--- a/src/HOL/Hyperreal/HyperNat.thy Tue Dec 11 10:23:05 2007 +0100
+++ b/src/HOL/Hyperreal/HyperNat.thy Tue Dec 11 10:23:08 2007 +0100
@@ -8,7 +8,7 @@
header{*Hypernatural numbers*}
theory HyperNat
-imports StarClasses
+imports StarDef
begin
types hypnat = "nat star"
--- a/src/HOL/Hyperreal/StarClasses.thy Tue Dec 11 10:23:05 2007 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,605 +0,0 @@
-(* Title : HOL/Hyperreal/StarClasses.thy
- ID : $Id$
- Author : Brian Huffman
-*)
-
-header {* Class Instances *}
-
-theory StarClasses
-imports StarDef
-begin
-
-subsection {* Syntactic classes *}
-
-instantiation star :: (zero) zero
-begin
-
-definition
- star_zero_def: "0 \<equiv> star_of 0"
-
-instance ..
-
-end
-
-instantiation star :: (one) one
-begin
-
-definition
- star_one_def: "1 \<equiv> star_of 1"
-
-instance ..
-
-end
-
-instantiation star :: (plus) plus
-begin
-
-definition
- star_add_def: "(op +) \<equiv> *f2* (op +)"
-
-instance ..
-
-end
-
-instantiation star :: (times) times
-begin
-
-definition
- star_mult_def: "(op *) \<equiv> *f2* (op *)"
-
-instance ..
-
-end
-
-instantiation star :: (minus) minus
-begin
-
-definition
- star_minus_def: "uminus \<equiv> *f* uminus"
-
-definition
- star_diff_def: "(op -) \<equiv> *f2* (op -)"
-
-instance ..
-
-end
-
-instantiation star :: (abs) abs
-begin
-
-definition
- star_abs_def: "abs \<equiv> *f* abs"
-
-instance ..
-
-end
-
-instantiation star :: (sgn) sgn
-begin
-
-definition
- star_sgn_def: "sgn \<equiv> *f* sgn"
-
-instance ..
-
-end
-
-instantiation star :: (inverse) inverse
-begin
-
-definition
- star_divide_def: "(op /) \<equiv> *f2* (op /)"
-
-definition
- star_inverse_def: "inverse \<equiv> *f* inverse"
-
-instance ..
-
-end
-
-instantiation star :: (number) number
-begin
-
-definition
- star_number_def: "number_of b \<equiv> star_of (number_of b)"
-
-instance ..
-
-end
-
-instantiation star :: (Divides.div) Divides.div
-begin
-
-definition
- star_div_def: "(op div) \<equiv> *f2* (op div)"
-
-definition
- star_mod_def: "(op mod) \<equiv> *f2* (op mod)"
-
-instance ..
-
-end
-
-instantiation star :: (power) power
-begin
-
-definition
- star_power_def: "(op ^) \<equiv> \<lambda>x n. ( *f* (\<lambda>x. x ^ n)) x"
-
-instance ..
-
-end
-
-instantiation star :: (ord) ord
-begin
-
-definition
- star_le_def: "(op \<le>) \<equiv> *p2* (op \<le>)"
-
-definition
- star_less_def: "(op <) \<equiv> *p2* (op <)"
-
-instance ..
-
-end
-
-lemmas star_class_defs [transfer_unfold] =
- star_zero_def star_one_def star_number_def
- star_add_def star_diff_def star_minus_def
- star_mult_def star_divide_def star_inverse_def
- star_le_def star_less_def star_abs_def star_sgn_def
- star_div_def star_mod_def star_power_def
-
-text {* Class operations preserve standard elements *}
-
-lemma Standard_zero: "0 \<in> Standard"
-by (simp add: star_zero_def)
-
-lemma Standard_one: "1 \<in> Standard"
-by (simp add: star_one_def)
-
-lemma Standard_number_of: "number_of b \<in> Standard"
-by (simp add: star_number_def)
-
-lemma Standard_add: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x + y \<in> Standard"
-by (simp add: star_add_def)
-
-lemma Standard_diff: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x - y \<in> Standard"
-by (simp add: star_diff_def)
-
-lemma Standard_minus: "x \<in> Standard \<Longrightarrow> - x \<in> Standard"
-by (simp add: star_minus_def)
-
-lemma Standard_mult: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x * y \<in> Standard"
-by (simp add: star_mult_def)
-
-lemma Standard_divide: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x / y \<in> Standard"
-by (simp add: star_divide_def)
-
-lemma Standard_inverse: "x \<in> Standard \<Longrightarrow> inverse x \<in> Standard"
-by (simp add: star_inverse_def)
-
-lemma Standard_abs: "x \<in> Standard \<Longrightarrow> abs x \<in> Standard"
-by (simp add: star_abs_def)
-
-lemma Standard_div: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x div y \<in> Standard"
-by (simp add: star_div_def)
-
-lemma Standard_mod: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x mod y \<in> Standard"
-by (simp add: star_mod_def)
-
-lemma Standard_power: "x \<in> Standard \<Longrightarrow> x ^ n \<in> Standard"
-by (simp add: star_power_def)
-
-lemmas Standard_simps [simp] =
- Standard_zero Standard_one Standard_number_of
- Standard_add Standard_diff Standard_minus
- Standard_mult Standard_divide Standard_inverse
- Standard_abs Standard_div Standard_mod
- Standard_power
-
-text {* @{term star_of} preserves class operations *}
-
-lemma star_of_add: "star_of (x + y) = star_of x + star_of y"
-by transfer (rule refl)
-
-lemma star_of_diff: "star_of (x - y) = star_of x - star_of y"
-by transfer (rule refl)
-
-lemma star_of_minus: "star_of (-x) = - star_of x"
-by transfer (rule refl)
-
-lemma star_of_mult: "star_of (x * y) = star_of x * star_of y"
-by transfer (rule refl)
-
-lemma star_of_divide: "star_of (x / y) = star_of x / star_of y"
-by transfer (rule refl)
-
-lemma star_of_inverse: "star_of (inverse x) = inverse (star_of x)"
-by transfer (rule refl)
-
-lemma star_of_div: "star_of (x div y) = star_of x div star_of y"
-by transfer (rule refl)
-
-lemma star_of_mod: "star_of (x mod y) = star_of x mod star_of y"
-by transfer (rule refl)
-
-lemma star_of_power: "star_of (x ^ n) = star_of x ^ n"
-by transfer (rule refl)
-
-lemma star_of_abs: "star_of (abs x) = abs (star_of x)"
-by transfer (rule refl)
-
-text {* @{term star_of} preserves numerals *}
-
-lemma star_of_zero: "star_of 0 = 0"
-by transfer (rule refl)
-
-lemma star_of_one: "star_of 1 = 1"
-by transfer (rule refl)
-
-lemma star_of_number_of: "star_of (number_of x) = number_of x"
-by transfer (rule refl)
-
-text {* @{term star_of} preserves orderings *}
-
-lemma star_of_less: "(star_of x < star_of y) = (x < y)"
-by transfer (rule refl)
-
-lemma star_of_le: "(star_of x \<le> star_of y) = (x \<le> y)"
-by transfer (rule refl)
-
-lemma star_of_eq: "(star_of x = star_of y) = (x = y)"
-by transfer (rule refl)
-
-text{*As above, for 0*}
-
-lemmas star_of_0_less = star_of_less [of 0, simplified star_of_zero]
-lemmas star_of_0_le = star_of_le [of 0, simplified star_of_zero]
-lemmas star_of_0_eq = star_of_eq [of 0, simplified star_of_zero]
-
-lemmas star_of_less_0 = star_of_less [of _ 0, simplified star_of_zero]
-lemmas star_of_le_0 = star_of_le [of _ 0, simplified star_of_zero]
-lemmas star_of_eq_0 = star_of_eq [of _ 0, simplified star_of_zero]
-
-text{*As above, for 1*}
-
-lemmas star_of_1_less = star_of_less [of 1, simplified star_of_one]
-lemmas star_of_1_le = star_of_le [of 1, simplified star_of_one]
-lemmas star_of_1_eq = star_of_eq [of 1, simplified star_of_one]
-
-lemmas star_of_less_1 = star_of_less [of _ 1, simplified star_of_one]
-lemmas star_of_le_1 = star_of_le [of _ 1, simplified star_of_one]
-lemmas star_of_eq_1 = star_of_eq [of _ 1, simplified star_of_one]
-
-text{*As above, for numerals*}
-
-lemmas star_of_number_less =
- star_of_less [of "number_of w", standard, simplified star_of_number_of]
-lemmas star_of_number_le =
- star_of_le [of "number_of w", standard, simplified star_of_number_of]
-lemmas star_of_number_eq =
- star_of_eq [of "number_of w", standard, simplified star_of_number_of]
-
-lemmas star_of_less_number =
- star_of_less [of _ "number_of w", standard, simplified star_of_number_of]
-lemmas star_of_le_number =
- star_of_le [of _ "number_of w", standard, simplified star_of_number_of]
-lemmas star_of_eq_number =
- star_of_eq [of _ "number_of w", standard, simplified star_of_number_of]
-
-lemmas star_of_simps [simp] =
- star_of_add star_of_diff star_of_minus
- star_of_mult star_of_divide star_of_inverse
- star_of_div star_of_mod
- star_of_power star_of_abs
- star_of_zero star_of_one star_of_number_of
- star_of_less star_of_le star_of_eq
- star_of_0_less star_of_0_le star_of_0_eq
- star_of_less_0 star_of_le_0 star_of_eq_0
- star_of_1_less star_of_1_le star_of_1_eq
- star_of_less_1 star_of_le_1 star_of_eq_1
- star_of_number_less star_of_number_le star_of_number_eq
- star_of_less_number star_of_le_number star_of_eq_number
-
-subsection {* Ordering and lattice classes *}
-
-instance star :: (order) order
-apply (intro_classes)
-apply (transfer, rule order_less_le)
-apply (transfer, rule order_refl)
-apply (transfer, erule (1) order_trans)
-apply (transfer, erule (1) order_antisym)
-done
-
-instantiation star :: (lower_semilattice) lower_semilattice
-begin
-
-definition
- star_inf_def [transfer_unfold]: "inf \<equiv> *f2* inf"
-
-instance
- by default (transfer star_inf_def, auto)+
-
-end
-
-instantiation star :: (upper_semilattice) upper_semilattice
-begin
-
-definition
- star_sup_def [transfer_unfold]: "sup \<equiv> *f2* sup"
-
-instance
- by default (transfer star_sup_def, auto)+
-
-end
-
-instance star :: (lattice) lattice ..
-
-instance star :: (distrib_lattice) distrib_lattice
- by default (transfer, auto simp add: sup_inf_distrib1)
-
-lemma Standard_inf [simp]:
- "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> inf x y \<in> Standard"
-by (simp add: star_inf_def)
-
-lemma Standard_sup [simp]:
- "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> sup x y \<in> Standard"
-by (simp add: star_sup_def)
-
-lemma star_of_inf [simp]: "star_of (inf x y) = inf (star_of x) (star_of y)"
-by transfer (rule refl)
-
-lemma star_of_sup [simp]: "star_of (sup x y) = sup (star_of x) (star_of y)"
-by transfer (rule refl)
-
-instance star :: (linorder) linorder
-by (intro_classes, transfer, rule linorder_linear)
-
-lemma star_max_def [transfer_unfold]: "max = *f2* max"
-apply (rule ext, rule ext)
-apply (unfold max_def, transfer, fold max_def)
-apply (rule refl)
-done
-
-lemma star_min_def [transfer_unfold]: "min = *f2* min"
-apply (rule ext, rule ext)
-apply (unfold min_def, transfer, fold min_def)
-apply (rule refl)
-done
-
-lemma Standard_max [simp]:
- "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> max x y \<in> Standard"
-by (simp add: star_max_def)
-
-lemma Standard_min [simp]:
- "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> min x y \<in> Standard"
-by (simp add: star_min_def)
-
-lemma star_of_max [simp]: "star_of (max x y) = max (star_of x) (star_of y)"
-by transfer (rule refl)
-
-lemma star_of_min [simp]: "star_of (min x y) = min (star_of x) (star_of y)"
-by transfer (rule refl)
-
-
-subsection {* Ordered group classes *}
-
-instance star :: (semigroup_add) semigroup_add
-by (intro_classes, transfer, rule add_assoc)
-
-instance star :: (ab_semigroup_add) ab_semigroup_add
-by (intro_classes, transfer, rule add_commute)
-
-instance star :: (semigroup_mult) semigroup_mult
-by (intro_classes, transfer, rule mult_assoc)
-
-instance star :: (ab_semigroup_mult) ab_semigroup_mult
-by (intro_classes, transfer, rule mult_commute)
-
-instance star :: (comm_monoid_add) comm_monoid_add
-by (intro_classes, transfer, rule comm_monoid_add_class.zero_plus.add_0)
-
-instance star :: (monoid_mult) monoid_mult
-apply (intro_classes)
-apply (transfer, rule mult_1_left)
-apply (transfer, rule mult_1_right)
-done
-
-instance star :: (comm_monoid_mult) comm_monoid_mult
-by (intro_classes, transfer, rule mult_1)
-
-instance star :: (cancel_semigroup_add) cancel_semigroup_add
-apply (intro_classes)
-apply (transfer, erule add_left_imp_eq)
-apply (transfer, erule add_right_imp_eq)
-done
-
-instance star :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
-by (intro_classes, transfer, rule add_imp_eq)
-
-instance star :: (ab_group_add) ab_group_add
-apply (intro_classes)
-apply (transfer, rule left_minus)
-apply (transfer, rule diff_minus)
-done
-
-instance star :: (pordered_ab_semigroup_add) pordered_ab_semigroup_add
-by (intro_classes, transfer, rule add_left_mono)
-
-instance star :: (pordered_cancel_ab_semigroup_add) pordered_cancel_ab_semigroup_add ..
-
-instance star :: (pordered_ab_semigroup_add_imp_le) pordered_ab_semigroup_add_imp_le
-by (intro_classes, transfer, rule add_le_imp_le_left)
-
-instance star :: (pordered_comm_monoid_add) pordered_comm_monoid_add ..
-instance star :: (pordered_ab_group_add) pordered_ab_group_add ..
-
-instance star :: (pordered_ab_group_add_abs) pordered_ab_group_add_abs
- by intro_classes (transfer,
- simp add: abs_ge_self abs_leI abs_triangle_ineq)+
-
-instance star :: (ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add ..
-instance star :: (lordered_ab_group_add_meet) lordered_ab_group_add_meet ..
-instance star :: (lordered_ab_group_add_meet) lordered_ab_group_add_meet ..
-instance star :: (lordered_ab_group_add) lordered_ab_group_add ..
-
-instance star :: (lordered_ab_group_add_abs) lordered_ab_group_add_abs
-by (intro_classes, transfer, rule abs_lattice)
-
-subsection {* Ring and field classes *}
-
-instance star :: (semiring) semiring
-apply (intro_classes)
-apply (transfer, rule left_distrib)
-apply (transfer, rule right_distrib)
-done
-
-instance star :: (semiring_0) semiring_0
-by intro_classes (transfer, simp)+
-
-instance star :: (semiring_0_cancel) semiring_0_cancel ..
-
-instance star :: (comm_semiring) comm_semiring
-by (intro_classes, transfer, rule left_distrib)
-
-instance star :: (comm_semiring_0) comm_semiring_0 ..
-instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
-
-instance star :: (zero_neq_one) zero_neq_one
-by (intro_classes, transfer, rule zero_neq_one)
-
-instance star :: (semiring_1) semiring_1 ..
-instance star :: (comm_semiring_1) comm_semiring_1 ..
-
-instance star :: (no_zero_divisors) no_zero_divisors
-by (intro_classes, transfer, rule no_zero_divisors)
-
-instance star :: (semiring_1_cancel) semiring_1_cancel ..
-instance star :: (comm_semiring_1_cancel) comm_semiring_1_cancel ..
-instance star :: (ring) ring ..
-instance star :: (comm_ring) comm_ring ..
-instance star :: (ring_1) ring_1 ..
-instance star :: (comm_ring_1) comm_ring_1 ..
-instance star :: (ring_no_zero_divisors) ring_no_zero_divisors ..
-instance star :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..
-instance star :: (idom) idom ..
-
-instance star :: (division_ring) division_ring
-apply (intro_classes)
-apply (transfer, erule left_inverse)
-apply (transfer, erule right_inverse)
-done
-
-instance star :: (field) field
-apply (intro_classes)
-apply (transfer, erule left_inverse)
-apply (transfer, rule divide_inverse)
-done
-
-instance star :: (division_by_zero) division_by_zero
-by (intro_classes, transfer, rule inverse_zero)
-
-instance star :: (pordered_semiring) pordered_semiring
-apply (intro_classes)
-apply (transfer, erule (1) mult_left_mono)
-apply (transfer, erule (1) mult_right_mono)
-done
-
-instance star :: (pordered_cancel_semiring) pordered_cancel_semiring ..
-
-instance star :: (ordered_semiring_strict) ordered_semiring_strict
-apply (intro_classes)
-apply (transfer, erule (1) mult_strict_left_mono)
-apply (transfer, erule (1) mult_strict_right_mono)
-done
-
-instance star :: (pordered_comm_semiring) pordered_comm_semiring
-by (intro_classes, transfer, rule mult_mono1_class.times_zero_less_eq_less.mult_mono1)
-
-instance star :: (pordered_cancel_comm_semiring) pordered_cancel_comm_semiring ..
-
-instance star :: (ordered_comm_semiring_strict) ordered_comm_semiring_strict
-by (intro_classes, transfer, rule ordered_comm_semiring_strict_class.plus_times_zero_less_eq_less.mult_strict_mono)
-
-instance star :: (pordered_ring) pordered_ring ..
-instance star :: (pordered_ring_abs) pordered_ring_abs
- by intro_classes (transfer, rule abs_eq_mult)
-instance star :: (lordered_ring) lordered_ring ..
-
-instance star :: (abs_if) abs_if
-by (intro_classes, transfer, rule abs_if)
-
-instance star :: (sgn_if) sgn_if
-by (intro_classes, transfer, rule sgn_if)
-
-instance star :: (ordered_ring_strict) ordered_ring_strict ..
-instance star :: (pordered_comm_ring) pordered_comm_ring ..
-
-instance star :: (ordered_semidom) ordered_semidom
-by (intro_classes, transfer, rule zero_less_one)
-
-instance star :: (ordered_idom) ordered_idom ..
-instance star :: (ordered_field) ordered_field ..
-
-subsection {* Power classes *}
-
-text {*
- Proving the class axiom @{thm [source] power_Suc} for type
- @{typ "'a star"} is a little tricky, because it quantifies
- over values of type @{typ nat}. The transfer principle does
- not handle quantification over non-star types in general,
- but we can work around this by fixing an arbitrary @{typ nat}
- value, and then applying the transfer principle.
-*}
-
-instance star :: (recpower) recpower
-proof
- show "\<And>a::'a star. a ^ 0 = 1"
- by transfer (rule power_0)
-next
- fix n show "\<And>a::'a star. a ^ Suc n = a * a ^ n"
- by transfer (rule power_Suc)
-qed
-
-subsection {* Number classes *}
-
-lemma star_of_nat_def [transfer_unfold]: "of_nat n = star_of (of_nat n)"
-by (induct n, simp_all)
-
-lemma Standard_of_nat [simp]: "of_nat n \<in> Standard"
-by (simp add: star_of_nat_def)
-
-lemma star_of_of_nat [simp]: "star_of (of_nat n) = of_nat n"
-by transfer (rule refl)
-
-lemma star_of_int_def [transfer_unfold]: "of_int z = star_of (of_int z)"
-by (rule_tac z=z in int_diff_cases, simp)
-
-lemma Standard_of_int [simp]: "of_int z \<in> Standard"
-by (simp add: star_of_int_def)
-
-lemma star_of_of_int [simp]: "star_of (of_int z) = of_int z"
-by transfer (rule refl)
-
-instance star :: (semiring_char_0) semiring_char_0
-by intro_classes (simp only: star_of_nat_def star_of_eq of_nat_eq_iff)
-
-instance star :: (ring_char_0) ring_char_0 ..
-
-instance star :: (number_ring) number_ring
-by (intro_classes, simp only: star_number_def star_of_int_def number_of_eq)
-
-subsection {* Finite class *}
-
-lemma starset_finite: "finite A \<Longrightarrow> *s* A = star_of ` A"
-by (erule finite_induct, simp_all)
-
-instance star :: (finite) finite
-apply (intro_classes)
-apply (subst starset_UNIV [symmetric])
-apply (subst starset_finite [OF finite])
-apply (rule finite_imageI [OF finite])
-done
-
-end
--- a/src/HOL/Hyperreal/StarDef.thy Tue Dec 11 10:23:05 2007 +0100
+++ b/src/HOL/Hyperreal/StarDef.thy Tue Dec 11 10:23:08 2007 +0100
@@ -426,4 +426,598 @@
starset_image starset_vimage
starset_subset starset_eq
+
+subsection {* Syntactic classes *}
+
+instantiation star :: (zero) zero
+begin
+
+definition
+ star_zero_def: "0 \<equiv> star_of 0"
+
+instance ..
+
end
+
+instantiation star :: (one) one
+begin
+
+definition
+ star_one_def: "1 \<equiv> star_of 1"
+
+instance ..
+
+end
+
+instantiation star :: (plus) plus
+begin
+
+definition
+ star_add_def: "(op +) \<equiv> *f2* (op +)"
+
+instance ..
+
+end
+
+instantiation star :: (times) times
+begin
+
+definition
+ star_mult_def: "(op *) \<equiv> *f2* (op *)"
+
+instance ..
+
+end
+
+instantiation star :: (minus) minus
+begin
+
+definition
+ star_minus_def: "uminus \<equiv> *f* uminus"
+
+definition
+ star_diff_def: "(op -) \<equiv> *f2* (op -)"
+
+instance ..
+
+end
+
+instantiation star :: (abs) abs
+begin
+
+definition
+ star_abs_def: "abs \<equiv> *f* abs"
+
+instance ..
+
+end
+
+instantiation star :: (sgn) sgn
+begin
+
+definition
+ star_sgn_def: "sgn \<equiv> *f* sgn"
+
+instance ..
+
+end
+
+instantiation star :: (inverse) inverse
+begin
+
+definition
+ star_divide_def: "(op /) \<equiv> *f2* (op /)"
+
+definition
+ star_inverse_def: "inverse \<equiv> *f* inverse"
+
+instance ..
+
+end
+
+instantiation star :: (number) number
+begin
+
+definition
+ star_number_def: "number_of b \<equiv> star_of (number_of b)"
+
+instance ..
+
+end
+
+instantiation star :: (Divides.div) Divides.div
+begin
+
+definition
+ star_div_def: "(op div) \<equiv> *f2* (op div)"
+
+definition
+ star_mod_def: "(op mod) \<equiv> *f2* (op mod)"
+
+instance ..
+
+end
+
+instantiation star :: (power) power
+begin
+
+definition
+ star_power_def: "(op ^) \<equiv> \<lambda>x n. ( *f* (\<lambda>x. x ^ n)) x"
+
+instance ..
+
+end
+
+instantiation star :: (ord) ord
+begin
+
+definition
+ star_le_def: "(op \<le>) \<equiv> *p2* (op \<le>)"
+
+definition
+ star_less_def: "(op <) \<equiv> *p2* (op <)"
+
+instance ..
+
+end
+
+lemmas star_class_defs [transfer_unfold] =
+ star_zero_def star_one_def star_number_def
+ star_add_def star_diff_def star_minus_def
+ star_mult_def star_divide_def star_inverse_def
+ star_le_def star_less_def star_abs_def star_sgn_def
+ star_div_def star_mod_def star_power_def
+
+text {* Class operations preserve standard elements *}
+
+lemma Standard_zero: "0 \<in> Standard"
+by (simp add: star_zero_def)
+
+lemma Standard_one: "1 \<in> Standard"
+by (simp add: star_one_def)
+
+lemma Standard_number_of: "number_of b \<in> Standard"
+by (simp add: star_number_def)
+
+lemma Standard_add: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x + y \<in> Standard"
+by (simp add: star_add_def)
+
+lemma Standard_diff: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x - y \<in> Standard"
+by (simp add: star_diff_def)
+
+lemma Standard_minus: "x \<in> Standard \<Longrightarrow> - x \<in> Standard"
+by (simp add: star_minus_def)
+
+lemma Standard_mult: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x * y \<in> Standard"
+by (simp add: star_mult_def)
+
+lemma Standard_divide: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x / y \<in> Standard"
+by (simp add: star_divide_def)
+
+lemma Standard_inverse: "x \<in> Standard \<Longrightarrow> inverse x \<in> Standard"
+by (simp add: star_inverse_def)
+
+lemma Standard_abs: "x \<in> Standard \<Longrightarrow> abs x \<in> Standard"
+by (simp add: star_abs_def)
+
+lemma Standard_div: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x div y \<in> Standard"
+by (simp add: star_div_def)
+
+lemma Standard_mod: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x mod y \<in> Standard"
+by (simp add: star_mod_def)
+
+lemma Standard_power: "x \<in> Standard \<Longrightarrow> x ^ n \<in> Standard"
+by (simp add: star_power_def)
+
+lemmas Standard_simps [simp] =
+ Standard_zero Standard_one Standard_number_of
+ Standard_add Standard_diff Standard_minus
+ Standard_mult Standard_divide Standard_inverse
+ Standard_abs Standard_div Standard_mod
+ Standard_power
+
+text {* @{term star_of} preserves class operations *}
+
+lemma star_of_add: "star_of (x + y) = star_of x + star_of y"
+by transfer (rule refl)
+
+lemma star_of_diff: "star_of (x - y) = star_of x - star_of y"
+by transfer (rule refl)
+
+lemma star_of_minus: "star_of (-x) = - star_of x"
+by transfer (rule refl)
+
+lemma star_of_mult: "star_of (x * y) = star_of x * star_of y"
+by transfer (rule refl)
+
+lemma star_of_divide: "star_of (x / y) = star_of x / star_of y"
+by transfer (rule refl)
+
+lemma star_of_inverse: "star_of (inverse x) = inverse (star_of x)"
+by transfer (rule refl)
+
+lemma star_of_div: "star_of (x div y) = star_of x div star_of y"
+by transfer (rule refl)
+
+lemma star_of_mod: "star_of (x mod y) = star_of x mod star_of y"
+by transfer (rule refl)
+
+lemma star_of_power: "star_of (x ^ n) = star_of x ^ n"
+by transfer (rule refl)
+
+lemma star_of_abs: "star_of (abs x) = abs (star_of x)"
+by transfer (rule refl)
+
+text {* @{term star_of} preserves numerals *}
+
+lemma star_of_zero: "star_of 0 = 0"
+by transfer (rule refl)
+
+lemma star_of_one: "star_of 1 = 1"
+by transfer (rule refl)
+
+lemma star_of_number_of: "star_of (number_of x) = number_of x"
+by transfer (rule refl)
+
+text {* @{term star_of} preserves orderings *}
+
+lemma star_of_less: "(star_of x < star_of y) = (x < y)"
+by transfer (rule refl)
+
+lemma star_of_le: "(star_of x \<le> star_of y) = (x \<le> y)"
+by transfer (rule refl)
+
+lemma star_of_eq: "(star_of x = star_of y) = (x = y)"
+by transfer (rule refl)
+
+text{*As above, for 0*}
+
+lemmas star_of_0_less = star_of_less [of 0, simplified star_of_zero]
+lemmas star_of_0_le = star_of_le [of 0, simplified star_of_zero]
+lemmas star_of_0_eq = star_of_eq [of 0, simplified star_of_zero]
+
+lemmas star_of_less_0 = star_of_less [of _ 0, simplified star_of_zero]
+lemmas star_of_le_0 = star_of_le [of _ 0, simplified star_of_zero]
+lemmas star_of_eq_0 = star_of_eq [of _ 0, simplified star_of_zero]
+
+text{*As above, for 1*}
+
+lemmas star_of_1_less = star_of_less [of 1, simplified star_of_one]
+lemmas star_of_1_le = star_of_le [of 1, simplified star_of_one]
+lemmas star_of_1_eq = star_of_eq [of 1, simplified star_of_one]
+
+lemmas star_of_less_1 = star_of_less [of _ 1, simplified star_of_one]
+lemmas star_of_le_1 = star_of_le [of _ 1, simplified star_of_one]
+lemmas star_of_eq_1 = star_of_eq [of _ 1, simplified star_of_one]
+
+text{*As above, for numerals*}
+
+lemmas star_of_number_less =
+ star_of_less [of "number_of w", standard, simplified star_of_number_of]
+lemmas star_of_number_le =
+ star_of_le [of "number_of w", standard, simplified star_of_number_of]
+lemmas star_of_number_eq =
+ star_of_eq [of "number_of w", standard, simplified star_of_number_of]
+
+lemmas star_of_less_number =
+ star_of_less [of _ "number_of w", standard, simplified star_of_number_of]
+lemmas star_of_le_number =
+ star_of_le [of _ "number_of w", standard, simplified star_of_number_of]
+lemmas star_of_eq_number =
+ star_of_eq [of _ "number_of w", standard, simplified star_of_number_of]
+
+lemmas star_of_simps [simp] =
+ star_of_add star_of_diff star_of_minus
+ star_of_mult star_of_divide star_of_inverse
+ star_of_div star_of_mod
+ star_of_power star_of_abs
+ star_of_zero star_of_one star_of_number_of
+ star_of_less star_of_le star_of_eq
+ star_of_0_less star_of_0_le star_of_0_eq
+ star_of_less_0 star_of_le_0 star_of_eq_0
+ star_of_1_less star_of_1_le star_of_1_eq
+ star_of_less_1 star_of_le_1 star_of_eq_1
+ star_of_number_less star_of_number_le star_of_number_eq
+ star_of_less_number star_of_le_number star_of_eq_number
+
+subsection {* Ordering and lattice classes *}
+
+instance star :: (order) order
+apply (intro_classes)
+apply (transfer, rule order_less_le)
+apply (transfer, rule order_refl)
+apply (transfer, erule (1) order_trans)
+apply (transfer, erule (1) order_antisym)
+done
+
+instantiation star :: (lower_semilattice) lower_semilattice
+begin
+
+definition
+ star_inf_def [transfer_unfold]: "inf \<equiv> *f2* inf"
+
+instance
+ by default (transfer star_inf_def, auto)+
+
+end
+
+instantiation star :: (upper_semilattice) upper_semilattice
+begin
+
+definition
+ star_sup_def [transfer_unfold]: "sup \<equiv> *f2* sup"
+
+instance
+ by default (transfer star_sup_def, auto)+
+
+end
+
+instance star :: (lattice) lattice ..
+
+instance star :: (distrib_lattice) distrib_lattice
+ by default (transfer, auto simp add: sup_inf_distrib1)
+
+lemma Standard_inf [simp]:
+ "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> inf x y \<in> Standard"
+by (simp add: star_inf_def)
+
+lemma Standard_sup [simp]:
+ "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> sup x y \<in> Standard"
+by (simp add: star_sup_def)
+
+lemma star_of_inf [simp]: "star_of (inf x y) = inf (star_of x) (star_of y)"
+by transfer (rule refl)
+
+lemma star_of_sup [simp]: "star_of (sup x y) = sup (star_of x) (star_of y)"
+by transfer (rule refl)
+
+instance star :: (linorder) linorder
+by (intro_classes, transfer, rule linorder_linear)
+
+lemma star_max_def [transfer_unfold]: "max = *f2* max"
+apply (rule ext, rule ext)
+apply (unfold max_def, transfer, fold max_def)
+apply (rule refl)
+done
+
+lemma star_min_def [transfer_unfold]: "min = *f2* min"
+apply (rule ext, rule ext)
+apply (unfold min_def, transfer, fold min_def)
+apply (rule refl)
+done
+
+lemma Standard_max [simp]:
+ "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> max x y \<in> Standard"
+by (simp add: star_max_def)
+
+lemma Standard_min [simp]:
+ "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> min x y \<in> Standard"
+by (simp add: star_min_def)
+
+lemma star_of_max [simp]: "star_of (max x y) = max (star_of x) (star_of y)"
+by transfer (rule refl)
+
+lemma star_of_min [simp]: "star_of (min x y) = min (star_of x) (star_of y)"
+by transfer (rule refl)
+
+
+subsection {* Ordered group classes *}
+
+instance star :: (semigroup_add) semigroup_add
+by (intro_classes, transfer, rule add_assoc)
+
+instance star :: (ab_semigroup_add) ab_semigroup_add
+by (intro_classes, transfer, rule add_commute)
+
+instance star :: (semigroup_mult) semigroup_mult
+by (intro_classes, transfer, rule mult_assoc)
+
+instance star :: (ab_semigroup_mult) ab_semigroup_mult
+by (intro_classes, transfer, rule mult_commute)
+
+instance star :: (comm_monoid_add) comm_monoid_add
+by (intro_classes, transfer, rule comm_monoid_add_class.zero_plus.add_0)
+
+instance star :: (monoid_mult) monoid_mult
+apply (intro_classes)
+apply (transfer, rule mult_1_left)
+apply (transfer, rule mult_1_right)
+done
+
+instance star :: (comm_monoid_mult) comm_monoid_mult
+by (intro_classes, transfer, rule mult_1)
+
+instance star :: (cancel_semigroup_add) cancel_semigroup_add
+apply (intro_classes)
+apply (transfer, erule add_left_imp_eq)
+apply (transfer, erule add_right_imp_eq)
+done
+
+instance star :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
+by (intro_classes, transfer, rule add_imp_eq)
+
+instance star :: (ab_group_add) ab_group_add
+apply (intro_classes)
+apply (transfer, rule left_minus)
+apply (transfer, rule diff_minus)
+done
+
+instance star :: (pordered_ab_semigroup_add) pordered_ab_semigroup_add
+by (intro_classes, transfer, rule add_left_mono)
+
+instance star :: (pordered_cancel_ab_semigroup_add) pordered_cancel_ab_semigroup_add ..
+
+instance star :: (pordered_ab_semigroup_add_imp_le) pordered_ab_semigroup_add_imp_le
+by (intro_classes, transfer, rule add_le_imp_le_left)
+
+instance star :: (pordered_comm_monoid_add) pordered_comm_monoid_add ..
+instance star :: (pordered_ab_group_add) pordered_ab_group_add ..
+
+instance star :: (pordered_ab_group_add_abs) pordered_ab_group_add_abs
+ by intro_classes (transfer,
+ simp add: abs_ge_self abs_leI abs_triangle_ineq)+
+
+instance star :: (ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add ..
+instance star :: (lordered_ab_group_add_meet) lordered_ab_group_add_meet ..
+instance star :: (lordered_ab_group_add_meet) lordered_ab_group_add_meet ..
+instance star :: (lordered_ab_group_add) lordered_ab_group_add ..
+
+instance star :: (lordered_ab_group_add_abs) lordered_ab_group_add_abs
+by (intro_classes, transfer, rule abs_lattice)
+
+subsection {* Ring and field classes *}
+
+instance star :: (semiring) semiring
+apply (intro_classes)
+apply (transfer, rule left_distrib)
+apply (transfer, rule right_distrib)
+done
+
+instance star :: (semiring_0) semiring_0
+by intro_classes (transfer, simp)+
+
+instance star :: (semiring_0_cancel) semiring_0_cancel ..
+
+instance star :: (comm_semiring) comm_semiring
+by (intro_classes, transfer, rule left_distrib)
+
+instance star :: (comm_semiring_0) comm_semiring_0 ..
+instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
+
+instance star :: (zero_neq_one) zero_neq_one
+by (intro_classes, transfer, rule zero_neq_one)
+
+instance star :: (semiring_1) semiring_1 ..
+instance star :: (comm_semiring_1) comm_semiring_1 ..
+
+instance star :: (no_zero_divisors) no_zero_divisors
+by (intro_classes, transfer, rule no_zero_divisors)
+
+instance star :: (semiring_1_cancel) semiring_1_cancel ..
+instance star :: (comm_semiring_1_cancel) comm_semiring_1_cancel ..
+instance star :: (ring) ring ..
+instance star :: (comm_ring) comm_ring ..
+instance star :: (ring_1) ring_1 ..
+instance star :: (comm_ring_1) comm_ring_1 ..
+instance star :: (ring_no_zero_divisors) ring_no_zero_divisors ..
+instance star :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..
+instance star :: (idom) idom ..
+
+instance star :: (division_ring) division_ring
+apply (intro_classes)
+apply (transfer, erule left_inverse)
+apply (transfer, erule right_inverse)
+done
+
+instance star :: (field) field
+apply (intro_classes)
+apply (transfer, erule left_inverse)
+apply (transfer, rule divide_inverse)
+done
+
+instance star :: (division_by_zero) division_by_zero
+by (intro_classes, transfer, rule inverse_zero)
+
+instance star :: (pordered_semiring) pordered_semiring
+apply (intro_classes)
+apply (transfer, erule (1) mult_left_mono)
+apply (transfer, erule (1) mult_right_mono)
+done
+
+instance star :: (pordered_cancel_semiring) pordered_cancel_semiring ..
+
+instance star :: (ordered_semiring_strict) ordered_semiring_strict
+apply (intro_classes)
+apply (transfer, erule (1) mult_strict_left_mono)
+apply (transfer, erule (1) mult_strict_right_mono)
+done
+
+instance star :: (pordered_comm_semiring) pordered_comm_semiring
+by (intro_classes, transfer, rule mult_mono1_class.times_zero_less_eq_less.mult_mono1)
+
+instance star :: (pordered_cancel_comm_semiring) pordered_cancel_comm_semiring ..
+
+instance star :: (ordered_comm_semiring_strict) ordered_comm_semiring_strict
+by (intro_classes, transfer, rule ordered_comm_semiring_strict_class.plus_times_zero_less_eq_less.mult_strict_mono)
+
+instance star :: (pordered_ring) pordered_ring ..
+instance star :: (pordered_ring_abs) pordered_ring_abs
+ by intro_classes (transfer, rule abs_eq_mult)
+instance star :: (lordered_ring) lordered_ring ..
+
+instance star :: (abs_if) abs_if
+by (intro_classes, transfer, rule abs_if)
+
+instance star :: (sgn_if) sgn_if
+by (intro_classes, transfer, rule sgn_if)
+
+instance star :: (ordered_ring_strict) ordered_ring_strict ..
+instance star :: (pordered_comm_ring) pordered_comm_ring ..
+
+instance star :: (ordered_semidom) ordered_semidom
+by (intro_classes, transfer, rule zero_less_one)
+
+instance star :: (ordered_idom) ordered_idom ..
+instance star :: (ordered_field) ordered_field ..
+
+subsection {* Power classes *}
+
+text {*
+ Proving the class axiom @{thm [source] power_Suc} for type
+ @{typ "'a star"} is a little tricky, because it quantifies
+ over values of type @{typ nat}. The transfer principle does
+ not handle quantification over non-star types in general,
+ but we can work around this by fixing an arbitrary @{typ nat}
+ value, and then applying the transfer principle.
+*}
+
+instance star :: (recpower) recpower
+proof
+ show "\<And>a::'a star. a ^ 0 = 1"
+ by transfer (rule power_0)
+next
+ fix n show "\<And>a::'a star. a ^ Suc n = a * a ^ n"
+ by transfer (rule power_Suc)
+qed
+
+subsection {* Number classes *}
+
+lemma star_of_nat_def [transfer_unfold]: "of_nat n = star_of (of_nat n)"
+by (induct n, simp_all)
+
+lemma Standard_of_nat [simp]: "of_nat n \<in> Standard"
+by (simp add: star_of_nat_def)
+
+lemma star_of_of_nat [simp]: "star_of (of_nat n) = of_nat n"
+by transfer (rule refl)
+
+lemma star_of_int_def [transfer_unfold]: "of_int z = star_of (of_int z)"
+by (rule_tac z=z in int_diff_cases, simp)
+
+lemma Standard_of_int [simp]: "of_int z \<in> Standard"
+by (simp add: star_of_int_def)
+
+lemma star_of_of_int [simp]: "star_of (of_int z) = of_int z"
+by transfer (rule refl)
+
+instance star :: (semiring_char_0) semiring_char_0
+by intro_classes (simp only: star_of_nat_def star_of_eq of_nat_eq_iff)
+
+instance star :: (ring_char_0) ring_char_0 ..
+
+instance star :: (number_ring) number_ring
+by (intro_classes, simp only: star_number_def star_of_int_def number_of_eq)
+
+subsection {* Finite class *}
+
+lemma starset_finite: "finite A \<Longrightarrow> *s* A = star_of ` A"
+by (erule finite_induct, simp_all)
+
+instance star :: (finite) finite
+apply (intro_classes)
+apply (subst starset_UNIV [symmetric])
+apply (subst starset_finite [OF finite])
+apply (rule finite_imageI [OF finite])
+done
+
+end