new theory Tree_Rotations
authornipkow
Wed, 08 Mar 2023 08:10:10 +0100
changeset 77573 237e5504bae7
parent 77552 080422b3d914
child 77574 c2603cc154fa
new theory Tree_Rotations
src/HOL/Data_Structures/Tree_Rotations.thy
src/HOL/ROOT
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Tree_Rotations.thy	Wed Mar 08 08:10:10 2023 +0100
@@ -0,0 +1,174 @@
+(* Author: Tobias Nipkow *)
+
+section \<open>Tree Rotations\<close>
+
+theory Tree_Rotations
+imports "HOL-Library.Tree"
+begin
+
+text \<open>How to transform a tree into a list and into any other tree (with the same @{const inorder})
+by rotations.\<close>
+
+fun is_list :: "'a tree \<Rightarrow> bool" where
+"is_list (Node l _ r) = (l = Leaf \<and> is_list r)" |
+"is_list Leaf = True"
+
+text \<open>Termination proof via measure function. NB @{term "size t - rlen t"} works for
+the actual rotation equation but not for the second equation.\<close>
+
+fun rlen :: "'a tree \<Rightarrow> nat" where
+"rlen Leaf = 0" |
+"rlen (Node l x r) = rlen r + 1"
+
+lemma rlen_le_size: "rlen t \<le> size t"
+by(induction t) auto
+
+function (sequential) rot_to_list :: "'a tree \<Rightarrow> 'a tree" where
+"rot_to_list (Node (Node A a B) b C) = rot_to_list (Node A a (Node B b C))" |
+"rot_to_list (Node Leaf a A) = Node Leaf a (rot_to_list A)" |
+"rot_to_list Leaf = Leaf"
+by pat_completeness auto
+
+termination
+proof
+  let ?R = "measure(\<lambda>t. 2*size t - rlen t)"
+  show "wf ?R" by (auto simp add: mlex_prod_def)
+
+  fix A a B b C
+  show "(Node A a (Node B b C), Node (Node A a B) b C) \<in> ?R"
+    using rlen_le_size[of C] by(simp)
+
+  fix a A show "(A, Node Leaf a A) \<in> ?R" using rlen_le_size[of A] by(simp)
+qed
+
+lemma is_list_rot: "is_list(rot_to_list t)"
+by (induction t rule: rot_to_list.induct) auto
+
+lemma inorder_rot: "inorder(rot_to_list t) = inorder t"
+by (induction t rule: rot_to_list.induct) auto
+
+function (sequential) n_rot_to_list :: "'a tree \<Rightarrow> nat" where
+"n_rot_to_list (Node (Node A a B) b C) = n_rot_to_list (Node A a (Node B b C)) + 1" |
+"n_rot_to_list (Node Leaf a A) = n_rot_to_list A" |
+"n_rot_to_list Leaf = 0"
+by pat_completeness auto
+
+termination
+proof
+  let ?R = "measure(\<lambda>t. 2*size t - rlen t)"
+  show "wf ?R" by (auto simp add: mlex_prod_def)
+
+  fix A a B b C
+  show "(Node A a (Node B b C), Node (Node A a B) b C) \<in> ?R"
+    using rlen_le_size[of C] by(simp)
+
+  fix a A show "(A, Node Leaf a A) \<in> ?R" using rlen_le_size[of A] by(simp)
+qed
+
+text \<open>Closed formula for the exact number of rotations needed:\<close>
+
+lemma n_rot_to_list: "n_rot_to_list t = size t - rlen t"
+proof(induction t rule: n_rot_to_list.induct)
+  case (1 A a B b C)
+  then show ?case using rlen_le_size[of C] by simp
+qed auto
+
+text \<open>Now with explicit positions:\<close>
+
+datatype dir = L | R
+
+type_synonym "pos" = "dir list"
+
+function (sequential) rotR_poss :: "'a tree \<Rightarrow> pos list" where
+"rotR_poss (Node (Node A a B) b C) = [] # rotR_poss (Node A a (Node B b C))" |
+"rotR_poss (Node Leaf a A) = map (Cons R) (rotR_poss A)" |
+"rotR_poss Leaf = []"
+by pat_completeness auto
+
+termination
+proof
+  let ?R = "measure(\<lambda>t. 2*size t - rlen t)"
+  show "wf ?R" by (auto simp add: mlex_prod_def)
+
+  fix A a B b C
+  show "(Node A a (Node B b C), Node (Node A a B) b C) \<in> ?R"
+    using rlen_le_size[of C] by(simp)
+
+  fix a A show "(A, Node Leaf a A) \<in> ?R" using rlen_le_size[of A] by(simp)
+qed
+
+fun rotR :: "'a tree \<Rightarrow> 'a tree" where
+"rotR (Node (Node A a B) b C) = Node A a (Node B b C)"
+
+fun rotL :: "'a tree \<Rightarrow> 'a tree" where
+"rotL (Node A a (Node B b C)) = Node (Node A a B) b C"
+
+fun apply_at :: "('a tree \<Rightarrow> 'a tree) \<Rightarrow> pos \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
+  "apply_at f [] t = f t"
+| "apply_at f (L # ds) (Node l a r) = Node (apply_at f ds l) a r"
+| "apply_at f (R # ds) (Node l a r) = Node l a (apply_at f ds r)"
+
+fun apply_ats :: "('a tree \<Rightarrow> 'a tree) \<Rightarrow> pos list \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
+"apply_ats _ [] t = t" |
+"apply_ats f (p#ps) t = apply_ats f ps (apply_at f p t)"
+
+lemma apply_ats_append:
+  "apply_ats f (ps\<^sub>1 @ ps\<^sub>2) t = apply_ats f ps\<^sub>2 (apply_ats f ps\<^sub>1 t)"
+by (induction ps\<^sub>1 arbitrary: t) auto
+
+abbreviation "rotRs \<equiv> apply_ats rotR"
+abbreviation "rotLs \<equiv> apply_ats rotL"
+
+lemma apply_ats_map_R: "apply_ats f (map ((#) R) ps) \<langle>l, a, r\<rangle> = Node l a (apply_ats f ps r)"
+by(induction ps arbitrary: r) auto
+
+lemma inorder_rotRs_poss: "inorder (rotRs (rotR_poss t) t) = inorder t"
+apply(induction t rule: rotR_poss.induct)
+apply(auto simp: apply_ats_map_R)
+done
+
+lemma is_list_rotRs: "is_list (rotRs (rotR_poss t) t)"
+apply(induction t rule: rotR_poss.induct)
+apply(auto simp: apply_ats_map_R)
+done
+
+lemma "is_list (rotRs ps t) \<longrightarrow> length ps \<le> length(rotR_poss t)"
+quickcheck[expect=counterexample]
+oops
+
+lemma length_rotRs_poss: "length (rotR_poss t) = size t - rlen t"
+proof(induction t rule: rotR_poss.induct)
+  case (1 A a B b C)
+  then show ?case using rlen_le_size[of C] by simp
+qed auto
+
+lemma is_list_inorder_same:
+  "is_list t1 \<Longrightarrow> is_list t2 \<Longrightarrow> inorder t1 = inorder t2 \<Longrightarrow> t1 = t2"
+proof(induction t1 arbitrary: t2)
+  case Leaf
+  then show ?case by simp
+next
+  case Node
+  then show ?case by (cases t2) simp_all
+qed
+
+lemma rot_id: "rotLs (rev (rotR_poss t)) (rotRs (rotR_poss t) t) = t"
+apply(induction t rule: rotR_poss.induct)
+apply(auto simp: apply_ats_map_R rev_map apply_ats_append)
+done
+
+corollary tree_to_tree_rotations: assumes "inorder t1 = inorder t2"
+shows "rotLs (rev (rotR_poss t2)) (rotRs (rotR_poss t1) t1) = t2"
+proof -
+  have "rotRs (rotR_poss t1) t1 = rotRs (rotR_poss t2) t2" (is "?L = ?R")
+    by (simp add: assms inorder_rotRs_poss is_list_inorder_same is_list_rotRs)
+  hence "rotLs (rev (rotR_poss t2)) ?L = rotLs (rev (rotR_poss t2)) ?R"
+    by simp
+  also have "\<dots> = t2" by(rule rot_id)
+  finally show ?thesis .
+qed
+
+lemma size_rlen_better_ub: "size t - rlen t \<le> size t - 1"
+by (cases t) auto
+
+end
--- a/src/HOL/ROOT	Mon Mar 06 21:12:47 2023 +0100
+++ b/src/HOL/ROOT	Wed Mar 08 08:10:10 2023 +0100
@@ -287,6 +287,7 @@
     Sorting
     Balance
     Tree_Map
+    Tree_Rotations
     Interval_Tree
     AVL_Map
     AVL_Bal_Set