fixed proof
authornipkow
Wed, 15 Aug 2012 14:26:42 +0200
changeset 48822 21d4ed91912f
parent 48821 6f0699239bc3
child 48823 65b205a6f56a
fixed proof
src/HOL/Number_Theory/UniqueFactorization.thy
--- a/src/HOL/Number_Theory/UniqueFactorization.thy	Wed Aug 15 14:00:12 2012 +0200
+++ b/src/HOL/Number_Theory/UniqueFactorization.thy	Wed Aug 15 14:26:42 2012 +0200
@@ -544,12 +544,7 @@
   apply (erule ssubst)
   apply (subst setprod_Un_disjoint)
   apply auto
-  apply (subgoal_tac "(\<Prod>p\<in>prime_factors l - prime_factors k. p ^ multiplicity p k) = 
-      (\<Prod>p\<in>prime_factors l - prime_factors k. 1)")
-  apply (erule ssubst)
-  apply (simp add: setprod_1)
-  apply (erule prime_factorization_nat)
-  apply (rule setprod_cong, auto)
+  apply(simp add: prime_factorization_nat)
   apply (subgoal_tac "prime_factors k Un prime_factors l = prime_factors l Un 
       (prime_factors k - prime_factors l)")
   apply (erule ssubst)
@@ -557,9 +552,7 @@
   apply auto
   apply (subgoal_tac "(\<Prod>p\<in>prime_factors k - prime_factors l. p ^ multiplicity p l) = 
       (\<Prod>p\<in>prime_factors k - prime_factors l. 1)")
-  apply (erule ssubst)
-  apply (simp add: setprod_1)
-  apply (erule prime_factorization_nat)
+  apply (simp add: prime_factorization_nat)
   apply (rule setprod_cong, auto)
   done