--- a/src/HOL/Library/Quadratic_Discriminant.thy Sun Jul 01 16:13:25 2018 +0100
+++ b/src/HOL/Library/Quadratic_Discriminant.thy Sun Jul 01 16:46:28 2018 +0100
@@ -14,18 +14,8 @@
where "discrim a b c \<equiv> b\<^sup>2 - 4 * a * c"
lemma complete_square:
- fixes a b c x :: "real"
- assumes "a \<noteq> 0"
- shows "a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow> (2 * a * x + b)\<^sup>2 = discrim a b c"
-proof -
- have "4 * a\<^sup>2 * x\<^sup>2 + 4 * a * b * x + 4 * a * c = 4 * a * (a * x\<^sup>2 + b * x + c)"
- by (simp add: algebra_simps power2_eq_square)
- with \<open>a \<noteq> 0\<close>
- have "a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow> 4 * a\<^sup>2 * x\<^sup>2 + 4 * a * b * x + 4 * a * c = 0"
- by simp
- then show "a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow> (2 * a * x + b)\<^sup>2 = discrim a b c"
- by (simp add: discrim_def power2_eq_square algebra_simps)
-qed
+ "a \<noteq> 0 \<Longrightarrow> a * x\<^sup>2 + b * x + c = 0 \<longleftrightarrow> (2 * a * x + b)\<^sup>2 = discrim a b c"
+by (simp add: discrim_def) algebra
lemma discriminant_negative:
fixes a b c x :: real
@@ -190,4 +180,22 @@
qed
qed
+lemma Rats_solution_QE:
+ assumes "a \<in> \<rat>" "b \<in> \<rat>" "a \<noteq> 0"
+ and "a*x^2 + b*x + c = 0"
+ and "sqrt (discrim a b c) \<in> \<rat>"
+ shows "x \<in> \<rat>"
+using assms(1,2,5) discriminant_iff[THEN iffD1, OF assms(3,4)] by auto
+
+lemma Rats_solution_QE_converse:
+ assumes "a \<in> \<rat>" "b \<in> \<rat>"
+ and "a*x^2 + b*x + c = 0"
+ and "x \<in> \<rat>"
+ shows "sqrt (discrim a b c) \<in> \<rat>"
+proof -
+ from assms(3) have "discrim a b c = (2*a*x+b)^2" unfolding discrim_def by algebra
+ hence "sqrt (discrim a b c) = \<bar>2*a*x+b\<bar>" by (simp)
+ thus ?thesis using \<open>a \<in> \<rat>\<close> \<open>b \<in> \<rat>\<close> \<open>x \<in> \<rat>\<close> by (simp)
+qed
+
end