
-    Author:     Brian Huffman
-*) 
-
-section {* Filters and Ultrafilters *}
-
-theory Filter
-imports "~~/src/HOL/Library/Infinite_Set"
-begin
-
-subsection {* Definitions and basic properties *}
-
-subsubsection {* Filters *}
-
-locale filter =
-  fixes F :: "'a set set"
-  assumes UNIV [iff]:  "UNIV \<in> F"
-  assumes empty [iff]: "{} \<notin> F"
-  assumes Int:         "\<lbrakk>u \<in> F; v \<in> F\<rbrakk> \<Longrightarrow> u \<inter> v \<in> F"
-  assumes subset:      "\<lbrakk>u \<in> F; u \<subseteq> v\<rbrakk> \<Longrightarrow> v \<in> F"
-begin
-
-lemma memD: "A \<in> F \<Longrightarrow> - A \<notin> F"
-proof
-  assume "A \<in> F" and "- A \<in> F"
-  hence "A \<inter> (- A) \<in> F" by (rule Int)
-  thus "False" by simp
-qed
-
-lemma not_memI: "- A \<in> F \<Longrightarrow> A \<notin> F"
-by (drule memD, simp)
-
-lemma Int_iff: "(x \<inter> y \<in> F) = (x \<in> F \<and> y \<in> F)"
-by (auto elim: subset intro: Int)
-
-end
-
-subsubsection {* Ultrafilters *}
-
-locale ultrafilter = filter +
-  assumes ultra: "A \<in> F \<or> - A \<in> F"
-begin
-
-lemma memI: "- A \<notin> F \<Longrightarrow> A \<in> F"
-using ultra [of A] by simp
-
-lemma not_memD: "A \<notin> F \<Longrightarrow> - A \<in> F"
-by (rule memI, simp)
-
-lemma not_mem_iff: "(A \<notin> F) = (- A \<in> F)"
-by (rule iffI [OF not_memD not_memI])
-
-lemma Compl_iff: "(- A \<in> F) = (A \<notin> F)"
-by (rule iffI [OF not_memI not_memD])
-
-lemma Un_iff: "(x \<union> y \<in> F) = (x \<in> F \<or> y \<in> F)"
- apply (rule iffI)
-  apply (erule contrapos_pp)
-  apply (simp add: Int_iff not_mem_iff)
- apply (auto elim: subset)
-done
-
-end
-
-subsubsection {* Free Ultrafilters *}
-
-locale freeultrafilter = ultrafilter +
-  assumes infinite: "A \<in> F \<Longrightarrow> infinite A"
-begin
-
-lemma finite: "finite A \<Longrightarrow> A \<notin> F"
-by (erule contrapos_pn, erule infinite)
-
-lemma singleton: "{x} \<notin> F"
-by (rule finite, simp)
-
-lemma insert_iff [simp]: "(insert x A \<in> F) = (A \<in> F)"
-apply (subst insert_is_Un)
-apply (subst Un_iff)
-apply (simp add: singleton)
-done
-
-lemma filter: "filter F" ..
-
-lemma ultrafilter: "ultrafilter F" ..
-
-end
-
-subsection {* Collect properties *}
-
-lemma (in filter) Collect_ex:
-  "({n. \<exists>x. P n x} \<in> F) = (\<exists>X. {n. P n (X n)} \<in> F)"
-proof
-  assume "{n. \<exists>x. P n x} \<in> F"
-  hence "{n. P n (SOME x. P n x)} \<in> F"
-    by (auto elim: someI subset)
-  thus "\<exists>X. {n. P n (X n)} \<in> F" by fast
-next
-  show "\<exists>X. {n. P n (X n)} \<in> F \<Longrightarrow> {n. \<exists>x. P n x} \<in> F"
-    by (auto elim: subset)
-qed
-
-lemma (in filter) Collect_conj:
-  "({n. P n \<and> Q n} \<in> F) = ({n. P n} \<in> F \<and> {n. Q n} \<in> F)"
-by (subst Collect_conj_eq, rule Int_iff)
-
-lemma (in ultrafilter) Collect_not:
-  "({n. \<not> P n} \<in> F) = ({n. P n} \<notin> F)"
-by (subst Collect_neg_eq, rule Compl_iff)
-
-lemma (in ultrafilter) Collect_disj:
-  "({n. P n \<or> Q n} \<in> F) = ({n. P n} \<in> F \<or> {n. Q n} \<in> F)"
-by (subst Collect_disj_eq, rule Un_iff)
-
-lemma (in ultrafilter) Collect_all:
-  "({n. \<forall>x. P n x} \<in> F) = (\<forall>X. {n. P n (X n)} \<in> F)"
-apply (rule Not_eq_iff [THEN iffD1])
-apply (simp add: Collect_not [symmetric])
-apply (rule Collect_ex)
-done
-
-subsection {* Maximal filter = Ultrafilter *}
-
-text {*
-   A filter F is an ultrafilter iff it is a maximal filter,
-   i.e. whenever G is a filter and @{term "F \<subseteq> G"} then @{term "F = G"}
-*}
-text {*
-  Lemmas that shows existence of an extension to what was assumed to
-  be a maximal filter. Will be used to derive contradiction in proof of
-  property of ultrafilter.
-*}
-
-lemma extend_lemma1: "UNIV \<in> F \<Longrightarrow> A \<in> {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}"
-by blast
-
-lemma extend_lemma2: "F \<subseteq> {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}"
-by blast
-
-lemma (in filter) extend_filter:
-assumes A: "- A \<notin> F"
-shows "filter {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}" (is "filter ?X")
-proof (rule filter.intro)
-  show "UNIV \<in> ?X" by blast
-next
-  show "{} \<notin> ?X"
-  proof (clarify)
-    fix f assume f: "f \<in> F" and Af: "A \<inter> f \<subseteq> {}"
-    from Af have fA: "f \<subseteq> - A" by blast
-    from f fA have "- A \<in> F" by (rule subset)
-    with A show "False" by simp
-  qed
-next
-  fix u and v
-  assume u: "u \<in> ?X" and v: "v \<in> ?X"
-  from u obtain f where f: "f \<in> F" and Af: "A \<inter> f \<subseteq> u" by blast
-  from v obtain g where g: "g \<in> F" and Ag: "A \<inter> g \<subseteq> v" by blast
-  from f g have fg: "f \<inter> g \<in> F" by (rule Int)
-  from Af Ag have Afg: "A \<inter> (f \<inter> g) \<subseteq> u \<inter> v" by blast
-  from fg Afg show "u \<inter> v \<in> ?X" by blast
-next
-  fix u and v
-  assume uv: "u \<subseteq> v" and u: "u \<in> ?X"
-  from u obtain f where f: "f \<in> F" and Afu: "A \<inter> f \<subseteq> u" by blast
-  from Afu uv have Afv: "A \<inter> f \<subseteq> v" by blast
-  from f Afv have "\<exists>f\<in>F. A \<inter> f \<subseteq> v" by blast
-  thus "v \<in> ?X" by simp
-qed
-
-lemma (in filter) max_filter_ultrafilter:
-assumes max: "\<And>G. \<lbrakk>filter G; F \<subseteq> G\<rbrakk> \<Longrightarrow> F = G"
-shows "ultrafilter_axioms F"
-proof (rule ultrafilter_axioms.intro)
-  fix A show "A \<in> F \<or> - A \<in> F"
-  proof (rule disjCI)
-    let ?X = "{X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}"
-    assume AF: "- A \<notin> F"
-    from AF have X: "filter ?X" by (rule extend_filter)
-    from UNIV have AX: "A \<in> ?X" by (rule extend_lemma1)
-    have FX: "F \<subseteq> ?X" by (rule extend_lemma2)
-    from X FX have "F = ?X" by (rule max)
-    with AX show "A \<in> F" by simp
-  qed
-qed
-
-lemma (in ultrafilter) max_filter:
-assumes G: "filter G" and sub: "F \<subseteq> G" shows "F = G"
-proof
-  show "F \<subseteq> G" using sub .
-  show "G \<subseteq> F"
-  proof
-    fix A assume A: "A \<in> G"
-    from G A have "- A \<notin> G" by (rule filter.memD)
-    with sub have B: "- A \<notin> F" by blast
-    thus "A \<in> F" by (rule memI)
-  qed
-qed
-
-subsection {* Ultrafilter Theorem *}
-
-text "A local context makes proof of ultrafilter Theorem more modular"
-context
-  fixes   frechet :: "'a set set"
-  and     superfrechet :: "'a set set set"
-
-  assumes infinite_UNIV: "infinite (UNIV :: 'a set)"
-
-  defines frechet_def: "frechet \<equiv> {A. finite (- A)}"
-  and     superfrechet_def: "superfrechet \<equiv> {G. filter G \<and> frechet \<subseteq> G}"
-begin
-
-lemma superfrechetI:
-  "\<lbrakk>filter G; frechet \<subseteq> G\<rbrakk> \<Longrightarrow> G \<in> superfrechet"
-by (simp add: superfrechet_def)
-
-lemma superfrechetD1:
-  "G \<in> superfrechet \<Longrightarrow> filter G"
-by (simp add: superfrechet_def)
-
-lemma superfrechetD2:
-  "G \<in> superfrechet \<Longrightarrow> frechet \<subseteq> G"
-by (simp add: superfrechet_def)
-
-text {* A few properties of free filters *}
-
-lemma filter_cofinite:
-assumes inf: "infinite (UNIV :: 'a set)"
-shows "filter {A:: 'a set. finite (- A)}" (is "filter ?F")
-proof (rule filter.intro)
-  show "UNIV \<in> ?F" by simp
-next
-  show "{} \<notin> ?F" using inf by simp
-next
-  fix u v assume "u \<in> ?F" and "v \<in> ?F"
-  thus "u \<inter> v \<in> ?F" by simp
-next
-  fix u v assume uv: "u \<subseteq> v" and u: "u \<in> ?F"
-  from uv have vu: "- v \<subseteq> - u" by simp
-  from u show "v \<in> ?F"
-    by (simp add: finite_subset [OF vu])
-qed
-
-text {*
-   We prove: 1. Existence of maximal filter i.e. ultrafilter;
-             2. Freeness property i.e ultrafilter is free.
-             Use a locale to prove various lemmas and then 
-             export main result: The ultrafilter Theorem
-*}
-
-lemma filter_frechet: "filter frechet"
-by (unfold frechet_def, rule filter_cofinite [OF infinite_UNIV])
-
-lemma frechet_in_superfrechet: "frechet \<in> superfrechet"
-by (rule superfrechetI [OF filter_frechet subset_refl])
-
-lemma lemma_mem_chain_filter:
-  "\<lbrakk>c \<in> chains superfrechet; x \<in> c\<rbrakk> \<Longrightarrow> filter x"
-by (unfold chains_def superfrechet_def, blast)
-
-
-subsubsection {* Unions of chains of superfrechets *}
-
-text "In this section we prove that superfrechet is closed
-with respect to unions of non-empty chains. We must show
-  1) Union of a chain is a filter,
-  2) Union of a chain contains frechet.
-
-Number 2 is trivial, but 1 requires us to prove all the filter rules."
-
-lemma Union_chain_UNIV:
-  "\<lbrakk>c \<in> chains superfrechet; c \<noteq> {}\<rbrakk> \<Longrightarrow> UNIV \<in> \<Union>c"
-proof -
-  assume 1: "c \<in> chains superfrechet" and 2: "c \<noteq> {}"
-  from 2 obtain x where 3: "x \<in> c" by blast
-  from 1 3 have "filter x" by (rule lemma_mem_chain_filter)
-  hence "UNIV \<in> x" by (rule filter.UNIV)
-  with 3 show "UNIV \<in> \<Union>c" by blast
-qed
-
-lemma Union_chain_empty:
-  "c \<in> chains superfrechet \<Longrightarrow> {} \<notin> \<Union>c"
-proof
-  assume 1: "c \<in> chains superfrechet" and 2: "{} \<in> \<Union>c"
-  from 2 obtain x where 3: "x \<in> c" and 4: "{} \<in> x" ..
-  from 1 3 have "filter x" by (rule lemma_mem_chain_filter)
-  hence "{} \<notin> x" by (rule filter.empty)
-  with 4 show "False" by simp
-qed
-
-lemma Union_chain_Int:
-  "\<lbrakk>c \<in> chains superfrechet; u \<in> \<Union>c; v \<in> \<Union>c\<rbrakk> \<Longrightarrow> u \<inter> v \<in> \<Union>c"
-proof -
-  assume c: "c \<in> chains superfrechet"
-  assume "u \<in> \<Union>c"
-    then obtain x where ux: "u \<in> x" and xc: "x \<in> c" ..
-  assume "v \<in> \<Union>c"
-    then obtain y where vy: "v \<in> y" and yc: "y \<in> c" ..
-  from c xc yc have "x \<subseteq> y \<or> y \<subseteq> x" using c unfolding chains_def chain_subset_def by auto
-  with xc yc have xyc: "x \<union> y \<in> c"
-    by (auto simp add: Un_absorb1 Un_absorb2)
-  with c have fxy: "filter (x \<union> y)" by (rule lemma_mem_chain_filter)
-  from ux have uxy: "u \<in> x \<union> y" by simp
-  from vy have vxy: "v \<in> x \<union> y" by simp
-  from fxy uxy vxy have "u \<inter> v \<in> x \<union> y" by (rule filter.Int)
-  with xyc show "u \<inter> v \<in> \<Union>c" ..
-qed
-
-lemma Union_chain_subset:
-  "\<lbrakk>c \<in> chains superfrechet; u \<in> \<Union>c; u \<subseteq> v\<rbrakk> \<Longrightarrow> v \<in> \<Union>c"
-proof -
-  assume c: "c \<in> chains superfrechet"
-     and u: "u \<in> \<Union>c" and uv: "u \<subseteq> v"
-  from u obtain x where ux: "u \<in> x" and xc: "x \<in> c" ..
-  from c xc have fx: "filter x" by (rule lemma_mem_chain_filter)
-  from fx ux uv have vx: "v \<in> x" by (rule filter.subset)
-  with xc show "v \<in> \<Union>c" ..
-qed
-
-lemma Union_chain_filter:
-assumes chain: "c \<in> chains superfrechet" and nonempty: "c \<noteq> {}"
-shows "filter (\<Union>c)" 
-proof (rule filter.intro)
-  show "UNIV \<in> \<Union>c" using chain nonempty by (rule Union_chain_UNIV)
-next
-  show "{} \<notin> \<Union>c" using chain by (rule Union_chain_empty)
-next
-  fix u v assume "u \<in> \<Union>c" and "v \<in> \<Union>c"
-  with chain show "u \<inter> v \<in> \<Union>c" by (rule Union_chain_Int)
-next
-  fix u v assume "u \<in> \<Union>c" and "u \<subseteq> v"
-  with chain show "v \<in> \<Union>c" by (rule Union_chain_subset)
-qed
-
-lemma lemma_mem_chain_frechet_subset:
-  "\<lbrakk>c \<in> chains superfrechet; x \<in> c\<rbrakk> \<Longrightarrow> frechet \<subseteq> x"
-by (unfold superfrechet_def chains_def, blast)
-
-lemma Union_chain_superfrechet:
-  "\<lbrakk>c \<noteq> {}; c \<in> chains superfrechet\<rbrakk> \<Longrightarrow> \<Union>c \<in> superfrechet"
-proof (rule superfrechetI)
-  assume 1: "c \<in> chains superfrechet" and 2: "c \<noteq> {}"
-  thus "filter (\<Union>c)" by (rule Union_chain_filter)
-  from 2 obtain x where 3: "x \<in> c" by blast
-  from 1 3 have "frechet \<subseteq> x" by (rule lemma_mem_chain_frechet_subset)
-  also from 3 have "x \<subseteq> \<Union>c" by blast
-  finally show "frechet \<subseteq> \<Union>c" .
-qed
-
-subsubsection {* Existence of free ultrafilter *}
-
-lemma max_cofinite_filter_Ex:
-  "\<exists>U\<in>superfrechet. \<forall>G\<in>superfrechet. U \<subseteq> G \<longrightarrow> G = U" 
-proof (rule Zorn_Lemma2, safe)
-  fix c assume c: "c \<in> chains superfrechet"
-  show "\<exists>U\<in>superfrechet. \<forall>G\<in>c. G \<subseteq> U" (is "?U")
-  proof (cases)
-    assume "c = {}"
-    with frechet_in_superfrechet show "?U" by blast
-  next
-    assume A: "c \<noteq> {}"
-    from A c have "\<Union>c \<in> superfrechet"
-      by (rule Union_chain_superfrechet)
-    thus "?U" by blast
-  qed
-qed
-
-lemma mem_superfrechet_all_infinite:
-  "\<lbrakk>U \<in> superfrechet; A \<in> U\<rbrakk> \<Longrightarrow> infinite A"
-proof
-  assume U: "U \<in> superfrechet" and A: "A \<in> U" and fin: "finite A"
-  from U have fil: "filter U" and fre: "frechet \<subseteq> U"
-    by (simp_all add: superfrechet_def)
-  from fin have "- A \<in> frechet" by (simp add: frechet_def)
-  with fre have cA: "- A \<in> U" by (rule subsetD)
-  from fil A cA have "A \<inter> - A \<in> U" by (rule filter.Int)
-  with fil show "False" by (simp add: filter.empty)
-qed
-
-text {* There exists a free ultrafilter on any infinite set *}
-
-lemma freeultrafilter_Ex:
-  "\<exists>U::'a set set. freeultrafilter U"
-proof -
-  from max_cofinite_filter_Ex obtain U
-    where U: "U \<in> superfrechet"
-      and max [rule_format]: "\<forall>G\<in>superfrechet. U \<subseteq> G \<longrightarrow> G = U" ..
-  from U have fil: "filter U" by (rule superfrechetD1)
-  from U have fre: "frechet \<subseteq> U" by (rule superfrechetD2)
-  have ultra: "ultrafilter_axioms U"
-  proof (rule filter.max_filter_ultrafilter [OF fil])
-    fix G assume G: "filter G" and UG: "U \<subseteq> G"
-    from fre UG have "frechet \<subseteq> G" by simp
-    with G have "G \<in> superfrechet" by (rule superfrechetI)
-    from this UG show "U = G" by (rule max[symmetric])
-  qed
-  have free: "freeultrafilter_axioms U"
-  proof (rule freeultrafilter_axioms.intro)
-    fix A assume "A \<in> U"
-    with U show "infinite A" by (rule mem_superfrechet_all_infinite)
-  qed
-  from fil ultra free have "freeultrafilter U"
-    by (rule freeultrafilter.intro [OF ultrafilter.intro])
-    (* FIXME: unfold_locales should use chained facts *)
-  then show ?thesis ..
-qed
-
-end
-
-hide_const (open) filter
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/NSA/Free_Ultrafilter.thy	Sun Apr 12 11:33:19 2015 +0200
@@ -0,0 +1,413 @@
+(*  Title:      HOL/NSA/Free_Ultrafilter.thy
+    Author:     Jacques D. Fleuriot, University of Cambridge
+    Author:     Lawrence C Paulson
+    Author:     Brian Huffman
+*) 
+
+section {* Filters and Ultrafilters *}
+
+theory Free_Ultrafilter
+imports "~~/src/HOL/Library/Infinite_Set"
+begin
+
+subsection {* Definitions and basic properties *}
+
+subsubsection {* Filters *}
+
+locale filter =
+  fixes F :: "'a set set"
+  assumes UNIV [iff]:  "UNIV \<in> F"
+  assumes empty [iff]: "{} \<notin> F"
+  assumes Int:         "\<lbrakk>u \<in> F; v \<in> F\<rbrakk> \<Longrightarrow> u \<inter> v \<in> F"
+  assumes subset:      "\<lbrakk>u \<in> F; u \<subseteq> v\<rbrakk> \<Longrightarrow> v \<in> F"
+begin
+
+lemma memD: "A \<in> F \<Longrightarrow> - A \<notin> F"
+proof
+  assume "A \<in> F" and "- A \<in> F"
+  hence "A \<inter> (- A) \<in> F" by (rule Int)
+  thus "False" by simp
+qed
+
+lemma not_memI: "- A \<in> F \<Longrightarrow> A \<notin> F"
+by (drule memD, simp)
+
+lemma Int_iff: "(x \<inter> y \<in> F) = (x \<in> F \<and> y \<in> F)"
+by (auto elim: subset intro: Int)
+
+end
+
+subsubsection {* Ultrafilters *}
+
+locale ultrafilter = filter +
+  assumes ultra: "A \<in> F \<or> - A \<in> F"
+begin
+
+lemma memI: "- A \<notin> F \<Longrightarrow> A \<in> F"
+using ultra [of A] by simp
+
+lemma not_memD: "A \<notin> F \<Longrightarrow> - A \<in> F"
+by (rule memI, simp)
+
+lemma not_mem_iff: "(A \<notin> F) = (- A \<in> F)"
+by (rule iffI [OF not_memD not_memI])
+
+lemma Compl_iff: "(- A \<in> F) = (A \<notin> F)"
+by (rule iffI [OF not_memI not_memD])
+
+lemma Un_iff: "(x \<union> y \<in> F) = (x \<in> F \<or> y \<in> F)"
+ apply (rule iffI)
+  apply (erule contrapos_pp)
+  apply (simp add: Int_iff not_mem_iff)
+ apply (auto elim: subset)
+done
+
+end
+
+subsubsection {* Free Ultrafilters *}
+
+locale freeultrafilter = ultrafilter +
+  assumes infinite: "A \<in> F \<Longrightarrow> infinite A"
+begin
+
+lemma finite: "finite A \<Longrightarrow> A \<notin> F"
+by (erule contrapos_pn, erule infinite)
+
+lemma singleton: "{x} \<notin> F"
+by (rule finite, simp)
+
+lemma insert_iff [simp]: "(insert x A \<in> F) = (A \<in> F)"
+apply (subst insert_is_Un)
+apply (subst Un_iff)
+apply (simp add: singleton)
+done
+
+lemma filter: "filter F" ..
+
+lemma ultrafilter: "ultrafilter F" ..
+
+end
+
+subsection {* Collect properties *}
+
+lemma (in filter) Collect_ex:
+  "({n. \<exists>x. P n x} \<in> F) = (\<exists>X. {n. P n (X n)} \<in> F)"
+proof
+  assume "{n. \<exists>x. P n x} \<in> F"
+  hence "{n. P n (SOME x. P n x)} \<in> F"
+    by (auto elim: someI subset)
+  thus "\<exists>X. {n. P n (X n)} \<in> F" by fast
+next
+  show "\<exists>X. {n. P n (X n)} \<in> F \<Longrightarrow> {n. \<exists>x. P n x} \<in> F"
+    by (auto elim: subset)
+qed
+
+lemma (in filter) Collect_conj:
+  "({n. P n \<and> Q n} \<in> F) = ({n. P n} \<in> F \<and> {n. Q n} \<in> F)"
+by (subst Collect_conj_eq, rule Int_iff)
+
+lemma (in ultrafilter) Collect_not:
+  "({n. \<not> P n} \<in> F) = ({n. P n} \<notin> F)"
+by (subst Collect_neg_eq, rule Compl_iff)
+
+lemma (in ultrafilter) Collect_disj:
+  "({n. P n \<or> Q n} \<in> F) = ({n. P n} \<in> F \<or> {n. Q n} \<in> F)"
+by (subst Collect_disj_eq, rule Un_iff)
+
+lemma (in ultrafilter) Collect_all:
+  "({n. \<forall>x. P n x} \<in> F) = (\<forall>X. {n. P n (X n)} \<in> F)"
+apply (rule Not_eq_iff [THEN iffD1])
+apply (simp add: Collect_not [symmetric])
+apply (rule Collect_ex)
+done
+
+subsection {* Maximal filter = Ultrafilter *}
+
+text {*
+   A filter F is an ultrafilter iff it is a maximal filter,
+   i.e. whenever G is a filter and @{term "F \<subseteq> G"} then @{term "F = G"}
+*}
+text {*
+  Lemmas that shows existence of an extension to what was assumed to
+  be a maximal filter. Will be used to derive contradiction in proof of
+  property of ultrafilter.
+*}
+
+lemma extend_lemma1: "UNIV \<in> F \<Longrightarrow> A \<in> {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}"
+by blast
+
+lemma extend_lemma2: "F \<subseteq> {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}"
+by blast
+
+lemma (in filter) extend_filter:
+assumes A: "- A \<notin> F"
+shows "filter {X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}" (is "filter ?X")
+proof (rule filter.intro)
+  show "UNIV \<in> ?X" by blast
+next
+  show "{} \<notin> ?X"
+  proof (clarify)
+    fix f assume f: "f \<in> F" and Af: "A \<inter> f \<subseteq> {}"
+    from Af have fA: "f \<subseteq> - A" by blast
+    from f fA have "- A \<in> F" by (rule subset)
+    with A show "False" by simp
+  qed
+next
+  fix u and v
+  assume u: "u \<in> ?X" and v: "v \<in> ?X"
+  from u obtain f where f: "f \<in> F" and Af: "A \<inter> f \<subseteq> u" by blast
+  from v obtain g where g: "g \<in> F" and Ag: "A \<inter> g \<subseteq> v" by blast
+  from f g have fg: "f \<inter> g \<in> F" by (rule Int)
+  from Af Ag have Afg: "A \<inter> (f \<inter> g) \<subseteq> u \<inter> v" by blast
+  from fg Afg show "u \<inter> v \<in> ?X" by blast
+next
+  fix u and v
+  assume uv: "u \<subseteq> v" and u: "u \<in> ?X"
+  from u obtain f where f: "f \<in> F" and Afu: "A \<inter> f \<subseteq> u" by blast
+  from Afu uv have Afv: "A \<inter> f \<subseteq> v" by blast
+  from f Afv have "\<exists>f\<in>F. A \<inter> f \<subseteq> v" by blast
+  thus "v \<in> ?X" by simp
+qed
+
+lemma (in filter) max_filter_ultrafilter:
+assumes max: "\<And>G. \<lbrakk>filter G; F \<subseteq> G\<rbrakk> \<Longrightarrow> F = G"
+shows "ultrafilter_axioms F"
+proof (rule ultrafilter_axioms.intro)
+  fix A show "A \<in> F \<or> - A \<in> F"
+  proof (rule disjCI)
+    let ?X = "{X. \<exists>f\<in>F. A \<inter> f \<subseteq> X}"
+    assume AF: "- A \<notin> F"
+    from AF have X: "filter ?X" by (rule extend_filter)
+    from UNIV have AX: "A \<in> ?X" by (rule extend_lemma1)
+    have FX: "F \<subseteq> ?X" by (rule extend_lemma2)
+    from X FX have "F = ?X" by (rule max)
+    with AX show "A \<in> F" by simp
+  qed
+qed
+
+lemma (in ultrafilter) max_filter:
+assumes G: "filter G" and sub: "F \<subseteq> G" shows "F = G"
+proof
+  show "F \<subseteq> G" using sub .
+  show "G \<subseteq> F"
+  proof
+    fix A assume A: "A \<in> G"
+    from G A have "- A \<notin> G" by (rule filter.memD)
+    with sub have B: "- A \<notin> F" by blast
+    thus "A \<in> F" by (rule memI)
+  qed
+qed
+
+subsection {* Ultrafilter Theorem *}
+
+text "A local context makes proof of ultrafilter Theorem more modular"
+context
+  fixes   frechet :: "'a set set"
+  and     superfrechet :: "'a set set set"
+
+  assumes infinite_UNIV: "infinite (UNIV :: 'a set)"
+
+  defines frechet_def: "frechet \<equiv> {A. finite (- A)}"
+  and     superfrechet_def: "superfrechet \<equiv> {G. filter G \<and> frechet \<subseteq> G}"
+begin
+
+lemma superfrechetI:
+  "\<lbrakk>filter G; frechet \<subseteq> G\<rbrakk> \<Longrightarrow> G \<in> superfrechet"
+by (simp add: superfrechet_def)
+
+lemma superfrechetD1:
+  "G \<in> superfrechet \<Longrightarrow> filter G"
+by (simp add: superfrechet_def)
+
+lemma superfrechetD2:
+  "G \<in> superfrechet \<Longrightarrow> frechet \<subseteq> G"
+by (simp add: superfrechet_def)
+
+text {* A few properties of free filters *}
+
+lemma filter_cofinite:
+assumes inf: "infinite (UNIV :: 'a set)"
+shows "filter {A:: 'a set. finite (- A)}" (is "filter ?F")
+proof (rule filter.intro)
+  show "UNIV \<in> ?F" by simp
+next
+  show "{} \<notin> ?F" using inf by simp
+next
+  fix u v assume "u \<in> ?F" and "v \<in> ?F"
+  thus "u \<inter> v \<in> ?F" by simp
+next
+  fix u v assume uv: "u \<subseteq> v" and u: "u \<in> ?F"
+  from uv have vu: "- v \<subseteq> - u" by simp
+  from u show "v \<in> ?F"
+    by (simp add: finite_subset [OF vu])
+qed
+
+text {*
+   We prove: 1. Existence of maximal filter i.e. ultrafilter;
+             2. Freeness property i.e ultrafilter is free.
+             Use a locale to prove various lemmas and then 
+             export main result: The ultrafilter Theorem
+*}
+
+lemma filter_frechet: "filter frechet"
+by (unfold frechet_def, rule filter_cofinite [OF infinite_UNIV])
+
+lemma frechet_in_superfrechet: "frechet \<in> superfrechet"
+by (rule superfrechetI [OF filter_frechet subset_refl])
+
+lemma lemma_mem_chain_filter:
+  "\<lbrakk>c \<in> chains superfrechet; x \<in> c\<rbrakk> \<Longrightarrow> filter x"
+by (unfold chains_def superfrechet_def, blast)
+
+
+subsubsection {* Unions of chains of superfrechets *}
+
+text "In this section we prove that superfrechet is closed
+with respect to unions of non-empty chains. We must show
+  1) Union of a chain is a filter,
+  2) Union of a chain contains frechet.
+
+Number 2 is trivial, but 1 requires us to prove all the filter rules."
+
+lemma Union_chain_UNIV:
+  "\<lbrakk>c \<in> chains superfrechet; c \<noteq> {}\<rbrakk> \<Longrightarrow> UNIV \<in> \<Union>c"
+proof -
+  assume 1: "c \<in> chains superfrechet" and 2: "c \<noteq> {}"
+  from 2 obtain x where 3: "x \<in> c" by blast
+  from 1 3 have "filter x" by (rule lemma_mem_chain_filter)
+  hence "UNIV \<in> x" by (rule filter.UNIV)
+  with 3 show "UNIV \<in> \<Union>c" by blast
+qed
+
+lemma Union_chain_empty:
+  "c \<in> chains superfrechet \<Longrightarrow> {} \<notin> \<Union>c"
+proof
+  assume 1: "c \<in> chains superfrechet" and 2: "{} \<in> \<Union>c"
+  from 2 obtain x where 3: "x \<in> c" and 4: "{} \<in> x" ..
+  from 1 3 have "filter x" by (rule lemma_mem_chain_filter)
+  hence "{} \<notin> x" by (rule filter.empty)
+  with 4 show "False" by simp
+qed
+
+lemma Union_chain_Int:
+  "\<lbrakk>c \<in> chains superfrechet; u \<in> \<Union>c; v \<in> \<Union>c\<rbrakk> \<Longrightarrow> u \<inter> v \<in> \<Union>c"
+proof -
+  assume c: "c \<in> chains superfrechet"
+  assume "u \<in> \<Union>c"
+    then obtain x where ux: "u \<in> x" and xc: "x \<in> c" ..
+  assume "v \<in> \<Union>c"
+    then obtain y where vy: "v \<in> y" and yc: "y \<in> c" ..
+  from c xc yc have "x \<subseteq> y \<or> y \<subseteq> x" using c unfolding chains_def chain_subset_def by auto
+  with xc yc have xyc: "x \<union> y \<in> c"
+    by (auto simp add: Un_absorb1 Un_absorb2)
+  with c have fxy: "filter (x \<union> y)" by (rule lemma_mem_chain_filter)
+  from ux have uxy: "u \<in> x \<union> y" by simp
+  from vy have vxy: "v \<in> x \<union> y" by simp
+  from fxy uxy vxy have "u \<inter> v \<in> x \<union> y" by (rule filter.Int)
+  with xyc show "u \<inter> v \<in> \<Union>c" ..
+qed
+
+lemma Union_chain_subset:
+  "\<lbrakk>c \<in> chains superfrechet; u \<in> \<Union>c; u \<subseteq> v\<rbrakk> \<Longrightarrow> v \<in> \<Union>c"
+proof -
+  assume c: "c \<in> chains superfrechet"
+     and u: "u \<in> \<Union>c" and uv: "u \<subseteq> v"
+  from u obtain x where ux: "u \<in> x" and xc: "x \<in> c" ..
+  from c xc have fx: "filter x" by (rule lemma_mem_chain_filter)
+  from fx ux uv have vx: "v \<in> x" by (rule filter.subset)
+  with xc show "v \<in> \<Union>c" ..
+qed
+
+lemma Union_chain_filter:
+assumes chain: "c \<in> chains superfrechet" and nonempty: "c \<noteq> {}"
+shows "filter (\<Union>c)" 
+proof (rule filter.intro)
+  show "UNIV \<in> \<Union>c" using chain nonempty by (rule Union_chain_UNIV)
+next
+  show "{} \<notin> \<Union>c" using chain by (rule Union_chain_empty)
+next
+  fix u v assume "u \<in> \<Union>c" and "v \<in> \<Union>c"
+  with chain show "u \<inter> v \<in> \<Union>c" by (rule Union_chain_Int)
+next
+  fix u v assume "u \<in> \<Union>c" and "u \<subseteq> v"
+  with chain show "v \<in> \<Union>c" by (rule Union_chain_subset)
+qed
+
+lemma lemma_mem_chain_frechet_subset:
+  "\<lbrakk>c \<in> chains superfrechet; x \<in> c\<rbrakk> \<Longrightarrow> frechet \<subseteq> x"
+by (unfold superfrechet_def chains_def, blast)
+
+lemma Union_chain_superfrechet:
+  "\<lbrakk>c \<noteq> {}; c \<in> chains superfrechet\<rbrakk> \<Longrightarrow> \<Union>c \<in> superfrechet"
+proof (rule superfrechetI)
+  assume 1: "c \<in> chains superfrechet" and 2: "c \<noteq> {}"
+  thus "filter (\<Union>c)" by (rule Union_chain_filter)
+  from 2 obtain x where 3: "x \<in> c" by blast
+  from 1 3 have "frechet \<subseteq> x" by (rule lemma_mem_chain_frechet_subset)
+  also from 3 have "x \<subseteq> \<Union>c" by blast
+  finally show "frechet \<subseteq> \<Union>c" .
+qed
+
+subsubsection {* Existence of free ultrafilter *}
+
+lemma max_cofinite_filter_Ex:
+  "\<exists>U\<in>superfrechet. \<forall>G\<in>superfrechet. U \<subseteq> G \<longrightarrow> G = U" 
+proof (rule Zorn_Lemma2, safe)
+  fix c assume c: "c \<in> chains superfrechet"
+  show "\<exists>U\<in>superfrechet. \<forall>G\<in>c. G \<subseteq> U" (is "?U")
+  proof (cases)
+    assume "c = {}"
+    with frechet_in_superfrechet show "?U" by blast
+  next
+    assume A: "c \<noteq> {}"
+    from A c have "\<Union>c \<in> superfrechet"
+      by (rule Union_chain_superfrechet)
+    thus "?U" by blast
+  qed
+qed
+
+lemma mem_superfrechet_all_infinite:
+  "\<lbrakk>U \<in> superfrechet; A \<in> U\<rbrakk> \<Longrightarrow> infinite A"
+proof
+  assume U: "U \<in> superfrechet" and A: "A \<in> U" and fin: "finite A"
+  from U have fil: "filter U" and fre: "frechet \<subseteq> U"
+    by (simp_all add: superfrechet_def)
+  from fin have "- A \<in> frechet" by (simp add: frechet_def)
+  with fre have cA: "- A \<in> U" by (rule subsetD)
+  from fil A cA have "A \<inter> - A \<in> U" by (rule filter.Int)
+  with fil show "False" by (simp add: filter.empty)
+qed
+
+text {* There exists a free ultrafilter on any infinite set *}
+
+lemma freeultrafilter_Ex:
+  "\<exists>U::'a set set. freeultrafilter U"
+proof -
+  from max_cofinite_filter_Ex obtain U
+    where U: "U \<in> superfrechet"
+      and max [rule_format]: "\<forall>G\<in>superfrechet. U \<subseteq> G \<longrightarrow> G = U" ..
+  from U have fil: "filter U" by (rule superfrechetD1)
+  from U have fre: "frechet \<subseteq> U" by (rule superfrechetD2)
+  have ultra: "ultrafilter_axioms U"
+  proof (rule filter.max_filter_ultrafilter [OF fil])
+    fix G assume G: "filter G" and UG: "U \<subseteq> G"
+    from fre UG have "frechet \<subseteq> G" by simp
+    with G have "G \<in> superfrechet" by (rule superfrechetI)
+    from this UG show "U = G" by (rule max[symmetric])
+  qed
+  have free: "freeultrafilter_axioms U"
+  proof (rule freeultrafilter_axioms.intro)
+    fix A assume "A \<in> U"
+    with U show "infinite A" by (rule mem_superfrechet_all_infinite)
+  qed
+  from fil ultra free have "freeultrafilter U"
+    by (rule freeultrafilter.intro [OF ultrafilter.intro])
+    (* FIXME: unfold_locales should use chained facts *)
+  then show ?thesis ..
+qed
+
+end
+
+hide_const (open) filter
+
+end
--- a/src/HOL/NSA/StarDef.thy	Sun Apr 12 16:04:53 2015 +0200
+++ b/src/HOL/NSA/StarDef.thy	Sun Apr 12 11:33:19 2015 +0200
@@ -5,7 +5,7 @@
 section {* Construction of Star Types Using Ultrafilters *}
 
 theory StarDef
-imports Filter
+imports Free_Ultrafilter
 begin
 
 subsection {* A Free Ultrafilter over the Naturals *}
--- a/src/HOL/Topological_Spaces.thy	Sun Apr 12 16:04:53 2015 +0200
+++ b/src/HOL/Topological_Spaces.thy	Sun Apr 12 11:33:19 2015 +0200
@@ -322,557 +322,6 @@
     by auto
 qed
 
-subsection {* Filters *}
-
-text {*
-  This definition also allows non-proper filters.
-*}
-
-locale is_filter =
-  fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
-  assumes True: "F (\<lambda>x. True)"
-  assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)"
-  assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)"
-
-typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
-proof
-  show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro)
-qed
-
-lemma is_filter_Rep_filter: "is_filter (Rep_filter F)"
-  using Rep_filter [of F] by simp
-
-lemma Abs_filter_inverse':
-  assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F"
-  using assms by (simp add: Abs_filter_inverse)
-
-
-subsubsection {* Eventually *}
-
-definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
-  where "eventually P F \<longleftrightarrow> Rep_filter F P"
-
-lemma eventually_Abs_filter:
-  assumes "is_filter F" shows "eventually P (Abs_filter F) = F P"
-  unfolding eventually_def using assms by (simp add: Abs_filter_inverse)
-
-lemma filter_eq_iff:
-  shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')"
-  unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def ..
-
-lemma eventually_True [simp]: "eventually (\<lambda>x. True) F"
-  unfolding eventually_def
-  by (rule is_filter.True [OF is_filter_Rep_filter])
-
-lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F"
-proof -
-  assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext)
-  thus "eventually P F" by simp
-qed
-
-lemma eventually_mono:
-  "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually P F \<Longrightarrow> eventually Q F"
-  unfolding eventually_def
-  by (rule is_filter.mono [OF is_filter_Rep_filter])
-
-lemma eventually_conj:
-  assumes P: "eventually (\<lambda>x. P x) F"
-  assumes Q: "eventually (\<lambda>x. Q x) F"
-  shows "eventually (\<lambda>x. P x \<and> Q x) F"
-  using assms unfolding eventually_def
-  by (rule is_filter.conj [OF is_filter_Rep_filter])
-
-lemma eventually_Ball_finite:
-  assumes "finite A" and "\<forall>y\<in>A. eventually (\<lambda>x. P x y) net"
-  shows "eventually (\<lambda>x. \<forall>y\<in>A. P x y) net"
-using assms by (induct set: finite, simp, simp add: eventually_conj)
-
-lemma eventually_all_finite:
-  fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool"
-  assumes "\<And>y. eventually (\<lambda>x. P x y) net"
-  shows "eventually (\<lambda>x. \<forall>y. P x y) net"
-using eventually_Ball_finite [of UNIV P] assms by simp
-
-lemma eventually_mp:
-  assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
-  assumes "eventually (\<lambda>x. P x) F"
-  shows "eventually (\<lambda>x. Q x) F"
-proof (rule eventually_mono)
-  show "\<forall>x. (P x \<longrightarrow> Q x) \<and> P x \<longrightarrow> Q x" by simp
-  show "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F"
-    using assms by (rule eventually_conj)
-qed
-
-lemma eventually_rev_mp:
-  assumes "eventually (\<lambda>x. P x) F"
-  assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
-  shows "eventually (\<lambda>x. Q x) F"
-using assms(2) assms(1) by (rule eventually_mp)
-
-lemma eventually_conj_iff:
-  "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F"
-  by (auto intro: eventually_conj elim: eventually_rev_mp)
-
-lemma eventually_elim1:
-  assumes "eventually (\<lambda>i. P i) F"
-  assumes "\<And>i. P i \<Longrightarrow> Q i"
-  shows "eventually (\<lambda>i. Q i) F"
-  using assms by (auto elim!: eventually_rev_mp)
-
-lemma eventually_elim2:
-  assumes "eventually (\<lambda>i. P i) F"
-  assumes "eventually (\<lambda>i. Q i) F"
-  assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i"
-  shows "eventually (\<lambda>i. R i) F"
-  using assms by (auto elim!: eventually_rev_mp)
-
-lemma not_eventually_impI: "eventually P F \<Longrightarrow> \<not> eventually Q F \<Longrightarrow> \<not> eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
-  by (auto intro: eventually_mp)
-
-lemma not_eventuallyD: "\<not> eventually P F \<Longrightarrow> \<exists>x. \<not> P x"
-  by (metis always_eventually)
-
-lemma eventually_subst:
-  assumes "eventually (\<lambda>n. P n = Q n) F"
-  shows "eventually P F = eventually Q F" (is "?L = ?R")
-proof -
-  from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F"
-      and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F"
-    by (auto elim: eventually_elim1)
-  then show ?thesis by (auto elim: eventually_elim2)
-qed
-
-ML {*
-  fun eventually_elim_tac ctxt facts = SUBGOAL_CASES (fn (goal, i) =>
-    let
-      val mp_thms = facts RL @{thms eventually_rev_mp}
-      val raw_elim_thm =
-        (@{thm allI} RS @{thm always_eventually})
-        |> fold (fn thm1 => fn thm2 => thm2 RS thm1) mp_thms
-        |> fold (fn _ => fn thm => @{thm impI} RS thm) facts
-      val cases_prop = Thm.prop_of (raw_elim_thm RS Goal.init (Thm.cterm_of ctxt goal))
-      val cases = Rule_Cases.make_common ctxt cases_prop [(("elim", []), [])]
-    in
-      CASES cases (rtac raw_elim_thm i)
-    end)
-*}
-
-method_setup eventually_elim = {*
-  Scan.succeed (fn ctxt => METHOD_CASES (HEADGOAL o eventually_elim_tac ctxt))
-*} "elimination of eventually quantifiers"
-
-
-subsubsection {* Finer-than relation *}
-
-text {* @{term "F \<le> F'"} means that filter @{term F} is finer than
-filter @{term F'}. *}
-
-instantiation filter :: (type) complete_lattice
-begin
-
-definition le_filter_def:
-  "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)"
-
-definition
-  "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
-
-definition
-  "top = Abs_filter (\<lambda>P. \<forall>x. P x)"
-
-definition
-  "bot = Abs_filter (\<lambda>P. True)"
-
-definition
-  "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')"
-
-definition
-  "inf F F' = Abs_filter
-      (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
-
-definition
-  "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)"
-
-definition
-  "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
-
-lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)"
-  unfolding top_filter_def
-  by (rule eventually_Abs_filter, rule is_filter.intro, auto)
-
-lemma eventually_bot [simp]: "eventually P bot"
-  unfolding bot_filter_def
-  by (subst eventually_Abs_filter, rule is_filter.intro, auto)
-
-lemma eventually_sup:
-  "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'"
-  unfolding sup_filter_def
-  by (rule eventually_Abs_filter, rule is_filter.intro)
-     (auto elim!: eventually_rev_mp)
-
-lemma eventually_inf:
-  "eventually P (inf F F') \<longleftrightarrow>
-   (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))"
-  unfolding inf_filter_def
-  apply (rule eventually_Abs_filter, rule is_filter.intro)
-  apply (fast intro: eventually_True)
-  apply clarify
-  apply (intro exI conjI)
-  apply (erule (1) eventually_conj)
-  apply (erule (1) eventually_conj)
-  apply simp
-  apply auto
-  done
-
-lemma eventually_Sup:
-  "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)"
-  unfolding Sup_filter_def
-  apply (rule eventually_Abs_filter, rule is_filter.intro)
-  apply (auto intro: eventually_conj elim!: eventually_rev_mp)
-  done
-
-instance proof
-  fix F F' F'' :: "'a filter" and S :: "'a filter set"
-  { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
-    by (rule less_filter_def) }
-  { show "F \<le> F"
-    unfolding le_filter_def by simp }
-  { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
-    unfolding le_filter_def by simp }
-  { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
-    unfolding le_filter_def filter_eq_iff by fast }
-  { show "inf F F' \<le> F" and "inf F F' \<le> F'"
-    unfolding le_filter_def eventually_inf by (auto intro: eventually_True) }
-  { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
-    unfolding le_filter_def eventually_inf
-    by (auto elim!: eventually_mono intro: eventually_conj) }
-  { show "F \<le> sup F F'" and "F' \<le> sup F F'"
-    unfolding le_filter_def eventually_sup by simp_all }
-  { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
-    unfolding le_filter_def eventually_sup by simp }
-  { assume "F'' \<in> S" thus "Inf S \<le> F''"
-    unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
-  { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
-    unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp }
-  { assume "F \<in> S" thus "F \<le> Sup S"
-    unfolding le_filter_def eventually_Sup by simp }
-  { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
-    unfolding le_filter_def eventually_Sup by simp }
-  { show "Inf {} = (top::'a filter)"
-    by (auto simp: top_filter_def Inf_filter_def Sup_filter_def)
-      (metis (full_types) top_filter_def always_eventually eventually_top) }
-  { show "Sup {} = (bot::'a filter)"
-    by (auto simp: bot_filter_def Sup_filter_def) }
-qed
-
-end
-
-lemma filter_leD:
-  "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F"
-  unfolding le_filter_def by simp
-
-lemma filter_leI:
-  "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'"
-  unfolding le_filter_def by simp
-
-lemma eventually_False:
-  "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot"
-  unfolding filter_eq_iff by (auto elim: eventually_rev_mp)
-
-abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool"
-  where "trivial_limit F \<equiv> F = bot"
-
-lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F"
-  by (rule eventually_False [symmetric])
-
-lemma eventually_const: "\<not> trivial_limit net \<Longrightarrow> eventually (\<lambda>x. P) net \<longleftrightarrow> P"
-  by (cases P) (simp_all add: eventually_False)
-
-lemma eventually_Inf: "eventually P (Inf B) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X))"
-proof -
-  let ?F = "\<lambda>P. \<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X)"
-  
-  { fix P have "eventually P (Abs_filter ?F) \<longleftrightarrow> ?F P"
-    proof (rule eventually_Abs_filter is_filter.intro)+
-      show "?F (\<lambda>x. True)"
-        by (rule exI[of _ "{}"]) (simp add: le_fun_def)
-    next
-      fix P Q
-      assume "?F P" then guess X ..
-      moreover
-      assume "?F Q" then guess Y ..
-      ultimately show "?F (\<lambda>x. P x \<and> Q x)"
-        by (intro exI[of _ "X \<union> Y"])
-           (auto simp: Inf_union_distrib eventually_inf)
-    next
-      fix P Q
-      assume "?F P" then guess X ..
-      moreover assume "\<forall>x. P x \<longrightarrow> Q x"
-      ultimately show "?F Q"
-        by (intro exI[of _ X]) (auto elim: eventually_elim1)
-    qed }
-  note eventually_F = this
-
-  have "Inf B = Abs_filter ?F"
-  proof (intro antisym Inf_greatest)
-    show "Inf B \<le> Abs_filter ?F"
-      by (auto simp: le_filter_def eventually_F dest: Inf_superset_mono)
-  next
-    fix F assume "F \<in> B" then show "Abs_filter ?F \<le> F"
-      by (auto simp add: le_filter_def eventually_F intro!: exI[of _ "{F}"])
-  qed
-  then show ?thesis
-    by (simp add: eventually_F)
-qed
-
-lemma eventually_INF: "eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (INF b:X. F b))"
-  unfolding INF_def[of B] eventually_Inf[of P "F`B"]
-  by (metis Inf_image_eq finite_imageI image_mono finite_subset_image)
-
-lemma Inf_filter_not_bot:
-  fixes B :: "'a filter set"
-  shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> Inf X \<noteq> bot) \<Longrightarrow> Inf B \<noteq> bot"
-  unfolding trivial_limit_def eventually_Inf[of _ B]
-    bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
-
-lemma INF_filter_not_bot:
-  fixes F :: "'i \<Rightarrow> 'a filter"
-  shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> (INF b:X. F b) \<noteq> bot) \<Longrightarrow> (INF b:B. F b) \<noteq> bot"
-  unfolding trivial_limit_def eventually_INF[of _ B]
-    bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp
-
-lemma eventually_Inf_base:
-  assumes "B \<noteq> {}" and base: "\<And>F G. F \<in> B \<Longrightarrow> G \<in> B \<Longrightarrow> \<exists>x\<in>B. x \<le> inf F G"
-  shows "eventually P (Inf B) \<longleftrightarrow> (\<exists>b\<in>B. eventually P b)"
-proof (subst eventually_Inf, safe)
-  fix X assume "finite X" "X \<subseteq> B"
-  then have "\<exists>b\<in>B. \<forall>x\<in>X. b \<le> x"
-  proof induct
-    case empty then show ?case
-      using `B \<noteq> {}` by auto
-  next
-    case (insert x X)
-    then obtain b where "b \<in> B" "\<And>x. x \<in> X \<Longrightarrow> b \<le> x"
-      by auto
-    with `insert x X \<subseteq> B` base[of b x] show ?case
-      by (auto intro: order_trans)
-  qed
-  then obtain b where "b \<in> B" "b \<le> Inf X"
-    by (auto simp: le_Inf_iff)
-  then show "eventually P (Inf X) \<Longrightarrow> Bex B (eventually P)"
-    by (intro bexI[of _ b]) (auto simp: le_filter_def)
-qed (auto intro!: exI[of _ "{x}" for x])
-
-lemma eventually_INF_base:
-  "B \<noteq> {} \<Longrightarrow> (\<And>a b. a \<in> B \<Longrightarrow> b \<in> B \<Longrightarrow> \<exists>x\<in>B. F x \<le> inf (F a) (F b)) \<Longrightarrow>
-    eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>b\<in>B. eventually P (F b))"
-  unfolding INF_def by (subst eventually_Inf_base) auto
-
-
-subsubsection {* Map function for filters *}
-
-definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
-  where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)"
-
-lemma eventually_filtermap:
-  "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F"
-  unfolding filtermap_def
-  apply (rule eventually_Abs_filter)
-  apply (rule is_filter.intro)
-  apply (auto elim!: eventually_rev_mp)
-  done
-
-lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F"
-  by (simp add: filter_eq_iff eventually_filtermap)
-
-lemma filtermap_filtermap:
-  "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F"
-  by (simp add: filter_eq_iff eventually_filtermap)
-
-lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'"
-  unfolding le_filter_def eventually_filtermap by simp
-
-lemma filtermap_bot [simp]: "filtermap f bot = bot"
-  by (simp add: filter_eq_iff eventually_filtermap)
-
-lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)"
-  by (auto simp: filter_eq_iff eventually_filtermap eventually_sup)
-
-lemma filtermap_inf: "filtermap f (inf F1 F2) \<le> inf (filtermap f F1) (filtermap f F2)"
-  by (auto simp: le_filter_def eventually_filtermap eventually_inf)
-
-lemma filtermap_INF: "filtermap f (INF b:B. F b) \<le> (INF b:B. filtermap f (F b))"
-proof -
-  { fix X :: "'c set" assume "finite X"
-    then have "filtermap f (INFIMUM X F) \<le> (INF b:X. filtermap f (F b))"
-    proof induct
-      case (insert x X)
-      have "filtermap f (INF a:insert x X. F a) \<le> inf (filtermap f (F x)) (filtermap f (INF a:X. F a))"
-        by (rule order_trans[OF _ filtermap_inf]) simp
-      also have "\<dots> \<le> inf (filtermap f (F x)) (INF a:X. filtermap f (F a))"
-        by (intro inf_mono insert order_refl)
-      finally show ?case
-        by simp
-    qed simp }
-  then show ?thesis
-    unfolding le_filter_def eventually_filtermap
-    by (subst (1 2) eventually_INF) auto
-qed
-subsubsection {* Standard filters *}
-
-definition principal :: "'a set \<Rightarrow> 'a filter" where
-  "principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)"
-
-lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)"
-  unfolding principal_def
-  by (rule eventually_Abs_filter, rule is_filter.intro) auto
-
-lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F"
-  unfolding eventually_inf eventually_principal by (auto elim: eventually_elim1)
-
-lemma principal_UNIV[simp]: "principal UNIV = top"
-  by (auto simp: filter_eq_iff eventually_principal)
-
-lemma principal_empty[simp]: "principal {} = bot"
-  by (auto simp: filter_eq_iff eventually_principal)
-
-lemma principal_eq_bot_iff: "principal X = bot \<longleftrightarrow> X = {}"
-  by (auto simp add: filter_eq_iff eventually_principal)
-
-lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B"
-  by (auto simp: le_filter_def eventually_principal)
-
-lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F"
-  unfolding le_filter_def eventually_principal
-  apply safe
-  apply (erule_tac x="\<lambda>x. x \<in> A" in allE)
-  apply (auto elim: eventually_elim1)
-  done
-
-lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B"
-  unfolding eq_iff by simp
-
-lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)"
-  unfolding filter_eq_iff eventually_sup eventually_principal by auto
-
-lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)"
-  unfolding filter_eq_iff eventually_inf eventually_principal
-  by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"])
-
-lemma SUP_principal[simp]: "(SUP i : I. principal (A i)) = principal (\<Union>i\<in>I. A i)"
-  unfolding filter_eq_iff eventually_Sup SUP_def by (auto simp: eventually_principal)
-
-lemma INF_principal_finite: "finite X \<Longrightarrow> (INF x:X. principal (f x)) = principal (\<Inter>x\<in>X. f x)"
-  by (induct X rule: finite_induct) auto
-
-lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)"
-  unfolding filter_eq_iff eventually_filtermap eventually_principal by simp
-
-subsubsection {* Order filters *}
-
-definition at_top :: "('a::order) filter"
-  where "at_top = (INF k. principal {k ..})"
-
-lemma at_top_sub: "at_top = (INF k:{c::'a::linorder..}. principal {k ..})"
-  by (auto intro!: INF_eq max.cobounded1 max.cobounded2 simp: at_top_def)
-
-lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)"
-  unfolding at_top_def
-  by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
-
-lemma eventually_ge_at_top:
-  "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top"
-  unfolding eventually_at_top_linorder by auto
-
-lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>n>N. P n)"
-proof -
-  have "eventually P (INF k. principal {k <..}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n>N. P n)"
-    by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2)
-  also have "(INF k. principal {k::'a <..}) = at_top"
-    unfolding at_top_def 
-    by (intro INF_eq) (auto intro: less_imp_le simp: Ici_subset_Ioi_iff gt_ex)
-  finally show ?thesis .
-qed
-
-lemma eventually_gt_at_top:
-  "eventually (\<lambda>x. (c::_::unbounded_dense_linorder) < x) at_top"
-  unfolding eventually_at_top_dense by auto
-
-definition at_bot :: "('a::order) filter"
-  where "at_bot = (INF k. principal {.. k})"
-
-lemma at_bot_sub: "at_bot = (INF k:{.. c::'a::linorder}. principal {.. k})"
-  by (auto intro!: INF_eq min.cobounded1 min.cobounded2 simp: at_bot_def)
-
-lemma eventually_at_bot_linorder:
-  fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)"
-  unfolding at_bot_def
-  by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
-
-lemma eventually_le_at_bot:
-  "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot"
-  unfolding eventually_at_bot_linorder by auto
-
-lemma eventually_at_bot_dense: "eventually P at_bot \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>n<N. P n)"
-proof -
-  have "eventually P (INF k. principal {..< k}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n<N. P n)"
-    by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2)
-  also have "(INF k. principal {..< k::'a}) = at_bot"
-    unfolding at_bot_def 
-    by (intro INF_eq) (auto intro: less_imp_le simp: Iic_subset_Iio_iff lt_ex)
-  finally show ?thesis .
-qed
-
-lemma eventually_gt_at_bot:
-  "eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot"
-  unfolding eventually_at_bot_dense by auto
-
-lemma trivial_limit_at_bot_linorder: "\<not> trivial_limit (at_bot ::('a::linorder) filter)"
-  unfolding trivial_limit_def
-  by (metis eventually_at_bot_linorder order_refl)
-
-lemma trivial_limit_at_top_linorder: "\<not> trivial_limit (at_top ::('a::linorder) filter)"
-  unfolding trivial_limit_def
-  by (metis eventually_at_top_linorder order_refl)
-
-subsection {* Sequentially *}
-
-abbreviation sequentially :: "nat filter"
-  where "sequentially \<equiv> at_top"
-
-lemma eventually_sequentially:
-  "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)"
-  by (rule eventually_at_top_linorder)
-
-lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot"
-  unfolding filter_eq_iff eventually_sequentially by auto
-
-lemmas trivial_limit_sequentially = sequentially_bot
-
-lemma eventually_False_sequentially [simp]:
-  "\<not> eventually (\<lambda>n. False) sequentially"
-  by (simp add: eventually_False)
-
-lemma le_sequentially:
-  "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)"
-  by (simp add: at_top_def le_INF_iff le_principal)
-
-lemma eventually_sequentiallyI:
-  assumes "\<And>x. c \<le> x \<Longrightarrow> P x"
-  shows "eventually P sequentially"
-using assms by (auto simp: eventually_sequentially)
-
-lemma eventually_sequentially_seg:
-  "eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially"
-  unfolding eventually_sequentially
-  apply safe
-   apply (rule_tac x="N + k" in exI)
-   apply rule
-   apply (erule_tac x="n - k" in allE)
-   apply auto []
-  apply (rule_tac x=N in exI)
-  apply auto []
-  done
-
 subsubsection {* Topological filters *}
 
 definition (in topological_space) nhds :: "'a \<Rightarrow> 'a filter"
@@ -1005,104 +454,6 @@
   "eventually P (at (x::'a::linorder_topology)) \<longleftrightarrow> eventually P (at_left x) \<and> eventually P (at_right x)"
   by (subst at_eq_sup_left_right) (simp add: eventually_sup)
 
-subsection {* Limits *}
-
-definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
-  "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2"
-
-syntax
-  "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
-
-translations
-  "LIM x F1. f :> F2"   == "CONST filterlim (%x. f) F2 F1"
-
-lemma filterlim_iff:
-  "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)"
-  unfolding filterlim_def le_filter_def eventually_filtermap ..
-
-lemma filterlim_compose:
-  "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1"
-  unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans)
-
-lemma filterlim_mono:
-  "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'"
-  unfolding filterlim_def by (metis filtermap_mono order_trans)
-
-lemma filterlim_ident: "LIM x F. x :> F"
-  by (simp add: filterlim_def filtermap_ident)
-
-lemma filterlim_cong:
-  "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'"
-  by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2)
-
-lemma filterlim_mono_eventually:
-  assumes "filterlim f F G" and ord: "F \<le> F'" "G' \<le> G"
-  assumes eq: "eventually (\<lambda>x. f x = f' x) G'"
-  shows "filterlim f' F' G'"
-  apply (rule filterlim_cong[OF refl refl eq, THEN iffD1])
-  apply (rule filterlim_mono[OF _ ord])
-  apply fact
-  done
-
-lemma filtermap_mono_strong: "inj f \<Longrightarrow> filtermap f F \<le> filtermap f G \<longleftrightarrow> F \<le> G"
-  apply (auto intro!: filtermap_mono) []
-  apply (auto simp: le_filter_def eventually_filtermap)
-  apply (erule_tac x="\<lambda>x. P (inv f x)" in allE)
-  apply auto
-  done
-
-lemma filtermap_eq_strong: "inj f \<Longrightarrow> filtermap f F = filtermap f G \<longleftrightarrow> F = G"
-  by (simp add: filtermap_mono_strong eq_iff)
-
-lemma filterlim_principal:
-  "(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)"
-  unfolding filterlim_def eventually_filtermap le_principal ..
-
-lemma filterlim_inf:
-  "(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))"
-  unfolding filterlim_def by simp
-
-lemma filterlim_INF:
-  "(LIM x F. f x :> (INF b:B. G b)) \<longleftrightarrow> (\<forall>b\<in>B. LIM x F. f x :> G b)"
-  unfolding filterlim_def le_INF_iff ..
-
-lemma filterlim_INF_INF:
-  "(\<And>m. m \<in> J \<Longrightarrow> \<exists>i\<in>I. filtermap f (F i) \<le> G m) \<Longrightarrow> LIM x (INF i:I. F i). f x :> (INF j:J. G j)"
-  unfolding filterlim_def by (rule order_trans[OF filtermap_INF INF_mono])
-
-lemma filterlim_base:
-  "(\<And>m x. m \<in> J \<Longrightarrow> i m \<in> I) \<Longrightarrow> (\<And>m x. m \<in> J \<Longrightarrow> x \<in> F (i m) \<Longrightarrow> f x \<in> G m) \<Longrightarrow> 
-    LIM x (INF i:I. principal (F i)). f x :> (INF j:J. principal (G j))"
-  by (force intro!: filterlim_INF_INF simp: image_subset_iff)
-
-lemma filterlim_base_iff: 
-  assumes "I \<noteq> {}" and chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> F i \<subseteq> F j \<or> F j \<subseteq> F i"
-  shows "(LIM x (INF i:I. principal (F i)). f x :> INF j:J. principal (G j)) \<longleftrightarrow>
-    (\<forall>j\<in>J. \<exists>i\<in>I. \<forall>x\<in>F i. f x \<in> G j)"
-  unfolding filterlim_INF filterlim_principal
-proof (subst eventually_INF_base)
-  fix i j assume "i \<in> I" "j \<in> I"
-  with chain[OF this] show "\<exists>x\<in>I. principal (F x) \<le> inf (principal (F i)) (principal (F j))"
-    by auto
-qed (auto simp: eventually_principal `I \<noteq> {}`)
-
-lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2"
-  unfolding filterlim_def filtermap_filtermap ..
-
-lemma filterlim_sup:
-  "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)"
-  unfolding filterlim_def filtermap_sup by auto
-
-lemma eventually_sequentially_Suc: "eventually (\<lambda>i. P (Suc i)) sequentially \<longleftrightarrow> eventually P sequentially"
-  unfolding eventually_sequentially by (metis Suc_le_D Suc_le_mono le_Suc_eq)
-
-lemma filterlim_sequentially_Suc:
-  "(LIM x sequentially. f (Suc x) :> F) \<longleftrightarrow> (LIM x sequentially. f x :> F)"
-  unfolding filterlim_iff by (subst eventually_sequentially_Suc) simp
-
-lemma filterlim_Suc: "filterlim Suc sequentially sequentially"
-  by (simp add: filterlim_iff eventually_sequentially) (metis le_Suc_eq)
-
 subsubsection {* Tendsto *}
 
 abbreviation (in topological_space)
@@ -1296,92 +647,6 @@
 lemma Lim_ident_at: "\<not> trivial_limit (at x within s) \<Longrightarrow> Lim (at x within s) (\<lambda>x. x) = x"
   by (rule tendsto_Lim[OF _ tendsto_ident_at]) auto
 
-subsection {* Limits to @{const at_top} and @{const at_bot} *}
-
-lemma filterlim_at_top:
-  fixes f :: "'a \<Rightarrow> ('b::linorder)"
-  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)"
-  by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1)
-
-lemma filterlim_at_top_mono:
-  "LIM x F. f x :> at_top \<Longrightarrow> eventually (\<lambda>x. f x \<le> (g x::'a::linorder)) F \<Longrightarrow>
-    LIM x F. g x :> at_top"
-  by (auto simp: filterlim_at_top elim: eventually_elim2 intro: order_trans)
-
-lemma filterlim_at_top_dense:
-  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
-  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)"
-  by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le
-            filterlim_at_top[of f F] filterlim_iff[of f at_top F])
-
-lemma filterlim_at_top_ge:
-  fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
-  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)"
-  unfolding at_top_sub[of c] filterlim_INF by (auto simp add: filterlim_principal)
-
-lemma filterlim_at_top_at_top:
-  fixes f :: "'a::linorder \<Rightarrow> 'b::linorder"
-  assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
-  assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
-  assumes Q: "eventually Q at_top"
-  assumes P: "eventually P at_top"
-  shows "filterlim f at_top at_top"
-proof -
-  from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
-    unfolding eventually_at_top_linorder by auto
-  show ?thesis
-  proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
-    fix z assume "x \<le> z"
-    with x have "P z" by auto
-    have "eventually (\<lambda>x. g z \<le> x) at_top"
-      by (rule eventually_ge_at_top)
-    with Q show "eventually (\<lambda>x. z \<le> f x) at_top"
-      by eventually_elim (metis mono bij `P z`)
-  qed
-qed
-
-lemma filterlim_at_top_gt:
-  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
-  shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)"
-  by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge)
-
-lemma filterlim_at_bot: 
-  fixes f :: "'a \<Rightarrow> ('b::linorder)"
-  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)"
-  by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_elim1)
-
-lemma filterlim_at_bot_dense:
-  fixes f :: "'a \<Rightarrow> ('b::{dense_linorder, no_bot})"
-  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x < Z) F)"
-proof (auto simp add: filterlim_at_bot[of f F])
-  fix Z :: 'b
-  from lt_ex [of Z] obtain Z' where 1: "Z' < Z" ..
-  assume "\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F"
-  hence "eventually (\<lambda>x. f x \<le> Z') F" by auto
-  thus "eventually (\<lambda>x. f x < Z) F"
-    apply (rule eventually_mono[rotated])
-    using 1 by auto
-  next 
-    fix Z :: 'b 
-    show "\<forall>Z. eventually (\<lambda>x. f x < Z) F \<Longrightarrow> eventually (\<lambda>x. f x \<le> Z) F"
-      by (drule spec [of _ Z], erule eventually_mono[rotated], auto simp add: less_imp_le)
-qed
-
-lemma filterlim_at_bot_le:
-  fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
-  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)"
-  unfolding filterlim_at_bot
-proof safe
-  fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F"
-  with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F"
-    by (auto elim!: eventually_elim1)
-qed simp
-
-lemma filterlim_at_bot_lt:
-  fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
-  shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)"
-  by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans)
-
 lemma filterlim_at_bot_at_right:
   fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder"
   assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
@@ -2936,220 +2201,4 @@
   qed
 qed (intro cSUP_least `antimono f`[THEN antimonoD] cInf_lower S)
 
-subsection {* Setup @{typ "'a filter"} for lifting and transfer *}
-
-context begin interpretation lifting_syntax .
-
-definition rel_filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> 'b filter \<Rightarrow> bool"
-where "rel_filter R F G = ((R ===> op =) ===> op =) (Rep_filter F) (Rep_filter G)"
-
-lemma rel_filter_eventually:
-  "rel_filter R F G \<longleftrightarrow> 
-  ((R ===> op =) ===> op =) (\<lambda>P. eventually P F) (\<lambda>P. eventually P G)"
-by(simp add: rel_filter_def eventually_def)
-
-lemma filtermap_id [simp, id_simps]: "filtermap id = id"
-by(simp add: fun_eq_iff id_def filtermap_ident)
-
-lemma filtermap_id' [simp]: "filtermap (\<lambda>x. x) = (\<lambda>F. F)"
-using filtermap_id unfolding id_def .
-
-lemma Quotient_filter [quot_map]:
-  assumes Q: "Quotient R Abs Rep T"
-  shows "Quotient (rel_filter R) (filtermap Abs) (filtermap Rep) (rel_filter T)"
-unfolding Quotient_alt_def
-proof(intro conjI strip)
-  from Q have *: "\<And>x y. T x y \<Longrightarrow> Abs x = y"
-    unfolding Quotient_alt_def by blast
-
-  fix F G
-  assume "rel_filter T F G"
-  thus "filtermap Abs F = G" unfolding filter_eq_iff
-    by(auto simp add: eventually_filtermap rel_filter_eventually * rel_funI del: iffI elim!: rel_funD)
-next
-  from Q have *: "\<And>x. T (Rep x) x" unfolding Quotient_alt_def by blast
-
-  fix F
-  show "rel_filter T (filtermap Rep F) F" 
-    by(auto elim: rel_funD intro: * intro!: ext arg_cong[where f="\<lambda>P. eventually P F"] rel_funI
-            del: iffI simp add: eventually_filtermap rel_filter_eventually)
-qed(auto simp add: map_fun_def o_def eventually_filtermap filter_eq_iff fun_eq_iff rel_filter_eventually
-         fun_quotient[OF fun_quotient[OF Q identity_quotient] identity_quotient, unfolded Quotient_alt_def])
-
-lemma eventually_parametric [transfer_rule]:
-  "((A ===> op =) ===> rel_filter A ===> op =) eventually eventually"
-by(simp add: rel_fun_def rel_filter_eventually)
-
-lemma rel_filter_eq [relator_eq]: "rel_filter op = = op ="
-by(auto simp add: rel_filter_eventually rel_fun_eq fun_eq_iff filter_eq_iff)
-
-lemma rel_filter_mono [relator_mono]:
-  "A \<le> B \<Longrightarrow> rel_filter A \<le> rel_filter B"
-unfolding rel_filter_eventually[abs_def]
-by(rule le_funI)+(intro fun_mono fun_mono[THEN le_funD, THEN le_funD] order.refl)
-
-lemma rel_filter_conversep [simp]: "rel_filter A\<inverse>\<inverse> = (rel_filter A)\<inverse>\<inverse>"
-by(auto simp add: rel_filter_eventually fun_eq_iff rel_fun_def)
-
-lemma is_filter_parametric_aux:
-  assumes "is_filter F"
-  assumes [transfer_rule]: "bi_total A" "bi_unique A"
-  and [transfer_rule]: "((A ===> op =) ===> op =) F G"
-  shows "is_filter G"
-proof -
-  interpret is_filter F by fact
-  show ?thesis
-  proof
-    have "F (\<lambda>_. True) = G (\<lambda>x. True)" by transfer_prover
-    thus "G (\<lambda>x. True)" by(simp add: True)
-  next
-    fix P' Q'
-    assume "G P'" "G Q'"
-    moreover
-    from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def]
-    obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast
-    have "F P = G P'" "F Q = G Q'" by transfer_prover+
-    ultimately have "F (\<lambda>x. P x \<and> Q x)" by(simp add: conj)
-    moreover have "F (\<lambda>x. P x \<and> Q x) = G (\<lambda>x. P' x \<and> Q' x)" by transfer_prover
-    ultimately show "G (\<lambda>x. P' x \<and> Q' x)" by simp
-  next
-    fix P' Q'
-    assume "\<forall>x. P' x \<longrightarrow> Q' x" "G P'"
-    moreover
-    from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def]
-    obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast
-    have "F P = G P'" by transfer_prover
-    moreover have "(\<forall>x. P x \<longrightarrow> Q x) \<longleftrightarrow> (\<forall>x. P' x \<longrightarrow> Q' x)" by transfer_prover
-    ultimately have "F Q" by(simp add: mono)
-    moreover have "F Q = G Q'" by transfer_prover
-    ultimately show "G Q'" by simp
-  qed
-qed
-
-lemma is_filter_parametric [transfer_rule]:
-  "\<lbrakk> bi_total A; bi_unique A \<rbrakk>
-  \<Longrightarrow> (((A ===> op =) ===> op =) ===> op =) is_filter is_filter"
-apply(rule rel_funI)
-apply(rule iffI)
- apply(erule (3) is_filter_parametric_aux)
-apply(erule is_filter_parametric_aux[where A="conversep A"])
-apply(auto simp add: rel_fun_def)
-done
-
-lemma left_total_rel_filter [transfer_rule]:
-  assumes [transfer_rule]: "bi_total A" "bi_unique A"
-  shows "left_total (rel_filter A)"
-proof(rule left_totalI)
-  fix F :: "'a filter"
-  from bi_total_fun[OF bi_unique_fun[OF `bi_total A` bi_unique_eq] bi_total_eq]
-  obtain G where [transfer_rule]: "((A ===> op =) ===> op =) (\<lambda>P. eventually P F) G" 
-    unfolding  bi_total_def by blast
-  moreover have "is_filter (\<lambda>P. eventually P F) \<longleftrightarrow> is_filter G" by transfer_prover
-  hence "is_filter G" by(simp add: eventually_def is_filter_Rep_filter)
-  ultimately have "rel_filter A F (Abs_filter G)"
-    by(simp add: rel_filter_eventually eventually_Abs_filter)
-  thus "\<exists>G. rel_filter A F G" ..
-qed
-
-lemma right_total_rel_filter [transfer_rule]:
-  "\<lbrakk> bi_total A; bi_unique A \<rbrakk> \<Longrightarrow> right_total (rel_filter A)"
-using left_total_rel_filter[of "A\<inverse>\<inverse>"] by simp
-
-lemma bi_total_rel_filter [transfer_rule]:
-  assumes "bi_total A" "bi_unique A"
-  shows "bi_total (rel_filter A)"
-unfolding bi_total_alt_def using assms
-by(simp add: left_total_rel_filter right_total_rel_filter)
-
-lemma left_unique_rel_filter [transfer_rule]:
-  assumes "left_unique A"
-  shows "left_unique (rel_filter A)"
-proof(rule left_uniqueI)
-  fix F F' G
-  assume [transfer_rule]: "rel_filter A F G" "rel_filter A F' G"
-  show "F = F'"
-    unfolding filter_eq_iff
-  proof
-    fix P :: "'a \<Rightarrow> bool"
-    obtain P' where [transfer_rule]: "(A ===> op =) P P'"
-      using left_total_fun[OF assms left_total_eq] unfolding left_total_def by blast
-    have "eventually P F = eventually P' G" 
-      and "eventually P F' = eventually P' G" by transfer_prover+
-    thus "eventually P F = eventually P F'" by simp
-  qed
-qed
-
-lemma right_unique_rel_filter [transfer_rule]:
-  "right_unique A \<Longrightarrow> right_unique (rel_filter A)"
-using left_unique_rel_filter[of "A\<inverse>\<inverse>"] by simp
-
-lemma bi_unique_rel_filter [transfer_rule]:
-  "bi_unique A \<Longrightarrow> bi_unique (rel_filter A)"
-by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter)
-
-lemma top_filter_parametric [transfer_rule]:
-  "bi_total A \<Longrightarrow> (rel_filter A) top top"
-by(simp add: rel_filter_eventually All_transfer)
-
-lemma bot_filter_parametric [transfer_rule]: "(rel_filter A) bot bot"
-by(simp add: rel_filter_eventually rel_fun_def)
-
-lemma sup_filter_parametric [transfer_rule]:
-  "(rel_filter A ===> rel_filter A ===> rel_filter A) sup sup"
-by(fastforce simp add: rel_filter_eventually[abs_def] eventually_sup dest: rel_funD)
-
-lemma Sup_filter_parametric [transfer_rule]:
-  "(rel_set (rel_filter A) ===> rel_filter A) Sup Sup"
-proof(rule rel_funI)
-  fix S T
-  assume [transfer_rule]: "rel_set (rel_filter A) S T"
-  show "rel_filter A (Sup S) (Sup T)"
-    by(simp add: rel_filter_eventually eventually_Sup) transfer_prover
-qed
-
-lemma principal_parametric [transfer_rule]:
-  "(rel_set A ===> rel_filter A) principal principal"
-proof(rule rel_funI)
-  fix S S'
-  assume [transfer_rule]: "rel_set A S S'"
-  show "rel_filter A (principal S) (principal S')"
-    by(simp add: rel_filter_eventually eventually_principal) transfer_prover
-qed
-
-context
-  fixes A :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
-  assumes [transfer_rule]: "bi_unique A" 
-begin
-
-lemma le_filter_parametric [transfer_rule]:
-  "(rel_filter A ===> rel_filter A ===> op =) op \<le> op \<le>"
-unfolding le_filter_def[abs_def] by transfer_prover
-
-lemma less_filter_parametric [transfer_rule]:
-  "(rel_filter A ===> rel_filter A ===> op =) op < op <"
-unfolding less_filter_def[abs_def] by transfer_prover
-
-context
-  assumes [transfer_rule]: "bi_total A"
-begin
-
-lemma Inf_filter_parametric [transfer_rule]:
-  "(rel_set (rel_filter A) ===> rel_filter A) Inf Inf"
-unfolding Inf_filter_def[abs_def] by transfer_prover
-
-lemma inf_filter_parametric [transfer_rule]:
-  "(rel_filter A ===> rel_filter A ===> rel_filter A) inf inf"
-proof(intro rel_funI)+
-  fix F F' G G'
-  assume [transfer_rule]: "rel_filter A F F'" "rel_filter A G G'"
-  have "rel_filter A (Inf {F, G}) (Inf {F', G'})" by transfer_prover
-  thus "rel_filter A (inf F G) (inf F' G')" by simp
-qed
-
 end
-
-end
-
-end
-
-end
--- a/src/HOL/Transcendental.thy	Sun Apr 12 16:04:53 2015 +0200
+++ b/src/HOL/Transcendental.thy	Sun Apr 12 11:33:19 2015 +0200
@@ -2321,7 +2321,7 @@
   shows "\<lbrakk>(f ---> a) F; (g ---> b) F; a \<noteq> 0\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x powr g x) ---> a powr b) F"
   apply (simp add: powr_def)
   apply (simp add: tendsto_def)
-  apply (simp add: Topological_Spaces.eventually_conj_iff )
+  apply (simp add: eventually_conj_iff )
   apply safe
   apply (case_tac "0 \<in> S")
   apply (auto simp: )