abstract algebraic bit operations
authorhaftmann
Sat, 10 Mar 2018 19:36:59 +0000
changeset 67816 2249b27ab1dd
parent 67815 8b3d9a91706e
child 67817 93faefc25fe7
abstract algebraic bit operations
src/HOL/Divides.thy
src/HOL/Parity.thy
src/HOL/Set_Interval.thy
src/HOL/ex/Word_Type.thy
--- a/src/HOL/Divides.thy	Sat Mar 10 20:24:00 2018 +0100
+++ b/src/HOL/Divides.thy	Sat Mar 10 19:36:59 2018 +0000
@@ -901,6 +901,9 @@
     by simp
 qed
 
+instance int :: semiring_bits
+  by standard (simp_all add: pos_zmod_mult_2 pos_zdiv_mult_2 zdiv_zmult2_eq zmod_zmult2_eq)
+
   
 subsubsection \<open>Quotients of Signs\<close>
 
--- a/src/HOL/Parity.thy	Sat Mar 10 20:24:00 2018 +0100
+++ b/src/HOL/Parity.thy	Sat Mar 10 19:36:59 2018 +0000
@@ -188,6 +188,10 @@
   "a mod 2 = of_bool (odd a)"
   by (auto elim: oddE)
 
+lemma of_bool_odd_eq_mod_2:
+  "of_bool (odd a) = a mod 2"
+  by (simp add: mod_2_eq_odd)
+
 lemma one_mod_2_pow_eq [simp]:
   "1 mod (2 ^ n) = of_bool (n > 0)"
 proof -
@@ -198,6 +202,10 @@
   finally show ?thesis .
 qed
 
+lemma one_div_2_pow_eq [simp]:
+  "1 div (2 ^ n) = of_bool (n = 0)"
+  using div_mult_mod_eq [of 1 "2 ^ n"] by auto
+
 lemma even_of_nat [simp]:
   "even (of_nat a) \<longleftrightarrow> even a"
 proof -
@@ -356,7 +364,7 @@
 
 subclass comm_ring_1 ..
 
-lemma even_minus [simp]:
+lemma even_minus:
   "even (- a) \<longleftrightarrow> even a"
   by (fact dvd_minus_iff)
 
@@ -589,19 +597,173 @@
 instance int :: ring_parity
   by standard (simp_all add: dvd_eq_mod_eq_0 divide_int_def division_segment_int_def)
 
-lemma even_diff_iff [simp]:
+lemma even_diff_iff:
   "even (k - l) \<longleftrightarrow> even (k + l)" for k l :: int
-  using dvd_add_times_triv_right_iff [of 2 "k - l" l] by (simp add: mult_2_right)
+  by (fact even_diff)
 
-lemma even_abs_add_iff [simp]:
+lemma even_abs_add_iff:
   "even (\<bar>k\<bar> + l) \<longleftrightarrow> even (k + l)" for k l :: int
-  by (cases "k \<ge> 0") (simp_all add: ac_simps)
+  by simp
 
-lemma even_add_abs_iff [simp]:
+lemma even_add_abs_iff:
   "even (k + \<bar>l\<bar>) \<longleftrightarrow> even (k + l)" for k l :: int
-  using even_abs_add_iff [of l k] by (simp add: ac_simps)
+  by simp
 
 lemma even_nat_iff: "0 \<le> k \<Longrightarrow> even (nat k) \<longleftrightarrow> even k"
   by (simp add: even_of_nat [of "nat k", where ?'a = int, symmetric])
 
+
+class semiring_bits = semiring_parity +
+  assumes div_mult2_eq': "a div (of_nat m * of_nat n) = a div of_nat m div of_nat n"
+    and mod_mult2_eq': "a mod (of_nat m * of_nat n) = of_nat m * (a div of_nat m mod of_nat n) + a mod of_nat m"
+  \<comment> \<open>maybe this specifications can be simplified,
+   or even derived (partially) in @{class unique_euclidean_semiring}\<close>
+begin
+
+text \<open>The primary purpose of the following operations is
+  to avoid ad-hoc simplification of concrete expressions @{term "2 ^ n"}\<close>
+
+definition bit_push :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
+  where bit_push_eq_mult: "bit_push n a = a * 2 ^ n"
+ 
+definition bit_take :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
+  where bit_take_eq_mod: "bit_take n a = a mod of_nat (2 ^ n)"
+
+definition bit_drop :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
+  where bit_drop_eq_div: "bit_drop n a = a div of_nat (2 ^ n)"
+
+lemma bit_ident:
+  "bit_push n (bit_drop n a) + bit_take n a = a"
+  using div_mult_mod_eq by (simp add: bit_push_eq_mult bit_take_eq_mod bit_drop_eq_div)
+
+lemma bit_take_bit_take [simp]:
+  "bit_take n (bit_take n a) = bit_take n a"
+  by (simp add: bit_take_eq_mod)
+  
+lemma bit_take_0 [simp]:
+  "bit_take 0 a = 0"
+  by (simp add: bit_take_eq_mod)
+
+lemma bit_take_Suc [simp]:
+  "bit_take (Suc n) a = bit_take n (a div 2) * 2 + of_bool (odd a)"
+proof -
+  have "1 + 2 * (a div 2) mod (2 * 2 ^ n) = (a div 2 * 2 + a mod 2) mod (2 * 2 ^ n)"
+    if "odd a"
+    using that mod_mult2_eq' [of "1 + 2 * (a div 2)" 2 "2 ^ n"]
+    by (simp add: ac_simps odd_iff_mod_2_eq_one mult_mod_right)
+  also have "\<dots> = a mod (2 * 2 ^ n)"
+    by (simp only: div_mult_mod_eq)
+  finally show ?thesis
+    by (simp add: bit_take_eq_mod algebra_simps mult_mod_right)
+qed
+
+lemma bit_take_of_0 [simp]:
+  "bit_take n 0 = 0"
+  by (simp add: bit_take_eq_mod)
+
+lemma bit_take_plus:
+  "bit_take n (bit_take n a + bit_take n b) = bit_take n (a + b)"
+  by (simp add: bit_take_eq_mod mod_simps)
+
+lemma bit_take_of_1_eq_0_iff [simp]:
+  "bit_take n 1 = 0 \<longleftrightarrow> n = 0"
+  by (simp add: bit_take_eq_mod)
+
+lemma bit_push_eq_0_iff [simp]:
+  "bit_push n a = 0 \<longleftrightarrow> a = 0"
+  by (simp add: bit_push_eq_mult)
+
+lemma bit_drop_0 [simp]:
+  "bit_drop 0 = id"
+  by (simp add: fun_eq_iff bit_drop_eq_div)
+
+lemma bit_drop_of_0 [simp]:
+  "bit_drop n 0 = 0"
+  by (simp add: bit_drop_eq_div)
+
+lemma bit_drop_Suc [simp]:
+  "bit_drop (Suc n) a = bit_drop n (a div 2)"
+proof (cases "even a")
+  case True
+  then obtain b where "a = 2 * b" ..
+  moreover have "bit_drop (Suc n) (2 * b) = bit_drop n b"
+    by (simp add: bit_drop_eq_div)
+  ultimately show ?thesis
+    by simp
+next
+  case False
+  then obtain b where "a = 2 * b + 1" ..
+  moreover have "bit_drop (Suc n) (2 * b + 1) = bit_drop n b"
+    using div_mult2_eq' [of "1 + b * 2" 2 "2 ^ n"]
+    by (auto simp add: bit_drop_eq_div ac_simps)
+  ultimately show ?thesis
+    by simp
+qed
+
+lemma bit_drop_half:
+  "bit_drop n (a div 2) = bit_drop n a div 2"
+  by (induction n arbitrary: a) simp_all
+
+lemma bit_drop_of_bool [simp]:
+  "bit_drop n (of_bool d) = of_bool (n = 0 \<and> d)"
+  by (cases n) simp_all
+
+lemma even_bit_take_eq [simp]:
+  "even (bit_take n a) \<longleftrightarrow> n = 0 \<or> even a"
+  by (cases n) (simp_all add: bit_take_eq_mod dvd_mod_iff)
+
+lemma bit_push_0_id [simp]:
+  "bit_push 0 = id"
+  by (simp add: fun_eq_iff bit_push_eq_mult)
+
+lemma bit_push_of_0 [simp]:
+  "bit_push n 0 = 0"
+  by (simp add: bit_push_eq_mult)
+
+lemma bit_push_of_1:
+  "bit_push n 1 = 2 ^ n"
+  by (simp add: bit_push_eq_mult)
+
+lemma bit_push_Suc [simp]:
+  "bit_push (Suc n) a = bit_push n (a * 2)"
+  by (simp add: bit_push_eq_mult ac_simps)
+
+lemma bit_push_double:
+  "bit_push n (a * 2) = bit_push n a * 2"
+  by (simp add: bit_push_eq_mult ac_simps)
+
+lemma bit_drop_bit_take [simp]:
+  "bit_drop n (bit_take n a) = 0"
+  by (simp add: bit_drop_eq_div bit_take_eq_mod)
+
+lemma bit_take_bit_drop_commute:
+  "bit_drop m (bit_take n a) = bit_take (n - m) (bit_drop m a)"
+  for m n :: nat
+proof (cases "n \<ge> m")
+  case True
+  moreover define q where "q = n - m"
+  ultimately have "n - m = q" and "n = m + q"
+    by simp_all
+  moreover have "bit_drop m (bit_take (m + q) a) = bit_take q (bit_drop m a)"
+    using mod_mult2_eq' [of a "2 ^ m" "2 ^ q"]
+    by (simp add: bit_drop_eq_div bit_take_eq_mod power_add)
+  ultimately show ?thesis
+    by simp
+next
+  case False
+  moreover define q where "q = m - n"
+  ultimately have "m - n = q" and "m = n + q"
+    by simp_all
+  moreover have "bit_drop (n + q) (bit_take n a) = 0"
+    using div_mult2_eq' [of "a mod 2 ^ n" "2 ^ n" "2 ^ q"]
+    by (simp add: bit_drop_eq_div bit_take_eq_mod power_add div_mult2_eq)
+  ultimately show ?thesis
+    by simp
+qed
+
 end
+
+instance nat :: semiring_bits
+  by standard (simp_all add: mod_Suc Suc_double_not_eq_double div_mult2_eq mod_mult2_eq)
+
+end
--- a/src/HOL/Set_Interval.thy	Sat Mar 10 20:24:00 2018 +0100
+++ b/src/HOL/Set_Interval.thy	Sat Mar 10 19:36:59 2018 +0000
@@ -1929,6 +1929,24 @@
 lemma sum_diff_distrib: "\<forall>x. Q x \<le> P x  \<Longrightarrow> (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x :: nat)"
   by (subst sum_subtractf_nat) auto
 
+lemma bit_take_sum_nat:
+  "bit_take n m = (\<Sum>k = 0..<n. bit_push k (of_bool (odd (bit_drop k m))))"
+  for n m :: nat
+proof (induction n arbitrary: m)
+  case 0
+  then show ?case
+    by simp
+next
+  case (Suc n)
+  have "(\<Sum>k = 0..<Suc n. bit_push k (of_bool (odd (bit_drop k m)))) = 
+    of_bool (odd m) + (\<Sum>k = Suc 0..<Suc n. bit_push k (of_bool (odd (bit_drop k m))))"
+    by (simp add: sum_head_upt_Suc ac_simps)
+  also have "(\<Sum>k = Suc 0..<Suc n. bit_push k (of_bool (odd (bit_drop k m))))
+    = (\<Sum>k = 0..<n. bit_push k (of_bool (odd (bit_drop k (m div 2))))) * (2::nat)"
+    by (simp only: sum.atLeast_Suc_lessThan_Suc_shift) (simp add: sum_distrib_right bit_push_double)
+  finally show ?case
+    using Suc [of "m div 2"] by simp
+qed    
 
 subsubsection \<open>Shifting bounds\<close>
 
--- a/src/HOL/ex/Word_Type.thy	Sat Mar 10 20:24:00 2018 +0100
+++ b/src/HOL/ex/Word_Type.thy	Sat Mar 10 19:36:59 2018 +0000
@@ -9,82 +9,32 @@
     "HOL-Library.Type_Length"
 begin
 
-subsection \<open>Truncating bit representations of numeric types\<close>
-
-class semiring_bits = semiring_parity +
-  assumes semiring_bits: "(1 + 2 * a) mod of_nat (2 * n) = 1 + 2 * (a mod of_nat n)"
-begin
-
-definition bitrunc :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
-  where bitrunc_eq_mod: "bitrunc n a = a mod of_nat (2 ^ n)"
-
-lemma bitrunc_bitrunc [simp]:
-  "bitrunc n (bitrunc n a) = bitrunc n a"
-  by (simp add: bitrunc_eq_mod)
-  
-lemma bitrunc_0 [simp]:
-  "bitrunc 0 a = 0"
-  by (simp add: bitrunc_eq_mod)
+lemma bit_take_uminus:
+  fixes k :: int
+  shows "bit_take n (- (bit_take n k)) = bit_take n (- k)"
+  by (simp add: bit_take_eq_mod mod_minus_eq)
 
-lemma bitrunc_Suc [simp]:
-  "bitrunc (Suc n) a = bitrunc n (a div 2) * 2 + of_bool (odd a)"
-proof -
-  have "1 + 2 * (a div 2) mod (2 * 2 ^ n) = (a div 2 * 2 + a mod 2) mod (2 * 2 ^ n)"
-    if "odd a"
-    using that semiring_bits [of "a div 2" "2 ^ n"]
-      by (simp add: algebra_simps odd_iff_mod_2_eq_one mult_mod_right)
-  also have "\<dots> = a mod (2 * 2 ^ n)"
-    by (simp only: div_mult_mod_eq)
-  finally show ?thesis
-    by (simp add: bitrunc_eq_mod algebra_simps mult_mod_right)
-qed
-
-lemma bitrunc_of_0 [simp]:
-  "bitrunc n 0 = 0"
-  by (simp add: bitrunc_eq_mod)
-
-lemma bitrunc_plus:
-  "bitrunc n (bitrunc n a + bitrunc n b) = bitrunc n (a + b)"
-  by (simp add: bitrunc_eq_mod mod_simps)
+lemma bit_take_minus:
+  fixes k l :: int
+  shows "bit_take n (bit_take n k - bit_take n l) = bit_take n (k - l)"
+  by (simp add: bit_take_eq_mod mod_diff_eq)
 
-lemma bitrunc_of_1_eq_0_iff [simp]:
-  "bitrunc n 1 = 0 \<longleftrightarrow> n = 0"
-  by (simp add: bitrunc_eq_mod)
-
-end
-
-instance nat :: semiring_bits
-  by standard (simp add: mod_Suc Suc_double_not_eq_double)
-
-instance int :: semiring_bits
-  by standard (simp add: pos_zmod_mult_2)
-
-lemma bitrunc_uminus:
+lemma bit_take_nonnegative [simp]:
   fixes k :: int
-  shows "bitrunc n (- (bitrunc n k)) = bitrunc n (- k)"
-  by (simp add: bitrunc_eq_mod mod_minus_eq)
+  shows "bit_take n k \<ge> 0"
+  by (simp add: bit_take_eq_mod)
 
-lemma bitrunc_minus:
-  fixes k l :: int
-  shows "bitrunc n (bitrunc n k - bitrunc n l) = bitrunc n (k - l)"
-  by (simp add: bitrunc_eq_mod mod_diff_eq)
-
-lemma bitrunc_nonnegative [simp]:
-  fixes k :: int
-  shows "bitrunc n k \<ge> 0"
-  by (simp add: bitrunc_eq_mod)
+definition signed_bit_take :: "nat \<Rightarrow> int \<Rightarrow> int"
+  where signed_bit_take_eq_bit_take:
+    "signed_bit_take n k = bit_take (Suc n) (k + 2 ^ n) - 2 ^ n"
 
-definition signed_bitrunc :: "nat \<Rightarrow> int \<Rightarrow> int"
-  where signed_bitrunc_eq_bitrunc:
-    "signed_bitrunc n k = bitrunc (Suc n) (k + 2 ^ n) - 2 ^ n"
-
-lemma signed_bitrunc_eq_bitrunc':
+lemma signed_bit_take_eq_bit_take':
   assumes "n > 0"
-  shows "signed_bitrunc (n - Suc 0) k = bitrunc n (k + 2 ^ (n - 1)) - 2 ^ (n - 1)"
-  using assms by (simp add: signed_bitrunc_eq_bitrunc)
+  shows "signed_bit_take (n - Suc 0) k = bit_take n (k + 2 ^ (n - 1)) - 2 ^ (n - 1)"
+  using assms by (simp add: signed_bit_take_eq_bit_take)
   
-lemma signed_bitrunc_0 [simp]:
-  "signed_bitrunc 0 k = - (k mod 2)"
+lemma signed_bit_take_0 [simp]:
+  "signed_bit_take 0 k = - (k mod 2)"
 proof (cases "even k")
   case True
   then have "odd (k + 1)"
@@ -92,54 +42,54 @@
   then have "(k + 1) mod 2 = 1"
     by (simp add: even_iff_mod_2_eq_zero)
   with True show ?thesis
-    by (simp add: signed_bitrunc_eq_bitrunc)
+    by (simp add: signed_bit_take_eq_bit_take)
 next
   case False
   then show ?thesis
-    by (simp add: signed_bitrunc_eq_bitrunc odd_iff_mod_2_eq_one)
+    by (simp add: signed_bit_take_eq_bit_take odd_iff_mod_2_eq_one)
 qed
 
-lemma signed_bitrunc_Suc [simp]:
-  "signed_bitrunc (Suc n) k = signed_bitrunc n (k div 2) * 2 + k mod 2"
-  by (simp add: odd_iff_mod_2_eq_one signed_bitrunc_eq_bitrunc algebra_simps)
+lemma signed_bit_take_Suc [simp]:
+  "signed_bit_take (Suc n) k = signed_bit_take n (k div 2) * 2 + k mod 2"
+  by (simp add: odd_iff_mod_2_eq_one signed_bit_take_eq_bit_take algebra_simps)
 
-lemma signed_bitrunc_of_0 [simp]:
-  "signed_bitrunc n 0 = 0"
-  by (simp add: signed_bitrunc_eq_bitrunc bitrunc_eq_mod)
+lemma signed_bit_take_of_0 [simp]:
+  "signed_bit_take n 0 = 0"
+  by (simp add: signed_bit_take_eq_bit_take bit_take_eq_mod)
 
-lemma signed_bitrunc_of_minus_1 [simp]:
-  "signed_bitrunc n (- 1) = - 1"
+lemma signed_bit_take_of_minus_1 [simp]:
+  "signed_bit_take n (- 1) = - 1"
   by (induct n) simp_all
 
-lemma signed_bitrunc_eq_iff_bitrunc_eq:
+lemma signed_bit_take_eq_iff_bit_take_eq:
   assumes "n > 0"
-  shows "signed_bitrunc (n - Suc 0) k = signed_bitrunc (n - Suc 0) l \<longleftrightarrow> bitrunc n k = bitrunc n l" (is "?P \<longleftrightarrow> ?Q")
+  shows "signed_bit_take (n - Suc 0) k = signed_bit_take (n - Suc 0) l \<longleftrightarrow> bit_take n k = bit_take n l" (is "?P \<longleftrightarrow> ?Q")
 proof -
   from assms obtain m where m: "n = Suc m"
     by (cases n) auto
   show ?thesis
   proof 
     assume ?Q
-    have "bitrunc (Suc m) (k + 2 ^ m) =
-      bitrunc (Suc m) (bitrunc (Suc m) k + bitrunc (Suc m) (2 ^ m))"
-      by (simp only: bitrunc_plus)
+    have "bit_take (Suc m) (k + 2 ^ m) =
+      bit_take (Suc m) (bit_take (Suc m) k + bit_take (Suc m) (2 ^ m))"
+      by (simp only: bit_take_plus)
     also have "\<dots> =
-      bitrunc (Suc m) (bitrunc (Suc m) l + bitrunc (Suc m) (2 ^ m))"
+      bit_take (Suc m) (bit_take (Suc m) l + bit_take (Suc m) (2 ^ m))"
       by (simp only: \<open>?Q\<close> m [symmetric])
-    also have "\<dots> = bitrunc (Suc m) (l + 2 ^ m)"
-      by (simp only: bitrunc_plus)
+    also have "\<dots> = bit_take (Suc m) (l + 2 ^ m)"
+      by (simp only: bit_take_plus)
     finally show ?P
-      by (simp only: signed_bitrunc_eq_bitrunc m) simp
+      by (simp only: signed_bit_take_eq_bit_take m) simp
   next
     assume ?P
     with assms have "(k + 2 ^ (n - Suc 0)) mod 2 ^ n = (l + 2 ^ (n - Suc 0)) mod 2 ^ n"
-      by (simp add: signed_bitrunc_eq_bitrunc' bitrunc_eq_mod)
+      by (simp add: signed_bit_take_eq_bit_take' bit_take_eq_mod)
     then have "(i + (k + 2 ^ (n - Suc 0))) mod 2 ^ n = (i + (l + 2 ^ (n - Suc 0))) mod 2 ^ n" for i
       by (metis mod_add_eq)
     then have "k mod 2 ^ n = l mod 2 ^ n"
       by (metis add_diff_cancel_right' uminus_add_conv_diff)
     then show ?Q
-      by (simp add: bitrunc_eq_mod)
+      by (simp add: bit_take_eq_mod)
   qed
 qed 
 
@@ -148,7 +98,7 @@
 
 subsubsection \<open>Basic properties\<close>
 
-quotient_type (overloaded) 'a word = int / "\<lambda>k l. bitrunc LENGTH('a) k = bitrunc LENGTH('a::len0) l"
+quotient_type (overloaded) 'a word = int / "\<lambda>k l. bit_take LENGTH('a) k = bit_take LENGTH('a::len0) l"
   by (auto intro!: equivpI reflpI sympI transpI)
 
 instantiation word :: (len0) "{semiring_numeral, comm_semiring_0, comm_ring}"
@@ -164,19 +114,19 @@
 
 lift_definition plus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
   is plus
-  by (subst bitrunc_plus [symmetric]) (simp add: bitrunc_plus)
+  by (subst bit_take_plus [symmetric]) (simp add: bit_take_plus)
 
 lift_definition uminus_word :: "'a word \<Rightarrow> 'a word"
   is uminus
-  by (subst bitrunc_uminus [symmetric]) (simp add: bitrunc_uminus)
+  by (subst bit_take_uminus [symmetric]) (simp add: bit_take_uminus)
 
 lift_definition minus_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
   is minus
-  by (subst bitrunc_minus [symmetric]) (simp add: bitrunc_minus)
+  by (subst bit_take_minus [symmetric]) (simp add: bit_take_minus)
 
 lift_definition times_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
   is times
-  by (auto simp add: bitrunc_eq_mod intro: mod_mult_cong)
+  by (auto simp add: bit_take_eq_mod intro: mod_mult_cong)
 
 instance
   by standard (transfer; simp add: algebra_simps)+
@@ -209,7 +159,7 @@
 begin
 
 lift_definition unsigned :: "'b::len0 word \<Rightarrow> 'a"
-  is "of_nat \<circ> nat \<circ> bitrunc LENGTH('b)"
+  is "of_nat \<circ> nat \<circ> bit_take LENGTH('b)"
   by simp
 
 lemma unsigned_0 [simp]:
@@ -231,8 +181,8 @@
 begin
 
 lift_definition signed :: "'b::len word \<Rightarrow> 'a"
-  is "of_int \<circ> signed_bitrunc (LENGTH('b) - 1)"
-  by (simp add: signed_bitrunc_eq_iff_bitrunc_eq [symmetric])
+  is "of_int \<circ> signed_bit_take (LENGTH('b) - 1)"
+  by (simp add: signed_bit_take_eq_iff_bit_take_eq [symmetric])
 
 lemma signed_0 [simp]:
   "signed 0 = 0"
@@ -241,8 +191,8 @@
 end
 
 lemma unsigned_of_nat [simp]:
-  "unsigned (of_nat n :: 'a word) = bitrunc LENGTH('a::len) n"
-  by transfer (simp add: nat_eq_iff bitrunc_eq_mod zmod_int)
+  "unsigned (of_nat n :: 'a word) = bit_take LENGTH('a::len) n"
+  by transfer (simp add: nat_eq_iff bit_take_eq_mod zmod_int)
 
 lemma of_nat_unsigned [simp]:
   "of_nat (unsigned a) = a"
@@ -257,17 +207,17 @@
 
 lemma word_eq_iff_signed:
   "a = b \<longleftrightarrow> signed a = signed b"
-  by safe (transfer; auto simp add: signed_bitrunc_eq_iff_bitrunc_eq)
+  by safe (transfer; auto simp add: signed_bit_take_eq_iff_bit_take_eq)
 
 end
 
 lemma signed_of_int [simp]:
-  "signed (of_int k :: 'a word) = signed_bitrunc (LENGTH('a::len) - 1) k"
+  "signed (of_int k :: 'a word) = signed_bit_take (LENGTH('a::len) - 1) k"
   by transfer simp
 
 lemma of_int_signed [simp]:
   "of_int (signed a) = a"
-  by transfer (simp add: signed_bitrunc_eq_bitrunc bitrunc_eq_mod mod_simps)
+  by transfer (simp add: signed_bit_take_eq_bit_take bit_take_eq_mod mod_simps)
 
 
 subsubsection \<open>Properties\<close>
@@ -279,11 +229,11 @@
 begin
 
 lift_definition divide_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
-  is "\<lambda>a b. bitrunc LENGTH('a) a div bitrunc LENGTH('a) b"
+  is "\<lambda>a b. bit_take LENGTH('a) a div bit_take LENGTH('a) b"
   by simp
 
 lift_definition modulo_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> 'a word"
-  is "\<lambda>a b. bitrunc LENGTH('a) a mod bitrunc LENGTH('a) b"
+  is "\<lambda>a b. bit_take LENGTH('a) a mod bit_take LENGTH('a) b"
   by simp
 
 instance ..
@@ -297,11 +247,11 @@
 begin
 
 lift_definition less_eq_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool"
-  is "\<lambda>a b. bitrunc LENGTH('a) a \<le> bitrunc LENGTH('a) b"
+  is "\<lambda>a b. bit_take LENGTH('a) a \<le> bit_take LENGTH('a) b"
   by simp
 
 lift_definition less_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool"
-  is "\<lambda>a b. bitrunc LENGTH('a) a < bitrunc LENGTH('a) b"
+  is "\<lambda>a b. bit_take LENGTH('a) a < bit_take LENGTH('a) b"
   by simp
 
 instance
@@ -318,7 +268,7 @@
 
 lemma word_less_iff_unsigned:
   "a < b \<longleftrightarrow> unsigned a < unsigned b"
-  by (transfer fixing: less) (auto dest: preorder_class.le_less_trans [OF bitrunc_nonnegative])
+  by (transfer fixing: less) (auto dest: preorder_class.le_less_trans [OF bit_take_nonnegative])
 
 end