remove unused adm_tac.ML
authorhuffman
Mon, 22 Mar 2010 15:45:54 -0700
changeset 35908 21e45c81e828
parent 35907 ea0bf2a01eb0
child 35911 2062295537e0
child 35912 b0e300bd3a2c
remove unused adm_tac.ML
src/HOLCF/HOLCF.thy
src/HOLCF/IsaMakefile
src/HOLCF/Tools/adm_tac.ML
--- a/src/HOLCF/HOLCF.thy	Mon Mar 22 15:42:07 2010 -0700
+++ b/src/HOLCF/HOLCF.thy	Mon Mar 22 15:45:54 2010 -0700
@@ -10,19 +10,10 @@
   Domain
   Powerdomains
   Sum_Cpo
-uses
-  "Tools/adm_tac.ML"
 begin
 
 defaultsort pcpo
 
-declaration {* fn _ =>
-  Simplifier.map_ss (fn simpset => simpset addSolver
-    (mk_solver' "adm_tac" (fn ss =>
-      Adm.adm_tac (Simplifier.the_context ss)
-        (cut_facts_tac (Simplifier.prems_of_ss ss) THEN' cont_tacRs ss))));
-*}
-
 text {* Legacy theorem names *}
 
 lemmas sq_ord_less_eq_trans = below_eq_trans
--- a/src/HOLCF/IsaMakefile	Mon Mar 22 15:42:07 2010 -0700
+++ b/src/HOLCF/IsaMakefile	Mon Mar 22 15:45:54 2010 -0700
@@ -61,7 +61,6 @@
   Universal.thy \
   UpperPD.thy \
   Up.thy \
-  Tools/adm_tac.ML \
   Tools/cont_consts.ML \
   Tools/cont_proc.ML \
   Tools/holcf_library.ML \
--- a/src/HOLCF/Tools/adm_tac.ML	Mon Mar 22 15:42:07 2010 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,160 +0,0 @@
-(*  Title:      HOLCF/Tools/adm_tac.ML
-    Author:     Stefan Berghofer, TU Muenchen
-
-Admissibility tactic.
-
-Checks whether adm_subst theorem is applicable to the current proof
-state:
-
-  cont t ==> adm P ==> adm (%x. P (t x))
-
-"t" is instantiated with a term of chain-finite type, so that
-adm_chfin can be applied:
-
-  adm (P::'a::{chfin,pcpo} => bool)
-*)
-
-signature ADM =
-sig
-  val adm_tac: Proof.context -> (int -> tactic) -> int -> tactic
-end;
-
-structure Adm : ADM =
-struct
-
-
-(*** find_subterms t 0 []
-     returns lists of terms with the following properties:
-       1. all terms in the list are disjoint subterms of t
-       2. all terms contain the variable which is bound at level 0
-       3. all occurences of the variable which is bound at level 0
-          are "covered" by a term in the list
-     a list of integers is associated with every term which describes
-     the "path" leading to the subterm (required for instantiation of
-     the adm_subst theorem (see functions mk_term, inst_adm_subst_thm))
-***)
-
-fun find_subterms (Bound i) lev path =
-      if i = lev then [[(Bound 0, path)]]
-      else []
-  | find_subterms (t as (Abs (_, _, t2))) lev path =
-      if filter (fn x => x <= lev) (add_loose_bnos (t, 0, [])) = [lev]
-      then
-        [(incr_bv (~lev, 0, t), path)] ::
-        (find_subterms t2 (lev+1) (0::path))
-      else find_subterms t2 (lev+1) (0::path)
-  | find_subterms (t as (t1 $ t2)) lev path =
-      let val ts1 = find_subterms t1 lev (0::path);
-          val ts2 = find_subterms t2 lev (1::path);
-          fun combine [] y = []
-            | combine (x::xs) ys = map (fn z => x @ z) ys @ combine xs ys
-      in
-        (if filter (fn x => x <= lev) (add_loose_bnos (t, 0, [])) = [lev]
-         then [[(incr_bv (~lev, 0, t), path)]]
-         else []) @
-        (if ts1 = [] then ts2
-         else if ts2 = [] then ts1
-         else combine ts1 ts2)
-      end
-  | find_subterms _ _ _ = [];
-
-
-(*** make term for instantiation of predicate "P" in adm_subst theorem ***)
-
-fun make_term t path paths lev =
-  if member (op =) paths path then Bound lev
-  else case t of
-      (Abs (s, T, t1)) => Abs (s, T, make_term t1 (0::path) paths (lev+1))
-    | (t1 $ t2) => (make_term t1 (0::path) paths lev) $
-                   (make_term t2 (1::path) paths lev)
-    | t1 => t1;
-
-
-(*** check whether all terms in list are equal ***)
-
-fun eq_terms [] = true
-  | eq_terms (ts as (t, _) :: _) = forall (fn (t2, _) => t2 aconv t) ts;
-
-
-(*** check whether type of terms in list is chain finite ***)
-
-fun is_chfin thy T params ((t, _)::_) =
-  let val parTs = map snd (rev params)
-  in Sign.of_sort thy (fastype_of1 (T::parTs, t), @{sort "{chfin,pcpo}"}) end;
-
-
-(*** try to prove that terms in list are continuous
-     if successful, add continuity theorem to list l ***)
-
-fun prove_cont ctxt tac s T prems params (ts as ((t, _)::_)) l =  (* FIXME proper context *)
-  let val parTs = map snd (rev params);
-       val contT = (T --> (fastype_of1 (T::parTs, t))) --> HOLogic.boolT;
-       fun mk_all [] t = t
-         | mk_all ((a,T)::Ts) t = Term.all T $ (Abs (a, T, mk_all Ts t));
-       val t = HOLogic.mk_Trueprop (Const (@{const_name cont}, contT) $ Abs (s, T, t));
-       val t' = mk_all params (Logic.list_implies (prems, t));
-       val thm = Goal.prove ctxt [] [] t' (K (tac 1));
-  in (ts, thm)::l end
-  handle ERROR _ => l;
-
-
-(*** instantiation of adm_subst theorem (a bit tricky) ***)
-
-fun inst_adm_subst_thm state i params s T subt t paths =
-  let
-    val thy = Thm.theory_of_thm state;
-    val j = Thm.maxidx_of state + 1;
-    val parTs = map snd (rev params);
-    val rule = Thm.lift_rule (Thm.cprem_of state i) @{thm adm_subst};
-    val types = the o fst (Drule.types_sorts rule);
-    val tT = types ("t", j);
-    val PT = types ("P", j);
-    fun mk_abs [] t = t
-      | mk_abs ((a,T)::Ts) t = Abs (a, T, mk_abs Ts t);
-    val tt = cterm_of thy (mk_abs (params @ [(s, T)]) subt);
-    val Pt = cterm_of thy (mk_abs (params @ [(s, fastype_of1 (T::parTs, subt))])
-                   (make_term t [] paths 0));
-    val tye = Sign.typ_match thy (tT, #T (rep_cterm tt)) Vartab.empty;
-    val tye' = Sign.typ_match thy (PT, #T (rep_cterm Pt)) tye;
-    val ctye = map (fn (ixn, (S, T)) =>
-      (ctyp_of thy (TVar (ixn, S)), ctyp_of thy T)) (Vartab.dest tye');
-    val tv = cterm_of thy (Var (("t", j), Envir.subst_type tye' tT));
-    val Pv = cterm_of thy (Var (("P", j), Envir.subst_type tye' PT));
-    val rule' = instantiate (ctye, [(tv, tt), (Pv, Pt)]) rule
-  in rule' end;
-
-
-(*** the admissibility tactic ***)
-
-fun try_dest_adm (Const _ $ (Const (@{const_name adm}, _) $ Abs abs)) = SOME abs
-  | try_dest_adm _ = NONE;
-
-fun adm_tac ctxt tac i state = (i, state) |-> SUBGOAL (fn (goali, _) =>
-  (case try_dest_adm (Logic.strip_assums_concl goali) of
-    NONE => no_tac
-  | SOME (s, T, t) =>
-      let
-        val thy = ProofContext.theory_of ctxt;
-        val prems = Logic.strip_assums_hyp goali;
-        val params = Logic.strip_params goali;
-        val ts = find_subterms t 0 [];
-        val ts' = filter eq_terms ts;
-        val ts'' = filter (is_chfin thy T params) ts';
-        val thms = fold (prove_cont ctxt tac s T prems params) ts'' [];
-      in
-        (case thms of
-          ((ts as ((t', _)::_), cont_thm) :: _) =>
-            let
-              val paths = map snd ts;
-              val rule = inst_adm_subst_thm state i params s T t' t paths;
-            in
-              compose_tac (false, rule, 2) i THEN
-              resolve_tac [cont_thm] i THEN
-              REPEAT (assume_tac i) THEN
-              resolve_tac [@{thm adm_chfin}] i
-            end
-        | [] => no_tac)
-      end));
-
-end;
-